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Abstract
Pointwise error analysis of the linear finite element approximation for −�u + u = f
in �, ∂nu = τ on ∂�, where � is a bounded smooth domain in RN , is presented. We
establish O(h2| log h|) and O(h) error bounds in the L∞- and W 1,∞-norms respec-
tively, by adopting the technique of regularized Green’s functions combined with local
H1- and L2-estimates in dyadic annuli. Since the computational domain �h is only
polyhedral, one has to take into account non-conformity of the approximation caused
by the discrepancy �h �= �. In particular, the so-called Galerkin orthogonality rela-
tion, utilized three times in the proof, does not exactly hold and involves domain
perturbation terms (or boundary-skin terms), which need to be addressed carefully. A
numerical example is provided to confirm the theoretical result.

Mathematics Subject Classification Primary 65N30; Secondary 65N15

1 Introduction

We consider the following Poisson equation with a non-homogeneous Neumann
boundary condition:

− �u + u = f in �, ∂nu = τ on � := ∂�, (1.1)
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where � ⊂ R
N is a bounded domain with a smooth boundary � of C∞-class, f is an

external force, τ is a prescribed Neumann data, and ∂n means the directional derivative
with respect to the unit outward normal vector n to �. The linear (or P1) finite element
approximation to (1.1) is quite standard. Given an approximate polyhedral domain
�h whose vertices lie on �, one can construct a triangulation Th of �h , build a finite
dimensional space Vh consisting of piecewise linear functions, and seek for uh ∈ Vh
such that

(∇uh,∇vh)�h + (uh, vh)�h = ( f̃ , vh)�h + (τ̃ , vh)�h ∀vh ∈ Vh, (1.2)

where �h := ∂�h , and f̃ and τ̃ denote extensions of f and τ , respectively. Then, the
main result of this paper is the following pointwise error estimates in the L∞- and
W 1,∞-norms:

‖ũ − uh‖L∞(�h) ≤ Ch2| log h| ‖u‖W 2,∞(�),

‖ũ − uh‖W 1,∞(�h)
≤ Ch ‖u‖W 2,∞(�), (1.3)

where h denotes the mesh size of Th , and ũ is an arbitrary extension of u (of course,
the way of extension must enjoy some stability, cf. Sect. 2.3 below).

Regarding pointwise error estimates of the finite element method, there have been
many contributions since 1970s (for example, see the references in [14]), and, con-
sequently, standard methods to derive them are now available. The strategy of those
methods is briefly explained as follows. By duality, analysis of L∞- or W 1,∞-error
of u − uh may be reduced to that of W 1,1-error between a regularized Green’s func-
tion g, with singularity near x0 ∈ �, and its finite element approximation gh . To
deal with ‖∇(g − gh)‖L1(�) in terms of energy norms, it is estimated either by
∑J

j=0 d
N/2
j ‖∇(g − gh)‖L2(�∩A j )

or by ‖σ N/2∇(g − gh)‖L2(�), where {d j }Jj=0 are
radii of dyadic annuli A j shrinking to x0 with the minimum dJ = Kh, whereas
σ(x) := (|x − x0|2 + κh2)1/2. The two strategies may be regarded as using discrete
and continuous weights, respectively, and basically lead to the same results. In this
paper, we employ the first approach, inwhich scaling heuristics seem towork easier (in
the second approach one actually needs to introduce an artificial parameter λ ∈ (0, 1)
to avoid singular integration, which makes the weighted norm slightly complicated,
cf. Remark 8.4.4 of [3]).

The main difficulty of our problem lies in the non-conformity Vh �⊂ H1(�) arising
from the discrepancy�h �= � and�h �= �, which we refer to as domain perturbation.
In fact, the so-called Galerkin orthogonality relation (or consistency) does not exactly
hold, and hence the standard methodology of error estimate cannot be directly applied.
This issue was already considered in classical literature (see [18, Section 4.4] or [5,
Section 4.4]) as long as energy-norm (i.e. H1) error estimates for a Dirichlet problem
are concerned. However, there are much fewer studies of error analysis in other norms
or for other boundary value problems, which take into account domain perturbation.
For example, Barrett and Elliott [2], Čermák [4] gave optimal L2-error estimates for
a Robin boundary value problem.

123



Pointwise error estimates of linear finite element method… 555

As for pointwise error estimates, the issue of domain perturbation was mainly
treated only for a homogeneous Dirichlet problem in a convex domain. In this case,
one has a conforming approximation Vh ∩ H1

0 (�h) ⊂ H1
0 (�) with the aid of the

zero extension, which makes error analysis simpler. This situation was studied for
elliptic problems in [1,17] and for parabolic ones in [8,19]. Although an idea to treat
�h �⊂ � in the case of L∞-analysis is found in [17, p. 2], it does not seem to be directly
applicable to W 1,∞-analysis or to Neumann problems. In [8,14,16], they considered
Neumann problems in a smooth domain assuming that triangulations exactly fit a
curved boundary, where one need not take into account domain perturbation. This
assumption, however, excludes the use of usual Lagrange finite elements. The P2-
isoparametric finite element analysis for a Dirichlet problem (N = 2) was shown in
[20], where the rate of convergence O(h3−ε) in the L∞-norm was obtained.

The aim of this paper is to present pointwise error analysis of the finite element
method taking into account full non-conformity caused by domain perturbation. We
emphasize that a rigorous proof of such results for Neumann problems remained open
even in the simplest setting, i.e., the linear finite element approximation. Therefore,
in the present paper, we focus on showing how the issues of domain perturbation can
be managed and confine ourselves to the linear approximation. Our main result (1.3)
implies that domain perturbation does not affect the rate of convergence in the L∞- and
W 1,∞-norms known for the case �h = � when P1-elements are used to approximate
both a curved domain and a solution.Wewould like to extend this to higher order cases
(e.g. isoparametric finite elements) in future work, by adopting the strategy developed
in this paper to manage domain perturbation.

Finally, let us make a comment concerning the opinion that the issue of �h �= � is
similar to that of numerical integration (see [16, p. 1356]). As mentioned in the same
paragraph there, if a computational domain is extended (or transformed) to include �

and a restriction (or transformation) operator to � is applied, then one can disregard
the effect of domain perturbation (higher-order schemes based on such a strategy
are proposed e.g. in [6]). On the other hand, since implementing such a restriction
operator precisely for general domains is non-trivial in practical computation, some
approximation of geometric information for � should be incorporated in the end.
Thereby one needs tomore or less deal with domain perturbation in error analysis, and,
in our opinion, its rigorous treatment would be quite different from that of numerical
integration.

The organization of this paper is as follows. Basic notations are introduced in
Sect. 2, together with boundary-skin estimates and a concept of dyadic decomposition.
In Sect. 3, we present the main result (Theorem 3.1) and reduce its proof toW 1,1-error
estimate of g − gh . The weighted H1- and L2-error estimates of g − gh are shown
in Sects. 4 and 5, respectively, which are then combined to complete the proof of
Theorem 3.1 in Sect. 6. A numerical example is given to confirm the theoretical result
in Sect. 7. Throughout this paper, C > 0 will denote generic constants which may
be different at each occurrence; its dependency (or independency) on other quantities
will often be mentioned as well. However, when it appears with sub- or super-scripts
(e.g., C0E ,C ′), we do not treat it as generic.
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2 Preliminaries

2.1 Basic notation

Recall that� ⊂ R
N is a boundedC∞-domain.We employ the standard notation of the

Lebesgue spaces L p(�), Sobolev spacesWs,p(�) (in particular, Hs(�) := Ws,2(�)),
and Hölder spaces Cm,α(�). Throughout this paper we assume the regularity u ∈
W 2,∞(�) for (1.1), which is indeed true if f ∈ Cα(�) and τ ∈ Cα(�) for some
α ∈ (0, 1).

Given a bounded domain D ⊂ R
N , both of the N -dimensional Lebesgue measure

of D and the (N − 1)-dimensional surface measure of ∂D are simply denoted by |D|
and |∂D|, as far as there is no fear of confusion. Furthermore, we let (·, ·)D and (·, ·)∂D
be the L2(D)- and L2(∂D)-inner products, respectively, and define the bilinear form

aD(u, v) := (∇u,∇v)D + (u, v)D, u, v ∈ H1(D),

which is simply written as a(u, v) when D = �, and as ah(u, v) when D = �h (to
be defined below).

Letting �h be a polyhedral domain, we consider a family of triangulations {Th}h↓0
of�h which consist of closed andmutually disjoint simplices.We assume that {Th}h↓0
is quasi-uniform, that is, every T ∈ Th contains (resp. is contained in) a ball with the
radius ch (resp. h), where h := maxT∈Th hT with hT := diam T . The boundary mesh
on �h := ∂�h inherited from Th is denoted by Sh , namely, Sh = {S ⊂ �h | S is an
(N −1)-dimensional face of some T ∈ Th}. We then assume that the vertices of every
S ∈ Sh belong to �, that is, �h is essentially a linear interpolation of �.

The linear (or P1) finite element space Vh is given in a standard manner, i.e.,

Vh = {
vh ∈ C(�h): vh |T ∈ P1(T ) ∀T ∈ Th

}
,

where Pk(T ) stands for the polynomial functions defined in T with degree ≤ k.
Let us recall a well-known result of an interpolation operator (also known as a local

regularization operator) Ih : H1(�h) → Vh satisfying the following property (see [3,
Section 4.8]):

‖∇k(v−Ihv)‖L p(T ) ≤ CIh
m−k
T ‖∇mv‖L p(MT ) k = 0, 1, m = 1, 2, v ∈ Wm,p(�h),

where MT := ⋃{T ′ ∈ Th : T ′ ∩ T �= ∅} is a macro-element of T ∈ Th . The constant
CI depends on c, k,m, p and on a reference element; especially it is independent of
v and hT . We also use the trace estimate

‖v‖L2(�h)
≤ C‖v‖1/2

L2(�h)
‖v‖1/2

H1(�h)
,

where C depends on the C0,1-regularity of �h and thus it is uniformly bounded by
that of � for h ≤ 1.
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2.2 Boundary-skin estimates

To examine the effects due to the domain discrepancy �h �= �, we introduce a notion
of tubular neighborhoods �(δ) := {x ∈ R

N : dist(x, �) ≤ δ}. It is known that (see [9,
Section 14.6]) there exists δ0 > 0, which depends on the C1,1-regularity of �, such
that each x ∈ �(δ0) admits a unique representation

x = x̄ + tn(x̄), x̄ ∈ �, t ∈ [−δ0, δ0].

