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Abstract
This article deals with error estimates for the finite element approximation of varia-
tional normal derivatives and, as a consequence, error estimates for the finite element
approximation of Dirichlet boundary control problems with energy regularization.
The regularity of the solution is carefully carved out exploiting weighted Sobolev and
Hölder spaces. This allows to derive a sharp relation between the convergence rates
for the approximation and the structure of the geometry, more precisely, the largest
opening angle at the vertices of polygonal domains. Numerical experiments confirm
that the derived convergence rates are sharp.

Mathematics Subject Classification 49J20 · 65M60 · 65N15 · 35L67

1 Introduction

The problem investigated in this article is the optimal Dirichlet control problem

min
z∈H1/2(�)

{
1

2
‖u(z) − ud‖2L2(�)

+ ν

2
|z|2H1/2(�)

}
, (1)

where u(z) ∈ H1(�) is the solution of the boundary value problem

− �u = f in �, u = z on �. (2)

The domain � ∈ R
2 is assumed to have a polygonal boundary �. The function

ud ∈ L2(�) is referred to as desired state and f ∈ L2(�) is a given source term.
The parameter ν > 0 is a regularization parameter and the corresponding term in the
objective guarantees the existence of a solution in the space H1/2(�).
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414 M. Winkler

This optimal control problem has first been formulated by Lions [19]. Later, a reg-
ularization using the L2(�)-norm of the control became more attention [3,8,20,21].
From the modeling point of view, the L2(�) regularization is reasonable as the regu-
larization term can be interpreted as a measure for control costs, but the disadvantage
is that the control has a rather unexpected behavior near the corners. In the general
case the control tends to 0 at convex and to infinity at reentrant corners [2]. Thus,
the idea of using a regularization in stronger norms was revealed e. g. in [14] where
Dirichlet control problems using an H1(�)-regularization are studied and [9,27]where
H1/2(�)-regularization is considered. The latter idea, also referred to as energy regu-
larization and is also studied in the present paper. It has to be noted that the behavior
near the corners is in this approach just shifted to the tangential derivatives of the con-
trol. The physical interpretation of the regularization term using the H1/2(�)-norm
of the control is, that in case of f ≡ 0 it is equivalent to the energy norm of the
corresponding state u(z), which might be, depending on the concrete application, a
measure for control costs as well. This becomes clear when defining the seminorm in
H1/2(�) by

|z|2H1/2(�)
:=

∫
�

∂nu(z) z = ‖∇u(z)‖2L2(�)
.

Closely related are the investigations for the Neumann control problem with an
H−1/2(�)-regularization [6,32]. Note, that the optimal state is in both approaches
equivalent.

Error estimates for approximate solutions of the Dirichlet control problem are dis-
cussed already in [27] where all variables are approximated by piecewise linear finite
elements. For this approach, and in case of convex computational domains, the conver-
gence rate of 1 for the control in the H1/2(�)-norm was proved, but in the numerical
experiments a higher convergence rate is observed. The results in the present article
will show that the rate 1 is only a worst-case estimate for convex domains, meaning,
that if an opening angle of a corner tends to 180◦, the convergence rate will tend to
1. The same convergence rate is proved in [17] for arbitrary polygonal domains for a
discretization using the energy corrected finite element method.

It is the aim of the present paper to prove sharp convergence rates. Depending on
the opening angle at the corners one can prove a convergence rate up to 3/2 for the
control in the H1/2(�)-norm. It turns out that this is in general only possible when
the opening angles are all less than 120◦ as the corresponding singularities are mild
enough to guarantee H2(�)-regularity of the control.

The difficult part of the convergence proof is to derive an error estimate for a vari-
ational normal derivative of the finite element solution of the Poisson and the Laplace
equation in the H−1/2(�)-norm. Such an error term appears due do the approximation
of the Steklov–Poincaré operator z �→ ∂nu(z) used to realize the H1/2(�)-norm, and
the approximation for the normal derivative of the adjoint state variable which appears
in the optimality condition. Aworst-case estimate for variational normal derivatives in
the H−1/2(�)-norm, as used in [27], can be easily derived when using a trace theorem
and standard finite element error estimates. Sharp error estimates require some more
effort and will be discussed intensively in the present article. Closely related are the
error estimates in the L2(�)-norm for the exact normal derivative of the finite element

123



Error estimates for variational normal derivatives 415

approximation from [15,29]. In the latter reference the variational normal derivative
used in the present paper is discussed as well. In the present article we consider esti-
mates for the variational normal derivative in H−1/2(�). The convergence rate we
prove will be related to ωmax denoting the largest opening angle of the corners of the
domain �. Moreover, u ∈ H1(�) and uh ∈ Vh are the solution of the Poisson or
Laplace equation and its finite element approximation, respectively. Throughout this
article Vh is the space of linear and globally continuous finite elements. Under the
assumption that the input data are sufficiently smooth, and the normal derivative is
continuous in the corners (this is guaranteed e. g. if z ≡ 0 or if u is the optimal state of
the Dirichlet control problem (1)–(2)) we show that the variational normal derivative
∂hn uh ∈ V ∂

h := trVh defined by

(∂hn uh, vh)L2(�) = (∇uh,∇vh)L2(�)2 − ( f , vh)L2(�)

for all vh ∈ Vh satisfies the estimate

‖∂nu − ∂hn uh‖H−1/2(�) ≤ c hmin{3/2,π/ωmax−ε}.

Here, c > 0 is a constant independent of the mesh size h and ε > 0 is an arbitrary
but sufficiently small number. The proof is based on an idea developed in [29] where
estimates in the L2(�)-normona sequenceof boundary concentratedmeshes is proved.

As an application, we use this result to derive sharp discretization error estimates
for the optimal control problem (1)–(2). Therefore, we approximate the control, state
and adjoint state by a linear finite element discretization. Under the assumption that
ud is Hölder continuous in case of convex �, or belongs to L2(�) in case of non-
convex �, we show the same convergence rate for the control approximation in the
H1/2(�)-norm, this is,

‖z − zh‖H1/2(�) ≤ c hmin{3/2,π/ωmax−ε},

where z and zh are the continuous and discrete optimal control. This confirms the
behavior figured out in the numerical experiments from [27] on the unit square, where
the rate 3/2 was predicted numerically. The conjecture that this rate is achieved on
arbitrary convex polygonal domains is obviously wrong. Our theory promises that
this rate is obtained unless all opening angles of corners are less than 2π/3 which
is also confirmed by numerical experiments. The worst-case convergence rate of 1 is
indeed achieved unless the domain remains convex. If the largest angle tends to 2π ,
the convergence rate will tend to 1/2.

As a further application of estimates for variational normal derivatives we men-
tion Steklov–Poincaré operators that are frequently used for parallel finite element
methods relying on domain decomposition [1,30,34]. Closely related are the error
estimates from [24]. Therein, the authors derive optimal error estimates for discrete
Lagrange multipliers in H−1/2(�) defined on the interfaces of the subdomains. The
approximation of the multipliers corresponds to some variational approximation of a
normal derivative as well.

123



416 M. Winkler

The article is structured as follows. In Sect. 2 we collect a priori estimates for solu-
tions of the Poisson and Laplace equation in weighted norms involving a regularized
boundary distance function. Moreover, we have to carve out the singular behavior
near corners of the domain which is done by weighted Sobolev and Hölder spaces. To
this end, we provide the required shift theorems. Error estimates for the solution of
the Dirichlet boundary value problem in the L2(�)- and H1(�)-norm as well as for
the discrete normal derivatives in the H−1/2(�)-norm are derived in Sect. 3. These
estimates are applied to the discretization of our optimal control problem in Sect. 4.
The results derived therein are confirmed by the numerical experiments in Sect. 5.

2 Auxiliary results

Let us first explain the notation we will use in this paper. The computational domain
is denoted by � ⊂ R

2 and is always assumed to have a polygonal boundary �.
By Wk,p(�), k ∈ N0, p ∈ [1,∞] we denote the usual Sobolev spaces and write
Hk(�) := Wk,2(�), L2(�) := H0(�). Frequently, we use the space H1

0 (�) which
is the closure ofC∞

0 (�)with respect to the H1(�)-norm. For the corresponding norms
and inner products we write ‖ · ‖X and (·, ·)X , respectively. The subscript X indicates
the related space.

The fractional-order Sobolev space H1/2(�) is defined as the set of measurable
functions u : � → R with finite Sobolev-Slobodeckij-norm

‖u‖2H1/2(�)
:= ‖u‖2L2(�)

+
∫∫

�

|u(x) − x(y)|2
|x − y|2 dsx dsy .

Later, we will use equivalent definitions, e. g. as the natural trace space of H1(�), see
[33, §8], or as the interpolation space [L2(�), H1(�)]1/2,2 [23, Theorem B.11].

Moreover, 〈·, ·〉 stands for the dual pairing between H−1/2(�) and H1/2(�).
The aim of this section is to collect some regularity results for the solution of the

Laplace and Poisson equation. The weak form reads: Find y ∈ H1(�) satisfying

u|� = z, (∇u,∇v)L2(�)2 = ( f , v)L2(�) ∀v ∈ H1
0 (�). (3)

The functions f ∈ L2(�) and z ∈ H1/2(�) are given input data.

2.1 Weighted regularity

For technical reasons we recall some a priori estimates in weighted norms involving
theweight function σ(x) := κh+dist(x, �)with arbitrary κ > 0. This is a regularized
distance function with respect to the boundary of the domain �. The following result
is proved already in [29, Lemma 1].

Lemma 1 Let w ∈ H1
0 (�) be the weak solution of −�w = f in �. Then, the a priori

estimate
‖σ−1 w‖L2(�) ≤ c ‖∇w‖L2(�) ≤ c ‖σ f ‖L2(�)

holds.
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Error estimates for variational normal derivatives 417

Furthermore, we will need an interior regularity result:

Lemma 2 Let w ∈ H1(�) satisfy

(∇w,∇v)L2(�)2 = ( f , v) ∀v ∈ H1
0 (�)

with some function f ∈ L2(�). Moreover, let be given �0 ⊂⊂ �1 ⊂ � and denote
by d := dist(∂�1, ∂�0) the distance between the boundaries of �0 and �1. Then, the
estimate

‖∇2w‖L2(�0)
≤ c

(
‖ f ‖L2(�1)

+ d−1 ‖∇w‖L2(�1)

)

is valid.

