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Abstract
In this paper we provide a priori error estimates with explicit constants for both the L2-
projection and theRitz projection onto spline spaces of arbitrary smoothness definedon
arbitrary grids. This extends the results recently obtained for spline spaces of maximal
smoothness. The presented error estimates are in agreement with the numerical evi-
dence found in the literature that smoother spline spaces exhibit a better approximation
behavior per degree of freedom, even for low smoothness of the functions to be approx-
imated. First we introduce results for univariate spline spaces, and then we address
multivariate tensor-product spline spaces and isogeometric spline spaces generated by
means of a mapped geometry, both in the single-patch and in the multi-patch case.

Mathematics Subject Classification 41A15 · 41A44 · 65D07 · 65M15 · 65M60

1 Introduction

Spline approximation is a classical topic in approximation theory; we refer the reader
to the book [19] for an extended bibliography. Moreover, it has recently received a
renewed interestwithin the emergingfield of isogeometric analysis (IGA); see the book
[8]. In this context, a priori error estimates in Sobolev (semi-)norms and corresponding
projectors for suitably chosen spline spaces are important.

Classical a priori error estimates for spline approximation are explicit in the grid
spacing but hide the influence of the smoothness and the degree of the spline space.
Such structure, however, is not sufficient for the IGA environment. In particular, IGA
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allows for a rich assortment of refinement strategies [8], combining grid refinement
(h) and/or degree refinement (p) with various interelement smoothness (k). To fully
exploit the benefits of the so-called h−p−k refinement, it is necessary to under-
stand how all the parameters involved (i.e., the grid spacing, the degree, and the
smoothness) affect the error estimate. Furthermore, it is important to unravel the influ-
ence of the geometry map in isogeometric approximation schemes, not only for its
effect on the accuracy but also because it helps in defining good mesh quality metrics
[10].

Besides their prominent interest for analyzing convergence under different kinds
of refinements, error estimates for approximation in suitable reduced spline spaces
play a less evident but still pivotal role in other aspects of IGA discretizations, such as
the design of fast iterative (multigrid) solvers for the resulting linear systems [15,24].
The convergence rate of fast iterative solvers should ideally be independent of all
the parameters involved, and so their explicit impact on the estimates is important to
understand.

In the context of IGA, the role of the smoothness and the degree in spline approxi-
mation has been theoretically investigated for the first time in [2], providing explicit
error estimates for spline spaces of smoothness k and degree p ≥ 2k+1. The important
case of maximal smoothness (k = p−1) has been recently addressed for uniform grid
spacing in [25] and for general grid spacing in [18], where improved error estimates
have been achieved as well. The above references all deal with both univariate and
multivariate spline spaces.

In this paper we provide a priori error estimates with explicit constants for
approximation by spline functions of arbitrary smoothness defined on arbitrary
knot sequences. Besides filling the gap of the smoothness that is not yet covered
in the literature, our results also improve upon the error estimates in [2,18,25].
The key ingredient to get our results is the representation of the considered
Sobolev spaces and the approximating spline spaces in terms of integral opera-
tors described by suitable kernels [17]. By using this representation we provide
an abstract framework that converts explicit constants in polynomial approximation
to explicit constants in spline approximation. We consider error estimates for both
univariate and multivariate spline spaces, and we also allow for a mapped geom-
etry. After a short description of some preliminary notation, the main theoretical
contributions and the structure of the paper are outlined in the next subsec-
tions.

1.1 Preliminary notation

For k ≥ 0, let Ck[a, b] be the classical space of functions with continuous derivatives
of order 0, 1, . . . , k on the interval [a, b]. We further let C−1[a, b] denote the space
of bounded, piecewise continuous functions on [a, b] that are discontinuous only at a
finite number of points.

Suppose � := (ξ0, . . . , ξN+1) is a sequence of (break) points such that

a =: ξ0 < ξ1 < · · · < ξN < ξN+1 := b,
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and let
h := max

j=0,...,N
(ξ j+1 − ξ j ). (1)

Moreover, set I j := [ξ j , ξ j+1), j = 0, 1, . . . , N − 1, and IN := [ξN , ξN+1]. For any
p ≥ 0, let P p be the space of polynomials of degree at most p. Then, for −1 ≤ k ≤
p − 1, we define the space Sk

p,� of splines of degree p and smoothness k by

Sk
p,� :=

{
s ∈ Ck[a, b] : s|I j ∈ Pp, j = 0, 1, . . . , N

}
,

and we set
Sp,� := S p−1

p,� .

With a slight misuse of terminology, we will refer to � as knot sequence and to its
elements as knots.

For real-valued functions f and gwe denote the norm and inner product on L2(a, b)
by

‖ f ‖2 := ( f , f ), ( f , g) :=
∫ b

a
f (x)g(x)dx,

and we consider the Sobolev spaces

Hr (a, b) :=
{
u ∈ L2(a, b) : ∂αu ∈ L2(a, b), α = 1, . . . , r

}
.

We use the notation Skp : L2(a, b) → Sk
p,� and Sp : L2(a, b) → Sp,� for the L2-

projector onto spline spaces, while Pp : L2(a, b) → Pp stands for the L2-projector
onto the polynomial space Pp.

1.2 Main results: univariate case

In this paperwe focus on general spline spaces of degree p, smoothness k, and arbitrary
knot sequence �. We first derive the following (simplified) error estimate:

‖u − Skpu‖ ≤
(

e h

4(p − k)

)r

‖∂r u‖, (2)

for any u ∈ Hr (a, b) and all p ≥ r − 1. Here e is Euler’s number. We refer the reader
to Remark 3, Theorem 3, and Corollary 1 for sharper results.We then show that similar
error estimates hold for standard Ritz projections and their derivatives; see Remark 5
and Corollary 2.

The inequality in (2) does not only cover the univariate result from [2], but also
improves upon it by allowing any smoothness; in particular, the most interesting cases
of highly smooth spline spaces are embraced. As already pointed out in [2], a simple
error estimate like (2) is not able to give a theoretical explanation for the numerical
evidence that smoother spline spaces exhibit a better approximation behavior per
degree of freedom. On the other hand, the sharper estimate provided in Theorem 3
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improves per degree of freedom as the smoothness of the spline spaces increase; see
Remark 4 (and Fig. 2). Even though this does not prove the superior approximation
per degree of freedom of smoother spline spaces, the presented error estimates are a
step towards a complete theoretical understanding of the numerical evidence found
in the literature. For uniform knot sequences, it has been formally shown in [5] that
C p−1 spline spaces perform better thanC0 andC−1 spline spaces in almost all cases of
practical interest. A similar approximation behavior per degree of freedom is observed
for the Ritz projections; see Remark 6 (and Fig. 3).

For maximally smooth spline spaces, the best known error estimate for the L2-
projection is given by

‖u − Spu‖ ≤
(
h

π

)r

‖∂r u‖, (3)

for any u ∈ Hr (a, b) and all p ≥ r−1. This estimate has been recently proved in [18].
Note that the same error estimate also holds for periodic functions/splines [18,21], for
which it has been shown to be optimal on uniform knot sequences [13,17,18].

It is easy to see that (3) is sharper than (2) for k = p− 1. Nevertheless, for fixed r ,
this estimate only ensures convergence in h, and not in p. The role of the grid spacing
and the degree is made more clear in the following estimate:

‖u − Spu‖ ≤
(

2eh(b − a)

eπ(b − a) + 4h(p + 1)

)r

‖∂r u‖, (4)

for any u ∈ Hr (a, b) and all p ≥ r − 1; see Remark 8. For small r compared to
p, a better estimate is formulated in Remark 9. The general result, covering both (3)
and (4), can be found in Corollary 3. Similar estimates hold for Ritz projections and
their derivatives; see Remark 11 and Corollary 4. The p-dependence has also been
strengthened for the arbitrarily smooth case in Corollary 1.

Motivated by their use in the analysis of fast iterative solvers for linear systems
arising from spline discretization methods [15], we also provide error estimates for
approximation in suitable reduced spline spaces; see Theorems 4 and 5.

1.3 Main results: multivariate case

The univariate results can be extended to obtain error estimates for approximation in
multivariate isogeometric spline spaces.As common in the related literature [1,3,4],we
first address standard tensor-product spline spaces, then investigate the effect of single-
patch geometries for isogeometric spline spaces, and finally discuss C0 multi-patch
geometries. In all casesweprovide a priori error estimateswith explicit constants, high-
lighting all the actors that play a role in the construction of the considered spline spaces:
the knot sequences, the degrees, the smoothness, and the possible geometry map.

For tensor-product spline spaces we provide error estimates for L2 and Ritz pro-
jections in Theorems 6 and 7, respectively. In case of single-patch geometries, we do
not confine ourselves to the plain isoparametric context which is typical in IGA [8],
i.e., the same space that generates the geometry is mapped to the physical domain,
but we allow for possibly different spaces for the geometry representation and the
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function approximation. In the first instance, we assume geometric mappings that are
sufficiently globally smooth; see Theorem 8 and Example 18. Afterwards, we also
provide error estimates for mappings generated by more general geometry function
classes that include spline spaces and NURBS spaces of arbitrary smoothness; see
Theorem 9 and Example 19. In this perspective, following the literature [3,4], we
introduce suitable bent Sobolev spaces, so as to accommodate a less smooth setting
for the geometry. We explicitize the role of the (derivatives of the) geometry map in
the constants of the error estimates, both for L2 and Ritz projections. Finally, to deal
with the C0 multi-patch setting, we consider a projector that is local to each of the
patches and is closely related to the standard Ritz projector. Indeed, since the global
isogeometric space is continuous, we cannot directly use standard L2-projectors as
local building blocks on the patches. Instead, we choose each of the projectors to be
interpolatory on the patch boundaries [3,24] so that they can be easily combined into
a continuous global projector. We provide explicit error estimates for the new local
projectors, which immediately give rise to the desired estimates for the global one;
see Example 20.

Even though the multivariate results emanate from the univariate ones by fol-
lowing arguments similar to those already presented in the literature, see [1,3,
4,16,24] and references therein, the novelty of the provided error estimates is
twofold:

• they are expressed in terms of explicit constants and cover arbitrary smoothness;
• they hold for a certain (mapped) Ritz projector which is very natural in the context
of Galerkin methods.

It is also worthwhile to note that, although the current investigation has been
mainly motivated by IGA applications, standard C0 tensor-product finite elements
are included as special cases.

1.4 Outline of the paper

The remainder of this paper is organized as follows. In Sect. 2 we introduce a
general framework for dealing with a priori error estimates in standard Sobolev
(semi-)norms for L2 and Ritz projections onto univariate finite dimensional spaces
represented in terms of integral operators described by a suitable kernel. Based on
these results, error estimates with explicit constants are provided for spline spaces
of arbitrary smoothness in Sect. 3, and further investigated for the salient case of
spline spaces of maximal smoothness in Sect. 4. Section 5 addresses certain reduced
spline spaces which can be of interest in several contexts. Then, we extend those uni-
variate results to the multivariate setting. Standard tensor-product spline spaces are
considered in Sect. 6, while isogeometric spline spaces defined on mapped (single-
patch) geometries are covered in Sect. 7; we provide explicit expressions for all
the involved constants. In Sect. 8 we discuss a particular Ritz-type projector and
related error estimates for isogeometric spline spaces on C0 multi-patch geome-
tries. Finally, we conclude the paper in Sect. 9 by summarizing the main theoretical
results.
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2 General error estimates

In this section we describe a general framework to obtain error estimates for the L2-
projection and the Ritz projection onto spaces defined in terms of integral operators.

2.1 General framework

For f ∈ L2(a, b), let K be the integral operator

K f (x) :=
∫ b

a
K (x, y) f (y)dy. (5)

As in [17], we use the notation K (x, y) for the kernel of K . We will in this paper only
consider kernels that are continuous or piecewise continuous. We denote by K ∗ the
adjoint, or dual, of the operator K , defined by

( f , K ∗g) = (K f , g).