We denote the maps �(δ0) → �; x �→ x̄ and �(δ0) → R; x �→ t by π(x) and
d(x), respectively (actually, π is an orthogonal projection to � and d agrees with the
signed-distance function). The regularity of� is inherited to that of π , d, and n (cf. [7,
Section 7.8]).

In [12, Section 8] we proved that π |�h gives a homeomorphism (and piecewisely a
diffeomorphism) between � and �h provided h is sufficiently small, taking advantage
of the fact that �h can be regarded as a linear interpolation of � (recall the assumption
on Sh mentioned above). If we write its inverse map π∗: � → �h as π∗(x) = x̄ +
t∗(x̄)n(x̄), then t∗ satisfies the estimates ‖∇k

�t
∗‖L∞(�) ≤ CkEh2−k for k = 0, 1, 2,

where ∇� means the surface gradient along � and where the constant depends on the
C1,1-regularity of�. This in particular implies that�h�� := (�h\�)∪ (�\�h) and
�h ∪ � are contained in �(δ) with δ := C0Eh2 < δ0. We refer to �h��, �(δ) and
their subsets as boundary-skin layers or more simply as boundary skins.

Furthermore, we know from [12, Section 8] the following boundary-skin estimates:

∣
∣
∣
∣

∫

�

f dγ −
∫

�h

f ◦ π dγh

∣
∣
∣
∣ ≤ Cδ‖ f ‖L1(�),

‖ f ‖L p(�(δ)) ≤ C(δ1/p‖ f ‖L p(�) + δ‖∇ f ‖L p(�(δ))),

‖ f − f ◦ π‖L p(�h) ≤ Cδ1−1/p‖∇ f ‖L p(�(δ)),

(2.1)

where one can replace ‖ f ‖L1(�) in (2.1)1 by ‖ f ‖L1(�h)
. As a version of (2.1)2, we

also need
‖ f ‖L p(�h\�) ≤ C(δ1/p‖ f ‖L p(�h) + δ‖∇ f ‖L p(�h\�)), (2.2)

whose proof will be given in Lemma A.1. Finally, denoting by nh the outward unit
normal to �h , we notice that its error compared with n is estimated as ‖n ◦ π −
nh‖L∞(�h) ≤ Ch (see [12, Section 9]).

2.3 Extension operators

We let �̃ := � ∪ �(δ) = �h ∪ �(δ) with δ = C0Eh2 given above. For u ∈
W 2,∞(�), f ∈ L∞(�), and τ ∈ L∞(�), we assume that there exist extensions
ũ ∈ W 2,∞(�̃), f̃ ∈ L∞(�̃), and τ̃ ∈ L∞(�̃), respectively, which are stable in the
sense that the norms of the extended quantities can be controlled by those of the orig-
inal ones, e.g., ‖ũ‖W 2,∞(�̃) ≤ C‖u‖W 2,∞(�). We emphasize that (1.1) would not hold

any longer in the extended region �̃\�.
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We also need extensions whose behavior in �(δ)\� can be completely described
by that in �(cδ) ∩ � for some constant c > 0. To this end we introduce an extension
operator P:Wk,p(�) → Wk,p(�̃) (k = 0, 1, 2, p ∈ [1,∞]) as follows. For x ∈
�\�(δ) we let P f (x) = f (x); for x = x̄ + tn(x̄) ∈ �(δ) we define

P f (x̄ + tn(x̄)) =
{
f (x̄ + tn(x̄)) (− δ0 ≤ t < 0),

3 f (x̄ − tn(x̄)) − 2 f (x̄ − 2tn(x̄)) (0 ≤ t ≤ δ0),
x̄ ∈ �.

Proposition 2.1 The extension operator P satisfies the following stability condition:

‖P f ‖Wk,p(�(δ)) ≤ C‖ f ‖Wk,p(�∩�(2δ)) (k = 0, 1, 2), p ∈ [1,∞],

where C is independent of δ and f .

The proof of this proposition will be given in Theorem A.1.

2.4 Dyadic decomposition

We introduce a dyadic decomposition of a domain according to [14]. Let B(x0; r) =
{x ∈ R

N : |x − x0| ≤ r} and A(x0; r , R) = {x ∈ R
N : r ≤ |x − x0| ≤ R} denote a

closed ball and annulus in RN respectively.

Definition 2.1 For x0 ∈ R
N , d0 > 0, J ∈ N≥0, the family of sets A(x0, d0, J ) =

{A j }Jj=0 defined by

A0 = B(x0; d0), A j = A(x0; d j−1, d j ), d j = 2 j d0 ( j = 1, . . . , J )

is called the dyadic J annuli with the center x0 and the initial stride d0.

With a center and an initial stride specified, one can assign to a given domain a
unique decomposition by dyadic annuli as follows.

Lemma 2.1 For a bounded domain D ⊂ R
N , let x0 ∈ D, 0 < d0 < diam D, and

J be the smallest integer that is greater than J ′ := log(diam D/d0)
log 2 . Then we have

D ⊂ ⋃
A(x0, d0, J ).

Proof Since 2J
′
d0 = diam D and J ′ < J ≤ J ′ + 1, one has diam D < dJ ≤

2 diam D. For arbitrary x ∈ D we see that |x − x0| ≤ diam D < dJ , which implies
D ⊂ B(x0; dJ ) = ⋃

A(x0, d0, J ). ��
Definition 2.2 Wedefine the decomposition of D into dyadic annuli with the center x0
and the initial stride d0 byAD(x0, d0) = {D∩A j }Jj=0, where {A j }Jj=0 = A(x0, d0, J )

are the dyadic annuli given in Lemma 2.1. We also use the terminology dyadic decom-
position for abbreviation.

For A(x0, d0, J ) = {A j }Jj=0 and s ∈ [0, 1], we consider expanded annuli

A(s)(x0, d0, J ) = {A(s)
j }Jj=0, where
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A(s)
0 = B(x0; (1 + s)d0),

A(s)
j := A(x0; (1 − s

2
)d j−1, (1 + s)d j ) ( j = 1, . . . , J ).

In particular, for s = 1 one has A(1)
j = A j−1 ∪ A j ∪ A j+1 where we set A−1 := ∅

and AJ+1 := A(x0; dJ , dJ+1) with dJ+1 := 2dJ .
We collect some basic properties ofweighted L p-norms defined on a dyadic decom-

position.

Lemma 2.2 For a dyadic decomposition AD(x0, d0) = {D ∩ A j }Jj=0 of D and p ∈
[1,∞], the following estimates hold:

‖ f ‖L1(D) ≤ α
1/p′
N

J∑

j=0

dN/p′
j ‖ f ‖L p(D∩A j ), (2.3)

J∑

j=0

dN/p′
j ‖ f ‖

L p(D∩A(1)
j )

≤ (2N/p′ + 1 + 2−N/p′
)

J∑

j=0

dN/p′
j ‖ f ‖L p(D∩A j ). (2.4)

Here, αN = 2πN/2

N�(N/2) means the volume of the N-dimensional unit ball and p′ =
p/(p − 1).

Proof It follows from the Hölder inequality that

‖ f ‖L1(D) =
J∑

j=0

‖ f ‖L1(D∩A j )
≤

J∑

j=0

|A j |1/p′ ‖ f ‖L p(D∩A j ),

which combined with |A j | = (1−2−N )dN
j αN yields (2.3). The estimate (2.4) follows

from the fact that

‖ f ‖
L p(D∩A(1)

j )
≤ ‖ f ‖L p(D∩A j−1) + ‖ f ‖L p(D∩A j ) + ‖ f ‖L p(D∩A j+1),

together with D ∩ A−1 = D ∩ AJ+1 = ∅. ��
Setting now D to be �h introduced in Sect. 2.1, we consider its dyadic decom-

position A�h (x0, d0) = {�h ∩ A j }Jj=0 and its triangulation Th . At this stage, each
triangle in Th can simultaneously intersect with some annuls A and its complement
Ac; however, we have the following lemma:

Lemma 2.3 Let A�h (x0, d0) = {�h ∩ A j }Jj=0 be a dyadic decomposition of �h with
x0 ∈ �h and d0 ∈ [16h, 1], and let s ∈ [0, 3/4].
(i) If T ∈ Th satisfies T ∩ A(s)

j �= ∅ then MT ⊂ A(s+1/4)
j , where MT is the macro

element of T .
(ii) If T ∈ Th satisfies T \A(s+1/4)

j �= ∅ then MT ⊂ (A(s)
j )c.
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Proof We only prove (i) since item (ii) can be shown similarly. Let x ∈ MT be
arbitrary. By assumption there exists x ′ ∈ T ∩ A(s)

j ; in particular, (1 − s/2)d j−1 ≤
|x ′ − x0| ≤ (1 + s)d j . Also, by definition of MT , |x − x ′| ≤ 2h. Then we have
(7/8− s/2)d j−1 ≤ |x − x0| ≤ (5/4 + s)d j as a result of triangle inequalities, which

implies x ∈ A(s+1/4)
j . ��

Corollary 2.1 Under the assumption of Lemma 2.3, let v ∈ H1(�h) satisfy supp v ⊂
A(s)
j . Then we have supp Ihv ⊂ A(s+1/4)

j .

Proof It suffices to show Ihv(x) = 0 for all x ∈ �h\A(s+1/4)
j . In fact, since there

exists T ∈ Th such that x ∈ T , one has MT ∩ A(s)
j = ∅ as a result of Lemma 2.3(ii).

Hence v|MT = 0, so that Ihv|T = 0. ��
Finally, notice that for any dyadic decomposition A�h (x0, d0) we have

J∑

j=0

dβ
j ≤

⎧
⎪⎨

⎪⎩

Cdβ
J (β > 0),

C(1 + | log d0|) (β = 0),

Cdβ
0 (β < 0),

(2.5)

where C = C(N ,�, β) is independent of x0, d0, and J (for the case β = 0, recall
Lemma 2.1 to estimate J ). Moreover, since d j ≤ dJ ≤ 2 diam �h , one has

dα
j + dβ

j ≤ Cdmin{α,β}
j , 0 ≤ j ≤ J , α, β ∈ R, C = C(N ,�, α, β),

which will not be emphasized in the subsequent arguments.