Proof The estimate (i) can be concluded from the proof of [12, Theorem 8.8] where
this assertion is statedwith a generic constant depending on the quantity d that wewant
to carve out exactly. Thus, we repeat the proof for the convenience of the reader. The
proof basically relies on [12, Lemma 7.24] which states that a function u ∈ L2(�)

belongs to H1(�0) if its difference quotients Dh
k u(x) := 1

h (u(x + hek) − u(x)),
k ∈ {1, 2}, are bounded in the L2(�0)-norm for all h ∈ R with |h| sufficiently small
such that Dh

k is well-defined in �1. Moreover, the inclusion

‖Dh
kw‖L2(�0)

≤ K ⇒ ‖∂kw‖L2(�0)
≤ K (4)

is valid. To conclude the desired estimate we thus have to confirm that ‖Dh
k∇w‖L2(�0)

is bounded. For technical reasons we introduce a further set �̃ satisfying �0 ⊂⊂
�̃ ⊂⊂ �1 and dist(�0, ∂�̃) ∼ d. For an arbitrary test function v ∈ H1

0 (�) with
dist(supp v, ∂�̃) > 2h we obtain

∫
�

(∇Dh
kw) · ∇v = −

∫
�

∇w · (∇D−h
k v) = −

∫
�

f D−h
k v

≤ ‖ f ‖L2(�1)
‖∇v‖L2(�). (5)

In the last step we bounded the difference quotient by the first derivative of v. Such an
estimate is proved in [12, Lemma 7.23]. Next, we introduce a smooth cut-off function

η ∈ C∞
0 (�) satisfying η ≡ 1 in �0 and supp η ⊂ �̃. Moreover, η is constructed in

such a way that |∇η| ≤ c d−1. For sufficiently small h we obtain from the product
rule and (5) for v = η2Dh

kw

‖η Dh
k∇w‖2L2(�)

=
∫

�

(∇Dh
kw) · (η2 (∇Dh

kw))

=
∫

�

(∇Dh
kw) · (∇(η2 Dh

kw) − 2 η ∇ηDh
kw)

≤ ‖ f ‖L2(�1)
‖∇(η2 Dh

kw)‖L2(�) + c d−1 ‖η Dh
k∇w‖L2(�̃) ‖Dh

kw‖L2(�̃). (6)
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Again,we apply [12, Lemma7.23] to obtain‖Dh
k w‖L2(�̃) ≤ c ‖∇w‖L2(�1)

.Moreover,
with the product rule we obtain

‖∇(η2 Dh
kw)‖L2(�) ≤ 2 ‖η ∇η Dh

kw‖L2(�) + ‖η2 ∇Dh
kw‖L2(�)

≤ c
(
d−1 ‖∇w‖L2(�1)

+ ‖η Dh
k∇w‖L2(�)

)
.

Insertion of this estimate into (6) yields with Young’s inequality and a kick-back
argument for the latter term on the right-hand side

‖∇Dh
kw‖L2(�0)

≤ ‖η ∇Dh
kw‖L2(�) ≤ c

(
‖ f ‖L2(�1)

+ d−1 ‖∇w‖L2(�1)

)
.

The desired estimate then follows from (4). ��

2.2 Weighted Sobolev and Hölder spaces

In order to describe the regularity of the solution of boundary value problems in an
accurate way we exploit regularity results in weighted Sobolev spaces. These spaces
capture the corner singularities contained in the solution and allow us to derive sharp
interpolation error estimates. Throughout the paper we denote the corners of � by c j ,
j ∈ C := 1, . . . , d. Moreover, denote by � j the boundary edge having endpoints c j
and c j+1 or c1 in case of j = d. The interior angle between the edges intersecting in
c j is ω j ∈ (0, 2π).

In order to introduce the weighted Sobolev spaces used for the analysis, we divide
the domain into circular sectors �

j
R := {x ∈ � : |x − c j | < R}, j ∈ C, with

sufficiently small R such that these sectors do not overlap. The remaining sets are
denoted by �̂R := � \∪{� j

R : j ∈ C}. For each k ∈ N0, p ∈ [1,∞) and some weight
β ∈ R+ (R+ := [0,∞)), we introduce the local norms

‖u‖p

V k,p
β (�

j
R)

:=
∑
|α|≤k

‖rβ−k+|α|
j Dαu‖p

L p(�
j
R)

,

‖u‖p

Wk,p
β (�

j
R)

:=
∑
|α|≤k

‖rβ
j Dαu‖p

L p(�
j
R)

,

and for an analogous definition in case of p = ∞, the sum has to be replaced by the
maximum over |α| ≤ k. For some β ∈ R

d+ the global norms are defined by

‖u‖
V k,p

β
(�)

:=
⎛
⎝∑

j∈C
‖u‖p

V k,p
β j

(�
j
R)

+ ‖u‖p

Wk,p(�̂R/2)

⎞
⎠

1/p

,

in case of p ∈ [1,∞) and with the obvious modification for p = ∞. When replac-
ing V by W in the definition above, we obtain the global norm ‖ · ‖

Wk,p
β

(�)
. The

weighted Sobolev spaces V k,p
β (�) and Wk,p

β (�) are defined as the set of functions
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Error estimates for variational normal derivatives 419

whose norms introduced above are finite. The trace spaces are denoted by V k−1/p,p
β (�)

and Wk−1/p,p
β (�), respectively. Later, we want to derive error estimates using regu-

larity results in the V k−1/p,p
β (�)-norm. To this end, we equip the trace spaces with the

equivalent weighted Sobolev-Slobodeckij-norms. Therefore, introduce the boundary
segments �

j
R := � ∩ ∂�

j
R , j ∈ C, and �̂R = � ∩ �̂R . Moreover, � j,1

R and �
j,2
R are

the two legs of �
j
R . For k ∈ N, p ∈ [1,∞) and β ∈ R

d+ we then define

‖u‖p

V k−1/p,p
β

(�)
:= ‖u‖p

Wk−1/p,p(�̂R/2)
+

∑
j∈C

2∑
i=1

‖u‖p

V k−1/p,p
β j

(�
j,i
R )

.

with

‖u‖
V k−1/p,p

β j
(�

j,i
R )

:=
∑

|α|≤k−1

‖rβ j−k+1/p+|α|
j Dα

t u‖p

L p(�
j,i
R )

+
∑

|α|=k−1

∫∫
�

j,i
R

|r j (x)β j Dα
t u(x) − r j (y)β j Dα

t u(y)|p
|x − y|p dx dy,

where Dα
t denotes the tangential derivative of order α. In the obvious way, a norm for

the case p = ∞ can be defined as well.
The previous definitions and an intensive discussion on the relation between V -

and W -spaces can be found in [26, Chapter 4, §5], [22, Section 6.2].
Later, we will frequently derive error estimates where the convergence rate will

depend on the largest weight. Thus, we define

β := max
j∈C

β j .

In the next chapter, we will frequently exploit regularity results in these space with
p = ∞, but for this case a shift theorem is not valid. As a remedy, weighted Hölder
spaces are used and we take the definition from [22, Section 6.7.1]. Again, we define
some local norms with parameters k ∈ N0, σ ∈ (0, 1] and δ ≥ σ by

‖u‖
�

k,σ
δ (�

j
R)

:= sup
x∈�

j
R

∑
|α|≤k

r j (x)
δ−k−σ+|α| |Dαu(x)| + 〈u〉

k,σ,β,�
j
R
,

‖u‖
Ck,σ

δ (�
j
R)

:= sup
x∈�

j
R

∑
|α|≤k

r j (x)
max{0,δ−k−σ+|α|} |Dαu(x)| + 〈u〉

k,σ,δ,�
j
R
,

where the seminorm is defined by

〈u〉
k,σ,δ,�

j
R

:= sup
x,y∈�

j
R

∑
|α|=k

|r j (x)δ Dαu(x) − r j (y)δ Dαu(y)|
|x − y|σ .
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420 M. Winkler

The global norm is then given by

‖u‖
�

k,σ
δ

(�)
:=

∑
j∈C

‖u‖
�

k,σ
δ j

(�
j
R)

+ ‖u‖Ck,σ (�̂R/2)

with some vector δ ∈ [σ,∞)d . Analogously, the norm ‖ · ‖Ck,σ
δ

(�)
is defined. The

corresponding function spaces are defined by

�
k,σ
δ (�) := C∞

0 (� \ S)
‖·‖

�
k,σ
δ

(�) , Ck,σ
δ (�) := C∞

0 (�)
‖·‖

Ck,σ
δ

(�) ,

where S := {c j : j ∈ C}. The corresponding trace spaces are endowed with the norm

‖u‖
�

k,σ
δ

(�)
:= inf{‖ũ‖

�
k,σ
δ

(�)
: ũ|�\S ≡ u}, (7)

and analogously for Ck,σ
δ (�).

Next, we establish a regularity result for weighted Sobolev spaces.

Lemma 3 Let f ∈ W 0,2
β (�) and z ∈ W 3/2,2

β (�) with β ∈ [0, 1)d satisfying β j >

1 − λ j for all j ∈ C. Then, the solution u of (3) belongs to W 2,2
β (�). In case of

z ∈ V 3/2,2
β (�) the function u belongs to V 2,2

β (�).

Proof The regularity result for V -spaces can be deduced from [18, Theorem 1.4.3].
Note that this result holds even for a larger range of the weights, this is, β j ∈ (1 −
λ j , 1 + λ j ). From this result we infer the solvability in W -spaces as each function

y ∈ W 2,2
β j

(�
j
R) with β j ∈ (0, 1) can be decomposed into u0 + p with a constant

p = z(c j ) and u0 ∈ V 2,2
β j

(�
j
R). This is basically the idea which leads to [26, Theorem

4.§5.11] from which we could conclude the same result. ��
An analogue of this result is true for the weighted Hölder spaces introduced above.
This is used to show boundedness of the solution of (3) in a weighted W 2,∞-space.

Lemma 4 Assume that f ∈ �
0,σ
δ (�) and z ∈ �

2,σ
δ (�) with σ ∈ (0, 1] and weights

δ ∈ (σ, 2+ σ)d satisfying 2− λ j > δ j − σ for j ∈ C. Moreover, we exclude the case

δ j −σ = 1. Then, the solution u of (3) belongs to �
2,σ
δ (�) and depends continuously

on the input data. This result remains true when replacing � by C.

Proof The proof for the regularity in �-spaces can be deduced from [18, Theorem
1.4.5]. In order to show the regularity result in the weighted C-spaces we basically
follow the ideas used in [28, Lemma 3.13]. First, introduce the numbers ν j ∈ Z, j ∈ C,
such that ν j < δ j − σ < ν j + 1. Then, we split the solution into

u = w +
d∑
j=1

η j p j ,
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with smooth cut-off functions η j satisfying η j ≡ 1 in �
j
R/2 and supp η j ⊂ �

j
R for all

j ∈ C, and polynomials p j of order not greater than 1 − ν j . The key idea is to reuse
the regularity results shown in the weighted �-spaces for the function w. A direct
application of these results to u would not be possible as the homogeneous weights
r j (x)δ−k−σ+|α|, j ∈ C, could, depending on the choice of δ and σ , tend to infinity
as r j → 0. As a remedy, the polynomials p j have to be chosen in such a way that
w(c j ) = 0 if ν j = 1 and w(c j ) = Dαw(c j ) = 0 for all |α| = 1 if ν j = 0.

Once regularity for w in a weighted �-space is shown, the desired result follows
from certain relations between C- and �-spaces. First, we observe that w solves the
boundary value problem

−�w = f +
d∑
j=1

(
�η j p j + 2∇η j · ∇ p j

) := F in �,

w = z −
d∑
j=1

η j p j := G on �.

Our aim is to show that w belongs to �
2,σ
δ (�) which would follow under the assump-

tion F ∈ �
0,σ
δ (�) and G ∈ �

2,σ
δ (�). To achieve this, we have to construct the

polynomials p j appropriately and therefore, we define the projection

qk(v; c j )(x) :=
k∑

|α|=0

1

|α|! (D
αv)(c j ) (x − c j )α (8)

for j ∈ C and k ∈ N0. In a similar way we construct a projection for functions
defined on the boundary by means of q∂

k (v, c j ) := γ0qk(ṽ; c j ), where ṽ is an arbitrary
extension of v and γ0 is the trace operator. The polynomial q∂

k (v; c j ) is independent
of the extension ṽ, and hence, there holds γ0qk(u; c j ) = q∂

k (z; c j ) as u ≡ z on �.