The kernel of K ∗ is K ∗(x, y) = K (y, x).
Given any finite dimensional subspace Z0 ⊇ P0 of L2(a, b) and any integral

operator K , we let Zt for t ≥ 1 be defined by Zt := P0 + K (Zt−1). We further
assume that they satisfy the equality

Zt := P0 + K (Zt−1) = P0 + K ∗(Zt−1), (6)

where the sums do not need to be orthogonal (or even direct). Moreover, let Zt be the
L2-projector onto Zt , and define Ct,r ∈ R for t, r ≥ 0 to be

Ct,r := ‖(I − Zt )K
r‖. (7)

Note that Ct,0 = 1. In the case t = 0 and r = 1 we further define the constant C ∈ R

to be
C := max{‖(I − Z0)K‖, ‖(I − Z0)K

∗‖}. (8)

The following inequality is stated in [18, Lemma 2.1]. For completeness we provide
a short proof here as well.

Lemma 1 The constants in (7) and (8) satisfy

Ct,1 ≤ C, t ≥ 0.

Proof For t = 0, this is true by the definitions of C0,1 and C. For t ≥ 1, we see from
(6) that K Zt−1 maps into the space Zt . Now, since Zt is the best approximation into
Zt we have

‖(I − Zt )K‖ ≤ ‖K (I − Zt−1)‖ = ‖(I − Zt−1)K
∗‖.
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Continuing this procedure gives

‖(I − Zt )K‖ ≤
{

‖(I − Z0)K‖, t even,

‖(I − Z0)K ∗‖, t odd,

and the result again follows from the definitions of Ct,1 and C. 	

Inspired by the idea of [14, Lemma 1] we have the following more general result.

Lemma 2 The constants in (7) satisfy

Ct,r ≤ Ct,sCt−s,r−s,

for all 0 ≤ s ≤ t, r .

Proof Observe that the operator (I−Zt )Ks Zt−s K r−s = 0 since Ks Zt−s K r−s f ∈ Zt

for any f ∈ L2(a, b). Thus,

‖(I − Zt )K
r‖ = ‖(I − Zt )K

s(I − Zt−s)K
r−s‖ ≤ ‖(I − Zt )K

s‖ ‖(I − Zt−s)K
r−s‖,

and the result follows from the definition of Ct,r . 	

Similar to [18, Theorem 2.1] we obtain the following estimate.

Lemma 3 The constants in (7) and (8) satisfy

Ct,r ≤ Ct,1Ct−1,1 · · ·Ct−r+1,1 ≤ Cr ,

for all t ≥ r − 1.

Proof The case r = 1 is contained in Lemma 1. For the first inequality, the cases r ≥ 2
follow from Lemma 2 (with s = 1) and induction on r . The second inequality then
follows from Lemma 1. 	


In the next subsection we consider a particularly relevant integral operator: the
Volterra operator.

2.2 Error estimates for the Ritz projection

Let K be the integral operator defined by integrating from the left,

(K f )(x) :=
∫ x

a
f (y)dy. (9)

One can check that K ∗ is integration from the right,

(K ∗ f )(x) =
∫ b

x
f (y)dy;
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see, e.g., [14, Section 7]. Note that in this case we have ‖(I−Z0)K‖ = ‖(I−Z0)K ∗‖,
and so C = C0,1. Moreover, the space Hr (a, b) can be described as

Hr (a, b) = P0+K (Hr−1(a, b)) = P0+K ∗(Hr−1(a, b)) = Pr−1+Kr (H0(a, b)),
(10)

with H0(a, b) = L2(a, b) and P−1 = {0}. Thus, any u ∈ Hr (a, b) is of the form
u = g + Kr f for g ∈ Pr−1 and f ∈ L2(a, b). This leads to the following error
estimate for the L2-projection.

Theorem 1 Let Zt be the L2-projector onto Zt and assume Pr−1 ⊆ Zt . Then, for any
u ∈ Hr (a, b) we have

‖u − Ztu‖ ≤ Ct,r‖∂r u‖. (11)

Proof Since Pr−1 ⊆ Zt and using (10), we have u = g + Kr f for g ∈ Pr−1 and
f ∈ L2(a, b). Thus,

‖u − Ztu‖ = ‖g + Kr f − Zt (g + Kr f )‖ = ‖(I − Zt )K
r f ‖ ≤ Ct,r‖ f ‖, (12)

and the result follows from the identity ∂r u = f . 	

Remark 1 By definition of the operator norm, the constant Ct,r is the smallest possible
constant such that the last inequality in (12) holds for all f ∈ L2(a, b). We thus see
from the above proof that whenever Pr−1 ⊆ Zt , the constant Ct,r is the smallest
possible constant such that (11) holds for all u ∈ Hr (a, b).

Example 1 From the definition of Zt in (6), with K as in (9), it follows that Pr−1 is a
subspace of Zt for any t ≥ r − 1. Hence, Theorem 1 and Lemma 3 imply that for any
u ∈ Hr (a, b) we have

‖u − Ztu‖ ≤ Ct,r‖∂r u‖ ≤ Cr‖∂r u‖,

for all t ≥ r − 1. However, as we shall see in the next section, there are important
cases where Pr−1 ⊆ Zt for some t < r − 1 (e.g., if Pk ⊆ Z0 with k ≥ 1). Such cases
will be considered in our proof of the error estimate in (2) and the sharper estimates
in Sect. 3.

Wenow focus on adifferent projectorwhich is very natural in the context ofGalerkin
methods. For any q = 0, . . . , t we define the projector Rq

t : Hq(a, b) → Zt by

(∂q Rq
t u, ∂qv) = (∂qu, ∂qv), ∀v ∈ Zt ,

(Rq
t u, g) = (u, g), ∀g ∈ Pq−1.

(13)

We remark that Rq
t is the Ritz projector for the q-harmonic problem. Observe that

this projector satisfies ∂q Rq
t = Zt−q∂

q , where Zt−q denotes the L2-projector onto
Zt−q . With the aid of the Aubin–Nitsche duality argument we arrive at the following
estimate.
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Lemma 4 Let u ∈ Hq(a, b) be given, and let Rq
t be the projector onto Zt defined in

(13). Then, for any � = 0, . . . , q we have

‖∂�(u − Rq
t u)‖ ≤ Ct−q,q−�‖∂qu − Zt−q∂

qu‖,

for all t ≥ q such that Pq−�−1 ⊆ Zt−q .

Proof Let u ∈ Hq(a, b) be given and definew as the solution to theNeumann problem

(−1)q−�∂2(q−�)w = u − Rq
t u,

w(q−�)(a) = w(q−�)(b) = · · · = w(2(q−�)−1)(a) = w(2(q−�)−1)(b) = 0.

Using integration by parts, q − � times, we have

‖∂�(u − Rq
t u)‖2 = (∂�(u − Rq

t u), ∂�(u − Rq
t u))

= (∂�(u − Rq
t u), (−1)q−�∂�∂2(q−�)w)

= (∂q(u − Rq
t u), ∂qw) = (∂q(u − Rq

t u), ∂q(w − v)),

for any v ∈ Zt , since (∂q(u − Rq
t u), ∂qv) = 0. Using ‖∂�(u − Rq

t u)‖ = ‖∂2q−�w‖
and the Cauchy–Schwarz inequality, we obtain

‖∂�(u − Rq
t u)‖ ‖∂2q−�w‖ ≤ ‖∂q(u − Rq

t u)‖ ‖∂q(w − v)‖.

If we let v = Rq
t w, then Theorem 1 implies that

‖∂q(w − Rq
t w)‖ = ‖∂qw − Zt−q∂

qw‖ ≤ Ct−q,q−�‖∂2q−�w‖,

since Pq−�−1 ⊆ Zt−q . Thus,

‖∂�(u − Rq
t u)‖ ≤ Ct−q,q−�‖∂q(u − Rq

t u)‖ = Ct−q,q−�‖∂qu − Zt−q∂
qu‖,

which completes the proof. 	

Theorem 1 in combination with Lemma 4 results in a more classical error estimate

for the Ritz projection.

Theorem 2 Let u ∈ Hr (a, b) be given. For any q = 0, . . . , r , let Rq
t be the projector

onto Zt defined in (13). Then, for any � = 0, . . . , q we have

‖∂�(u − Rq
t u)‖ ≤ Ct−q,q−�Ct−q,r−q‖∂r u‖,

for all t ≥ q such that Pr−q−1 ⊆ Zt−q and Pq−�−1 ⊆ Zt−q .

Example 2 Similar to Example 1, we observe from the definition ofZt−q in (6), with K
as in (9), thatPr−q−1 andPq−�−1 are subspaces ofZt−q for any t satisfying t ≥ r −1
and t ≥ 2q − � − 1, respectively. Then, Lemma 4 and Theorem 2, together with
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Lemma 3, imply the following results for u ∈ Hq(a, b). For any � = 0, . . . , q we
have

‖∂�(u − Rq
t u)‖ ≤ Ct−q,q−�‖∂qu − Zt−q∂

qu‖ ≤ Cq−�‖∂qu − Zt−q∂
qu‖, (14)

for all t ≥ max{q, 2q − � − 1}, and

‖∂�(u − Rq
t u)‖ ≤ Ct−q,q−�Ct−q,r−q‖∂r u‖ ≤ Cr−�‖∂r u‖, (15)

for all t ≥ max{q, r − 1, 2q − � − 1}.

Example 3 Let q = 1. Then, for any u ∈ H1(a, b) and t ≥ 1 we have the error
estimates

‖u − R1
t u‖ ≤ Ct−1,1‖∂u − Zt−1∂u‖ ≤ Ct−1,1‖∂u‖,

‖∂(u − R1
t u)‖ ≤ ‖∂u − Zt−1∂u‖ ≤ ‖∂u‖,

and the stability estimates

‖∂R1
t u‖ = ‖Zt−1∂u‖ ≤ ‖∂u‖, (16)

‖R1
t u‖ ≤ ‖u‖ + ‖R1

t u − u‖ ≤ ‖u‖ + Ct−1,1‖∂u‖. (17)

We end this section with an observation that will be relevant in the case of a multi-
patch geometry; see Sect. 8.

Lemma 5 If P2 ⊆ Zt then R1
t u(a) = u(a) and R1

t u(b) = u(b).

Proof Let q = 1 and pick v(x) = (x − a)2 in (13). Then, using integration by parts,
we have

(∂R1
t u, ∂v) = 2(b − a)R1

t u(b) − (R1
t u, ∂2v) = 2(b − a)R1

t u(b) − (R1
t u, 2),

(∂u, ∂v) = 2(b − a)u(b) − (u, ∂2v) = 2(b − a)u(b) − (u, 2),

and R1
t u(b) = u(b), since (R1

t u, 2) = (u, 2). Similarly, by picking v(x) = (b − x)2

we obtain R1
t u(a) = u(a). 	


3 Spline spaces of arbitrary smoothness

In this section we show error estimates, with explicit constants, for spline spaces of
arbitrary smoothness defined on arbitrary knot sequences. To do this we make use of
a theorem in [20] for polynomial approximation.
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Lemma 6 Let u ∈ Hr (a, b) be given. For any p ≥ r − 1, let Pp be the L2-projector
onto Pp. Then,

‖u − Ppu‖ ≤
(
b − a

2

)r
√

(p + 1 − r)!
(p + 1 + r)! ‖∂

r u‖. (18)

Proof This follows from [20,Theorem3.11] since the L∞-normof theweight-function
is bounded by 1. 	