3 Main theorem and its reduction toW1,1-analysis

Let us state the main result of this paper.

Theorem 3.1 Let u ∈ W 2,∞(�) and uh ∈ Vh be the solutions of (1.1) and (1.2)
respectively. Then there exists h0 > 0 such that for all h ∈ (0, h0] and vh ∈ Vh we
have

‖ũ − uh‖L∞(�h) ≤ Ch| log h| ‖ũ − vh‖W 1,∞(�h)
+ Ch2| log h| ‖u‖W 2,∞(�),

‖ũ − uh‖W 1,∞(�h)
≤ C‖ũ − vh‖W 1,∞(�h)

+ Ch ‖u‖W 2,∞(�),

where C is independent of h, u, and vh.

Remark 3.1 (i) By taking vh = Ihũ, we immediately obtain (1.3).
(ii) The factor h‖ũ − vh‖W 1,∞(�h)

in the L∞-estimate could be replaced by ‖ũ −
vh‖L∞(�h) (cf. [14, p. 889]), which will be discussed elsewhere.
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(iii) The above error estimates cannot be improved even if one employs a higher
order finite element, as far as the boundary � is only linearly approximated. In
fact, the domain perturbation term I4 (see Lemmas 3.2 and 3.5 below) gives
rise to O(h2| log h|)- and O(h)-contributions for L∞- andW 1,∞-error estimates
respectively, regardless of the choice of Vh . Both of the approximation of func-
tions and that of the boundary must be made higher order in a proper manner
to achieve better accuracy (a typical way to do this is the use of isoparametric
elements).

Let us reduce pointwise error estimates to W 1,1-error analysis for regularized
Green’s functions, which is now a standard approach in this field. For arbitrary T ∈ Th
and x0 ∈ T we let η = ηx0 ∈ C∞

0 (T ), η ≥ 0 be a regularized delta function such that

∫

T
η(x)vh(x) dx = vh(x0) ∀vh ∈ P1(T ), ‖∇kη‖L∞(T ) ≤ Ch−k (k = 0, 1, 2),

dist(supp η, ∂T ) ≥ Ch, (3.1)

where C is independent of T , h, and x0 (see [15] for construction of η).

Remark 3.2 (i) The quasi-uniformity of meshes are needed to ensure the last two
properties of (3.1).

(ii) We have supp η ∩ �(2δ) = ∅ with δ = C0Eh2, provided that h is sufficiently
small.

We consider two kinds of regularized Green’s functions g0, g1 ∈ C∞(�) satisfying
the following PDEs:

−�g0 + g0 = η in �, ∂ng0 = 0 on �,

and
−�g1 + g1 = ∂η in �, ∂ng1 = 0 on �,

where ∂ stands for an arbitrary directional derivative. Accordingly, we let g0h, g1h ∈
Vh be the solutions for finite element approximate problems as follows:

ah(vh, g0h) = (vh, η)�h ∀vh ∈ Vh, and ah(vh, g1h) = (vh, ∂η)�h ∀vh ∈ Vh .

The goal of this section is then to reduce Theorem 3.1 to the estimate

‖g̃m − gmh‖W 1,1(�h)
≤ C(h| log h|)1−m, m = 0, 1, (3.2)

where C is independent of h, x0, and ∂ , and g̃m := Pgm means the extension defined
in Sect. 2.3. To observe this fact, we represent pointwise errors at x0, with the help of
η, as

ũ(x0) − uh(x0) = (ũ − vh)(x0) + (vh − ũ, η)�h + (ũ − uh, η)�h ,

∂(ũ − uh)(x0) = ∂(ũ − vh)(x0) + (∂(vh − ũ), η)�h − (ũ − uh, ∂η)�h ,
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for all vh ∈ Vh . Since the first two terms on the right-hand sides are bounded by
2‖ũ − vh‖L∞(�h) and 2‖∇(ũ − vh)‖L∞(�h), in order to prove Theorem 3.1 it suffices
to show that

|(ũ − uh, η)�h | ≤ Ch| log h|‖ũ − vh‖W 1,∞(�h)
+ Ch2| log h|‖u‖W 2,∞(�),

|(ũ − uh, ∂η)�h | ≤ C‖ũ − vh‖W 1,∞(�h)
+ Ch‖u‖W 2,∞(�).

With this aim we prove:

Proposition 3.1 For m = 0, 1 and arbitrary vh ∈ Vh, one obtains

|(ũ − uh, ∂
mη)�h | ≤ C(‖ũ − vh‖W 1,∞(�h)

+ Ch‖u‖W 2,∞(�))‖g̃m − gmh‖W 1,1(�h)

+ Ch(h| log h|)1−m‖u‖W 2,∞(�).

It is immediate to conclude Theorem 3.1 from Proposition 3.1 combined with (3.2).
The rest of this section is thus devoted to the proof of Proposition 3.1, whereas (3.2)
will be established in Sects. 4–6 below. From now on, we suppress the subscript m of
gm and gmh for simplicity, as far as there is no fear of confusion.

Let us proceed to the proof of Proposition 3.1. Define functionals for v ∈ H1(�h),
which will represent “residuals” of Galerkin orthogonality relation, by

Resu(v) = (−�ũ + ũ − f̃ , v)�h\� + (∂nh ũ − τ̃ , v)�h ,

Resg(v) = (v,−�g̃ + g̃)�h\� + (v, ∂nh g̃)�h .

If in addition v ∈ H1(�̃) in the expanded domain �̃ = � ∪ �(δ), then Resu(v)

admits another expression. To observe this, we introduce “signed” integration defined
as follows:

(φ,ψ)′�h�� := (φ,ψ)�h\� − (φ,ψ)�\�h ,

(φ, ψ)′�h∪� := (φ,ψ)�h − (φ,ψ)�,

a′
�h��(φ,ψ) := (∇φ,∇ψ)′�h�� + (φ,ψ)′�h��.

Lemma 3.1 For v ∈ H1(�̃) we have

Resu(v) = −( f̃ , v)′�h�� − (τ̃ , v)′�h∪� + a′
�h��(ũ, v).

Proof Notice that the following integration by parts formula holds:

(−�ũ, v)′�h�� = (∇ũ,∇v)′�h�� − (∂nh ũ, v)�h + (∂nu, v)�.

From this formula and (1.1) it follows that

(−�ũ, v)�h\� + (∂nh ũ, v)�h = (−�u, v)�\�h + (∇ũ,∇v)′�h�� + (∂nu, v)�

= −(u − f , v)�\�h + (∇ũ,∇v)′�h�� + (τ, v)�.
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Substituting this into the definition of Resu(v) leads to the desired equality. ��
Nowwe show thatResu(·) andResg(·) represent residuals ofGalerkin orthogonality

relation for ũ − uh and g̃ − gh , respectively.

Lemma 3.2 For all vh ∈ Vh we have

ah(ũ − uh, vh) = Resu(vh), ah(vh, g̃ − gh) = Resg(vh),

and

(ũ − uh, ∂
mη)�h = ah(ũ − vh, g̃ − gh) − Resg(ũ − vh) − Resu(g̃ − gh) + Resu(g̃)

=: I1 + I2 + I3 + I4.

Proof From integration by parts and from the definitions of u and uh we have

ah(ũ − uh, vh) = (−�ũ + ũ, vh)�h + (∂nh ũ, vh)�h − ( f̃ , vh)�h − (τ̃ , vh)�h

= Resu(vh).

The second equality is obtained in the sameway. To show the third equality, we observe
that

(vh − uh, ∂
mη)�h = ah(vh − uh, gh) = ah(vh − ũ, gh) + ah(ũ − uh, gh)

= ah(ũ − vh, g̃ − gh) − ah(ũ − vh, g̃) + Resu(gh).

It follows from integration by parts, −�g + g = ∂mη in �, and supp η ⊂ �h ∩ �,
that

ah(ũ − vh, g̃) = (ũ − vh,−�g̃ + g̃)�h + (ũ − vh, ∂nh g̃)�h

= (u − vh, ∂
mη)�h∩� + Resg(ũ − vh)

= (ũ − vh, ∂
mη)�h + Resg(ũ − vh).

Combining the two relations above yields the third equality. ��
By the Hölder inequality, |I1| ≤ ‖ũ − vh‖W 1,∞(�h)

‖g̃ − gh‖W 1,1(�h)
. The other

terms are estimated in the following three lemmas. There, boundary-skin estimates
for g will be frequently exploited, which are collected in the appendix.

Lemma 3.3 |I2| ≤ C(h| log h|)1−m ‖ũ − vh‖L∞(�h).

Proof By the Hölder inequality,

|Resg(ũ − vh)| ≤ ‖ũ − vh‖L∞(�h)(‖g̃‖W 2,1(�(δ)) + ‖∂nh g̃‖L1(�h)
),

where ‖g̃‖W 2,1(�(δ)) ≤ Ch1−m as a result of Corollary B.1. Since (∇g)◦π ·n ◦π = 0
on �h , it follows again from Corollary B.1 that

‖∂nh g̃‖L1(�h)
≤ ‖∇ g̃ · (nh − n ◦ π)‖L1(�h)

+ ‖(∇ g̃ − (∇ g̃) ◦ π
) · n ◦ π‖L1(�h)
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≤ Ch‖∇ g̃‖L1(�h)
+ C‖∇2 g̃‖L1(�(δ)) ≤ C(h| log h|)1−m + Ch1−m,

which completes the proof. ��
Lemma 3.4 |I3| ≤ Ch‖u‖W 2,∞(�)‖g̃ − gh‖W 1,1(�h)

.

Proof By the Hölder inequality and stability of extensions,

|Resu(g̃−gh)| ≤ C‖u‖W 2,∞(�)‖g̃−gh‖L1(�h\�) +‖∂nh ũ− τ̃‖L∞(�h)‖g̃−gh‖L1(�h)
.