In the following we use the choice p j := q1−ν j (u; c j ). That F belongs to �
0,σ
δ (�)

is obvious, as f is assumed to be contained in C0,σ
δ (�) and this space is equivalent

to �
0,σ
δ (�) if δ ≥ σ , see the arguments before Lemma 6.7.1 in [22]. Moreover, the

cut-off functions η j are constant in the neighborhood of the corners and thus, the
products ∇η j · ∇ p j and �η j p j belong trivially to that space. Consequently, we get

‖F‖
�

0,σ
δ

(�)
≤ c

⎛
⎝‖ f ‖C0,σ

δ
(�)

+
d∑
j=1

‖p j‖C1(�
j
R)

⎞
⎠ . (9)

With the definition (8) and the imposed Dirichlet boundary conditions, taking into
account p j |� = q∂

1−ν j
(z; c j ), j ∈ C, we deduce

‖p j‖C1(�
j
R)

≤ c

1−ν j∑
|α|=0

|Dαz(c j )| ≤ c ‖z̃‖
C
1−ν j ,ε

0 (�
j
R)

≤ c ‖z̃‖
C2,σ
1+ν j+σ−ε(�

j
R)

≤ c ‖z̃‖
C2,σ

δ j
(�

j
R)

= c ‖z‖
C2,σ

δ j
(�

j
R)

(10)
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422 M. Winkler

for δ j −σ < 1+ν j and sufficiently small ε > 0, and z̃ is a suitable extension of z, see

(7). The second and third step follow from the equivalence ofCk,σ
0 (�

j
R) andCk,σ (�

j
R)

stated in [22, Lemma 6.7.2] and an embedding theorem for weighted Hölder spaces,
see [22, Lemma 6.7.1]. The embedding used in the second to the last step is trivial.

The property G ∈ �
2,σ
δ (�) follows from [22, Theorem 6.7.6] which provides the

a priori estimate

‖G‖
�

2,σ
δ

(�)
= ‖z −

d∑
j=1

η j p j‖�
2,σ
δ

(�)
≤ c ‖z‖C2,σ

δ
(�)

. (11)

The regularity result proved in [18, Theorem 1.4.5(2)] then guarantees w ∈ �
2,σ
δ (�),

and with the triangle inequality, the trivial estimate ‖v‖C2,σ
δ

(�)
≤ c ‖v‖

�
2,σ
δ

(�)
for

v ∈ �
2,σ
δ (�) and (10) we infer

‖u‖C2,σ
δ

(�)
≤ ‖w‖C2,σ

δ
(�)

+
d∑
j=1

‖η j p j‖C1(�)

≤ c
(
‖w‖

�
2,σ
δ

(�)
+ ‖z‖C2,σ

δ
(�)

)
.

Anapriori estimate for theweighted�-normofw canbe concluded from [18,Theorem
1.4.5(1)], which leads to

‖u‖C2,σ
δ

(�)
≤ c

(
‖F‖

�
0,σ
δ

(�)
+ ‖G‖

�
2,σ
δ

(�)
+ ‖w‖L1(�) + ‖z‖C2,σ

δ
(�)

)

≤ c
(
‖ f ‖C0,σ

δ
(�)

+ ‖z‖C2,σ
δ

(�)
+ ‖w‖L1(�)

)
, (12)

where the second step follows from the estimates (9) and (11). The L1(�) norm of u
can be bounded by the V 2,2

β (�)-norm with weights β j = max{0, δ j − σ − 1} + ε,
j ∈ C, and ε > 0 sufficiently small. Using the norm equivalence from [26, Theorem
5.6] or [22, Lemma 6.2.12] we arrive at

‖w‖L1(�) ≤ c ‖w‖V 2,2
β

(�)
≤ c ‖u‖W 2,2

β
(�)

. (13)

With Lemma 3 and embeddings of W - into C-spaces, see e. g. [28, Lemma 2.39], we
deduce

‖u‖W 2,2
β

(�)
≤ c

(
‖ f ‖C0,σ

δ
(�)

+ ‖z‖C2,σ
δ

(�)

)
. (14)

The desired a priori estimate follows after insertion of (13) and (14) into (12). ��
The regularity results in weighted Hölder spaces allow us to extend the assertion of
Lemma 3 to L∞ based norms. This is a simple conclusion from the definition of the
spaces V and � as well as W and C .
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Corollary 1 Assume that δ ∈ (σ, 2 + σ)d satisfies the assumptions of Lemma 4. Let
γ ∈ (0, 2)d be a weight vector defined by γ j := δ j − σ for j ∈ C.
(i) If f ∈ �

0,σ
δ (�) and z ∈ �

2,σ
δ (�), the solution u of (3) belongs to V 2,∞

γ (�).

(ii) If f ∈ C0,σ
δ (�) and z ∈ C2,σ

δ (�), the solution u of (3) belongs to W 2,∞
γ (�).

3 Error estimates for normal derivatives

In this section we consider a finite element discretization for the weak form of the
boundary value problem (3) which reads

u|� ≡ z, (∇u,∇v)L2(�)2 = ( f , v)L2(�) ∀v ∈ H1
0 (�).

Therefore, let {Th}h>0 be a quasi-uniform family of shape-regular triangulations of
�, which are feasible in the sense of [10, Section 5]. The parameter h denotes the
maximal diameter of all elements from Th and is always assumed to be sufficiently
small. The trial and test spaces are defined by

Vh := {vh ∈ C(�) : vh |T ∈ P1 for all T ∈ Th}, V0h := Vh ∩ H1
0 (�).

Moreover, the traces of function from Vh belong to the space

V ∂
h := {wh ∈ C(�) : wh = vh |� for some vh ∈ Vh}.

The finite-element approximation uh ∈ Vh of u is defined by

uh |� ≡ zh, (∇uh,∇vh)L2(�)2 = ( f , vh)L2(�) ∀vh ∈ V0h, (15)

where zh ∈ V ∂
h is some appropriate interpolation or projection of z. In the following,

zh will be the L2(�)-projection of z onto V ∂
h , this is, zh := Qh(z). Moreover, we

denote by

Ih : C(�) → Vh, [Ihu](x) =
N∑
i=1

u(xi ) ϕi (x) (16)

the nodal interpolant. Here, xi ∈ �, i = 1, . . . , N , denote the nodes of Th and {ϕi }Ni=1
the nodal basis of Vh . Moreover, we will use a slightly modified interpolant defined
by

Ĩhu = Ihu + S̃h(Qhz − Ihz), (17)

where S̃h : V ∂
h → Vh is the zero extension which vanishes in the interior nodes of Th .

For functions u ∈ C(�) with u|� = z, the interpolant fulfills the essential property
[ Ĩhu]|� ≡ Qhz that is needed for instance in the proof of a Céa-Lemma. As the local
interpolation error estimates will frequently depend on the distance to the corners, we
introduce the notation

r j,T = inf
x∈T |x − c j | j ∈ C, T ∈ Th .
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We start our investigations with an interpolation error estimate for the boundary
datum z.

Lemma 5 Let be given weight vectors α ∈ [0, 1/2)d and γ ∈ [0, 3/2)d . Then, the
interpolation error estimates

‖z − Ihz‖L2(�) + h1/2 ‖z − Ihz‖H1/2(�) ≤ c h2−γ |z|W 2,2
γ (�)

,

‖z − Ihz‖L2(�) + h1/2 ‖z − Ihz‖H1/2(�) ≤ c h3/2−α ‖z‖
W 3/2,2

α (�)
,

are valid, provided that z possesses the regularity demanded by the right-hand side.

Proof The first estimate can be deduced from [32, Lemma 3.2.4]. There, the desired
error estimate in the L2(�)- and H1(�)-norm is proved. The estimate in H1/2(�)

follows from an interpolation argument.
To show the second estimate we will reuse existing interpolation error estimates

exploiting regularity in weighted V -spaces. To this end, we split up the function z by
means of z = z0 + η j p j with z0 ∈ V 3/2,2

α (�), certain constants p j ∈ R, j ∈ C, and
smooth cut-off functions η j = η j (|x − c j |) satisfying

η j |� j
R/2

≡ 1, supp(η j ) ⊂ �
j
R and ‖Dαη j‖L∞(�) ≤ c ∀|α| ≤ 2.

Note that the nodal interpolant preserves the functions η j p j near the corners provided
that h > 0 is sufficiently small. Hence, it suffices to prove an estimate for z0. In order
to derive local interpolation error estimates we denote by Ê := (0, 1) the reference
interval, and by FE : Ê → E the affine reference transformation. Moreover, we write
v̂(x̂) = v(FE (x̂)) for all x̂ ∈ Ê . The norms of the weighted Sobolev spaces on the
reference element, V k−1/2,2

α (Ê), are defined analogous to the global norms introduced
in Sect. 2.2 but the weight function is defined by r̂(x̂) := |x̂ |. For elements E ∈ Eh
touching the corner c j , j ∈ C, there holds the property r j (FE (x̂)) ∼ h r̂(x̂).

For all elements E ∈ Eh with r j,E = 0 for some j ∈ C, we obtain the estimate

‖z0 − Ihz0‖L2(E) ≤ c |E |1/2 ‖ẑ0‖L∞(Ê)
≤ c |E |1/2 ‖ẑ0‖V 3/2,2

α j (Ê)

≤ c h3/2−α j ‖z0‖V 3/2,2
α j (E)

,

which follows from the arguments used in the proof of [4, Lemma 4.5]. In case of
E ⊂ �

j
R/2 for some j ∈ C and r j,E > 0 we deduce

‖z0 − Ihz0‖L2(E) ≤ c h3/2 |z0|H3/2(E) ≤ c h3/2−α j ‖z0‖V 3/2,2
α j (E)

,

where the argument used in the last step can also be found in [4, Lemma 4.5]. Far away
from the corners, i. e., r j,E > 1/4 for all j ∈ C, we can use a standard estimate to get
‖z0− Ihz0‖L2(E) ≤ c h3/2 |z0|H3/2(E). Next, we sum up over all elements E ∈ Eh (note
that for Sobolev-Slobodeckij-norms there holds

∑
E∈Eh |u|2

H3/2(E)
≤ C |u|2

H3/2(�)
, but
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not the reverse estimate) and together with a standard estimate for the error terms
p j η j − Ih(p j η j ) we obtain

‖z − Ihz‖L2(�) ≤ c

⎛
⎝‖z0 − Ihz0‖L2(�) + h2

∑
j∈C

|p j |
⎞
⎠

≤ ch3/2−α

⎛
⎝‖z0‖V 3/2,2

α (�)
+

∑
j∈C

|p j |
⎞
⎠ ≤ c h3/2−α ‖z‖

W 3/2,2
α (�)

.

(18)

The last step is a consequence of the norm equivalence stated in [26, Ch. 4, Theorem
5.7].