Lemma 7 Let u ∈ Hr (a, b) be given. For any p ≥ r − 1 and knot sequence �, let
S−1
p be the L2-projector onto S−1

p,�. Then,

‖u − S−1
p u‖ ≤

(
h

2

)r
√

(p + 1 − r)!
(p + 1 + r)! ‖∂

r u‖.

Proof This follows from Lemma 6 applied to each knot interval. 	

Example 4 For r = 1 we have

‖u − S−1
p u‖ ≤ h

2
√

(p + 1)(p + 2)
‖∂u‖.

Weare now ready to derive an error estimate for the L2-projection onto an arbitrarily
smooth spline space Sk

p,�. We start by observing that if Z0 = S−1
p−k−1,� we have

Zk+1 = Sk
p,�, for the sequence of spaces in (6). Specifically,

Sk
p,� = P0 + K (Sk−1

p−1,�) = P0 + K ∗(Sk−1
p−1,�), k ≥ 0,

and from Lemma 7 (and Example 4) we deduce that

C0,r ≤
(
h

2

)r
√

(p − k − r)!
(p − k + r)! , C ≤ h

2
√

(p − k)(p − k + 1)
, (19)

for any r such thatPr−1 ⊆ Z0 = S−1
p−k−1,�; see Remark 1.We then define the constant

cp,k,r for p ≥ r − 1 as follows. If k ≤ p − 2, we let

cp,k,r :=
(
1

2

)r

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

(
1√

(p − k)(p − k + 1)

)r

, k ≥ r − 2,
(

1√
(p − k)(p − k + 1)

)k+1
√

(p + 1 − r)!
(p − 1 + r − 2k)! , k < r − 2,

and if k = p − 1, we let

cp,p−1,r :=
(
1

π

)r

.
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By combining [18, Theorem 1.1] with Theorem 1 (and Example 1) we obtain the
following error estimate.

Theorem 3 Let u ∈ Hr (a, b) be given. For any knot sequence �, let Skp be the L2-

projector onto Sk
p,� for −1 ≤ k ≤ p − 1. Then,

‖u − Skpu‖ ≤ cp,k,r h
r‖∂r u‖,

for all p ≥ r − 1.

Proof For k = p − 1, this result has been shown in [18, Theorem 1.1]; see inequality
(3). Now, let k ≤ p − 2. For r ≤ k + 2, the result follows from Example 1 (with
t = k + 1) and the bound for C in (19). On the other hand, for r > k + 2, we
use Theorem 1 (with t = k + 1), since Pr−1 is a subspace of Zk+1 = Sk

p,� for all
p ≥ r − 1. Then, applying Lemma 2 (with t = k + 1) and Lemma 3 (with t = k + 1)
we get

Ck+1,r ≤ Ck+1,k+1C0,r−k−1 ≤ Ck+1C0,r−k−1,

and the bounds in (19) complete the proof. 	

Remark 2 In the case p = 0 and r = 1, the error estimate in Lemma 6 reduces to

‖u − P0u‖ ≤ b − a

2
√
2

‖∂u‖,

for any u ∈ H1(a, b). The above constant is very close, but not equal, to the sharp
constant given by the optimal Poincaré inequality:

‖u − P0u‖ ≤ b − a

π
‖∂u‖.

How close (18) is to being sharp for degrees p ≥ 1 is an open question. However, we
would like to highlight that any improvement upon the error estimate in (18) could be
used in (19), and in the proof of Theorem 3, to immediately deduce sharper constants
for spline approximation.

Remark 3 We can bound cp,k,r for k ≤ p − 2 as follows. For r ≤ k + 2, we
have

cp,k,r ≤
(

1

2(p − k)

)r

,

while for r > k+2, using the Stirling formula (see, e.g., [20, proof of Corollary 3.12]),
we get

cp,k,r ≤
(

1

2(p − k)

)r ( e
2

) (r−k−1)2
p−k ≤

(
e

4(p − k)

)r

.
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As a consequence, the estimate in Theorem 3 can be simplified to

‖u − Skpu‖ ≤
(

e h

4(p − k)

)r

‖∂r u‖, (20)

for all p ≥ r − 1. This is in agreement with the estimate in [2, Theorem 2].

Remark 4 Numerical experiments reveal that smoother spline spaces exhibit a bet-
ter approximation behavior per degree of freedom; see, e.g., [11]. It was observed
in [2], however, that a simple error estimate like (20) does not capture this
behavior properly. The sharper estimate in Theorem 3 seems to provide a more
accurate description of this behavior. Now, let (a, b) = (0, 1). Assuming a uni-
form knot sequence � and h � 1, the spline dimension can be measured
by

n := dim(Sk
p,�) = p − k

h
+ k + 1 � p − k

h
. (21)

Hence, the estimate in Theorem 3 can be rephrased as

‖u − Skpu‖ � cp,k,r

(
p − k

n

)r

‖∂r u‖, (22)

for all p ≥ r−1.As illustrated in Example 5 (Fig. 1) andExample 6 (Fig. 2), numerical
evaluation indicates that

cp,k1,r (p − k1)
r < cp,k2,r (p − k2)

r , k1 > k2.

This is in agreement with the numerical evidence found in the literature that, for
fixed spline degree, smoother spline spaces have better approximation properties per
degree of freedom, even for low smoothness of the functions to be approximated. We
refer the reader to [5] for a more exhaustive theoretical comparison of the approxima-
tion power of spline spaces per degree of freedom in the extreme cases k = −1, 0,
p − 1.

Example 5 Let r = 3. Figure 1 depicts the numerical values of cp,k,3(p − k)3 for
different choices of p and k. We clearly see that the smallest values are attained for
maximal spline smoothness k = p − 1, namely cp,p−1,3 = (1/π)3 ≈ 0.0323.

Example 6 Consider now the maximal Sobolev smoothness r = p + 1. Figure 2
depicts the numerical values of cp,k,p+1(p − k)p+1 for different choices of p
and k. For any fixed p, one notices that the values are decreasing for increas-
ing k, and hence the smallest values are attained for maximal spline smoothness
k = p − 1.

By utilizing Lemma 6 once again we can further sharpen the error estimate in
Theorem 3. Let us now define Ch,p,k,r by

Ch,p,k,r := min

{
cp,k,r h

r ,

(
b − a

2

)r
√

(p + 1 − r)!
(p + 1 + r)!

}
, (23)
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Fig. 1 Numerical values of cp,k,r (p−k)r for r = 3 and different choices of p ≥ r−1 and−1 ≤ k ≤ p−1.
For any fixed p, one notices that the values are decreasing for increasing k. This means that the smoother
spline spaces perform better in the error estimate (22) for fixed spline dimension

Fig. 2 Numerical values of cp,k,r (p−k)r for r = p+1 and different choices of p ≥ 1 and−1 ≤ k ≤ p−1.
For any fixed p, one notices that the values are decreasing for increasing k. This means that the smoother
spline spaces perform better in the error estimate (22) for fixed spline dimension

for p ≥ max{r−1, k+1}. SincePp ⊆ Sk
p,�, the following result immediately follows

from Lemma 6 and Theorem 3.

Corollary 1 Let u ∈ Hr (a, b) be given. For any knot sequence �, let Skp be the L2-

projector onto Sk
p,� for −1 ≤ k ≤ p − 1. Then,

‖u − Skpu‖ ≤ Ch,p,k,r‖∂r u‖,
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for all p ≥ r − 1.

The above corollary shows that Ct,r ≤ Ch,p,k,r for Zt = Sk
p,�; see Remark 1. Note

that for k = −1, the constant Ch,p,k,r equals cp,k,r hr for any p, h and r . However,
for large k and p (compared to 1/h) the second argument in (23) can become smaller
than the first. The error estimate in Corollary 1 will in this case then coincide with the
error estimate for global polynomial approximation. We will look closer at this case
in the next section; see in particular Fig. 4.

In many applications one would be interested in finding a single spline function that
can provide a good approximation of all derivatives ofu up to a given numberq. Deriva-
tive estimates for the L2-projection could be obtained under some quasi-uniformity
assumptions on the knot sequence which ensure stability of the L2-projection in the
H1 semi-norm; see, e.g., [9, Theorem 2] for such conditions in the case k = 0. How-
ever, these assumptions can be avoided by using a Ritz projection. As a special case of
(13) we define, for any q = 0, . . . , k + 1, the Ritz projector Rq,k

p : Hq(a, b) → Sk
p,�

by
(∂q Rq,k

p u, ∂qv) = (∂qu, ∂qv), ∀v ∈ Sk
p,�,

(Rq,k
p u, g) = (u, g), ∀g ∈ Pq−1.

(24)

As a consequence of Theorem 2 we have the following error estimate.

Corollary 2 Let u ∈ Hr (a, b) be given. For any degree p, knot sequence � and
smoothness −1 ≤ k ≤ p − 1, let Rq,k

p be the projector onto Sk
p,� defined in (24) for

q = 0, . . . ,min{k + 1, r}. Then, for any � = 0, . . . , q, we have

‖∂�(u − Rq,k
p u)‖ ≤ Ch,p−q,k−q,q−�Ch,p−q,k−q,r−q‖∂r u‖,

for all p ≥ max{q, r − 1, 2q − � − 1}.
Remark 5 Using the definition ofCh,p,k,r together with the argument in Remark 3, we
can simplify the result in Corollary 2 as follows. For any q = 0, . . . ,min{k + 1, r}
and � = 0, . . . , q, we have

‖∂�(u − Rq,k
p u)‖ ≤ cp−q,k−q,q−�cp−q,k−q,r−qh

r−�‖∂r u‖ ≤
(

e h

4(p − k)

)r−�

‖∂r u‖,

for all p ≥ max{q, r − 1, 2q − � − 1}. Since this estimate is explicit in h and p, it is
very useful for h−p refinement.

Example 7 Similar to Example 3 we let q = 1. Then, for any u ∈ Hr (a, b) and k ≥ 0
we have the stability estimates

‖∂R1,k
p u‖ = ‖Sk−1

p−1∂u‖ ≤ ‖∂u‖,
‖R1,k

p u‖ ≤ ‖u‖ + Ch,p−1,k−1,1‖∂u‖ ≤ ‖u‖ + e h

4(p − k)
‖∂u‖,

and, as in Remark 5, the error estimates
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904 E. Sande et al.

‖u − R1,k
p u‖ ≤ Ch,p−1,k−1,1Ch,p−1,k−1,r−1‖∂r u‖ ≤

(
e h

4(p − k)

)r

‖∂r u‖,

‖∂(u − R1,k
p u)‖ ≤ Ch,p−1,k−1,r−1‖∂r u‖ ≤

(
e h

4(p − k)

)r−1

‖∂r u‖,

for all p ≥ r − 1. Thus, R1,k
p u provides a good approximation of both the function u

itself, and its first derivative.

Example 8 Let q = 2 and r = 3. For R2,k
p u to approximate u ∈ H3(a, b) in

the L2-norm, Corollary 2 requires the degree to be at least 2q − 1 = 3, and not
r − 1 = 2 as one might expect. In view of (24), this is consistent with the com-
mon assumption to solve the biharmonic equation with piecewise polynomials of at
least cubic degree for obtaining an optimal rate of convergence in L2; see, e.g., [23,
p. 118].

Remark 6 In the spirit of Remark 4, the above error estimates for the Ritz projection
can also be used to investigate the approximation behavior per degree of freedom. Let
(a, b) = (0, 1), and assume a uniform knot sequence � and h � 1. Then, keeping
the dimension formula (21) in mind, the first inequality in Remark 5 can be rephrased
as: for any q = �, . . . ,min{k + 1, r}, we have

‖∂�(u − Rq,k
p u)‖ � cp−q,k−q,q−�cp−q,k−q,r−q

(
p − k

n

)r−�

‖∂r u‖, (25)

for all p ≥ max{q, r − 1, 2q − �− 1}. As illustrated in Example 9 (Fig. 3), numerical
evaluation of the constant in (25) indicates that our error estimate performs better per
degree of freedom for smoother spline spaces, not only in the L2 norm but also in
more general H � (semi-)norms.