From (2.2) and the trace theorem one has

‖g̃ − gh‖L1(�h\�) ≤ Cδ(‖g̃ − gh‖L1(�h)
+ ‖∇(g̃ − gh)‖L1(�h\�))

≤ Ch2‖g̃ − gh‖W 1,1(�h)
.

From (∇u)◦π ·n◦π = τ ◦π on�h , (2.1), and the stability of extensions, it follows that

‖∂nh ũ − τ̃‖L∞(�h) ≤ ‖∇ũ · (nh − n ◦ π)‖L∞(�h) + ‖(∇ũ − (∇ũ) ◦ π
) · n ◦ π‖L∞(�h)

+ ‖τ ◦ π − τ̃‖L∞(�h)

≤ Ch‖∇ũ‖L∞(�h) + Cδ‖∇2ũ‖L∞(�(δ))

+ Cδ‖∇ τ̃‖L∞(�(δ)) ≤ Ch‖u‖W 2,∞(�h)
.

Combining the estimates above and using the trace theorem once again, we conclude

|Resu(g̃ − gh)| ≤ Ch2‖u‖W 2,∞(�)‖g̃ − gh‖W 1,1(�h)
+ Ch‖u‖W 2,∞(�h)

‖g̃ − gh‖L1(�h)

≤ Ch‖u‖W 2,∞(�)‖g̃ − gh‖W 1,1(�h)
.

This completes the proof. ��
Lemma 3.5 |I4| ≤ Ch(h| log h|)1−m‖u‖W 2,∞(�).

Proof We recall from Lemma 3.1 that

Resu(g̃) = −( f̃ , g̃)′�h�� − (τ̃ , g̃)′�h∪� + a′
�h��(ũ, g̃).

Let us estimate each term in the right-hand side. By (2.1)2 we obtain

|( f̃ , g̃)′�h��| ≤ ‖ f̃ ‖L∞(�(δ))‖g̃‖L1(�(δ)) ≤ Cδ| log h|1−m‖u‖W 2,∞(�),

where δ = C0Eh2. Next, from (2.1) and Corollary B.1 we find that

(τ̃ , g̃)′�h∪� = |(τ, g)� − (τ̃ , g̃)�h | ≤ |(τ, g)� − (τ ◦ π, g ◦ π)�h |
+ |(τ ◦ π, g ◦ π − g̃)�h | + |(τ ◦ π − τ̃ , g̃)�h |

≤ Cδ‖τ‖L∞(�)‖g‖L1(�) + C‖τ‖L∞(�)‖∇ g̃‖L1(�(δ))

+ Cδ‖∇ τ̃‖L∞(�(δ))‖g̃‖L1(�h)
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≤ Cδ‖∇u‖L∞(�)| log h|m + C‖∇u‖L∞(�)δh
−m | log h|1−m

+ Cδ‖u‖W 2,∞(�)| log h|1−m

≤ Cδh−m | log h|1−m‖u‖W 2,∞(�).

Finally, for the last term we obtain

|a′
�h��(ũ, g̃)| ≤ ‖ũ‖W 1,∞(�(δ))‖g̃‖W 1,1(�(δ)) ≤ C‖u‖W 1,∞(�)δh

−m | log h|1−m .

Collecting the above estimates proves the lemma. ��
Proposition 3.1 is now an immediate consequence of Lemmas 3.2–3.5.

4 Weighted H1-estimates

As a consequence of the previous section, we need to estimate ‖g̃ − gh‖W 1,1(�h)
,

where we keep dropping the subscript m (either 0 or 1) of gm and gmh . To this end we
introduce a dyadic decomposition A�h (x0, d0) = {�h ∩ A j }Jj=0 of �h , and observe
from (2.3) that

‖g̃ − gh‖W 1,1(�h)
≤ C

J∑

j=0

dN/2
j ‖g̃ − gh‖H1(�h∩A j )

. (4.1)

Then the weighted H1-norm in the right-hand side is bounded as follows:

Proposition 4.1 There exists K0 > 0 such that, for any dyadic decomposition
A�h (x0, d0) = {�h ∩ A j }Jj=0 of �h with d0 = Kh, K ≥ K0, we obtain

J∑

j=0

dN/2
j ‖g̃ − gh‖H1(�h∩A j )

≤ CKm+N/2h1−m + C(h| log h|)1−m

+C
J∑

j=0

d−1+N/2
j ‖g̃ − gh‖L2(�h∩A j )

. (4.2)

Here the constants K0 and C are independent of h, x0, ∂ , and K .

The rest of this section is devoted to the proof of the proposition above. In order
to estimate ‖g̃ − gh‖H1(�h∩A j )

for j = 0, . . . , J , we use a cut off function ω j ∈
C∞
0 (RN ), ω j ≥ 0 such that

ω j ≡ 1 in A j , suppω j ⊂ A(1/4)
j , ‖∇kω j‖L∞(RN ) ≤ Cd−k

j (k = 0, 1, 2).
(4.3)

Then we find that

‖g̃ − gh‖2H1(�h∩A j )
≤ (

ω j (g̃ − gh), g̃ − gh
)
�h

+ (
ω j∇(g̃ − gh),∇(g̃ − gh)

)
�h
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= ah
(
ω j (g̃ − gh), g̃ − gh

) − (∇ω j (g̃ − gh),∇(g̃ − gh)
)
�h

= ah
(
ω j (g̃ − gh) − vh, g̃ − gh

)

− (
(∇ω j )(g̃ − gh),∇(g̃ − gh)

)
�h

+ Resg(vh)

=: I1 + I2 + I3,

where vh ∈ Vh is arbitrary and we have used Lemma 3.2.
Substituting vh = Ih(ω j (g̃ − gh)), where Ih is the interpolation operator given in

Sect. 2.1, we estimate I1, I2, and I3 in the following.

Lemma 4.1 I1 is bounded as

|I1| ≤ Chd−2
j ‖g̃ − gh‖L2(�h∩A(1/2)

j )
‖g̃ − gh‖H1(�h∩A(1/2)

j )

+ Chd−1
j ‖g̃ − gh‖2

H1(�h∩A(1/2)
j )

+ C jhd
−m−N/2
j ‖g̃ − gh‖H1(�h∩A(1/2)

j )
, (4.4)

where C0 = CKm+N/2 and C j = C for 1 ≤ j ≤ J .

Proof By Corollary 2.1 we have supp vh ⊂ �h ∩ A(1/2)
j , and hence

|I1| ≤ ‖ω j (g̃ − gh) − vh‖H1(�h)
‖g̃ − gh‖H1(�h∩A(1/2)

j )
.

It follows from the interpolation error estimate, together with (4.3), that

‖ω j (g̃ − gh) − vh‖2H1(�h)
≤ Ch2

∑

T∈Th
‖∇2(ω j (g̃ − gh)

)‖2L2(T )

≤ Ch2
∑

T∈Th

(
‖(∇2ω j )(g̃ − gh)‖2L2(T )

+ ‖(∇ω j ) ⊗ ∇(g̃ − gh)‖2L2(T )
+ ‖∇2 g̃‖2L2(T )

)

≤ Ch2
∑

T∩A(1/4)
j �=∅

(
d−4
j ‖g̃ − gh‖2L2(T )

+ d−2
j ‖g̃ − gh‖2L2(T )

+ ‖∇2 g̃‖2L2(T )

)
,

where we made use of the fact that ∇2gh |T ≡ 0 for T ∈ Th . This combined with
Lemma 2.3(i) implies

‖ω j (g̃ − gh) − vh‖H1(�h)
≤ Ch(d−2

j ‖g̃ − gh‖L2(�h∩A(1/2)
j )

+ d−1
j ‖g̃ − gh‖L2(�h∩A(1/2)

j )

+‖∇2 g̃‖
L2(�h∩A(1/2)

j )
).
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When j = 0, by the stability of extension and the H2-regularity theory, we deduce
that

‖∇2 g̃‖
L2(�h∩A(1/2)

0 )
≤ C‖g‖H2(�) ≤ C‖∂mη‖L2(�) ≤ Ch−m−N/2 = CKm+N/2d−m−N/2

0 .

When j ≥ 1, it follows from Lemma B.2 that ‖∇2 g̃‖
L2(�h∩A(1/2)

0 )
≤ Cd−m−N/2

j .

Collecting the estimates above, we conclude (4.4). ��
For I2 we have

|I2| ≤ Cd−1
j ‖g̃ − gh‖L2(�h∩A(1/2)

j )
‖g̃ − gh‖H1(�h∩A(1/2)

j )
,

which dominates the first term in the right-hand side of (4.4) because hd−1
j ≤ 1.

Lemma 4.2 |I3| ≤ Chd1/2−m−N/2
j (‖g̃−gh‖H1(�h∩A(1/4)

j )
+d−1

j ‖g̃−gh‖L2(�h∩A(1/4)
j )

).

Proof Since I3 = (vh,−�g̃ + g̃)�h\� + (vh, ∂nh g̃)�h , we observe that

|(vh,−�g̃ + g̃)�h\�| ≤ Cδ1/2‖vh‖H1(�h)
(δdN−1

j )1/2d−m−N
j

≤ Cδd−1/2−m−N/2
j ‖vh‖H1(�h)

,

and that

|(vh, ∂nh g̃)�h | ≤ ‖vh‖L2(�h)
‖∂nh g̃‖L2(�h∩A(1/4)

j )

≤ C‖vh‖H1(�h)

(‖∇ g̃ · (nh − n ◦ π)‖
L2(�h∩A(1/4)

j )

+ ‖(∇ g̃ − (∇ g̃) ◦ π) · n ◦ π‖
L2(�h∩A(1/4)

j )

)

≤ C‖vh‖H1(�h)

(
h‖∇ g̃‖

L2(�h∩A(1/4)
j )

+ |�h ∩ A(1/4)
j |1/2δ‖∇2 g̃‖

L∞(�h∩A(1/4)
j )

)

≤ C‖vh‖H1(�h)
(hd1/2−m−N/2

j + h2d−1/2−m−N/2
j )

≤ Chd1/2−m−N/2
j ‖vh‖H1(�h)

.