The estimate in the H1/2(�)-norm follows from an interpolation argument between
estimates in L2(�) and H1(�). Note that H1/2(�) is equivalent to the interpolation
space [L2(�), H1(�)]1/2,2, see [23, Theorem B.11]. The space H1(�) can be defined
in the usual way via local Lipschitz continuous parametrizations of �. To show an
estimate in H1(�) we derive local estimates first. For all elements E ∈ Eh with
r j,E = 0 we obtain

‖z0 − Ihz0‖H1(E) ≤ c h−1 |E |1/2 ‖ẑ0‖H1(Ê)
≤ c h−1 |E |1/2 ‖ẑ0‖V 3/2,2

α j (Ê)

≤ c h1/2−α j ‖z0‖V 3/2,2
α j (E)

,

where the second step is an application of the embedding V 3/2,2
α j (Ê) ↪→ H1(Ê), which

is valid for α j < 1/2. Otherwise, if E ⊂ �
j
R/2 and r j,E > 0, we obtain with similar

arguments

‖z0 − Ihz0‖H1(E) ≤ c h1/2 |z0|H3/2(E) ≤ c h1/2−α j ‖z0‖V 3/2,2
α j (E)

.

In the far interior, i. e., for E ∈ Eh with r j,E > 1/4 for all j ∈ C, we can use a
standard estimate exploiting H3/2-regularity. Summation over all elements E ∈ Eh
and an interpolation argument lead to the desired estimate for z0− Ihz0 in the H1/2(�)-
norm. With the splitting z = z0 + ∑

j∈C p j η j we get an estimate for z − Ihz when
using the arguments from (18). ��

Using the ideas of [7] we can derive error estimates for the approximate solutions
uh in the norms H1(�) and L2(�) . However, in this reference H2(� j )-regularity
( j ∈ C) for the Dirichlet datum z is assumed. Aswe deal with optimal Dirichlet control
problems, the boundary datum for the state is the control function which might be less
regular. Thus, we repeat the proof assuming less regularity for z in some weighted
Sobolev space.

Lemma 6 Assume that u ∈ W 2,2
α (�) and z ∈ W 3/2,2

α (�) with a weight vector α ∈
[0, 1/2)d . Moreover, let zh := Qhz. Then, the solution uh ∈ Vh of (15) satisfies the
error estimates
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‖u − uh‖H1(�) ≤ c h1−ᾱ
(
|u|W 2,2

α (�)
+ ‖z‖

W 3/2,2
α (�)

)
,

‖u − uh‖L2(�) ≤ c h3/2−α+ε(�)
(
|u|W 2,2

α (�)
+ ‖z‖

W 3/2,2
α (�)

)
,

(19)

with some sufficiently small ε(�) ∈ (0, 1/2] depending on the opening angles of the
corners of �. For convex domains, the choice ε(�) = 1/2 is possible.

Proof First, we derive the error estimate in H1(�).We apply the error equation (∇(u−
uh),∇( Ĩhu − uh))L2(�)2 = 0 and obtain

‖∇(u − uh)‖2L2(�)
= (∇(u − uh),∇(u − Ihu))L2(�)2

+ (∇(u − uh),∇ S̃h(Ihz − Qhz))L2(�)2 .

With a standard interpolation error estimate exploiting weighted regularity, see e. g
[28, Lemma 3.31], we get

(∇(u − uh),∇(u − Ihu))L2(�)2 ≤ c h1−α |u|W 2,2
α (�)

‖∇(u − uh)‖L2(�).

Note that the zero extension satisfies ‖∇ S̃hφh‖L2(�) ≤ c h−1/2 ‖φh‖L2(�), see e. g.
[21, Lemma 3.3]. Thus, together with Lemma 5 we obtain an estimate for the second
term

(∇(u − uh),∇ S̃h(Ihz − Qhz))L2(�)2 ≤ c h−1/2 ‖z − Ihz‖L2(�) ‖∇(u − uh)‖L2(�)

≤ c h1−α ‖z‖
W 3/2,2

α (�)
‖∇(u − uh)‖L2(�).

In order to derive an estimate in the L2(�)-norm we use a duality argument. Let
w ∈ H1

0 (�) be the weak solution of −�w = u − uh in �. With partial integration,
the orthogonality of the L2(�)-projection Qh , the estimate in the H1(�)-norm and
Lemma 5, we obtain for sufficiently small ε(�) ∈ (0, 1/2]

‖u − uh‖2L2(�)
= (u − uh,−�w)L2(�)

= (∇(u − uh),∇(w − Ihw))L2(�)2 − (z − zh, ∂nw − Qh(∂nw))L2(�)

≤ c h3/2−α+ε(�)
(
|u|W 2,2

α (�)
‖w‖H3/2+ε(�)(�) + ‖z‖

W 3/2,2
α (�)

‖∂nw‖H ε(�)(�)

)
.

The assertion follows from the a priori estimate

‖∂nw‖H ε(�)(�) ≤ c ‖w‖H3/2+ε(�)(�) ≤ c ‖u − uh‖L2(�).

��
The aim in the remainder of this section is to derive error estimates for the variational

normal derivative of the approximate solution uh . Motivated by Green’s identity this
is defined by

∂hn uh ∈ V ∂
h : (∂hn uh, vh)L2(�) = (∇uh,∇vh)L2(�)2 − ( f , vh)L2(�) ∀vh ∈ Vh .

(20)
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Note that both the left- and right-hand side are zero for test functions from V0h .
Hence, in order to compute ∂hn uh , it suffices to test the equation (20) with the nodal
basis functions that belong to the boundary nodes.

We start our considerations with an existence and stability result.

Lemma 7 For arbitrary input data f ∈ L2(�), zh ∈ V ∂
h , the variational normal

derivative ∂hn uh ∈ V ∂
h defined by (20) exists, is unique, and satisfies the estimate

‖∂hn uh‖H−1/2(�) ≤ c
(‖ f ‖L2(�) + ‖zh‖H1/2(�)

)
.

Proof In the following Sh : V ∂
h → Vh is the discrete harmonic extensionwhich satisfies

the estimate ‖Shvh‖H1(�) ≤ c ‖vh‖H1/2(�), see [21, Lemma 3.2]. Together with the
discrete stability of functions from V ∂

h in H1/2(�) as well as (15) we obtain

‖∂hn uh‖H−1/2(�) ≤ c sup
vh∈V ∂

h
vh �≡0

(∂hn uh, vh)L2(�)

‖vh‖H1/2(�)

≤ c sup
vh∈V ∂

h
vh �≡0

(∇uh,∇Shvh)L2(�)2 − ( f , Shvh)L2(�)

‖Shvh‖H1(�)

≤ c
(‖∇uh‖L2(�) + ‖ f ‖L2(�)

)
. (21)

The a priori estimate ‖uh‖H1(�) ≤ c (‖ f ‖L2(�) + ‖zh‖H1/2(�)) implies the assertion.
��

Next, we show an error estimate for the variational normal derivative, for which we
exploit the W 2,2

α (�)-regularity of the solution. The result of the following theorem is
sharp for non-convex domains �, and also for convex domains when the solution is
not more regular than H2(�) (this happens e. g. when the right-hand side belongs to
L2(�), but not to L p(�) with p > 2). Later, we prove an estimate which promises
a higher convergence rate for convex domains, provided that the solution belongs to
W 2,∞

β (�).

Theorem 1 Let � be an arbitrary polygonal domain. Moreover, let zh = Qhz. Under
the assumptions u ∈ W 2,2

α (�) and z ∈ W 3/2,2
α (�) with α ∈ [0, 1/2)d , there holds the

error estimate

‖∂nu − ∂hn uh‖H−1/2(�) ≤ c h1−α
(
‖u‖W 2,2

α (�)
+ ‖z‖

W 3/2,2
α (�)

)
.

Proof Using the triangle inequality we split up the norm into an error term for the
L2(�)-projection onto V ∂

h , and a fully discrete term, this is

‖∂nu − ∂hn uh‖H−1/2(�) ≤ ‖∂nu − Qh(∂nu)‖H−1/2(�) + ‖Qh(∂nu) − ∂hn uh‖H−1/2(�).

With a standard duality argument we obtain for the first term

‖∂nu − Qh(∂nu)‖H−1/2(�) ≤ c h1/2 ‖∂nu − Qh(∂nu)‖L2(�). (22)

Next, we show a best-approximation error estimate in the L2(�)-norm. To this end,
we use the splitting splitting u = u0 + p j η j , see e. g. [26, Theorem 5.6(2)], with a
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function u0 ∈ V 2,2
α (�), certain constants p j , j ∈ C, and smooth cut-off functions

η j = η j (|x − c j |) which are equal to one near c j and have support in �
j
R . A similar

argument has been already used in the proof of Lemma 4. For functions belonging to
V 2,2

α (�) the estimate

‖∂nu0 − Ch(∂nu0)‖L2(�) ≤ c h1/2−α ‖u0‖V 2,2
α (�)

can be found in the proof of Theorem 9 in [29] for some Clément-type interpolation
operator Ch : L1(�) → V ∂

h . Note that ∂n(p j η j ) and its interpolant vanish and thus,

we easily deduce an estimate for the function u ∈ W 2,2
α (�). Moreover, due to norm

equivalences of V - and W -spaces [26, Theorem 5.6(2)], we obtain ‖u0‖V 2,2
α (�)

+∑
j∈C |u(c j )| ∼ ‖u‖W 2,2

α (�)
, which leads together with the previous estimate and (22)

to
‖∂nu − Qh(∂nu)‖H−1/2(�) ≤ c h1−α ‖u‖W 2,2

α (�)
.

With the discrete stability used already in (21), the definition of ∂hn from (20),
orthogonality of the L2(�)-projection Qh and Greens identity, we deduce

‖Qh(∂nu) − ∂hn uh‖H−1/2(�) ≤ c sup
ϕh∈V ∂

h
ϕh �≡0

(Qh(∂nu) − ∂hn uh, ϕh)L2(�)

‖ϕh‖H1/2(�)

≤ c sup
ϕh∈V ∂

h
ϕh �≡0

(∇(u − uh),∇Shϕh)L2(�)2

‖ϕh‖H1/2(�)

(23)

where Sh : V ∂
h → Vh is the discrete harmonic extension. This operator satisfies the

estimate ‖∇Shϕh‖L2(�) ≤ c ‖ϕh‖H1/2(�). Together with the H1(�)-error estimate
from Lemma 6 applied to ‖∇(u − uh)‖L2(�) we conclude the assertion. ��

As already mentioned before the previous theorem, we expect a convergence rate
higher than one for convex domains, provided that the input data are more regular. The
proof of sharp convergence rates in this case is more complicated and we start with
some notation required in the following. As in [29] we introduce a dyadic decompo-
sition towards the boundary of �, namely

�J := {x ∈ � : ρ(x) ∈ (dJ+1, dJ )} for J = −1, . . . , I , (24)

where ρ(x) := dist(x, �). We set dJ := 2−J for J = 0, . . . , I and use modifications
for the interior domain by d−1 := diam(�), and the outermost domain by dI+1 := 0.
Note that this forms a complete decomposition of �, i. e.,

� =
I⋃

J=−1

�J . (25)

In the following we will frequently exploit the following two properties that can be
directly concluded from the definition:

123



Error estimates for variational normal derivatives 429

|�J | ∼ dJ , inf
x∈�J

dist(x, �) ∼ sup
x∈�J

dist(x, �) ∼ dJ (J �= I ). (26)

The termination index I is chosen such that dI = cI h with some mesh-independent
constant cI > 1 specified later. This implies that I ∼ |ln h|. Moreover, we introduce
the patches with the adjacent subsets given by

�′
J := �min{I ,J+1} ∪ �J ∪ �max{−1,J−1},

�′′
J := �′

min{I ,J+1} ∪ �J ∪ �′
max{−1,J−1}.