Example 9 Let q = 1 and consider the maximal Sobolev smoothness r = p + 1.
Figure 3 depicts the numerical values of cp−q,k−q,q−�cp−q,k−q,r−q(p − k)r−� for
� = 0, 1 and different choices of p and k. For any fixed p and �, one notices that
the values are decreasing for increasing k, and hence the smallest values are attained
for maximal spline smoothness k = p − 1. Since this trend is happening for both
� = 0, 1, it means that our error estimate performs better per degree of freedom for
higher smoothness, in both the L2 and H1 norms, for any fixed p. Note that the graphs
look like the ones in Fig. 2 using the L2-projection. This is not a coincidence because
one can check that

cp−1,k−1,1−�cp−1,k−1,p = cp−�,k−�,p+1−�,

for 0 ≤ k ≤ p − 1 and � = 0, 1.

Remark 7 The last observation in Example 9 can be generalized as follows. In case of
maximal Sobolev smoothness r = p + 1 and max{q − 1, 2q − � − 2} ≤ k ≤ p − 1,
we have

cp−q,k−q,q−�cp−q,k−q,p+1−q = cp−�,k−�,p+1−�.
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Fig. 3 Numerical values of cp−q,k−q,q−�cp−q,k−q,r−q (p − k)r−� for r = p + 1, q = 1, � = 0, 1,
and different choices of p ≥ 1 and q − 1 ≤ k ≤ p − 1. For any fixed p, one notices that the values are
decreasing for increasing k. This means that the smoother spline spaces perform better in the error estimate
(25) for fixed spline dimension
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906 E. Sande et al.

4 Spline spaces of maximal smoothness

As mentioned in the introduction, the error estimate in (3) is perfectly suited to study
the case of grid refinement with maximally smooth splines. However, it provides
almost no information in the case of degree elevation. The best it can tell us is that
the error will not get worse as p increases. This is in contrast to the standard error
estimates for C0 finite element methods (or the case k = 0 of (2)), which show clear
convergence as p → ∞. In this section we therefore study error estimates for the
space of maximally smooth splines in more detail, and in particular, we investigate
the p-dependence. The main goal is to obtain various estimates for the full h−p−k
refinement scheme, i.e., as p → ∞ and/or as h → 0 under the constraint k = p − 1.

Let us define the constant Ch,p,r by Ch,p,r := Ch,p,p−1,r with Ch,p,k,r in (23), or
more explicitly by

Ch,p,r := min

{(
h

π

)r

,

(
b − a

2

)r
√

(p + 1 − r)!
(p + 1 + r)!

}
, (26)

for p ≥ r − 1. As a generalization of [25, Corollary 6.3] we obtain the following
result.

Corollary 3 Let u ∈ Hr (a, b) be given. For any knot sequence �, let Sp be the L2-
projector onto Sp,�. Then,

‖u − Spu‖ ≤ Ch,p,r‖∂r u‖, (27)

‖u − Spu‖ ≤ Ch,p,1Ch,p−1,1 · · ·Ch,p−r+1,1‖∂r u‖, (28)

for all p ≥ r − 1.

Proof The estimate (27) is the case k = p − 1 of Corollary 1. For (28), we first
observe that ifZ0 = S0,� we haveZp = Sp,� for the sequence of spaces in (6). From
Lemma 3 (with t = p) we then obtain (28) for u ∈ Hr (a, b). 	


The first argument in the definition of Ch,p,r only depends on h and r , while the
second argument only depends on p and r . Hence, it is clear that the second argument
is smaller than the first for large enough p with respect to h. This is illustrated in the
next examples.

Example 10 Let r = 2 and b − a = 2. Then, assuming

p >
π

h
,

we have

Ch,p,2 = 1√
p(p + 1)(p + 2)(p + 3)

<
1

p2
<

(
h

π

)2

.

In this case the error estimate (27) is better than (3).
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Fig. 4 The two arguments of Ch,p,r in (26) are equal for h = h∗
p,r , depicted in normalized form (divided

by the interval length b − a) for different choices of r ≥ 1 and p ≥ r − 1. Lower values of h will activate
the first argument of Ch,p,r , while higher values of h the second argument of Ch,p,r

Example 11 Figure 4 depicts the values h∗
p,r/(b − a) ∈ [0, 1] satisfying

(
h∗
p,r

π

)r

=
(
b − a

2

)r
√

(p + 1 − r)!
(p + 1 + r)! ,

for different choices of r and p. It follows that the two arguments of Ch,p,r in (26)
are equal for h = h∗

p,r . For smaller values of h we have Ch,p,r = (h/π)r , and then
(27) coincides with (3). Otherwise, for larger values of h, (27) coincides with the
estimate for global polynomial approximation in Lemma 6. Assuming a uniform knot
sequence, we observe that the latter only holds for a rather small number of knot
intervals N = (b − a)/h with respect to p. For instance, if p = 10 and r = 11, then
h∗
p,r/(b − a) ≈ 0.17 and so N must be less than or equal to 5 for the estimate in (27)

to coincide with the estimate for global polynomial approximation. Similarly, one can
check that if p = 10 and r = 1, then N must be less than or equal to 7.

It is easy to see that for fixed p and small enough h, both estimates in Corollary 3
coincide. Moreover, for fixed h and large enough p, (27) is a sharper estimate than
(28). On the other hand, as we illustrate in the next example, there are certain choices
of h and p such that (28) is sharper than (27).

Example 12 Let r = 2 and b − a = 2. Then, assuming

π√
(p + 1)(p + 2)

< h <
π√

p(p + 3)
, (29)
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we have

Ch,p,1Ch,p−1,1 = h

π

1√
(p + 1)(p + 2)

< min

{(
h

π

)2

,
1√

p(p + 1)(p + 2)(p + 3)

}
= Ch,p,2.

As a consequence, when h satisfies (29), the error estimate (28) is sharper than (27).

The estimates in Corollary 3 hint towards a complex interplay between h and p in
the sense that for a strongly refined grid (very small h), increasing the degree p might
give little or no benefit, and vice versa.

Remark 8 Using the Stirling formula (in the same way as in Remark 3), we have

√
(p + 1 − r)!
(p + 1 + r)! ≤

(
e

2(p + 1)

)r

.

Thus,

Ch,p,r ≤ min

{(
h

π

)r

,

(
e(b − a)

4(p + 1)

)r}
=

(
min

{
h

π
,
e(b − a)

4(p + 1)

})r

,

and by taking the harmonic mean of the two quantities in the above bound, we get

‖u − Spu‖ ≤
(

2eh(b − a)

eπ(b − a) + 4h(p + 1)

)r

‖∂r u‖, (30)

for all p ≥ r −1. Even though this estimate is less sharp than the result in Corollary 3,
it has the benefit of always decreasing as the grid is refined and/or as the degree is
increased.

Remark 9 For small values of r (compared to p) we can improve upon the estimate
in Remark 8 as follows. Since Ch,p−i+1,1 ≤ Ch,p−r+1,1 for i = 1, . . . , r , Corollary 3
implies that

‖u − Spu‖ ≤ (Ch,p−r+1,1)
r‖∂r u‖,

for all p ≥ r − 1. By taking the harmonic mean of the two quantities in the bound

Ch,p−r+1,1 ≤ min

{
h

π
,

b − a

2(p − r + 2)

}
,

we obtain

‖u − Spu‖ ≤
(

2h(b − a)

π(b − a) + 2h(p − r + 2)

)r

‖∂r u‖,

for all p ≥ r − 1. This estimate is sharper than (30) if p > e
e−2 (r + 2

e − 2). Note that
this is always the case if p ≥ 4(r − 1).
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We now look at some error estimates for the Ritz projection. Using inequality (15)
and Lemma 3 we obtain the following result.

Corollary 4 Let u ∈ Hr (a, b) be given. For any q = 0, . . . , r and knot sequence �,
let Rq

p be the projector onto Sp,� = Zp defined in (13). Then, for any � = 0, . . . , q
we have

‖∂�(u − Rq
pu)‖ ≤ Ch,p−q,q−�Ch,p−q,r−q‖∂r u‖,

‖∂�(u − Rq
pu)‖ ≤ (

Ch,p−q,1 · · ·Ch,p−2q+�+1,1
) (
Ch,p−q,1 · · ·Ch,p−r+1,1

) ‖∂r u‖,

for all p ≥ max{q, r − 1, 2q − � − 1}.
Remark 10 As a generalization of [18, Theorem 3.1], it follows from Corollary 4 that
for any q = 0, . . . , r and � = 0, . . . , q,

‖∂�(u − Rq
pu)‖ ≤

(
h

π

)r−�

‖∂r u‖, (31)

for all p ≥ max{q, r − 1, 2q − � − 1}. Not only is this a very simple and explicit
estimate, but it is also very useful for h refinement. Note that the error estimate for
periodic splines in [18, Theorem 4.1] is of the same form as (31) for the corresponding
Ritz projection in the case of periodic boundary conditions.

Remark 11 Following a similar argument as in Remark 8, we get for any q = 0, . . . , r
and � = 0, . . . , q,

‖∂�(u − Rq
pu)‖ ≤

(
2eh(b − a)

eπ(b − a) + 4h(p − q + 1)

)r−�

‖∂r u‖,

for all p ≥ max{q, r − 1, 2q − � − 1}. In addition, following a similar argument as in
Remark 9, we get for any q = 0, . . . , r and � = 0, . . . , q,

‖∂�(u − Rq
pu)‖ ≤

(
2h(b − a)

π(b − a) + 2h(p + 2 − max{2q − �, r})
)r−�

‖∂r u‖,

for all p ≥ max{q, r − 1, 2q − � − 1}. The latter estimate is sharper than the former
one if p > e

e−2 (max{2q − �, r} + 2(1−q)
e − 2). Even though these two estimates are

less sharp than the result in Corollary 4, they have the benefit of always decreasing as
the grid is refined and/or as the degree is increased. They are therefore useful estimates
for h−p−k refinement.

5 Reduced spline spaces

The goal of this section is to prove error estimates for the Ritz projection onto certain
reduced spline spaces of maximal smoothness studied in [12,14,15,18,22,25]. To do
that we first prove a general result for any integral operator K using ideas from [12,14].
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5.1 General error estimates

Let K be any integral operator as in (5), and let X0 and Y0 be any finite dimensional
subspaces of L2(a, b). We then define the subspaces Xt and Yt , in an analogous way
to (6), by

Xt := K (Yt−1), Yt := K ∗(Xt−1), (32)

for t ≥ 1. Finally, for any t ≥ 0, let Xt be the L2-projector onto Xt and Yt be the
L2-projector onto Yt .

Lemma 8 For any t ≥ 1 we have

‖K − KYt‖ ≤ ‖K ∗ − K ∗Xt−1‖ ≤
{

‖K − X0K‖, t odd,

‖K ∗ − Y0K ∗‖, t even.

Proof First, note that

‖K − KYt‖ = ‖K ∗ − Yt K
∗‖ = sup

‖ f ‖≤1
‖K ∗ f − Yt K

∗ f ‖.

Next, observe that K ∗Xt−1 maps into Yt and since Yt K ∗ f is the best approximation
of K ∗ f in Yt we must have

sup
‖ f ‖≤1

‖K ∗ f − Yt K
∗ f ‖ ≤ sup

‖ f ‖≤1
‖K ∗ f − K ∗Xt−1 f ‖ = ‖K ∗ − K ∗Xt−1‖.

This shows that ‖K − KYt‖ ≤ ‖K ∗ − K ∗Xt−1‖. Similarly, by swapping the roles of
K and K ∗ we have ‖K ∗ − K ∗Xt‖ ≤ ‖K − KYt−1‖. The result then follows from
induction on t . 	