Therefore, by the H1-stability of Ih and by d j ≤ 2 diam �,

|I3| ≤ Chd1/2−m−N/2
j ‖ω j (g̃ − gh)‖H1(�h)

≤ Chd1/2−m−N/2
j (‖g̃ − gh‖H1(�h∩A(1/4)

j )
+ d−1

j ‖g̃ − gh‖L2(�h∩A(1/4)
j )

),

which completes the proof. ��
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Collecting the estimates for I1, I2, and I3 we deduce that

dN/2
j ‖g̃ − gh‖H1(�h∩A j )

≤ C(hd−1
j )1/2dN/2

j ‖g̃ − gh‖H1(�h∩A(1)
j )

+ C

(

dN/2
j ‖g̃ − gh‖H1(�h∩A(1)

j )

)1/2 (

d−1+N/2
j ‖g̃ − gh‖L2(�h∩A(1)

j )

)1/2

+ (
C jhd

−m
j (1 + d1/2j )

)1/2
(dN/2

j ‖g̃ − gh‖H1(�h∩A(1)
j )

)1/2

+ C(hd1/2−m
j )1/2

(

d−1+N/2
j ‖g̃ − gh‖L2(�h∩A(1)

j )

)1/2

.

We now take the summation for j = 0, 1, . . . , J and apply (2.4) to have

J∑

j=0

dN/2
j ‖g̃ − gh‖H1(�h∩A j )

≤ C ′(hd−1
0 )1/2

J∑

j=0

dN/2
j ‖g̃ − gh‖H1(�h∩A j )

+ 1

4

J∑

j=0

dN/2
j ‖g̃ − gh‖H1(�h∩A j )

+
J∑

j=0

C jhd
−m
j (1 + d1/2j ) + Ch

J∑

j=0

d1/2−m
j

+ C
J∑

j=0

d−1+N/2
j ‖g̃ − gh‖L2(�h∩A j )

.

If hd−1
0 = K−1 ≤ 1/(4C ′)2, then one can absorb the first two terms into the left-hand

side to conclude (4.2). This completes the proof of Proposition 4.1.
Thus we are left to deal with

∑J
j=0 d

−1+N/2
j ‖g̃ − gh‖L2(�h∩A j )

, which will be the
scope of the next section.

5 Weighted L2-estimates

Let us give estimation of the weighted L2-norm appearing in the last term of (4.2).

Proposition 5.1 There exists K0 > 0 such that, for any dyadic decomposition
A�h (x0, d0) = {�h ∩ A j }Jj=0 of �h with d0 = Kh, K0 ≤ K ≤ h−1, we obtain
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J∑

j=0

d−1+N/2
j ‖g̃ − gh‖L2(�h∩A j )

≤ C(hd−1
0 )

⎛

⎝
J∑

j=0

dN/2
j ‖g̃ − gh‖H1(�h∩A j )

+ ‖g̃ − gh‖W 1,1(�h)

⎞

⎠ + Ch3/2−m,

(5.1)

where the constants K0 and C are independent of h, x0, ∂ , and K .

To prove this, first we fix j = 0, . . . , J and estimate ‖g̃ − gh‖L2(�h∩A j )
based on

a localized version of the Aubin–Nitsche trick. In fact, since

‖g̃ − gh‖L2(�h∩A j )
= sup

ϕ∈C∞
0 (�h∩A j )

‖ϕ‖L2(�h∩A j )
=1

(ϕ, g̃ − gh)�h ,

it suffices to examine (ϕ, g̃−gh)�h for such ϕ. To express this quantity with a solution
of a dual problem, we consider

− �w + w = ϕ in �, ∂nw = 0 on �, (5.2)

where ϕ is extended by 0 to the outside of�h ∩ A j . From the elliptic regularity theory
we know that the solution w is smooth enough. We then obtain the following:

Lemma 5.1 For all wh ∈ Vh we have

(ϕ, g̃ − gh)�h = ah(w̃ − wh, g̃ − gh) − Resw(g̃ − gh) − Resg(w̃ − wh) + Resg(w̃)

=: I1 + I2 + I3 + I4, (5.3)

where w̃ := Pw and Resw : H1(�h) → R is given by

Resw(v) := (−�w̃ + w̃ − ϕ, v)�h\� + (∂nh w̃, v)�h .

Proof We see that

(ϕ, g̃ − gh)�h = (ϕ, g − gh)�h∩� + (ϕ, g̃ − gh)�h\�
= (−�w̃ + w̃, g̃ − gh)�h + (�w̃ − w̃ + ϕ, g̃ − gh)�h\�
= ah(w̃, g̃ − gh) − (∂nh w̃, g̃ − gh)�h + (�w̃ − w̃ + ϕ, g̃ − gh)�h\�
= ah(w̃ − wh, g̃ − gh) + Resg(wh) − Resw(g − gh),

where we have used ah(wh, g̃ − gh) = Resg(wh) from Lemma 3.2. This yields the
desired equality. ��
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Remark 5.1 In a similar way to Lemma 3.1, one can derive another expression for
Resg(v) if v ∈ H1(�̃):

Resg(v) = a′
�h��(v, g̃).

In the following four lemmas, taking wh = Ihw̃, we estimate I1, I2, I3, and I4
by dividing the integrals over �h , �h , or boundary-skin layers, into those defined
near A j and away from A j . The former will be bounded, e.g., by the Hölder inequal-
ity of the form ‖φ‖L2(�h)

‖ψ‖
L2(�h∩A(1/2)

j )
together with H2-regularity estimates for

w, whereas the latter will be bounded by ‖φ‖
L∞(�h\A(1/2)

j )
‖ψ‖L1(�h)

together with

Green’s function estimates for w (see Lemma B.4).

Lemma 5.2 |I1| ≤ Ch‖g̃ − gh‖H1(�h∩A(1/2)
j )

+ Chd−N/2
j ‖g̃ − gh‖W 1,1(�h)

.

Proof By the Hölder inequality mentioned above,

|I1| ≤ ‖w̃ − wh‖H1(�h)
‖g̃ − gh‖H1(�h∩A(1/2)

j )

+ ‖w̃ − wh‖W 1,∞(�h\A(1/2)
j )

‖g̃ − gh‖W 1,1(�h)
,

where we notice that

‖w̃ − wh‖H1(�h)
≤ Ch‖w‖H2(�) ≤ Ch‖ϕ‖L2(RN ) = Ch,

and from Lemma B.4 that
‖w̃ − wh‖

W 1,∞(�h\A(1/2)
j )

≤ Ch‖∇2w̃‖
L∞(�h\A(1/4)

j )
≤ Chd−N/2

j .

This completes the proof. ��
Lemma 5.3 I2 is bounded as

|I2| ≤ Ch1/2‖g̃ − gh‖L2(�h∩A(3/4)
j )

+ Ch‖g̃ − gh‖H1(�h∩A(3/4)
j )

+Chd−N/2
j ‖g̃ − gh‖W 1,1(�h)

.

Proof Recall that I2 = (�w̃ − w̃ + ϕ, g̃ − gh)�h\� − (∂nh w̃, g̃ − gh)�h =: I21 + I22.

Noting that ϕ = 0 in �h\A(1/2)
j we estimate I21 by

|I21| ≤ C
(‖w‖H2(�) + ‖ϕ‖L2(RN )

) ‖g̃ − gh‖L2
(
(�h\�)∩A(1/2)

j

)

+ ‖w̃‖
W 2,∞(�h\A(1/2)

j )
‖g̃ − gh‖L1(�h\�)

≤ C‖g̃ − gh‖L2((�h\�)∩A(1/2)
j )

+ Cd−N/2
j ‖g̃ − gh‖L1(�h\�).

To address the first term we introduce ω′
j ∈ C∞

0 (RN ), ω′
j ≥ 0 such that

ω′
j ≡ 1 in A(1/2)

j , suppω′
j ⊂ A(3/4)

j , ‖∇kω′
j‖L∞(RN ) ≤ Cd−k

j (k = 0, 1, 2).
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Then it follows from (2.2) and the trace estimate that

‖g̃ − gh‖L2((�h\�)∩A(1/2)
j )

≤ ‖ω′
j (g̃ − gh)‖L2(�h\�)

≤ Cδ1/2‖ω′
j (g̃ − gh)‖L2(�h)

+ Cδ‖∇(
ω′

j (g̃ − gh)
)‖L2(�h\�)

≤ Ch‖ω′
j (g̃ − gh)‖1/2L2(�h)

‖ω′
j (g̃ − gh)‖1/2H1(�h)

+ Ch2d−1
j ‖g̃ − gh‖L2(�h∩A(3/4)

j )
+ Ch2‖∇(g̃ − gh)‖L2(�h∩A(3/4)

j )

≤ Ch(1 + d−1/2
j )‖g̃ − gh‖L2(�h∩A(3/4)

j )
+ Ch‖g̃ − gh‖H1(�h∩A(3/4)

j )

≤ Ch1/2‖g̃ − gh‖L2(�h∩A(3/4)
j )

+ Ch‖g̃ − gh‖H1(�h∩A(3/4)
j )

, (5.4)

where we have used hd−1
j ≤ 1 and h ≤ 1. Again by (2.2) we also have

‖g̃ − gh‖L1(�h\�) ≤ Cδ(‖g̃ − gh‖L1(�h)
+ ‖∇(g̃ − gh)‖L1(�h\�))

≤ Ch2‖g̃ − gh‖W 1,1(�h)
.

Combining the estimates above now gives

|I21| ≤ Ch1/2‖g̃ − gh‖L2(�h∩A(3/4)
j )

+ Ch‖g̃ − gh‖H1(�h∩A(3/4)
j )

+ Ch2d−N/2
j ‖g̃ − gh‖W 1,1(�h)

. (5.5)

Next we estimate I22 by

|I22| ≤ ‖∂nh w̃‖L2(�h)
‖g̃ − gh‖L2(�h∩A(1/2)

j )
+ ‖∂nh w̃‖

L∞(�h\A(1/2)
j )

‖g̃ − gh‖L1(�h)
.

For the first term we see that

‖∂nh w̃‖L2(�h)
≤ ‖∇w̃ · (nh − n ◦ π)‖L2(�h)

+ ‖(∇w̃ − (∇w̃) ◦ π
) · n ◦ π‖L2(�h)

≤ Ch‖∇w̃‖L2(�h)
+ Cδ1/2‖∇2w̃‖L2(�(δ)) ≤ Ch‖w‖H2(�) ≤ Ch,

and, in a similar way as we derived (5.4), that

‖g̃ − gh‖L2(�h∩A(1/2)
j )

≤ Cd−1/2
j ‖g̃ − gh‖L2(�h∩A(3/4)

j )
+ C‖g̃ − gh‖H1(�h∩A(3/4)

j )
.