Note that the patches satisfy the properties (26) as well due to dJ+1 ∼ dJ for J =
−1, . . . , I − 1.

We start the proof of the desired finite element error estimate with some local error
estimates for the nodal interpolant defined in (17).

Lemma 8 Assume that� is convex and u ∈ W 2,∞
β (�), z ∈ W 2,2

γ (�) with β ∈ [0, 2)d ,
γ ∈ [0, 3/2)d . Then, there holds the estimate

‖u − Ĩhu‖L2(�J )
+ h ‖∇(u − Ĩhu)‖H1(�J )

≤ c h2dmin{1/2,1−β}
J |ln h|s/2 |u|W 2,∞

β
(�′

J )
+ δJ ,I h

5/2−γ |z|W 2,2
γ (�)

,

with s = 1 if β = 1/2, and s = 0 if β �= 1/2.

Proof Throughout the proof we will hide the constant cI in the generic constant c as
it is not needed for the terms considered here. For elements T ∈ Th touching a corner,
i. e., r j,T = 0 for some j ∈ C, we directly deduce the estimate

‖u − Ihu‖L2(T ) + h ‖∇(u − Ihu)‖L2(T )

≤ c h3−β j |u|W 2,∞
β j

(T )
≤ c h2 d

1−β j
I |u|W 2,∞

β j
(T )

, (27)

which follows from the estimate from [28, Corollary 3.33] and the property dI ∼ h. On
that part of�J excluding the elements touching a corner we obtain for J = −1, . . . , I
with a standard estimate

‖u − Ihu‖L2(�J \Sh) + h ‖∇(u − Ihu)‖L2(�J \Sh) ≤ c h2 ‖∇2u‖L2(�′
J \Sh), (28)

where Sh := ∪{T ∈ Th : r j,T = 0, j ∈ C}. It remains to bound the term on the
right-hand side of (28). Therefore, we bound ‖∇2u‖L2(� J̃ \Sh) for J̃ = max{−1, J −
1}, . . . ,min{J + 1, I } by some weighted W 2,∞(�)-norm of u. This is done by an
application of the Hölder inequality on a further dyadic decomposition of � J̃ with
respect to the corners. A similar technique is used e. g. in [5,32] where error estimates
in L2(�) for the Neumann problem in three-dimensional polyhedral domains are
derived. Therein, the domain is decomposed twice into dyadic subsets to resolve both
edge and corner singularities. Following these ideas we introduce
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Ωj
I,0 Ωj,+

I,1 Ωj,+
I,2 Ωj,+

I,3 Ωj,+
I,4

Ωj,−
I,1

Ωj,−
I,2

Ωj,−
I,3

Ωj
I−1,0 Ωj,+

I−1,1 Ωj,+
I−1,2 Ωj,+

I−1,3

Ωj,−
I−1,1

Ωj,−
I−1,2

Ωj
I−2,0 Ωj,+

I−2,1 Ωj,+
I−2,2

Ωj,−
I−2,1 Ωj

I−3,0 Ωj,+
I−3,1

Fig. 1 Definition of the domains �
j ,±
J ,K

dJ ,K := 2K dJ = 2K−J ,

and define the subdomains

�
j,+
J ,K := {x ∈ � : dJ+1 < dist(x, �̃ j ) ≤ dJ , dJ ,K < dist(x, �̃ j−1) ≤ dJ ,K+1},

(29)
for J = 0, . . . , I , K = 0, . . . , J − 1 and j ∈ C. Here �̃ j stands for the straight line

which coincides with the boundary edge � j . Each domain �
j,+
J ,K is a parallelogram

bounded by that parallels to �̃ j having distance dJ+1 and dJ from �̃ j , and by that
parallels to �̃ j−1 having distance dJ ,K and dJ ,K+1 from �̃ j−1. In a similar way we

define the subdomains �
j,−
J ,K by simply changing the roles of �̃ j and �̃ j−1 in the

definition (29). Note that � j
J ,0 := �

j,+
J ,0 = �

j,−
J ,0 . These subdomains are illustrated in

Fig. 1.
By construction we have the property

|� j,±
J ,K | ∼ dJ dJ ,K = d2J 2

K . (30)

Moreover, we will exploit the property

inf
x∈�

±, j
J ,K \Sh

r j (x) ∼ sup
x∈�

±, j
J ,K \Sh

r j (x) ∼ dJ ,K , (31)

for all J = 0, . . . , I , K = 0, . . . , J − 1 and j ∈ C, which follows directly from the
definition of the sets �

±, j
J ,K . This allows us to locally trade the quantities dJ ,K by the

weights r j (x) contained in the weighted Sobolev spaces. The union of the domains
introduced in (29) leads to a covering of our initial decomposition (25) near a ball of
radius 1 around the corner c j , j ∈ C, i. e.,

�J ∩ �
j
R ⊂

J−1⋃
K=0

�
j,±
J ,K , J = 0, . . . , I . (32)

In order to bound the term on the right-hand side of (28), we apply the Hölder
inequality on each subset� j,±

J̃ ,K
using the property (30), and insert appropriate weights

taking (31) into account. This implies
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‖∇2u‖2
L2(� J̃∩�

j
R\Sh) ≤

J̃−1∑
K=0

dJ̃ d
1−2β j

J̃ ,K
‖rβ j

j ∇2u‖2
L∞(�

j,±
J̃ ,K

)

≤ c d
min{1,2−2β j }
J̃

|ln h|s max
K=0,..., J̃−1

|u|2
W 2,∞

β j
(�

j,±
J̃ ,K

)
,

where the last step follows from the limit value of the geometric series and the property
J̃ ≤ I ∼ |ln h|, i. e.,

J̃−1∑
K=0

dt
J̃ ,K

= dt
J̃

J̃−1∑
K=0

(2K )t ≤ c ·

⎧⎪⎨
⎪⎩
dt
J̃
, if t < 0,

1, if t > 0,

|ln h|, if t = 0,

t := 1 − 2β j . (33)

With the Hölder inequality we obtain a similar estimate on the set � J̃ \ ∪ j∈C�
j
R , this

is,
‖∇2u‖2

L2(� J̃ \∪ j∈C�
j
R)

≤ c dJ ‖∇2u‖2
L∞(� J̃ \∪ j∈C�

j
R)

≤ c dJ |u|2
W 2,∞

β
(� J̃ )

.

Combining the previous estimates and summing up over the indices J̃ = max{−1, J−
1}, . . . ,min{J + 1, I } finally yields together with (27)

‖u − Ihu‖L2(�J )
+ h ‖∇(u − Ihu)‖L2(�J )

≤ c h2 dmin{1/2,1−β}
J |ln h|s/2 |u|W 2,∞

β
(�′

J )
. (34)

In case of J = I , we still have to discuss the boundary terms to obtain an estimate for
Ĩh . This follows from

‖S̃hvh‖L2(�) + h ‖∇(S̃hvh)‖L2(�) ≤ c h1/2 ‖vh‖L2(�), vh ∈ V ∂
h ,

and the estimate derived in Lemma 5. ��

As an intermediate result we prove a weighted L2(�)-error estimate. The weight
function we use is defined by

σ(x) = dI + dist(x, �).

Note that such aweight functionhas beendiscussed already inSect. 2.1.The regularizer
in the present situation is the width of the outermost subset �I . Here, the relation
between the weight function σ and the dyadic decomposition (25) becomes clear, as
the definition directly implies

σ(x) ∼ dJ for x ∈ �J , J = −1, . . . , I . (35)

Lemma 9 Assume that � ⊂ R
2 is a convex polygonal domain. Let u ∈ W 2,∞

β (�) and

z ∈ W 2,2
γ (�) with β ∈ [0, 2)d and γ ∈ [0, 3/2)d . Moreover, let zh := Qhz. Then the

solutions of (15) fulfill the error estimate
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‖σ−2 (u − uh)‖L2(�) ≤ c

(
hmin{1/2,1−β} |ln h|s/2 |u|W 2,∞

β
(�)

+ h1/2−γ |z|W 2,2
γ (�)

)
,

(36)
provided that cI is sufficiently large.

Proof We follow the arguments of the Nitsche trick using the slightly modified dual
problem

− �w = σ−2 ψ in �, w = 0 on �, (37)

with ψ = σ−2 (u − uh)/‖σ−2 (u − uh)‖L2(�). Note that ‖ψ‖L2(�) = 1. With partial
integration and the Galerkin orthogonality we conclude

‖σ−2 (u − uh)‖L2(�) = (u − uh, σ
−2 ψ)L2(�)

= (∇(u − uh),∇(w − Ihw))L2(�)2 − (z − zh, ∂nw)L2(�).

(38)

First, we consider the second term on the right-hand side of (38). With the orthog-
onality of the L2(�)-projection we obtain

(z−zh, ∂nw)L2(�) ≤ c h1/2 ‖z−Ihz‖L2(�) ‖∂nw‖H1/2(�) ≤ c h1/2−γ |z|W 2,2
γ (�)

, (39)

where the second step follows from Lemma 5 and the estimate ‖∂nw‖H1/2(�) ≤
c ‖w‖H2(�) ≤ c ‖σ−2 ψ‖L2(�) ≤ c h−2 which is a consequence of a trace theorem,
an a priori estimate, and σ(x) ≥ dI ∼ h for all x ∈ �.

Next, we discuss the first term on the right-hand side of (38). A subset-wise appli-
cation of the Cauchy-Schwarz inequality with respect to the dyadic decomposition
(25) yields

(∇(u − uh),∇(w − Ihw))L2(�)2 ≤
I∑

J=−1

‖∇(u − uh)‖L2(�J )
‖∇(w − Ihw)‖L2(�J )

.

(40)
Moreover, with the local finite-element error estimates from [11] we obtain

‖∇(u − uh)‖L2(�J )

≤ c
(
‖∇(u − Ĩhu)‖L2(�′

J )
+ d−1

J ‖u − Ĩhu‖L2(�′
J )

+ d−1
J ‖u − uh‖L2(�′

J )

)
(41)

for all J = −1, . . . , I . Note that this estimate would not hold for Ih as the boundary
traces of uh and the used interpolant must coincide.