5.2 Error estimates for reduced spline spaces

In [12,14,18,25] error estimates for certain reduced spline spaces were shown. Here
we prove a generalization of these results for the Ritz projections. Specifically, in [14]
and [18] the spaces Sp,�,0 and Sp,�,1, defined by

Sp,�,0 := {
s ∈ Sp,� : ∂αs(a) = ∂αs(b) = 0, 0 ≤ α ≤ p, α even

}
,

Sp,�,1 := {
s ∈ Sp,� : ∂αs(a) = ∂αs(b) = 0, 0 ≤ α ≤ p, α odd

}
, (33)

were studied. We further define the related spaces S p,�,0 and S p,�,1 by

S p,�,0 := {
s ∈ Sp,� : ∂αs(a) = ∂αs(b) = 0, 0 ≤ α < p, α even

}
,

S p,�,1 := {
s ∈ Sp,� : ∂αs(a) = ∂αs(b) = 0, 0 ≤ α < p, α odd

}
. (34)

For uniform knot sequences, the spaces S p,�,1 are exactly the reduced spline spaces
investigated in [25,Definition 5.1].Observe thatSp,�,0 ⊆ S p,�,0 where equality holds
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for p odd and Sp,�,1 ⊆ S p,�,1 where equality holds for p even. Observe further that
in the case p = 0 all the spaces in (33) and (34) equal the standard spline space S0,�
except for S0,�,0.

For a specific (degree-dependent) knot sequence � it was shown in [14] that the
spline spaces in (33) are optimal for certain n-width problems. Later it was shown
in [18] that if n is the dimension of these optimal spaces, then they converge to the
space spanned by the n first eigenfunctions of the Laplacian (with either Dirichlet or
Neumann boundary conditions) as their degree p increases. Convergence in the case
of periodic boundary conditions was also studied in [18].

Staying consistent with the notation in [12,14,17] we define the integral operator
K1 by

K1 := (I − P0)K ,

where P0 denotes the L2-projector onto P0, and K is the integral operator in (9). One
can verify that if u = K1 f then ∂u = f and u ⊥ 1.Moreover, since K ∗

1 = K ∗(I−P0)
it follows that if u = K ∗

1 f then ∂u = (P0 − I ) f and u(a) = u(b) = 0. Using these
properties it was shown in [14] that

Sp,�,0 = K ∗
1 (Sp−1,�,1),

Sp,�,1 = P0 ⊕ K1(Sp−1,�,0), (35)

for all p ≥ 1, since the derivative of a spline is a spline of one degree lower on the
same knot sequence. For the spline spaces in (34) we deduce by the same argument
that

S p,�,0 = K ∗
1 (S p−1,�,1),

S p,�,1 = P0 ⊕ K1(S p−1,�,0), (36)

for all p ≥ 1.
Let Sp,i : L2(a, b) → Sp,�,i , i = 0, 1, denote the L2-projector. Analogously to

(13) we define, for p ≥ 1, the Ritz projector Rp,0 : H1
0 (a, b) → Sp,�,0 by

(∂Rp,0u, ∂v) = (∂u, ∂v), ∀v ∈ Sp,�,0, (37)

and the Ritz projector Rp,1 : H1(a, b) → Sp,�,1 by

(∂Rp,1u, ∂v) = (∂u, ∂v), ∀v ∈ Sp,�,1,

(Rp,1u, 1) = (u, 1). (38)

Using the above definitions, together with (35), we find that Rp,0 = K ∗
1 Sp−1,1 and

Rp,1 = P0 + K1Sp−1,0.
Lastly, we define the quantity ĥ by

ĥ := max{2(ξ1 − ξ0), (ξ2 − ξ1), (ξ3 − ξ2), . . . , (ξN − ξN−1), 2(ξN+1 − ξN )},
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912 E. Sande et al.

where we observe that the difference between ĥ and the h in (1) is that the length of
the first and the last knot interval is scaled by a factor of 2. To prove the error estimates
for our Ritz projections onto the sequences of spaces in (33) we make use of the next
lemma.

Lemma 9 For any u ∈ H1(a, b) we have

‖u − S0,1u‖ ≤ h

π
‖∂u‖,

and for any v ∈ H1
0 (a, b) we have

‖v − S0,0v‖ ≤ ĥ

π
‖∂v‖.

Proof These results follow from the Poincaré inequality. We refer the reader to [18,
Theorem 1.1 and Lemma 8.1] for the details. 	


Using the above lemma together with Lemma 8 we obtain the desired error esti-
mates.

Theorem 4 Let p ≥ 0 be given. Then, for any u ∈ H1(a, b) we have

‖u − Rp,1u‖ ≤ ĥ

π
‖∂u‖, p odd,

‖u − Rp,1u‖ ≤ h

π
‖∂u‖, p even,

and for any v ∈ H1
0 (a, b) we have

‖v − Rp,0v‖ ≤ h

π
‖∂v‖, p odd,

‖v − Rp,0v‖ ≤ ĥ

π
‖∂v‖, p even.

Proof Define the spaces Sp by

Sp := {
s ∈ Sp,�,1 : s ⊥ 1

}
.

Using (33) we find that if K1 plays the role of the generic integral operator K in
Sect. 5.1, then the spaces Sp are examples of the Xt in (32) and the spaces Sp,�,0 are
examples of the Yt in (32) for p = t .

Moreover, using the definition of K1 we observe that H1(a, b) = P0 ⊕
K1(L2(a, b)). Thus, any function u ∈ H1(a, b) can be decomposed as u = c + K1 f
for c ∈ P0 and f ∈ L2(a, b). Using Lemma 9 we then find that

‖K f − S0,1K f ‖ = ‖u − S0,1u‖ ≤ h

π
‖∂u‖ = h

π
‖ f ‖,
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since P0 ⊂ Sp,�,1, and so ‖K − S0,1K‖ ≤ h/π . Furthermore, it was shown in [14]
that H1

0 (a, b) = K ∗
1 (L2(a, b)) and so any function v ∈ H1

0 (a, b) can be written as
v = K ∗

1 g for g ∈ L2(a, b). Again, using Lemma 9, we find that

‖K ∗g − S0,0K
∗g‖ = ‖v − S0,0v‖ ≤ ĥ

π
‖∂v‖ = ĥ

π
‖g‖,

and ‖K ∗ − S0,0K ∗‖ ≤ ĥ/π . The result then follows from Lemma 8 since Rp,0 =
K ∗
1 Sp−1,1 and Rp,1 = P0 + K1Sp−1,0. 	

Let S p,i : L2(a, b) → S p,�,i , i = 0, 1, denote the L2-projector. We then define

the Ritz projector Rp,0 : H1(a, b) → S p,�,0 in a completely analogous way to (37)
and Rp,1 : H1(a, b) → S p,�,1 in a completely analogous way to (38). As before,
using (36) we find that Rp,0 = K ∗

1 S p−1,1 and Rp,1 = P0 + K1S p−1,0.

Theorem 5 Let p ≥ 0 be given. Then, for any u ∈ H1(a, b) we have

‖u − Rp,1u‖ ≤ h

π
‖∂u‖,

and for any v ∈ H1
0 (a, b) we have

‖v − Rp,0v‖ ≤ h

π
‖∂v‖,

Proof This result follows from a similar argument as in the proof of Theorem 4.
The main change being that in the case p = 0 we have S0,�,0 = S0,�, and so
‖K ∗ − S0,0K ∗‖ ≤ h/π . 	

Remark 12 Let hmin be the minimum knot distance. The reduced spline spaces defined
in (33) and (34) all satisfy the boundary conditions stated in [18, Theorem 9.1]. Hence,
any element s in such spaces satisfies the following inverse inequality:

‖∂s‖ ≤ 2
√
3

hmin
‖s‖.

Remark 13 As the error estimates in Theorems 4 and 5 are complemented with the
inverse inequality in Remark 12, the reduced spline spaces defined in (33) and (34)
can be used to design fast iterative (multigrid) solvers for linear systems arising from
spline discretization methods [15,22].

6 Tensor-product spline spaces

In this section we describe how to extend our error estimates to the case of
tensor-product spline spaces. We start by introducing some notation. Consider the
d-dimensional domain � := (a1, b1)× (a2, b2)×· · ·× (ad , bd), and let ‖ · ‖� denote
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914 E. Sande et al.

the L2(�)-norm. Moreover, we deal with the standard Sobolev spaces on � defined
by

Hr (�) :=
{
u ∈ L2(�) : ∂

α1
1 · · · ∂αd

d u ∈ L2(�), 1 ≤ α1 + · · · + αd ≤ r
}

.

For i = 1, . . . , d, let Zti be a finite dimensional subspace of L2(ai , bi ) as in (6)
with K as in (9), and define the tensor-product spaceZt := Zt1 ⊗Zt2 ⊗· · ·⊗Ztd . We
only investigate projectors ontoZt of the form	 := 	1⊗	2⊗· · ·⊗	d . To simplify
notation, we use the following convention: when applying the univariate operator 	i

to a d-variate function u, wemean that	i acts on the i-th variable of u while the others
are considered as parameters. In this perspective, we have 	 = 	1 ◦ 	2 ◦ · · · ◦ 	d .

We first study error estimates for the L2(�)-projection onto Zt, denoted by Zt :=
Zt1 ⊗ Zt2 ⊗ · · · ⊗ Ztd . The following result can be concluded from the univariate
error estimates using a standard argument (see, e.g., [2,5,18,20,25]), but for the sake
of completeness we include the argument here.

Theorem 6 For any u ∈ L2(�) we have

‖u − Ztu‖� ≤
d∑

i=1

‖u − Zti u‖�,

and consequently, if u ∈ Hr (�) and Pr−1 ⊆ Zti for all i = 1, . . . , d, we have

‖u − Ztu‖� ≤
d∑

i=1

Cti ,r‖∂ri u‖�. (39)

Proof We only consider the case d = 2. The generalization to arbitrary d is straight-
forward. From the triangle inequality we obtain

‖u − Zt1 ⊗ Zt2u‖� ≤ ‖u − Zt1u‖� + ‖Zt1u − Zt1 ⊗ Zt2u‖�

≤ ‖u − Zt1u‖� + ‖Zt1‖ ‖u − Zt2u‖�

≤ ‖u − Zt1u‖� + ‖u − Zt2u‖�,

since the L2(�)-operator norm of Zt1 is equal to 1. Applying Theorem 1 we then
obtain (39). 	

Remark 14 For simplicity let � = (0, 1)d . Note that (39) actually holds for all func-
tions u in the larger Sobolev space

d⋂
i=1

L2(0, 1)i−1 ⊗ Hr (0, 1) ⊗ L2(0, 1)d−i ⊇ Hr (�).

We make use of a similar Sobolev space in Sect. 7.2.
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Explicit error estimates for spline approximation. . . 915

For tensor-product spline spaces of arbitrary smoothness, let Skp := Sk1p1 ⊗· · ·⊗ Skdpd
denote the L2(�)-projector onto Sk

p,� := Sk1
p1,�1

⊗ · · · ⊗ Skd
pd ,�d

. For maximally

smooth spline spaces, let Sp := Sp1 ⊗ · · · ⊗ Spd denote the L2(�)-projector onto
Sp,� := Sp1,�1 ⊗ · · · ⊗ Spd ,�d . Error estimates for these spaces can be immediately
obtained by replacing Cti ,r in Theorem 6 with the constants derived in Corollaries 1
and 3. Let hi denote the maximal knot distance in �i for i = 1, . . . , d.