For the second term, observe that

‖∂nh w̃‖
L∞(�h\A(1/2)

j )
≤ ‖∇w̃ · (nh − n ◦ π)‖

L∞(�h\A(1/2)
j )

+ ‖(∇w̃ − (∇w̃) ◦ π
) · n ◦ π‖

L∞(�h\A(1/2)
j )
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≤ Ch‖∇w̃‖
L∞(�(δ)\A(1/2)

j )
+ Cδ‖∇2w̃‖

L∞(�(δ)\A(1/4)
j )

≤ Chd1−N/2
j + Ch2d−N/2

j ≤ Chd1−N/2
j ,

and that ‖g̃−gh‖L1(�h)
≤ C‖g̃−gh‖W 1,1(�h)

. Combining these estimates, we deduce

|I22| ≤ Chd−1/2
j ‖g̃ − gh‖L2(�h∩A(3/4)

j )
+ Ch‖g̃ − gh‖H1(�h∩A(3/4)

j )

+Chd1−N/2
j ‖g̃ − gh‖W 1,1(�h)

. (5.6)

From (5.5) and (5.6), together with h ≤ d j ≤ 2 diam �, we conclude the desired
estimate. ��
Lemma 5.4 |I3| ≤ Ch5/2−md−N/2

j .

Proof Recall that I3 = (w̃ − wh,�g̃ − g̃)�h\� − (w̃ − wh, ∂nh g̃)�h =: I31 + I32. We
estimate I31 by

|I31| ≤ ‖w̃ − wh‖L2(�h)
‖g̃‖

H2(�(δ)∩A(1/2)
j )

+ ‖w̃ − wh‖L∞(�h\A(1/2)
j )

‖g̃‖W 2,1(�(δ))

≤ Ch2‖∇2w̃‖L2(�h)
(δdN−1

j )1/2d−m−N
j + Ch2‖∇2w̃‖

L∞(�h\A1/4
j )

δd−1−m
0

≤ Ch3d−1/2−m−N/2
j + Ch2d−N/2

j h1−m ≤ Ch5/2−md−N/2
j ,

where we have used h ≤ d j .
It remains to consider I32; we estimate it by

‖w̃ − wh‖L2(�h)
‖∂nh g̃‖L2(�h∩A(1/2)

j )
+ ‖w̃ − wh‖L∞(�h\A(1/2)

j )
‖∂nh g̃‖L1(�h)

.

For the first term, we have ‖w̃ − wh‖L2(�h)
≤ Ch3/2‖∇2w̃‖L2(�h)

≤ Ch3/2 and

‖∂nh g̃‖L2(�h∩A(1/2)
j )

≤ |�h ∩ A(1/2)
j |1/2(‖∇ g̃ · (nh − n ◦ π)‖

L∞(�h∩A(1/2)
j )

+ ‖∇ g̃ − (∇ g̃) ◦ π‖
L∞(�h∩A(1/2)

j )

)

≤ Cd(N−1)/2
j (h‖∇ g̃‖

L∞(�h∩A(1/2)
j )

+ δ‖∇2 g̃‖
L∞(�(δ)∩A(3/4)

j )
)

≤ Cd(N−1)/2
j (hd1−m−N

j + h2d−m−N
j ) ≤ Chd1/2−m−N/2

j .

For the second term, we have ‖w̃ − wh‖L∞(�h\A(1/2)
j )

≤ Ch2‖∇2w̃‖
L∞(�h\A(1/4)

j )
≤

Ch2d−N/2
j and we find from Corollary B.1 that ‖∂nh g̃‖L1(�h)

≤ C(h| log h|)1−m ≤
Ch(1−m)/2. Therefore,

|I32| ≤ Ch5/2d1/2−m−N/2
j + Ch5/2−m/2d−N/2

j ≤ Ch5/2−md−N/2
j ,
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which completes the proof. ��

Lemma 5.5 |I4| ≤ Ch2d1/2−m−N/2
j + Ch2−m | log h|1−md1−N/2

j .

Proof We estimate I4 = a′
�h��(w̃, g̃) by

|I4| ≤ ‖w̃‖H1(�(δ))‖g̃‖H1(�(δ)∩A(1/2)
j )

+ ‖w̃‖
W 1,∞(�(δ)\A(1/2)

j )
‖g̃‖W 1,1(�(δ)).

The first term of the right-hand side is bounded, using (2.1)2 and Lemma B.3, by

Cδ1/2‖w‖H2(�)(δd
N−1
j )1/2d1−m−N

j ≤ Ch2d1/2−m−N/2
j .

The second term is bounded, in view of Lemma B.4 and Corollary B.1, by
Cd1−N/2

j δh−m | log h|1−m . This completes the proof. ��

Now we substitute the results of Lemmas 5.2–5.5 into (5.3) and multiply by
d−1+N/2
j to obtain

d−1+N/2
j ‖g̃ − gh‖L2(�h∩A j )

≤ C(hd−1
j )dN/2

j ‖g̃ − gh‖H1(�h∩A(1)
j )

+ C(hd−1
j )‖g̃ − gh‖W 1,1(�h)

+ Ch1/2d−1+N/2
j ‖g̃ − gh‖L2(�h∩A(1)

j )

+ Ch5/2−md−1
j + Ch2d−1/2−m

j + Ch2−m | log h|1−m . (5.7)

Taking the summation for j = 0, . . . , J , assuming h is sufficiently small and using
(2.4), we are able to absorb the third term in the right-hand side of (5.7) and then arrive
at

J∑

j=0

d−1+N/2
j ‖g̃ − gh‖L2(�h∩A j )

≤ C(hd−1
0 )

⎛

⎝
J∑

j=0

dN/2
j ‖g̃ − gh‖H1(�h∩A j )

+ ‖g̃ − gh‖W 1,1(�h)

⎞

⎠

+ Ch5/2−md−1
0 + Ch2d−1/2−m

0 + Ch2−m | log h|1−m | log d0|,

where we note that the last three terms can be estimated by Ch3/2−m because d0 =
Kh ≤ 1 and K > 1. This completes the proof of Proposition 5.1.
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6 End of the proof of themain theorem

Substituting (5.1) into (4.2) we obtain

J∑

j=0

dN/2
j ‖g̃ − gh‖H1(�h∩A j )

≤ C ′′K−1

⎛

⎝
J∑

j=0

dN/2
j ‖g̃ − gh‖H1(�h∩A j )

+ ‖g̃ − gh‖W 1,1(�h)

⎞

⎠

+ CKm+N/2h1−m + C(h| log h|)1−m .

If K ≥ 2C ′′, then it follows that

J∑

j=0

dN/2
j ‖g̃ − gh‖H1(�h∩A j )

≤ CK−1‖g̃ − gh‖W 1,1(�h)
+ CKm+N/2h1−m + C(h| log h|)1−m,

which combined with (4.1) yields

‖g̃ − gh‖W 1,1(�h)
≤ C ′′′K−1‖g̃ − gh‖W 1,1(�h)

+CKm+N/2h1−m +C(h| log h|)1−m .

If K ≥ 2C ′′′, then this implies the desired estimate (3.2), which together with Propo-
sition 3.1 completes the proof of Theorem 3.1.

7 Numerical example

Letting� = {(x, y) ∈ R
2: (x−0.12)2

4 + (y+0.2)2

9 < 1, (x −0.7)2 + (y−0.1)2 > 0.52},
which is non-convex, we set an exact solution to be u(x, y) = x2. We define f and τ

so that (1.1) holds. They have natural extensions to R2, which are exploited as f̃ and
τ̃ . Then we compute approximate solutions ukh of (1.2) based on the Pk-finite elements
(k = 1, 2, 3), using the software FreeFEM++ [11]. The errors ‖u − ukh‖L∞(�h) and
‖∇(u − ukh)‖L∞(�h), which are calculated with the use of P4-finite element spaces,
are reported in Tables 1 and 2, respectively.

We see that the result for k = 1 is in accordance with Theorem 3.1. The one
for k = 3 (although it is not covered by our theory) is also consistent with our
theoretical expectation made in Remark 3.1(iii). When k = 2, the L∞-error remains
sub-optimal convergence as expected. However, the W 1,∞-error seems to be O(h2),
which is significantly better than in the P3-case.We remark that such behavior was also
observed for different (and apparently more complicated) choices of � and u. There
might be a super-convergence phenomenon in the P2-approximation for Neumann
problems in 2D smooth domains.
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Table 1 Behavior of the L∞-errors for the Pk -approximation (k = 1, 2, 3)

h ‖u − u1h‖L∞(�h ) Rate ‖u − u2h‖L∞(�h ) Rate ‖u − u3h‖L∞(�h ) Rate

0.617 5.72e−2 – 1.89e−2 – 2.08e−2 –

0.314 1.75e−2 1.8 4.39e−3 2.2 5.07e−3 2.1

0.165 4.64e−3 2.1 1.05e−3 2.2 1.30e−3 2.1

0.085 1.42e−3 1.8 2.55e−4 2.1 3.33e−4 2.1

0.043 3.92e−4 1.9 6.28e−5 2.1 8.31e−5 2.1

Table 2 Behavior of the W 1,∞-errors for the Pk -approximation (k = 1, 2, 3)

h ‖∇(u − u1h)‖L∞(�h ) Rate ‖∇(u − u2h)‖L∞(�h ) Rate ‖∇(u − u3h)‖L∞(�h ) Rate

0.617 6.24e−1 – 9.98e−2 – 3.91e−1 –

0.314 3.21e−1 1.0 2.68e−2 1.9 2.15e−1 0.9

0.165 1.58e−1 1.1 6.85e−3 2.1 1.04e−1 1.1

0.085 9.18e−2 0.8 1.58e−3 2.2 5.47e−2 1.0

0.043 4.63e−2 1.0 4.42e−4 1.9 2.77e−2 1.0

Remark 7.1 If k ≥ 2 and τ̃ is chosen as ∇u · nh , then ukh agrees with u (note that
the above u is quadratic), because this amounts to assuming that the original problem
(1.1) is given in a polygon �h . This was observed in our numerical experiment as
well (up to rounding errors). However, since such τ̃ is unavailable without knowing
an exact solution, one cannot expect it in a practical computation.