Next, we insert (41) into (40) and discuss the resulting terms separately. First,
consider the product of the interpolation terms. For the interpolation error of the dual
solution we apply a standard estimate and Lemma 2 in case of J = −1, . . . , I − 2.
As we can locally trade σ by dJ , see (35), we obtain

‖∇(w − Ihw)‖L2(�J )
≤ c h ‖∇2w‖L2(�′

J )

≤ c h d−1
J

(
‖∇w‖L2(�′′

J )
+ ‖σ−1 ψ‖L2(�′′

J )

)
. (42)
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In case of J = I − 1, I we use a global a priori estimate to arrive at

‖∇(w − Ihw)‖L2(�J )
≤ c h ‖∇2w‖L2(�) ≤ c h d−1

I ‖σ−1 ψ‖L2(�), (43)

where the last step follows from the property σ(x) ≥ dI for x ∈ �. Together with
the interpolation error estimates from Lemma 8 and the discrete Cauchy-Schwarz
inequality we obtain

I∑
J=−1

(
‖∇(u − Ĩhu)‖L2(�′

J )
+ d−1

J ‖u − Ĩhu‖L2(�′
J )

)
‖∇(w − Ihw)‖L2(�J )

≤ c h2
I∑

J=−1

(
|ln h|s/2 dmin{−1/2,−β}

J |u|W 2,∞
β

(�′′
J )

+ δJ ,I d
−1
I h1/2−γ |z|W 2,2

γ (�)

)

×
(
‖∇w‖L2(�′′

J )
+ ‖σ−1 ψ‖L2(�′′

J )
+ (δJ ,I−1 + δJ ,I ) ‖σ−1 ψ‖L2(�)

)

≤ c h2

⎛
⎝|ln h|s/2

(
I∑

J=−1

d2min{−1/2,−β}
J

)1/2

|u|W 2,∞
β

(�)
+ h−1/2−γ |z|W 2,2

γ (�)

⎞
⎠

×
(
‖∇w‖L2(�) + ‖σ−1 ψ‖L2(�)

)

≤ c

(
h1/2+min{0,1/2−β} |ln h|s/2 |u|W 2,∞

β
(�)

+ h1/2−γ |z|W 2,2
γ (�)

)
. (44)

The last step follows from the limit value of the geometric series. Analogous to (33)
this can be calculated by means of

I−1∑
J=0

dtJ =
I−1∑
J=0

(2−t )J ≤ c (1 + (2−t )I ) ≤ c (1 + dtI ), (45)

with t = 2min{−1/2,−β}. Moreover, we exploited the property dI ∼ h and the
estimates from Lemma 1 taking into account ‖σ−1 ψ‖ ≤ c d−1

I ≤ c h−1. Note that
the constant cI vanishes in c as it is not needed here.

Next, we discuss the product of the pollution term for the primal problem from (41)
and the interpolation error for the dual problem. With similar arguments as in (44) we
get

I∑
J=−1

d−1
J ‖u − uh‖L2(�′

J )
‖∇(w − Ihw)‖L2(�J )

≤ c h
I∑

J=−1

d−2
J ‖u − uh‖L2(�′

J )

(
‖∇w‖L2(�′′

J )
+ ‖σ−1 ψ‖L2(�′′

J )

+ (δJ ,I−1 + δJ ,I ) ‖σ−1 ψ‖L2(�)

)

≤ c h ‖σ−2 (u − uh)‖L2(�)

(
‖∇w‖L2(�) + ‖σ−1 ψ‖L2(�)

)
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≤ c c−1
I ‖σ−2 (u − uh)‖L2(�), (46)

and in the last step we applied Lemma 1 and ‖σ−1 ψ‖L2(�) ≤ c d−1
I = c c−1

I h−1.
Finally, insertion of (44) and (46) into (40) and the resulting estimate together with
(39) into (38) leads to

‖σ−2 (u − uh)‖L2(�) ≤ c h1/2+min{0,1/2−β} |ln h|s/2 |u|W 2,∞
β

(�)

+ ch1/2−γ |z|W 2,2
γ (�)

+ cc−1
I ‖σ−2 (u − uh)‖L2(�). (47)

The last term on the right-hand side can be neglected when cI is chosen sufficiently
large such that cc−1

I ≤ 1/2. This implies the assertion. ��

Now, we are in the position to show an improved convergence rate for the variational
normal derivative in case of convex domains.

Theorem 2 Let zh := Qhz. Assume that � is a convex polygonal domain. Let u ∈
H2(�) ∩ W 2,∞

β (�) and z ∈ W 2,2
γ (�) with β ∈ [0, 1)d , γ ∈ [0, 3/2)d . Moreover,

it is assumed that ∂nu is continuous in the corners of �. Then, there holds the error
estimate

‖∂nu − ∂hn uh‖H−1/2(�)

≤ c h3/2 |ln h|s/2
(
h−max{0,β−1/2} |u|W 2,∞

β
(�)

+ h−γ |z|W 2,2
γ (�)

)

with s = 1 if β = 1/2 and s = 0 otherwise.

Proof The beginning of the proof is analogous to the proof of Theorem 1. First, we
derive an interpolation error estimates for some interpolant of ∂nu in the L2(�)-norm.
Therefore, we use the a Clément-type interpolant Ch : C(�) → V ∂

h with a slight

modification in the nodes located in a corner of �. In the following {xi }Nbd
i=1 are the

nodes of Eh , and {ϕi }Nbd
i=1 are the nodal basis functions of Eh . Each basis function is the

boundary trace of a nodal basis function of Vh (the 2D “hat functions”). The precise
definition of Ch is given by

[Chv](x) =
Nbd∑
i=1

ai (v) ϕi (x), ai (v) :=
{

v(xi ), if xi = c j for some j ∈ C,

|σi |−1
∫
σi

v, otherwise,

where σi := ∪{E ∈ Eh : xi ∈ E} if xi /∈ {c j , j ∈ C}. For the nodes xi located
in the vertices of � we simply set σi := ∅. For some E ∈ Eh we denote by T
the corresponding triangle from Th , this is, E ⊂ T̄ , and by FT : T̂ → T the affine
mappings from the reference triangle T̂ := conv{(0, 0), (1, 0), (0, 1)} to the world
element T . Moreover, we will use the notation v̂(x̂) := v(FT (x̂)). In addition, we
introduce the patches SE := ∪{σi : xi ∈ Ē} and DE := ∪{T ∈ Th : T̄ ∩ Ē �= ∅}, as
well as the corresponding reference patches SÊ := F−1

T (SE ) and DÊ := F−1
T (DE ).
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First, we easily see that the interpolant satisfies the stability estimate

‖Ch(v)‖L2(E) ≤
∑

i : xi∈Ē
ai (v) ‖ϕi‖L2(E) ≤ c |E |1/2 ‖v‖L∞(SE )

for an arbitrary function v ∈ L∞(E). For elements E ∈ Eh touching the corner c j ,
j ∈ C, we insert an arbitrary first-order polynomial p and infer with the triangle
inequality and the stability estimate for Ch

‖∂nu − Ch(∂nu)‖L2(E) ≤ c
(‖∂nu − ∂n p‖L2(E) + ‖Ch(∂nu − ∂n p)‖L2(E)

)
≤ c h−1 |E |1/2 ‖∂n̂ û − ∂n̂ p̂‖L∞(SÊ )

≤ c h−1 |E |1/2 ‖û − p̂‖W 1,∞(DÊ ).

We proceed with the embedding W 2,2+ε(DÊ ) ↪→ W 1,∞(DÊ ), the Bramble-Hilbert

Lemma, as well as the embedding W 0,∞
β j

(DÊ ) ↪→ L2+ε(DÊ ), which holds for all
β j < 1, provided that ε > 0 is sufficiently small. The weighted Sobolev spaces in
the reference setting are defined analogous to the spaces defined in Sect. 2.2 with the
exception that the weight function is defined by r̂ := |x̂ |. When assuming w.l.o.g
that FT (0) = c j we obtain the property r̂(x̂) ∼ r j (FT (x̂)) h−1. A transformation of
variables then yields

‖∂nu − Ch(∂nu)‖L2(E) ≤ c h−1 |E |1/2 |û|W 2,∞
β j

(DÊ )
≤ c h3/2−β j |u|W 2,∞

β j
(DE )

. (48)

For elements E ∈ Eh away from the corners we apply similar arguments, but use
instead the stability estimate ‖Chv‖L2(E) ≤ c ‖v‖L2(SE ), to arrive at

‖∂nu − Ch(∂nu)‖L2(E) ≤ c h−1 |E |1/2 ‖∂n̂ û − ∂n̂ p̂‖L2(SÊ )

≤ c h−1 |E |1/2 ‖û − p̂‖H2(DÊ ) ≤ c h−1 |E |1/2 |û|H2(DÊ )

≤ c h1/2 |u|H2(DE ).

Summation over all boundary elements E ∈ Eh with E �⊂ Sh := ∪{E ∈ Eh : r j,E =
0, j ∈ C} yields

‖∂nu − Ch(∂nu)‖L2(�\Sh) ≤ c h1/2 |u|H2(�I \Sh)
≤ c h1−max{0,β−1/2} |ln h|s/2 |u|W 2,∞

β
(�)

,

where the last step is an application of the estimate (34) with J = I taking into account
dI ∼ h. Together with the estimates (22) and (48) we deduce

‖∂nu − Qh(∂nu)‖H−1/2(�) ≤ c h3/2−max{0,β−1/2} |ln h|s/2 |u|W 2,∞
β

(�)
.

The fully discrete part Qh(∂nu)−∂hn uh is treated as in (23) with the only difference
that we use instead of Shϕh the extension Ih Sϕh (note that the choice of the discrete
extension in (23) is arbitrary). Here, S : H1/2(�) → H1(�) denotes the harmonic
extension, i. e., [Sϕ]|� ≡ ϕ and (∇Sϕ,∇v)L2(�)2 = 0 for all v ∈ H1

0 (�). We have to
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derive an upper bound for (∇(u − uh),∇ Ih(Sϕh))L2(�)2 which must depend linearly
on ‖ϕ‖H1/2(�). Introducing Sϕh as intermediate function yields

(∇(u − uh),∇ Ih(Sϕh))L2(�)2

= (∇(u − uh),∇(Ih(Sϕh) − Sϕh))L2(�)2 + (∇(u − uh),∇Sϕh)L2(�)2 . (49)

The latter term is the simpler one. With integration by parts and the trace theorem for
normal derivatives from [25, Theorem 1.3.2] we obtain

(∇(u − uh),∇Sϕh)L2(�)2 = (u − uh, ∂n(Sϕh))L2(�)

= (z − Qhz, ∂n(Sϕh))L2(�)

≤ c ‖z − Qhz‖H1/2(�) ‖Sϕh‖H1(�)

≤ c h3/2−γ |z|W 2,2
γ (�)

‖ϕh‖H1/2(�). (50)

In the last step we used the fact that the L2(�)-projection is stable in H1/2(�), see
[31], and fulfills thus a best-approximation property in the H1/2(�)-norm. The desired
estimate then follows from Lemma 5.

The first term on the right-hand side of (49) has the structure of the term (40)
from the proof of Lemma 9. The only difference is that the dual solution w used in
that lemma, has to be replaced by the function Sϕh . To this end, we first confirm the
estimate

‖∇(Sφh) − Ih(Sφh ))‖L2(�) ≤ c h1/2−ε ‖Sϕh‖H3/2−ε(�)

≤ c h1/2−ε ‖ϕh‖H1−ε(�) ≤ c ‖ϕh‖H1/2(�). (51)

provided that ε ∈ (0, 1/2). With the same arguments as in (44) and (46), taking into
account (42) with w and ψ replaced by Sϕh and 0 for J = −1, . . . , I − 2 and (51)
for J = I − 1, I , as well as the interpolation error estimates from Lemma 8 and the
property dI ∼ h, we obtain

(∇(u − uh),∇(Ih(Sϕh) − Sϕh))L2(�)2

≤ c sumI
J=−1

(
‖∇(u − Ĩhu)‖L2(�′

J ) + d−1
J ‖u − Ĩhu‖L2(�′

J ) + d−1
J ‖u − uh‖L2(�′

J )

)

× ‖∇(Ih(Sϕh) − Sϕh)‖L2(�J )

≤ c h2
I∑

J=−1

(
dmin{−1/2,−β}
J |ln h|s/2 |u|W 2,∞

β
(�)

+ δJ ,I h
−1/2−γ |z|W 2,2

γ (�)

+ h−1 ‖σ−2 (u − uh)‖L2(�′
J )

) (
‖∇(Sϕh)‖L2(�′′

J ) + (δJ ,I−1 + δJ ,I )‖ϕh‖H1/2(�)

)

≤ c h3/2
(
hmin{0,1/2−β}| ln h|s/2|u|W 2,∞

β
(�)

+ h−γ |z|W 2,2
γ (�)

+ h−1/2‖σ−2(u − uh)‖L2(�)

)
‖ϕh‖H1/2(�).