Corollary 5 For any u ∈ Hr (�) we have

‖u − Skpu‖� ≤
d∑

i=1

Chi ,pi ,ki ,r‖∂ri u‖�,

and

‖u − Spu‖� ≤
d∑

i=1

Chi ,pi ,r‖∂ri u‖�,

‖u − Spu‖� ≤
d∑

i=1

Chi ,pi ,1Chi ,pi−1,1 · · ·Chi ,pi−r+1,1‖∂ri u‖�,

for all pi ≥ r − 1.

Example 13 Let h := max{h1, h2, . . . , hd}. Then, for any u ∈ Hr (�) we have

‖u − Spu‖� ≤
d∑

i=1

(
hi
π

)r

‖∂ri u‖� ≤
(
h

π

)r d∑
i=1

‖∂ri u‖�,

for all pi ≥ r − 1.

Let us now focus on error estimates for tensor products of the Ritz projection in
(13). For simplicity of notation, we only consider the case q = 1 and d = 2. Define
the tensor-product Ritz projector Rt : H1(a1, b1) ⊗ H1(a2, b2) → Zt1 ⊗ Zt2 by

Rt := R1
t1 ⊗ R1

t2 .

Note that H1(a1, b1) ⊗ H1(a2, b2) consists of functions u ∈ L2(�) such that ∂1u ∈
L2(�), ∂2u ∈ L2(�) and ∂1∂2u ∈ L2(�). We thus have H2(�) ⊂ H1(a1, b1) ⊗
H1(a2, b2) ⊂ H1(�).

Lemma 10 Let u ∈ H1(a1, b1) ⊗ H1(a2, b2) be given. Then, for all t1, t2 ≥ 1 we
have

‖u − Rtu‖� ≤ ‖u − R1
t1u‖� + ‖u − R1

t2u‖�

+ min
{
Ct1−1,1‖∂1u − R1

t2∂1u‖�, Ct2−1,1‖∂2u − R1
t1∂2u‖�

}
,
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916 E. Sande et al.

‖∂1(u − Rtu)‖� ≤ ‖∂1(u − R1
t1u)‖� + ‖∂1u − R1

t2∂1u‖�,

‖∂1∂2(u − Rtu)‖� ≤ ‖∂1∂2u − Zt1−1∂1∂2u‖� + ‖∂1∂2u − Zt2−1∂1∂2u‖�.

Proof From (17) and by adding and subtracting R1
t1u we obtain

‖u − Rtu‖� ≤ ‖u − R1
t1u‖� + ‖R1

t1(u − R1
t2u)‖�

≤ ‖u − R1
t1u‖� + ‖u − R1

t2u‖� + Ct1−1,1‖∂1(u − R1
t2u)‖�,

and similarly for R1
t2u. The first result now follows since ∂i commutes with R1

t j for
i �= j . Analogously, using (16) we obtain

‖∂1(u − Rtu)‖� ≤ ‖∂1(u − R1
t1u)‖� + ‖∂1R1

t1(u − R1
t2u)‖�

≤ ‖∂1(u − R1
t1u)‖� + ‖∂1(u − R1

t2u)‖�,

and the second result follows. For the third result we use the commuting relation
∂i R1

ti = Zti−1∂i , i = 1, 2, to conclude that ∂1∂2Rt = Zt−1∂1∂2, and we apply
Theorem 6. 	


By using Theorem 2we can now achieve error estimates for the tensor-product Ritz
projection. If the function u is only assumed to be in H1(a1, b1) ⊗ H1(a2, b2) then
one obtains the “unbalanced” estimate:

‖u − Rtu‖� ≤ Ct1−1,1‖∂1u‖� + Ct2−1,1‖∂2u‖� + Ct1−1,1Ct2−1,1‖∂1∂2u‖�,

for all t1, t2 ≥ 1. Indeed, the partial derivatives involved in this estimate are not
of the same order. This can be resolved by requiring higher Sobolev smoothness. If
u ∈ H2(�), then for all t1, t2 ≥ 1 we have

‖u − Rtu‖� ≤ (Ct1−1,1)
2‖∂21u‖� + (Ct2−1,1)

2‖∂22u‖� + Ct1−1,1Ct2−1,1‖∂1∂2u‖�.

This is a special case of the following more general statement.

Theorem 7 Let u ∈ Hr (�) for r ≥ 2 be given. IfPr−2 ⊆ Zt1−1∩Zt2−1 for t1, t2 ≥ 1,
then

‖u − Rtu‖� ≤ Ct1−1,1Ct1−1,r−1‖∂r1u‖� + Ct2−1,1Ct2−1,r−1‖∂r2u‖�

+ Ct1−1,1Ct2−1,1 min
{
Ct2−1,r−2‖∂1∂r−1

2 u‖�, Ct1−1,r−2‖∂r−1
1 ∂2u‖�

}
,

and

‖∂1(u − Rtu)‖� ≤ Ct1−1,r−1‖∂r1u‖� + Ct2−1,1Ct2−1,r−2‖∂1∂r−1
2 u‖�,

‖∂2(u − Rtu)‖� ≤ Ct1−1,1Ct1−1,r−2‖∂r−1
1 ∂2u‖� + Ct2−1,r−1‖∂r2u‖�,

‖∂1∂2(u − Rtu)‖� ≤ Ct1−1,r−2‖∂r−1
1 ∂2u‖� + Ct2−1,r−2‖∂1∂r−1

2 u‖�.
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Proof Using Lemma 10 and Theorem 2 we find that

‖u − Rtu‖�

≤ ‖u − R1
t1u‖� + ‖u − R1

t2u‖�

+ min
{
Ct1−1,1‖∂1u − R1

t2∂1u‖�, Ct2−1,1‖∂2u − R1
t1∂2u‖�

}

≤ Ct1−1,1Ct1−1,r−1‖∂r1u‖� + Ct2−1,1Ct2−1,r−1‖∂r2u‖�

+ min
{
Ct1−1,1Ct2−1,1Ct2−1,r−2‖∂1∂r−1

2 u‖�, Ct2−1,1Ct1−1,1Ct1−1,r−2‖∂r−1
1 ∂2u‖�

}
,

which proves the first result. The other results follow by a similar argument. 	

In the spirit of Corollary 5, using results from Sects. 3 and 4, the above theorem

can be used to obtain error estimates for tensor-product Ritz projections onto spline
spaces of any smoothness. We end this section with two examples.

Example 14 Let Rk
p := R1,k1

p1 ⊗ R1,k2
p2 be the tensor-product Ritz projector onto Sk

p,�,
and let h := max{h1, h2} and p − k := min{p1 − k1, p2 − k2}. Then, for any
u ∈ Hr (�), r ≥ 2, we have

‖u − Rk
pu‖� ≤

(
e h

4(p − k)

)r (‖∂r1u‖� + ‖∂r2u‖� + ‖∂r12u‖�

)
,

where we slightly abuse notation by letting

‖∂r12u‖� := min
{
‖∂1∂r−1

2 u‖�, ‖∂r−1
1 ∂2u‖�

}
,

for all p1, p2 ≥ r − 1.

Example 15 Let Rp := R1
p1 ⊗ R1

p2 be the tensor-product Ritz projector onto Sp,�, and
let h := max{h1, h2}. Then, for any u ∈ H2(�) and for 0 ≤ �1, �2 ≤ 1 we have

‖∂�1
1 ∂

�2
2 (u − Rpu)‖� ≤

(
h

π

)2−�1−�2 (
‖∂21u‖� + ‖∂22u‖� + ‖∂1∂2u‖�

)
,

for all p1, p2 ≥ 1. In general, for any u ∈ Hr (�), r ≥ 2, and for 0 ≤ �1, �2 ≤ 1 we
have

‖∂�1
1 ∂

�2
2 (u − Rpu)‖�

≤
(
h

π

)r−�1−�2 (
‖∂r1u‖� + ‖∂r2u‖� + ‖∂1∂r−1

2 u‖� + ‖∂r−1
1 ∂2u‖�

)
,

for all p1, p2 ≥ r − 1.

Similar results hold for the tensor products of the reduced spline spaces in Sect. 5.2.
The results of this section can also be generalized to higher order Ritz projections in
a straightforward way.
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7 Mapped geometry

Motivated by IGA, in this section we consider error estimates for spline spaces defined
on a mapped (single-patch) domain. Let � = (0, 1)d be the reference domain, �̃ the
physical domain, and G : � → �̃ ⊂ R

d the geometric mapping defining �̃. We
assume that the mapping G is a bi-Lipschitz homeomorphism. As a general rule, we
indicate quantities and operators that refer to the (mapped) physical domain by means
of the symbol .̃ In particular, the derivative operator with respect to physical variables
is denoted by ∂̃ .

Define the space Z̃t as the push-forward of the tensor-product spaceZt with respect
to the mapping G. Specifically, let

Z̃t :=
{
s ◦ G−1 : s ∈ Zt

}
. (40)

Furthermore, for any projector 	 : L2(�) → Zt we let 	̃ : L2(�̃) → Z̃t denote the
projector defined by

	̃ũ := (	(ũ ◦ G)) ◦ G−1, ∀ũ ∈ L2(�̃). (41)

Using a standard substitution argument we obtain the following result.

Lemma 11 For ũ ∈ L2(�̃) and G ∈ (W 1,∞(�))d let u := ũ ◦ G ∈ L2(�). Then, for
any projector 	̃ as in (41) we have

‖ũ − 	̃ũ‖�̃ ≤ ‖ det∇G‖L∞(�)‖u − 	u‖�.

7.1 Smooth geometry

If we, similar to [15,24], make the assumption that the geometry map G is suffi-
ciently globally smooth, then we can easily extend the results from Sect. 6 using
techniques from [1,3]. Specifically, in this subsection we assume G ∈ (Wr ,∞(�))d ,
which implies that u := ũ ◦ G ∈ Hr (�) whenever ũ ∈ Hr (�̃). We further assume
G−1 ∈ (W 1,∞(�̃))d .

We define the mapped L2-projector Z̃t : L2(�̃) → Z̃t by taking 	 = Zt in (41).
Then, combining Lemma 11 and Theorem 6 gives rise to the following estimate.

Lemma 12 Let G ∈ (Wr ,∞(�))d . Then, for any ũ ∈ Hr (�̃) we have

‖ũ − Z̃tũ‖�̃ ≤ ‖ det∇G‖L∞(�)

d∑
i=1

Cti ,r‖∂ri (ũ ◦ G)‖�,

for all ti ≥ r − 1.

Using a slightly simplified version of the multivariate Faà di Bruno formula in [7]
and substituting back to the physical domain, we obtain an error estimate in a more
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classical form. To this end, we set G := (G1, . . . ,Gd) and define

CG := ‖ det∇G‖L∞(�)‖ det ∇̃G−1‖L∞(�̃),

and

CG,i,r ,j :=
∥∥∥∥

∑
I (r ,j)

r !
r∏

m=1

(
∂mi G1

)km,1 · · · (∂mi Gd
)km,d

(
km,1! · · · km,d !

)(
m!)km,1+···+km,d

∥∥∥∥
L∞(�)

, (42)

where j := ( j1, . . . , jd) and

I (r , j) :=
{
(k1,1, . . . , k1,d , k2,1, . . . , k2,d , . . . , kr ,1, . . . , kr ,d) ∈ Z

r×d
≥0 :

r∑
m=1

km,1 = j1, . . . ,

r∑
m=1

km,d = jd ,
r∑

m=1

m(km,1 + · · · + km,d) = r

}
.

Theorem 8 LetG ∈ (Wr ,∞(�))d andG−1 ∈ (W 1,∞(�̃))d . Then, for any ũ ∈ Hr (�̃)

we have

‖ũ − Z̃tũ‖�̃ ≤ CG

∑
1≤|j|≤r

(
d∑

i=1

Cti ,rCG,i,r ,j

)
‖∂̃ j1

1 · · · ∂̃ jd
d ũ‖�̃,

for all ti ≥ r − 1.