Appendix A: Auxiliary boundary-skin estimates

Local coordinate representation

We exploit the notations and observations given in [12, Section 8], which we
briefly describe here. Since � is a bounded C∞-domain, there exist a system of
local coordinates {(Ur , yr , ϕr )}Mr=1 such that {Ur }Mr=1 forms an open covering of �,
yr = (y′

r , yrN ) is a rotated coordinate of x , and ϕr : �r → R gives a graph represen-
tation �r (y′

r ) := (y′
r , ϕr (y

′
r )) of � ∩Ur , where �r is an open cube in RN−1

y′
r

.
For S ∈ Sh , we may assume that S ∪ π(S) is contained in some Ur , where

π : �(δ0) → � is the projection to� given in Sect. 2.2. Let br :RN → R
N−1; yr �→ y′

r
be a projection to the base set and let S′ := br (π(S)). Then �r and �hr := π∗ ◦ �r ,
where π∗: � → �h is the inverse map of π |�h , give smooth parameterizations of
π(S) and S respectively, with the domain S′. We also recall that π∗ is also written as
π∗(�r (y′

r )) = �r (y′
r ) + t∗(�r (y′

r ))n(�r (y′
r )).

Let us represent integrals associated with S in terms of local coordinates. In what
follows, we omit the subscript r for simplicity. First, surface integrals along π(S) and
S are expressed as
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∫

π(S)

f dγ =
∫

S′
f (�(y′))

√
detG(y′) dy′,

∫

S
f dγh =

∫

S′
f (�h(y

′))
√
detGh(y′) dy′,

where G and Gh denote the Riemannian metric tensors obtained from the parameteri-
zations � and �h , respectively. Next, let π(S, δ) := {x̄ + tn(x̄): x̄ ∈ S, −δ ≤ t ≤ δ}
be a tubular neighborhood with the base π(S), where δ = C0Eh2, and consider
volume integrals over π(S, δ). For this we introduce a one-to-one transformation
�: S′ × [−δ, δ] → π(S, δ) by

y = �(z′, t) := �(z′) + tn(�(z′)) ⇐⇒ z′ = b(π(y)), t = d(y).

Then, by change of variables, we obtain

∫

π(S,δ)

f (y) dy =
∫

S′×[−δ,δ]
f (�(z′, t)) det J (z′, t) dz′dt,

where J := ∇(z′,t)� denotes the Jacobi matrix of �. In the formulas above, detG,
detGh , and det J can be bounded, fromabove and below, by positive constants depend-
ing on the C1,1-regularity of�, provided h is sufficiently small (for the proof, see [12,
Section 8]).

Proof of (2.2)

In [12, Theorem 8.3], we estimated the L p-norm of a function in the full layer �(δ).
By slightly modifying the proof there, we can estimate it in�h\�, which is important
to dispense with extensions from �h to �̃.

Lemma A.1 Let f ∈ W 1,p(�h) (1 ≤ p ≤ ∞) and δ = C0Eh2. Then we have

‖ f ‖L p(�h\�) ≤ C(δ1/p‖ f ‖L p(�h) + δ‖(n ◦ π) · ∇ f ‖L p(�h\�)),

where C is independent of δ and f .

Proof To simplify the notation we use the abbreviation t∗(z′) to imply t∗(�(z′)). For
each S ∈ Sh we observe that

∫

(�h\�)∩π(S,δ)

| f (y)|p dy

=
∫

S′

∫ max{0,t∗(z′)}

0
| f (�(z′, t))|p det J dt dz′

≤ C
∫

S′

∫ max{0,t∗(z′)}

0

(
| f (�h(z

′))|p + | f (�(z′, t)) − f (�h(z
′))|p

)
dt dz′

=: I1 + I2,
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and that for z′ ∈ S′ and 0 ≤ t ≤ t∗(z′)

| f (�(z′, t)) − f (�h(z
′))| =

∣
∣
∣
∣
∣

∫ t∗(z′)

t
n(�(z′)) · ∇ f (�(z′, s)) ds

∣
∣
∣
∣
∣

≤
∫ t∗(z′)

0
|n(�(z′)) · ∇ f (�(z′, s))| ds

≤ t∗(z′)1−1/p

(∫ t∗(z′)

0
|n(�(z′)) · ∇ f (�(z′, s))|p ds

)1/p

.

Then it follows that

I1 ≤ C‖t∗‖L∞(S)

∫

S′
| f (�h(z

′))|p dz′

≤ Cδ

∫

S′
| f (�h(z

′))|p√detGh dz
′ = Cδ‖ f ‖p

L p(S)

and that

I2 ≤ C‖t∗‖p
L∞(S)

∫

S′

∫ max{0,t∗(z′)}

0
|n(�(z′)) · ∇ f (�(z′, s))|p det J dt dz′

≤ Cδ p‖n ◦ π · ∇ f ‖p
L p(π(S,δ)).

Adding up the above estimates for S ∈ Sh gives the conclusion. ��
Lemma A.2 For a measurable set D ⊂ R

N and f ∈ W 1,∞(�(δ)) we have

‖ f − f ◦ π‖L∞(�(δ)∩D) ≤ δ‖∇ f ‖L∞(�(δ)∩D2δ),

where D2δ = {x ∈ R
N : dist(x, D) ≤ 2δ}.

Proof This is an easy consequence of the Lipschitz continuity of f . ��

Proof of Proposition 2.1

Let us prove stability properties of the extension operator P defined in Sect. 2.3.

Theorem A.1 Let f ∈ Wk,p(�) with k = 0, 1, 2, and p ∈ [1,∞]. Then we have

‖P f ‖Wk,p(�(δ)) ≤ C‖ f ‖Wk,p(�∩�(2δ)),

where C is independent of δ and f .

Proof First, for each S ∈ Sh we show

‖P f ‖p
L p(π(S,δ)\�) ≤ C‖ f ‖p

L p(π(S,2δ)∩�).
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In fact we have

∫

π(S,δ)\�
|P f (y)|p dy ≤ C

∫

S′×[0,δ]
|3 f (z′ − tn(z′)) − 2 f (z′ − 2tn(z′))|p dz′dt

≤ C
∫

S′×[0,δ]

(
| f (z′ − tn(z′))|p + | f (z′ − 2tn(z′))|p

)
dz′dt

≤ C
∫

π(S,δ)∩�

| f (y)|p dy + C
∫

π(S,2δ)∩�

| f (y)|p dy.

Next we show

‖∇P f ‖p
L p(π(S,δ)\�) ≤ C‖∇ f ‖p

L p(π(S,2δ)∩�). (A.1)

Since by the chain rule ∇y = ∇y(b ◦ π)∇z′ + (∇yd)∂t and since P f (y) = 3 f ◦
�(z′,−t) − 2 f ◦ �(z′,−2t), it follows that

∇P f (y) = ∇y(b ◦ π)
(
3∇z′( f ◦ �)|(z′,−t) − 2∇z′( f ◦ �)|(z′,−2t)

)

+ ∇yd
(

− 3∂t ( f ◦ �)|(z′,−t) + 4∂t ( f ◦ �)|(z′,−2t)

)
, y ∈ π(S, δ)\�.

(A.2)

In particular, if y ∈ � i.e. t = 0, then

∇P f (y) = ∇y(b ◦ π)∇z′( f ◦ �)|(z′,0) + (∇yd)∂t ( f ◦ �)|(z′,0)
= J−1(z′, 0)J (z′, 0)∇y f (y) = ∇ f (y),

which ensures that P f (y) ∈ W 2,p(π(S, δ)). Now, noting that ∇y
(
b◦π
d

) = J−1(z′, t)
and that ∇(z′,t)( f ◦ �)|(z′,−i t) = J (z′,−i t)(∇y f )|�(z′,−i t) (i = 1, 2) where J and
J−1 depend on the C1,1-regularity of �, we deduce that

∫

π(S,δ)\�
|∇P f (y)|p dy ≤ C

∫

S′×[0,δ]

(∣
∣(∇y f )|�(z′,−t)

∣
∣p+∣

∣(∇y f )|�(z′,−2t)
∣
∣p

)
dz′dt,

from which (A.1) follows.
Finally we show

‖∇2P f ‖p
L p(π(S,δ)\�) ≤ C(‖∇2 f ‖p

L p(π(S,2δ)∩�) + ‖∇ f ‖p
L p(π(S,2δ)∩�)). (A.3)

By differentiating (A.2) we find that for y ∈ π(S, δ)\�

∇2P f (y) =
2∑

i=1

(
Ai (z

′, t)∇2
(z′,t)( f ◦ �)(z′,−i t) + Bi (z

′, t)∇(z′,t)( f ◦ �)(z′,−i t)

)
,
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where the coefficient tensors Ai , Bi depend on the C1,1-regularity of �. Then the
L p-norm of the above quantity can be estimated similarly as before and one obtains
(A.3).

Adding up the above estimates for S ∈ Sh deduces the desired stability properties.
��

We also need local stability of the extension operator as follows.

Corollary A.1 For a measurable set D ⊂ R
N and δ = C0Eh2 we have

‖P f ‖Wk,∞(�(δ)∩D) ≤ C‖ f ‖Wk,∞(�∩�(2δ)∩D3δ)
(k = 0, 1, 2),

where D3δ = {x ∈ R
N : dist(x, D) ≤ 3δ} and C is independent of δ, f , and D.

Proof We address the L∞-norm of ∇P f ; the treatment of P f and ∇2P f is similar.
For each S ∈ Sh , we find from the analysis of Theorem A.1 that ∇P f (y) for y ∈
π(S, δ)\� can be expressed as

∇P f (y) =
2∑

i=1

Ai (z
′, t)(∇y f )|�(z′,−i t),

where the matrices Ai depend on the C0,1-regularity of �. Then the desired estimate
follows from the observation that if y = �(z′, t) ∈ π(S, δ)∩ D\� then �(z′,−i t) ∈
π(S, iδ) ∩ D3δ ∩ � for i = 1, 2. ��

Appendix B: Analysis of regularized Green’s functions

Estimates for g̃

Recall that for arbitrarily fixed x0 ∈ �h we have introduced η ∈ C∞
0 (�h ∩ �) and

gm ∈ C∞(�) (m = 0, 1) in Sect. 3. Using the Green’s function G(x, y) for the
operator −� + 1 in � with the homogeneous Neumann boundary condition, one can
represent gm as

g0(x) =
∫

supp η

G(x, y)η(y) dy, g1(x) = −
∫

supp η

∂yG(x, y)η(y) dy, x ∈ �.