The last term in the parentheses on the right-hand side is discussed in Lemma 9 already
and we can bound this term by the first two ones.
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Insertion of the previous estimate, (50) and (49) into (23) and canceling out the terms
‖ϕh‖H1/2(�) leads to the desired estimate for the term ‖Qh(∂nu) − ∂hn uh‖H−1/2(�). ��

Remark 1 The best possible convergence rate of 3/2 is achieved when z ∈ H2(�)

and u ∈ W 2,∞
β (�) with β j < 1/2 for all j ∈ C. In general, the latter assumption

is only satisfied when the opening angles of the corners of � satisfy ω j < 2π/3,
j ∈ C, and when f is sufficiently smooth. As an example, assuming f to be Hölder
continuous would be sufficient, compare Corollary 1. Otherwise, for angles larger
than 2π/3 we find a relation between the convergence rate and the exponent of the
dominating singularity λ̄ = π/ωmax by choosing β̄ = 2− λ̄ + ε if ωmax ∈ (2π/3, π)

and ᾱ = 1− λ̄ + ε if ωmax ∈ (π, 2π) for arbitrary but sufficiently small ε > 0. Under
the assumption that f and z are sufficiently smooth we then infer

‖∂nu − ∂hn uh‖H−1/2(�) ≤ c hmin{3/2,λ̄−ε} |ln h|s/2.

4 Dirichlet control problems

This section is devoted to the numerical approximation of the optimal control problem

J (u, z) := 1

2
‖u − ud‖2L2(�)

+ ν

2
〈Nz, z〉 → min! (52)

subject to the constraints {
−�u = f in �

u = z on �.
(53)

Here, f , ud ∈ L2(�) are given functions and ν > 0 is a regularization parameter. The
operator N : H1/2(�) → H−1/2(�) is a Steklov–Poincaré operator which is used to
realize an H1/2(�)-seminorm.

We introduce the linear operators S : H1/2(�) → H1(�) and P : H1(�)∗ →
H1
0 (�) defined by

uz = Sz : ⇐⇒ uz solves (53) for f ≡ 0,

u f = P f : ⇐⇒ u f solves (53) for z ≡ 0.

We can express the operator N bymeans of Nz := ∂n(Sz). Note that the regularization
term is equivalent to the square of the H1/2(�)-seminorm of z.

Necessary optimality conditions, that are also sufficient due to the convexity of
this optimization problem, can be found in [27]. Therein, it is shown that the pair
(u, z) ∈ H1(�) × H1/2(�) is the unique global minimizer of (52)–(53) if and only if
an adjoint state p ∈ H1(�) exists such that the optimality system⎧⎪⎨

⎪⎩
−�u = f −�p = u − ud in �,

u = z p = 0 on �,

ν Nz + ∂n p = 0 in H−1/2(�),

(54)
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is fulfilled. One can reformulate the optimality system using the operators S and P
introduced above. Taking also into account the relation S∗u = ∂n Pu leads to a compact
form of the optimality system

u = Sz + P f , ν Nz + S∗(u − ud) = 0.

Eliminating u leads to the variational problem

〈T z, v〉 = 〈g, v〉 ∀v ∈ H1/2(�) (55)

with
T := S∗S + νN , g := S∗(ud − u f ),

where u f := P f . The existence of a unique solution z of (55) follows from the
Lax-Milgram Lemma. Note that the operator T is coercive due to

〈T z, z〉 = ‖Sz‖2L2(�)
+ ν|Sz|2H1(�)

≥ c min{1, ν}‖z‖2H1/2(�)
.

It remains to discuss the regularity of the optimal solution and the corresponding state
and adjoint state. These results will be needed for sharp discretization error estimates.

Lemma 10 Assume that f , ud ∈ L2(�). Let α ∈ [0, 1)d be a weight vector satisfying
1 − λ j < α j , j ∈ C. Then, the solution of (54) possesses the regularity

Sz, P f ∈ W 2,2
α (�), p ∈ V 2,2

α (�), z ∈ W 3/2,2
α (�). (56)

Moreover, if ud ∈ C0,σ (�) for some σ ∈ (0, 1), there holds

Sz ∈ W 2,∞
β (�), p ∈ V 2,∞

β (�), z ∈ W 2,∞
β (�) ∩ W 2,2

γ (�), (57)

with β ∈ [0, 2)d , γ ∈ [0, 3/2)d satisfying 2− λ j < β j and 3/2− λ j < γ j for j ∈ C.

Proof In order to transfer the regularity of the adjoint state to the state, we introduce
the auxiliary function u0 solving the boundary value problem

−�u0 = 1

ν
(u − ud) in �, ∂nu0 = 0 on �.

Note that the function u0 can be determined uniquely as the optimal state satisfies∫
�
u = ∫

�
ud , see e. g. [16, Section 3.2.3]. With (54) it is easy to confirm that the state

can be decomposed by means of Sz = u0 − 1
ν
p.

The assertion then follows from bootstrapping arguments. Standard regularity
results, and in particular [13, Theorem 4.4.3.7], immediately imply

z ∈ H1/2(�) ⇒ u ∈ H1(�) ↪→ Lq(�) ⇒ p, u0 ∈ W 2,q(�)

⇒ Sz ∈ W 2,q(�) ⇒ z ∈ W 2−1/q,q(�),

for arbitrary q ∈ [1,∞) satisfying 2/q > 2 − λ j for all j ∈ C. The regularity results
collected in (56) then directly follow from Lemma 3.
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From embedding theorems we moreover conclude that u, p ∈ C0,σ ′
(�) for some

σ ′ ∈ (0,min{1, λ̄}), and with Corollary 1 we directly infer (57). The assertion z ∈
W 2,2

γ (�) follows from the W 2,∞
β (�)-regularity due to the Hölder inequality. ��

In order to discretize the optimality systemwe replace S and P by the finite element
solution operators Sh : V ∂

h → Vh and Ph : H1(�)∗ → V ∂
h defined by

uh = Shzh : ⇐⇒ uh |� ≡ zh (∇uh,∇vh)L2(�)2 = 0 ∀vh ∈ V0h,

ph = Phuh : ⇐⇒ (∇ ph,∇vh)L2(�)2 = (uh, vh)L2(�) ∀vh ∈ V0h .

Instead of S∗ we use its discrete version S∗
h := ∂hn Ph which is the adjoint operator

to Sh . Then, we seek a state uh ∈ Vh and a control zh ∈ V ∂
h as solution of the

finite-dimensional optimization problem

Jh(uh, zh) := 1

2
‖uh − ud‖2L2(�)

+ ν

2
〈Nhzh, zh〉 → min! (58)

subject to

uh |� ≡ zh, (∇uh,∇vh)L2(�)2 = ( f , vh)L2(�) ∀vh ∈ V0h . (59)

In order to define an appropriate discrete Steklov–Poincaré operator we use the
variational normal derivative introduced in (20), and define Nh : V ∂

h → V ∂
h by

Nhzh := ∂hn (Shzh). Note that by this definition, the functional 〈Nh ·, ·〉 induces a
mesh-independent H1/2(�)-seminorm for functions in V ∂

h . Analogous to the contin-
uous case we can derive the discrete optimality system

uh |� ≡ zh, (∇uh,∇vh)L2(�)2 = ( f , vh)L2(�) ∀vh ∈ V0h,

(∇ ph,∇vh)L2(�)2 = (uh − ud , vh)L2(�) ∀vh ∈ V0h, (60)

(ν ∂hn (Shzh) + ∂hn ph, wh)L2(�) = 0 ∀wh ∈ V ∂
h ,

with an adjoint state ph ∈ V0h . This system can be rewritten by means of

〈Thzh, vh〉 = 〈gh, vh〉 ∀vh ∈ V ∂
h (61)

with Th = S∗
h Sh + ν Nh , gh := S∗

h (ud − u f ,h) and u f ,h := Ph f .
The remainder of this section is devoted to the proof of error estimates for the finite-

element approximation (uh, zh, ph). To this end, we introduce an auxiliary function
z̃h ∈ V ∂

h solving the variational formulation

〈T z̃h, vh〉 = 〈g, vh〉 ∀vh ∈ V ∂
h . (62)

The Lax-Milgram-Lemma guarantees the existence and uniqueness of the solution
z̃h of (62). Moreover, by the Céa-Lemma and the interpolation error estimates from
Lemma 5 we obtain the following intermediate result:

Lemma 11 Let z ∈ H1/2(�) be the optimal control solving (52)–(53). The approxi-
mate solutions z̃h of (62) satisfy the estimate
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‖z − z̃h‖H1/2(�) ≤ c

{
h1−α ‖z‖

W 3/2,2
α (�)

, if ud ∈ L2(�),

h3/2−γ |z|W 2,2
γ (�)

, if ud ∈ C0,σ (�).

The weights α and γ are chosen as in Lemma 10.

It remains to derive an estimate for the error between the continuous and the discrete
control z and zh , respectively. In the following Lemma we present a general estimate.
The idea of the proof is taken from [27].

Lemma 12 The solutions z and zh of (55) and (61), respectively, satisfy the general
error estimate

‖z − zh‖H1/2(�) ≤ c
(‖z − z̃h‖H1/2(�) + ‖∂n p − ∂hn ph(u)‖H−1/2(�)

+ ‖u − uh(Qhz)‖L2(�) + ‖∂n(Sz) − ∂hn (ShQhz)‖H−1/2(�)

)
,

with uh(Qhz) = Sh(Qhz) + u f ,h and ph(u) = Ph(u − ud).

Proof First, we confirm that the bilinear form 〈Th ·, ·〉 is V ∂
h -elliptic and continuous,

this is, for all vh, wh ∈ V ∂
h there holds

γ 〈Thvh, vh〉 ≥ ‖vh‖2H1/2(�)
,

〈Thvh, wh〉 ≤ c ‖vh‖H1/2(�) ‖wh‖H1/2(�),

with some constant γ > 0 independent of h. This follows directly from the mapping
properties of Nh , Sh and S∗

h as well as Lemma 7. In the following we write wh :=
zh − z̃h . With the ellipticity, the equations (61) and (62) and Young’s inequality, we
obtain

γ ‖wh‖2H1/2(�)
≤ 〈Th(zh − z̃h), wh〉
= 〈gh − g + (T − Th)z̃h, wh〉
≤ γ

2
‖wh‖2H1/2(�)

+ c ‖g − gh + (T − Th)z̃h‖2H−1/2(�)
. (63)

Insertion of the definitions of g and gh yields

gh − g = (S∗ − S∗
h )(P f − ud) + S∗

h (P − Ph) f . (64)

Rearrangement of the remaining terms and the definitions of T and Th lead to

(T − Th)z̃h
= T (z̃h − z) + T z − ThQhz + Th(Qhz − z̃h)

= T (z̃h − z) + (S∗ − S∗
h )Sz + S∗

h (Sz − ShQhz)

+ ν (Nz − NhQhz) + Th(Qhz − z̃h) (65)

Next, we insert (64) and (65) into (63), apply the triangle inequality, and use the
abbreviations

u = Sz + P f , ∂n p = S∗(u − ud), ∂n(Sz) = Nz,
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as well as their discrete counterparts

uh(Qhz) = ShQhz + Ph f , ∂hn ph(u) = S∗
h (u − ud), ∂hn (ShQhz) = NhQhz.