Proof By means of the multivariate Faà di Bruno formula in [7] we can express the
high-order partial derivatives in Lemma 12 as

∂ri (ũ ◦ G) =
∑

1≤|j|≤r

(∂̃
j1
1 · · · ∂̃ jd

d ũ) ◦ G
∑
I (r ,j)

r !
r∏

m=1

(
∂mi G1

)km,1 · · · (∂mi Gd
)km,d

(
km,1! · · · km,d !

)(
m!)km,1+···+km,d

.

This gives

‖ũ − Z̃tũ‖�̃ ≤ ‖ det∇G‖L∞(�)

d∑
i=1

Cti ,r

∑
1≤|j|≤r

CG,i,r ,j‖(∂̃ j1
1 · · · ∂̃ jd

d ũ) ◦ G‖�,

and a standard substitution argument completes the proof. 	

In the spirit of Corollary 5, using results from Sects. 3 and 4, the above theorem can

be used to obtain error estimates for mapped L2-projections onto spline spaces of any
smoothness. Indeed, we just need to replace Cti ,r with the corresponding constants,
e.g., the ones derived in Corollaries 1 and 3.
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Example 16 Let d = 1. Given the geometry map G, we have

CG,1,r , j =
∥∥∥∥

∑
I (r , j)

r !
r∏

m=1

(
∂mG

)km
(
km !)(m!)km

∥∥∥∥
L∞(�)

,

where

I (r , j) :=
{
(k1, . . . , kr ) ∈ Z

r≥0 :
r∑

m=1

km = j,
r∑

m=1

mkm = r

}
.

Observe that CG,1,r , j can be compactly expressed in terms of (exponential) partial
Bell polynomials Br , j (x1, . . . , xr− j+1) by

CG,1,r , j = ‖Br , j (∂G, ∂2G, . . . , ∂r− j+1G)‖L∞(�);

see, e.g., [6, Section 3.3]. These Bell polynomials can be computed through the fol-
lowing recurrence relation:

Br , j (x1, . . . , xr− j+1) = 1

j

r−1∑
i= j−1

(
r

i

)
xr−i Bi, j−1(x1, . . . , xi− j+2),

where B0,0 = 1 and Br ,0 = 0 for r ≥ 1. In particular, we have

B1,1(x1) = x1,

B2,1(x1, x2) = x2, B2,2(x1) = (x1)
2,

B3,1(x1, x2, x3) = x3, B3,2(x1, x2) = 3x1x2, B3,3(x1) = (x1)
3.

Example 17 Let d = 2. For r = 1 and i = 1, 2 we have

CG,i,1,(1,0) = ‖∂i G1‖L∞(�), CG,i,1,(0,1) = ‖∂i G2‖L∞(�).

For r = 2 and i = 1, 2 we have

CG,i,2,(1,0) = ‖∂2i G1‖L∞(�), CG,i,2,(0,1) = ‖∂2i G2‖L∞(�),

CG,i,2,(2,0) = ‖(∂i G1)
2‖L∞(�), CG,i,2,(0,2) = ‖(∂i G2)

2‖L∞(�),

CG,i,2,(1,1) = ‖2(∂i G1)(∂i G2)‖L∞(�).

Similar results can be obtained for tensor-product Ritz projections in the presence
of a mapped geometry. As before, it is a matter of applying the Ritz estimates from
Sect. 6 in combination with the multivariate Faà di Bruno formula [7]. We omit these
results to avoid repetition. We just illustrate this with an example.
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Example 18 Let d = 2 and r = 2. Recall from Example 15 that for any u ∈ H2(�)

and for 0 ≤ �1, �2 ≤ 1 we have

‖∂�1
1 ∂

�2
2 (u − Rpu)‖� ≤

(
h

π

)2−�1−�2 (
‖∂21u‖� + ‖∂22u‖� + ‖∂1∂2u‖�

)
,

for all p1, p2 ≥ 1 and h := max{h1, h2}. We define the mapped Ritz projector
R̃p : H2(�̃) → Z̃t by taking 	 = Rp in (41). Assume G ∈ (W 2,∞(�))2 and
G−1 ∈ (W 1,∞(�̃))2. From Theorem 8 (and Example 17) we know estimates for
‖∂21 (ũ◦G)‖� and ‖∂22 (ũ◦G)‖�, and we can compute similar ones for ‖∂1∂2(ũ◦G)‖�.
Then, for any ũ ∈ H2(�̃) and for 0 ≤ �1, �2 ≤ 1 we obtain

‖∂̃�1
1 ∂̃

�2
2 (ũ − R̃pũ)‖�̃

≤ CG

(
h

π

)2−�1−�2 ∑
1≤|j|≤2

(
CG,1,2,j + CG,2,2,j + CG,12,2,j

)‖∂̃ j1
1 ∂̃

j2
2 ũ‖�̃,

for all p1, p2 ≥ 1, where

CG,12,2,(1,0) = ‖∂1∂2G1‖L∞(�), CG,12,2,(0,1) = ‖∂1∂2G2‖L∞(�),

CG,12,2,(2,0) = ‖(∂1G1)(∂2G1)‖L∞(�), CG,12,2,(0,2) = ‖(∂1G2)(∂2G2)‖L∞(�),

CG,12,2,(1,1) = ‖(∂1G1)(∂2G2) + (∂2G1)(∂1G2)‖L∞(�).

7.2 Bent geometry

In IGA the geometrymapG is commonly taken to be componentwise a spline function
from the same space as our approximation space. However, the results in the previous
subsection can require the geometry map to be in a smoother subspace. We will
overcome the issue in this subsection. As before, we use the techniques of [1,3].

For r ≥ 1 and k ≥ 0 we define the univariate bent Sobolev space

Hr ,k
� (0, 1) :=

{
u ∈ Hmin{r ,k+1}(0, 1) : u ∈ Hr (ξ j , ξ j+1), j = 0, 1, . . . , N

}
.

Note that for k ≥ r − 1 we haveHr ,k
� (0, 1) = Hr (0, 1). Then, similar to the space in

Remark 14, we define the (L2-extended) multivariate bent Sobolev space

Hr ,k
� (�) :=

d⋂
i=1

L2(0, 1)i−1 ⊗ Hr ,ki
�i

(0, 1) ⊗ L2(0, 1)d−i .

Following [3] we also introduce the mesh-dependent norm

‖ · ‖2�,� :=
∑

σ∈M�

‖ · ‖2σ ,
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where M� is the collection of the (open) elements defined by � and ‖ · ‖σ denotes
the L2-norm on the element σ .

Furthermore, for ki ≥ 0, i = 1, . . . , d, we define the bent geometry function class

Gr ,k
� (�) :=

{
G ∈ W k+1,∞(�) : G ∈ Wr ,∞(σ ), σ ∈ M�

}
,

where W k+1,∞(�) := Wk1+1,∞(0, 1) ⊗ · · · ⊗ Wkd+1,∞(0, 1). The space Gr ,k
� (�)

contains the spline spaceSk
p,�, and it also allows for several other interesting piecewise

spaces such as NURBS spaces based on Sk
p,�. If we assume G ∈ (Gr ,k

� (�))d , then

u := ũ ◦G ∈ Hr ,k
� (�) for ũ ∈ Hr (�̃). Having u not in Hr (�) is a potential problem

for applying the error estimates we derived in Sect. 6, but this can be fixed by making
use of [4, Lemma 3.1]. For completeness we provide a short proof here as well.

Lemma 13 For k ≤ r − 2, there exists an operator � : Hr ,k
� (0, 1) → Sk

r−1,� such

that u − �u ∈ Hr (0, 1) for all u ∈ Hr ,k
� (0, 1).

Proof Let u ∈ Hr ,k
� (0, 1) for some k ≤ r −2, and let ∂�−u (∂�+u) denote the limit from

the left (right) of the �-th order derivative of u. From the definition of the bent Sobolev
space we know that u is Ck continuous at any interior knot ξ j , j = 1, . . . , N . Now,
we define

ϕ j,k(x) := (∂k+1+ u − ∂k+1− u)(ξ j )

(k + 1)! max
{
0, (x − ξ j )

k+1
}

.

It is easy to check that ϕ j,k ∈ Sk
r−1,� and that u −ϕ j,k is Ck+1 continuous at the knot

ξ j . Repeating this argument and taking

�u =
N∑
j=1

r−2∑
l=k

ϕ j,l ,

it follows that u − �u is Cr−1 continuous at each interior knot. Since �u ∈ Sk
r−1,�

we also know that u − �u ∈ Hr ,k
� (0, 1), and so u − �u ∈ Hr (0, 1). 	


Similar to [4, Proposition 3.1] we then obtain the following error estimate.

Lemma 14 Let u ∈ Hr ,k
� (0, 1) be given. Then,

‖u − Skpu‖ ≤ Ch,p,k,r‖∂r u‖(0,1),�,

for all p ≥ r − 1.

Proof For k ≥ r −1, the result immediately follows from Corollary 1 by recalling that
Hr ,k

� (0, 1) = Hr (0, 1) in this case. Assume now k ≤ r − 2. Since Sk
r−1,� ⊆ Sk

p,� we
deduce from Lemma 13 and Corollary 1 that
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‖u − Skpu‖2 = ‖u − �u − Skp(u − �u)‖2 ≤ (
Ch,p,k,r‖∂r (u − �u)‖)2

= (Ch,p,k,r )
2

N∑
j=0

‖∂r u‖2(ξ j ,ξ j+1)
= (

Ch,p,k,r‖∂r u‖(0,1),�
)2

,

and the result follows by taking the square root of both sides. 	

The univariate error estimate in Lemma14 can be easily extended to themultivariate

tensor-product spline setting.

Lemma 15 Let u ∈ Hr ,k
� (�) be given. Then,

‖u − Skpu‖� ≤
d∑

i=1

Chi ,pi ,ki ,r‖∂ri u‖�,�,

for all pi ≥ r − 1.

Proof Using Theorem 6 we have

‖u − Skpu‖� ≤
d∑

i=1

‖u − Skipi u‖�,

and the result follows by applying Lemma 14 in each direction separately. 	

In the case of maximal spline smoothness, i.e., ki = pi − 1 for all i , the constants

Chi ,pi ,ki ,r in the above lemma can be replaced by the constants used in Corollary 3.
Using the argument of Theorem 8 we then arrive at the desired error estimates for

a bent geometry. To this end, we need to redefine the constants CG,i,r ,j in (42) using
the mesh-dependent norm

‖ · ‖L∞(�),� := max
σ∈M�

‖ · ‖L∞(σ ). (43)

Theorem 9 Let G ∈ (Gr ,k
� (�))d and G−1 ∈ (W 1,∞(�̃))d . Then, for any ũ ∈ Hr (�̃)

we have

‖ũ − S̃kp ũ‖�̃ ≤ CG

∑
1≤|j|≤r

(
d∑

i=1

Chi ,pi ,ki ,rCG,i,r ,j

)
‖∂̃ j1

1 · · · ∂̃ jd
d ũ‖�̃,

for all pi ≥ r − 1.

Similar results can be obtained for tensor-product Ritz projections in the presence
of a bent geometry. As before, it is a matter of applying the Ritz estimates from Sect. 6
in combination with the operator in Lemma 13 and proper (Ritz extended) multivariate
bent Sobolev spaces. We omit these results to avoid repetition. We just illustrate this
with an example similar to Example 18.
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Example 19 Let d = 2 and r = 2. Assuming G ∈ (Sp,�)2 and G−1 ∈ (W 1,∞(�̃))2,
for any ũ ∈ H2(�̃) and for 0 ≤ �1, �2 ≤ 1 we have

‖∂̃�1
1 ∂̃

�2
2 (ũ − R̃pũ)‖�̃

≤ CG

(
h

π

)2−�1−�2 ∑
1≤|j|≤2

(
CG,1,2,j + CG,2,2,j + CG,12,2,j

)‖∂̃ j1
1 ∂̃

j2
2 ũ‖�̃,

for all p1, p2 ≥ 1 and h := max{h1, h2}. The constants in the above sum are the same
as the ones in Examples 17 and 18 but in the mesh-dependent norm (43).