The following derivative estimates for G are well known (see e.g. [13, p. 965]):

|∇k
x∇l

yG(x, y)| ≤
{
C(1 + |x − y|2−l−k−N ) (l + k + N > 2),

C(1 + ∣
∣ log |x − y|∣∣) (N = 2, l = k = 0).

From this, combined with a dyadic decomposition of �, we derive some local and
global estimates for gm and its extension g̃m := Pgm . Below the subscript m will be
dropped for simplicity.
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Lemma B.1 Let A�h (x0, d0) = {�h ∩ A j }Jj=0 be a dyadic decomposition of �h with
d0 ∈ [4h, 1]. Then, for j = 1, . . . , J and k ≥ 0 we have

‖∇kg‖L∞(�∩A j ) ≤
{
C(1 + d2−m−k−N

j ) (m + k + N > 2),

C(1 + | log d j |) (N = 2,m = k = 0),

where C is independent of x0, d0, h, j , and ∂ .

Proof We only considerm+k+N > 2 because the other case can be treated similarly.
Notice that if x ∈ � ∩ A j ( j ≥ 1) and y ∈ supp η then |x − y| ≥ 3

4d j−1, which is
obtained from |x − x0| ≥ d j−1 and |y − x0| ≤ h. It then follows that

‖∇kg‖L∞(�∩A j ) = sup
x∈�∩A j

∣
∣
∣
∣

∫

supp η

∂my ∇k
x G(x, y)η(y) dy

∣
∣
∣
∣

≤ sup
|x−y|≥ 3

4 d j−1|∂my ∇k
x G(x,y)|

≤ C(1 + d2−m−k−N
j ),

which completes the proof. ��
We transfer these estimates in � to those in �̃ = � ∪ �(δ) using an extension

operator and its stability.

Lemma B.2 Let A�h (x0, d0) = {�h ∩ A j }Jj=0 be a dyadic decomposition of �h with

d0 ∈ [h, 1], δ = C0Eh2. For p ∈ [1,∞], j = 1, . . . , J , and m = 0, 1, we have

‖∇2 g̃‖L p(�̃∩A j )
≤ Cd−m−N/p′

j ,

where p′ = p/(p − 1) and C is independent of x0, d0, h, j , and ∂ .

Proof By the Hölder inequality and Lemma B.1 we see that

‖∇2 g̃‖L p(�̃∩A j )
≤ C |�h ∩ A j |1/p‖∇2 g̃‖L∞(�̃∩A j )

≤ CdN/p
j ‖g‖

W 2,∞(�∩A(1/4)
j )

≤ CdN/p
j (1 + d2−m−N

j + d1−m−N
j + d−m−N

j ) ≤ Cd−m−N/p′
j ,

where we have used d j ≤ 2 diam � in the last inequality. ��
We also need local estimates in intersections of annuli and boundary-skins (or

boundaries).

Lemma B.3 Under the assumptions in Lemma B.2, let k = 0, 1, 2. Then we have

‖∇k g̃‖L p(�(δ)∩A j ) ≤ C(δdN−1
j )1/p(1 + d2−m−k−N

j ),

‖∇kg‖L p(�∩A j ) + ‖∇k g̃‖L p(�h∩A j ) ≤ Cd(N−1)/p
j (1 + d2−m−k−N

j ),
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provided m+k+N > 2. Even when N = 2 and m = k = 0, the above estimates hold
with the factor d2−m−k−N

j replaced by | log d j |. The constants C are independent of
x0, d0, h, j , and ∂ .

Proof We only consider m + k + N > 2 since the other case may be treated similarly.
From Corollary A.1 and Lemma B.1 we deduce that (note that (A j )3δ ⊂ A(1/4)

j for
small h)

‖∇k g̃‖L p(�(δ)∩A j ) ≤ |�(δ) ∩ A j |1/p‖∇k g̃‖L∞(�(δ)∩A j )

≤ C(δdN−1
j )1/p‖g‖

Wk,∞(�∩�(2δ)∩A(1/4)
j )

≤ C(δdN−1
j )1/p(1 + d2−m−k−N

j ),

where we have used d j ≤ 2 diam � in the second line. Similarly,

‖∇k g̃‖L p(�h∩A j ) ≤ |�h ∩ A j |1/p‖∇k g̃‖L∞(�h∩A j )

≤ Cd(N−1)/p
j ‖g‖

Wk,∞(�∩�(2δ)∩A(1/4)
j )

≤ Cd(N−1)/p
j (1 + d2−m−k−N

j ).

One sees that ‖∇kg‖L p(�∩A j ) obeys the same estimate. ��

Remark B.1 The three lemmas above remain true with A j replaced by A(s)
j

(0 ≤ s < 1), where the constants C become dependent on the choice of s.

Especially when p = 1, the following global estimate in a boundary-skin layer
holds.

Corollary B.1 Let δ = C0Eh2 with sufficiently small h. Then we have

‖g̃0‖Wk,1(�(δ)) ≤

⎧
⎪⎨

⎪⎩

Cδ (k = 0),

Cδ| log h| (k = 1),

Cδh−1 (k = 2),

‖∇kg0‖L1(�) + ‖∇k g̃0‖L1(�h)
≤

⎧
⎪⎨

⎪⎩

C (k = 0),

C | log h| (k = 1),

Ch−1 (k = 2),

and

‖g̃1‖Wk,1(�(δ)) ≤

⎧
⎪⎨

⎪⎩

Cδ| log h| (k = 0),

Cδh−1 (k = 1),

Cδh−2 (k = 2),
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‖∇kg1‖L1(�) + ‖∇k g̃1‖L1(�h)
≤

⎧
⎪⎨

⎪⎩

C | log h| (k = 0),

Ch−1 (k = 1),

Ch−2 (k = 2),

where C is independent of x0, h, and ∂ .

Proof We only consider the estimates in Wk,1(�(δ)) because the boundary estimates
can be derived similarly. With a dyadic decompositionA�h (x0, 4h) = {�h ∩ A j }Jj=0,

we compute
∑J

j=0 ‖g̃‖Wk,1(�(δ)∩A j )
. When j ≥ 1, it follows from Lemma B.3 that

‖g̃‖Wk,1(�(δ)∩A j )
≤

{
C(δdN−1

j )d2−m−k−N
j (m + k + N > 2),

C(δdN−1
j )| log d j | (N = 2,m = k = 0).

(B.1)

When j = 0, notice that dist(supp η, �(2δ)) ≥ Ch = C
4 d0 for sufficiently small h,

which results from (3.1). Then, calculating in the same way as above, we find that
(B.1) holds for j = 0 as well. Adding up the above estimate for j = 0, . . . , J and
using (2.5), we obtain the desired result. ��

Remark B.2 We could improve the above estimates for g0 when k = 1 if the Dirichlet
boundary condition were considered. In fact, the Green’s function GD(x, y) in this
case is known to satisfy |∇xGD(x, y)| ≤ C dist(y, ∂�)|x − y|−N (see [10, Theorem
3.3(v)]). Then, taking a dyadic decomposition with d0 = dist(supp η, ∂�) ≥ Ch, we
see that

‖∇ g̃0‖L1(�h)
≤ C

J∑

j=0

dN−1
j ‖∇ g̃0‖L∞(�h∩A j )

≤ C dist(supp η, ∂�)

J∑

j=0

d−1
j

≤ Cd0d
−1
0 = C,

and that ‖∇ g̃0‖L1(�(δ)) ≤ Cδ. However, such an auxiliary Green’s function estimate
is not available in the case of the Neumann boundary condition. A similar inequality
is proved in [17, eq. (5.8)] by a different method using the maximum principle, but its
extension to the Neumann case seems non-trivial.

Estimates for w̃

Let us recall the situation of Sect. 5: fixing a dyadic decomposition A�h (x0, d0) and
an annulus A j (0 ≤ j ≤ J ), we have introduced the solution w ∈ C∞(�) of (5.2)
for arbitrary ϕ ∈ C∞

0 (�h ∩ A j ) such that ‖ϕ‖L2(�h∩A j )
= 1. Hence w is represented,

using the Green’s function G(x, y), as
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w(x) =
∫

�∩�h∩A j

G(x, y)ϕ(y) dy (x ∈ �).

Then we obtain the following local L∞-estimates away from A j :

Lemma B.4 For k = 0, 1, 2 and δ = C0Eh2, we have

‖w̃‖
Wk,∞(�̃\A(1/2)

j )
≤

{
Cd2−k−N/2

j (N + k > 2),

Cd j (1 + | log d j |) (N = 2, k = 0),

where �̃ := � ∪ �(δ), w̃ := Pw, and C is independent of h, x0, d0, and j .

Proof We focus on the case N + k > 2; the other case is similar. We find that

‖w̃‖
Wk,∞(�̃\A(1/2)

j )

≤ C‖w‖
Wk,∞(�\A(1/4)

j )
= C

k∑

l=0

sup
x∈�\A(1/4)

j

∣
∣
∣
∣
∣

∫

�∩�h∩A j

∇l
xG(x, y)ϕ(y) dy

∣
∣
∣
∣
∣

≤ C
k∑

l=0

|� ∩ �h ∩ A j |1/2 sup
|x−y|≥d j−1/8

|∇l
xG(x, y)| ‖ϕ‖L2(�∩�h∩A j )

≤ CdN/2
j

(
1 + d2−N

j + · · · + d2−k−N
j

)
≤ Cd2−k−N/2

j ,

where we have used d j ≤ 2 diam � in the last inequality. ��

Remark B.3 The lemma remains true with A(1/2)
j replaced by A(s)

j (0 < s ≤ 1), where
the constant C becomes dependent on the choice of s.
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