Insertion of (64) and (65) into (63), and exploiting the stability estimates

‖T v‖H−1/2(�) ≤ c ‖v‖H1/2(�), ‖Thvh‖H−1/2(�) ≤ c ‖vh‖H1/2(�),

‖S∗
hv‖H−1/2(�) ≤ c ‖v‖L2(�),

that can be concluded from Lemma 7, as well as the stability of Qh in H1/2(�) [31],
leads to the estimate

γ

2
‖wh‖2H1/2(�)

≤ c ‖z − z̃h‖2H1/2(�)
+ ‖∂n p − ∂hn ph(u)‖2H−1/2(�)

+ c ‖u − uh(Qhz)‖2L2(�)
+ ‖∂n(Sz) − ∂hn (ShQhz)‖2H−1/2(�)

.

With the triangle inequality ‖z − zh‖H1/2(�) ≤ ‖z − z̃h‖H1/2(�) + ‖wh‖H1/2(�) we
conclude the assertion. ��

This general estimate and the estimates presented in Lemma 6, Theorems 1, 2 and
Lemma 11 lead to the main result of this section.

Theorem 3 Let � ⊂ R
2 be an arbitrary polygonal domain and assume that f , ud ∈

L2(�). Let (u, z, p) be the solution of (54), and (uh, zh, ph) the corresponding finite
element approximation solving (60). Then, the error estimate

‖z − zh‖H1/2(�) ≤ c hmin{1,λ−ε} (66)

is valid for arbitrary ε > 0.
Furthermore, if � is convex and ud ∈ C0,σ (�) for some σ ∈ (0, 1), there holds

the estimate
‖z − zh‖H1/2(�) ≤ c hmin{3/2,λ−ε}. (67)

Note that λ̄ := π/max j∈C ω j .
The constant c depends linearly on the functions z, Sz, P f and p, more precisely,

c =

⎧⎪⎨
⎪⎩
c
(
‖z‖

W 3/2,2
α (�)

+ |Sz|W 2,2
α (�)

+ |P f |W 2,2
α (�)

+ |p|W 2,2
α (�)

)
, in (66),

c

(
|z|W 2,2

γ (�)
+ |Sz|W 2,∞

β
(�)

+ |P f |W 2,2
α (�)

+ |p|W 2,∞
β

(�)

)
, in (67).

The weights are defined by α j := max{0, 1− λ j + ε}, β j := max{0, 2− λ j + ε} and
γ j := max{0, 3/2 − λ j + ε} for all j ∈ C.

Proof The terms involving the approximation of the normal derivative require an
application of Theorem 1 or Theorem 2. In the latter theorem continuity of the normal
derivatives in the corners is assumed. This is trivially fulfilled for ∂n p as p = 0 on
� and due to the optimality condition Nz = − 1

ν
∂n p this property is transferred to

∂n(Sz) = Nz. ��
As a simple conclusion we also obtain an error estimate for the state variable in the
energy norm.
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Corollary 2 Assume that f , ud ∈ L2(�). Let u ∈ H1(�) and uh ∈ Vh be the optimal
states of (52)–(53) and (58)–(59), respectively. Then, the error estimate

‖u − uh‖H1(�) ≤ c hmin{1,λ−ε}

holds for arbitrary but sufficiently small ε > 0. The constant c > 0 is the same as in
the previous theorem.

Proof With the triangle inequality we get

‖u − uh‖H1(�) ≤ ‖Sz + u f − (ShQhz + u f ,h)‖H1(�) + ‖ShQh(z − zh)‖H1(�).

Note that ShQhz + u f ,h is the finite element approximation of u := Sz + u f . Thus,
we infer with Lemma 6

‖Sz + u f − (ShQhz + u f ,h)‖H1(�) ≤ c hmin{1,λ−ε} (
|u|W 2,2

α (�)
+ ‖z‖

W 3/2,2
α (�)

)
.

Moreover, with stability properties of Sh and Qh we get

‖ShQh(z − zh)‖H1(�) ≤ c ‖Qh(z − zh)‖H1/2(�) ≤ c ‖z − zh‖H1/2(�)

and with (66) we conclude the assertion. ��

5 Numerical experiments

In order to confirm the theoretically predicted convergence results we present some
numerical experiments measuring the convergence rates. Thus, we computed the prob-
lem (52)–(53) in the domains

�90 = (0, 1)2,

�135 = (−1, 1)2 ∩ {(r cosϕ, r sin ϕ) : r ∈ (0,∞), ϕ ∈ (0, 3π/4)},
�270 = (−1, 1)2 \ [0, 1]2,

with input data ν = 1, f ≡ 0 and ud(x1, x2) = x1 + x2.
We start with a structured grid consisting of 2, 3 or 6 triangles, respectively, and

compute the discrete solutions solving (60) on a sequence of meshes obtained by
bisection of each element so that new nodes of the grid are inserted at the midpoints of
the longest edge of each element. The solution was computed by a GMRES method
applied to the system (61) and in each iteration the linearized state and adjoint equation
have to be solved. This was done by the parallel direct solver MUMPS which allows
to reuse the factorization of the stiffness matrix. The implementation is written in C++
and the tests were performed on a Intel-Core-i7-4770 (4 × 3400MHz) machine with
32GB RAM.

As an explicit representation of the exact solution is not available for the given
input data we measured the error by comparison with the solution on a very fine mesh
with maximal element diameter hre f = 2−10. In Tables 1, 2 and 3 we report the error
of the state in H1(�), and the control in the L2(�)-norm and the H1/2(�)-seminorm,
respectively. The latter norm is realized by the discrete harmonic extension Sh , this is,
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Table 1 Results of the numerical experiment for the domain �90 showing finite element error and corre-
sponding experimental convergence rates (in parentheses) for the state and control

h · √
2 #Dof #BdDof |u − uh |H1(�) ‖z − zh‖L2(�) |z − zh |H1/2(�)

2−4 961 128 3.37e−03 (0.98) 6.27e−05 (2.00) 4.93e−04 (1.55)

2−5 3969 256 1.69e−03 (1.00) 1.57e−05 (2.00) 1.71e−04 (1.53)

2−6 16129 512 8.43e−04 (1.00) 3.92e−06 (2.00) 6.04e−05 (1.50)

2−7 65025 1024 4.19e−04 (1.01) 9.72e−07 (2.01) 2.22e−05 (1.44)

2−8 261121 2048 2.04e−04 (1.04) 2.35e−07 (2.05) 8.64e−06 (1.36)

2−9 1046530 4096 9.13e−05 (1.16) 5.07e−08 (2.22) 3.30e−06 (1.39)

Theory: (1.00) (2.00) (1.50)

Table 2 Results of the numerical experiment for the domain �135 showing finite element error and corre-
sponding experimental convergence rates (in parentheses) for the state and control

h · √
2 #Dof #BdDof |u − uh |H1(�) ‖z − zh‖L2(�) |z − zh |H1/2(�)

2−4 1457 160 5.93e−03 (0.98) 1.56e−04 (1.90) 1.06e−03 (1.40)

2−5 5985 320 2.98e−03 (0.99) 4.19e−05 (1.89) 4.05e−04 (1.38)

2−6 24257 640 1.49e−03 (1.00) 1.13e−05 (1.89) 1.58e−04 (1.36)

2−7 97665 1280 7.44e−04 (1.01) 3.05e−06 (1.89) 6.22e−05 (1.34)

2−8 391937 2560 3.63e−04 (1.03) 7.98e−07 (1.93) 2.48e−05 (1.33)

2−9 1570300 5120 1.63e−04 (1.16) 1.80e−07 (2.15) 9.35e−06 (1.41)

Theory: (1.00) (1.83) (1.33)

Table 3 Results of the numerical experiment for the domain �270 showing finite element error and corre-
sponding experimental convergence rates (in parentheses) for the state and control

h · √
2 #Dof #BdDof |u − uh |H1(�) ‖z − zh‖L2(�) |z − zh |H1/2(�)

2−4 2945 256 1.71e−01 (0.70) 3.68e−02 (1.28) 9.83e−02 (0.71)

2−5 12033 512 1.06e−01 (0.69) 1.51e−02 (1.29) 6.07e−02 (0.69)

2−6 48641 1024 6.53e−02 (0.69) 6.11e−03 (1.30) 3.74e−02 (0.70)

2−7 195585 2048 4.01e−02 (0.71) 2.43e−03 (1.33) 2.25e−02 (0.73)

2−8 784385 4096 2.38e−02 (0.75) 9.03e−04 (1.43) 1.27e−02 (0.82)

2−9 3141630 8192 1.27e−02 (0.91) 2.68e−04 (1.75) 6.05e−03 (1.07)

Theory: (0.67) (1.17) (0.67)

|z − zh |H1/2(�) ≈ |zhre f − zh |H1/2(�) ∼ ‖∇Shre f (zhre f − zh)‖L2(�).

The convergence rates measured for the domain �90 are the same as in the
experiments from [27]. These results confirm the rates predicted in Theorem 3 and
Corollary 2. Note that the largest opening angle is ω̄ = π/2 and thus, λ̄ = 2. Our
theory moreover claims that the convergence rate for the discrete control is reduced
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when the largest opening angle exceeds the limiting case 2π/3. This is the case for
the domain �135, where we have ω̄ = 3π/4 and λ̄ = 4/3. The rate 4/3 for the
control in the H1/2(�)-norm, which is predicted in Theorem 3, is the rate we also
observe numerically. The convergence rate for the discrete states is still 1 as proved in
Corollary 2. The fact that our error estimates are also valid and sharp for non-convex
domains is confirmed by the experiment for the domain �270. Here, the rate λ̄ = 2/3
is almost observed numerically for the discrete states and controls in H1(�) and
H1/2(�), respectively. Note that the convergence rates in the experiments are always
slightly better than predicted which is due to the approximate computation of the error
by comparison with a reference solution on a fine grid.

Moreover, we have to notice that we have not proved error estimates for the control
in L2(�), but the experiments confirm in all cases that this convergence rate is higher
by 1/2 compared to the rate obtained in the H1/2(�)-norm. In case of Dirichlet control
problems with L2(�)-regularization the convergence rate for the control in the L2(�)-
norm is min{1, λ̄− 1/2− ε} (up to logarithmic factors), see [3], or min{1, λ̄/2}− ε in
case of state-constraints, see [20]. Obviously, the rate is higher by 1 when H1/2(�)-
regularization is used which is due to the fact that the solutions are more regular.
However, in order to prove estimates in L2(�) for the energy regularization approach,
one has to establish a Nitsche trick for the non-conforming approximation (61) of
(55). This will be subject of future research.
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