8 Multi-patch geometry

In this section we generalize our error estimates to the case of multi-patch domains
with C0 continuity across the patches. The arguments here are based on those found
in [3,24].

We start by explaining the general framework in the univariate case. Let Zt be a
finite dimensional subspace of L2(a, b) as in (6) with K as in (9). For t ≥ 1 we define
the projector Qt : H1(a, b) → Zt by

Qtu := u(a) + K Zt−1∂u, (44)

where K is the integral operator in (9) and Zt the L2-projector onto Zt . As we shall
see momentarily, the projection (44) is closely related to the Ritz projection for q = 1
in (13) and satisfies essentially the same properties. Additionally, we observe that
Qtu(a) = u(a) and

Qtu(b) = u(a) +
∫ b

a
Zt−1∂u(x)dx = u(a) +

∫ b

a
∂u(x)dx = u(b). (45)

Thus, Qt can be equivalently expressed as

Qtu = u(b) − K ∗Zt−1∂u. (46)

The interpolation at the boundary will be used to enforce C0 continuity across the
patches. Similar to the case q = 1 of Theorem 2 we have the following error
estimate.

Lemma 16 Let u ∈ Hr (a, b) for r ≥ 1 be given. Then,

‖u − Qtu‖ ≤ Ct−1,1Ct−1,r−1‖∂r u‖,
‖∂(u − Qtu)‖ ≤ Ct−1,r−1‖∂r u‖,

for all t ≥ 1 such that Pr−2 ⊆ Zt−1.

123



Explicit error estimates for spline approximation. . . 925

Proof By the fundamental theorem of calculus we have u = u(b) − K ∗v for v ∈
Hr−1(a, b). Thus, using (46),

‖u − Qtu‖ = ‖K ∗v − K ∗Zt−1v‖ = ‖K ∗(I − Zt−1)v‖.

Moreover, v ∈ Hr−1(a, b) can be written as v = g + Kr−1 f for g ∈ Pr−2 and
f ∈ L2(a, b). Using Pr−2 ⊆ Zt−1 and (I − Zt−1)

2 = (I − Zt−1) we obtain

‖K ∗(I − Zt−1)v‖ = ‖K ∗(I − Zt−1)K
r−1 f ‖

≤ ‖K ∗(I − Zt−1)‖ ‖(I − Zt−1)K
r−1‖ ‖ f ‖

= ‖(I − Zt−1)K‖ ‖(I − Zt−1)K
r−1‖ ‖ f ‖

= Ct−1,1Ct−1,r−1‖∂r u‖,

which proves the first inequality. The second inequality follows from Theorem 1 since
∂Qt = Zt−1∂ . 	


Error estimates for spline spaces can be immediately obtained by replacing the
constants in Lemma 16 with the constants derived for q = 1 in Corollaries 2 and 4.

Remark 15 Since the Ritz projection in (13) is uniquely defined, it follows from
Lemma 5 and (45) that Qt = R1

t whenever P2 ⊆ Zt . Lemma 16 would in this
case directly follow from Lemma 5 and Theorem 2 (with q = 1).

We now move on to the bivariate case (d = 2). As before, we let t = (t1, t2)
and define the tensor-product projector Qt : H1(a1, b1) ⊗ H1(a2, b2) → Zt1 ⊗ Zt2
by

Qt := Qt1 ⊗ Qt2 .

Remark 16 As in [24, Theorem 3.4], we conclude from (44) and (45) that for all
u ∈ H1(a1, b1) ⊗ H1(a2, b2),

• u and Qtu coincide at the four corners of [a1, b1] × [a2, b2], and
• Qtu restricted to any boundary edge of � = (a1, b1) × (a2, b2) coincide with the
univariate projection onto that edge, e.g.,

Qtu(a1, ·) = Qt2u(a1, ·).

Using the same argument as for Theorem 7 we obtain the following error estimates
for Qt.

Theorem 10 Let u ∈ Hr (�) for r ≥ 2 be given. IfPr−2 ⊆ Zt1−1∩Zt2−1 for t1, t2 ≥ 1,
then

‖u − Qtu‖� ≤ Ct1−1,1Ct1−1,r−1‖∂r1u‖� + Ct2−1,1Ct2−1,r−1‖∂r2u‖�

+Ct1−1,1Ct2−1,1 min
{
Ct2−1,r−2‖∂1∂r−1

2 u‖�,Ct1−1,r−2‖∂r−1
1 ∂2u‖�

}
,
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and

‖∂1(u − Qtu)‖� ≤ Ct1−1,r−1‖∂r1u‖� + Ct2−1,1Ct2−1,r−2‖∂1∂r−1
2 u‖�,

‖∂2(u − Qtu)‖� ≤ Ct1−1,1Ct1−1,r−2‖∂r−1
1 ∂2u‖� + Ct2−1,r−1‖∂r2u‖�,

‖∂1∂2(u − Qtu)‖� ≤ Ct1−1,r−2‖∂r−1
1 ∂2u‖� + Ct2−1,r−2‖∂1∂r−1

2 u‖�.

In the spirit of Corollary 5, using results from Sects. 3 and 4, the above theorem
can be used to obtain similar error estimates for spline spaces of any smoothness.

Finally, we are ready to consider the multi-patch setting in IGA. We assume that
the physical domain �̃ ⊂ R

2 is divided into M non-overlapping patches �̃i , i =
1, . . . , M . The patches are conforming, i.e., the intersection of the closures of �̃i and
�̃ j for i �= j is either (a) empty, (b) one common corner, or (c) the union of one
common edge and two common vertices. Following [24], we define the bent Sobolev
space in the physical domain H2,1(�̃) by

H2,1(�̃) :=
{
ũ ∈ H1(�̃) : ũ|�̃i

∈ H2(�̃i ), i = 1, . . . , M
}

.

Weassume that for each i = 1, . . . , M there is a geometrymapGi : � = (0, 1)2 →
�̃i , which can be continuously extended to the closure of �, such that

• Gi ∈ (Gr ,k
� (�))2 and G−1

i ∈ (W 1,∞(�̃i ))
2 (see Sect. 7.2), and

• for any interface �̃i j shared by �̃i and �̃ j , the parameterizations Gi and G j are
identical along that interface, i.e., G−1

i |�̃i j
= Ri j ◦ G−1

j |�̃i j
where Ri j is a rigid

motion of the unit square to itself.

Similar to (40) we define

Z̃t,i :=
{
s ◦ G−1

i : s ∈ Zt,i

}
,

and, following [3,24], we require that these function spaces are fully matching on the
interfaces, i.e., for each s̃i ∈ Z̃t,i there exists s̃ j ∈ Z̃t, j such that along any interface
�̃i j shared by �̃i and �̃ j we have

s̃i |�̃i j
= s̃ j |�̃i j

.

Remark 17 Under the assumptions on the geometry maps, the fully matching require-
ment at the interface �̃i j is simply satisfied whenever for l = i, j the univariate spaces
Ztml ,l

, ml ∈ {1, 2}, associated with G−1
l (�̃i j ) coincide. For instance, if G

−1
i (�̃i j ) is a

horizontal edge while G−1
j (�̃i j ) is a vertical one, then Zt1,i = Zt2, j .

With the patch spaces Z̃t,i in place, we define the continuous isogeometric multi-
patch space Z̃t : �̃ → R as the continuously glued collection of those patch spaces,
i.e.,

Z̃t :=
{
s̃ ∈ C0(�̃) : s̃|�̃i

∈ Z̃t,i , i = 1, . . . , M
}

.
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We let Q̃t,i : H2(�̃i ) → Z̃t,i denote the projector defined by

Q̃t,i ũ := (Qt,i (ũ ◦ Gi )) ◦ G−1
i , ∀ũ ∈ H2(�̃i ),

and for any ũ ∈ H2,1(�̃) we define Q̃t(ũ) by

(Q̃tũ)|�̃i
:= Q̃t,i ũ.

From the same line of arguments as in [3, Proposition 3.8] (see also [24, Lemma 3.4]),
by using Remark 16 together with the requirement that the patch spaces are fully
matching, it follows that Q̃tũ can be extended to a continuous function across the
patch-interfaces and hence this is a projector onto Z̃t.

Similar to the mapped Ritz projection in the previous section we can now obtain
error estimates for the projector Q̃t. As a continuation of Example 19 we can for
instance obtain the following result.

Example 20 Let d = 2 and r = 2. Assume Gi ∈ (Sp,�)2 and G−1
i ∈ (W 1,∞(�̃i ))

2

for i = 1, . . . , M . Then, for any ũ ∈ H2(�̃i ) and for 0 ≤ �1, �2 ≤ 1 we have

‖∂̃�1
1 ∂̃

�2
2 (ũ − Q̃pũ)‖�̃i

≤ CGi

(
h

π

)2−�1−�2 ∑
1≤|j|≤2

(
CGi ,1,2,j + CGi ,2,2,j+CGi ,12,2,j

)‖∂̃ j1
1 ∂̃

j2
2 ũ‖�̃i

,

(47)

for all p1, p2 ≥ 1 and i = 1, . . . , M . Here h := max{h1, h2}. The constants in the
above estimate are the same as the ones in Example 19. By squaring both sides of (47)
and summing over all the patches one can obtain a global estimate for ũ ∈ H2,1(�̃).

Remark 18 If ũ ∈ H2,1(�̃) is zero at the boundary then it follows from Remark 16
and the definition of Q̃t that Q̃tũ is also zero at the boundary. Thus, we can obtain the
same error estimates in the case of Dirichlet boundary conditions.

9 Conclusions

In this paper we have provided a priori error estimates with explicit constants for
approximationwith both classical spline spaces andwith their isogeometric extensions.
More precisely, we have considered error estimates in Sobolev (semi-)norms for L2

and Ritz projections of any function in Hr onto univariate and multivariate spline
spaces, addressing single-patch and C0 multi-patch configurations.

In order to obtain these estimates we have introduced an abstract framework to
convert explicit constants in polynomial approximation to explicit constants in spline
approximation of arbitrary smoothness and on arbitrary knot sequences. The constants
in our spline error estimates are not sharp as they stem from constants in global
polynomial approximation that are not sharp. However, our abstract framework is
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independent of the polynomial error estimate we start with.Whenever better constants
are available for polynomial approximation, they can be simply plugged into our
framework, resulting immediately in a sharper result for spline approximation.

Our results improve upon existing error estimates in the literature as they fill the gap
of the smoothness [2] and allow for more flexible h−p refinement for spline spaces of
maximal smoothness [18,25]. Moreover, they are consistent with the numerical evi-
dence that smoother spline spaces exhibit a better approximation behavior per degree
of freedom, which has been observed when solving practical problems by the IGA
paradigm. Our error estimates also pave the way for extending to arbitrary smooth-
ness and to arbitrary knot sequences the theoretical comparison, recently performed
in [5], of the approximation power of different piecewise polynomial spaces com-
monly employed in Galerkin methods for solving partial differential equations. In
case of a mapped domain, the error estimates explicitly highlight the influence of the
(derivatives of the) geometry map on the approximation properties of the considered
isogeometric spaces.

Besides their direct theoretical interest, the presented results may have an impact
on several practical aspects of the IGA paradigm, including the convergence analysis
under different kinds of refinements, the definition of good mesh quality metrics,
and the design of fast iterative (multigrid) solvers for the resulting linear systems.
We finally note that the range of possible applications of the presented results is not
confined to the IGA context, since standard C0 tensor-product finite elements are also
covered as special cases.
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