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Abstract
We define and analyse a least-squares finite element method for a first-order reformu-
lation of the obstacle problem. Moreover, we derive variational inequalities that are
based on similar but non-symmetric bilinear forms. A priori error estimates including
the case of non-conforming convex sets are given and optimal convergence rates are
shown for the lowest-order case. We provide a posteriori bounds that can be used as
error indicators in an adaptive algorithm. Numerical studies are presented.

Mathematics Subject Classification 65N30 · 65N12 · 49J40

1 Introduction

Many physical problems are of obstacle type, or more generally, described by varia-
tional inequalities [25,29]. In this article we consider, as amodel problem, the classical
obstacle problem where one seeks the equilibrium position of an elastic membrane
constrained to lie over an obstacle. Another important example of an elliptic obstacle
problem is the bending of a plate over an obstacle.

There exists already a long history of numerical methods, in particular finite ele-
ment methods, see e.g., the books [16,17] for an overview on the topic. However, the
literature on least-squares methods for obstacle problems is scarce. In fact, until the
writing of this paper only [9] was available for the classical obstacle problem where
the idea goes back to a Nitsche-based method for contact problems introduced and
analyzed in [11]. An analysis of first-order least-squares finite element methods for
Signorini problems can be found in [1] and more recently [26]. Let us also mention
the pioneering work [14] for the a priori analysis of a classical finite element scheme.
Newer articles include [18–20] where mixed and stabilized methods are considered.

Least-squares finite element methods are a widespread class of numerical schemes
and their basic idea is to approximate the solution by minimizing the residual in some
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56 T. Führer

given norm. Let us recall some important properties of least-squares finite element
methods, a detailed list is given in the introduction of the overview article [5], see also
the book [6].

• Unconstrained stability One feature of least-squares schemes is that the methods
are stable for all pairings of discrete spaces.

• Adaptivity Another feature is that a posteriori error bounds are obtained by sim-
ply evaluating the least-squares functional. For instance, standard least-squares
methods for the Poisson problem [6] are based on minimizing residuals in L2

norms, which can be localized and, then, be used as error indicators in an adaptive
algorithm.

The main purpose of this paper is to close the gap in the literature and define least-
squares based methods for the obstacle problem. In particular, we want to study if the
aforementioned properties transfer to the case of obstacle problems. Let us shortly
describe the functional our method is based on. For simplicity assume a zero obstacle
(the remainder of the paper deals with general non-zero obstacles). Then, the problem
reads

−�u ≥ f , u ≥ 0, (−�u − f )u = 0

in some domain � and u|∂� = 0. Introducing the Lagrange multiplier (or reaction
force) λ = −�u − f and σ = ∇u, we rewrite the problem as a first-order system,
see also [2,3,9,18],

− div σ − λ = f , σ − ∇u = 0, u ≥ 0, λ ≥ 0, λu = 0.

Note that f ∈ L2(�) does not imply more regularity for u so that λ ∈ H−1(�) lives
only in the dual space in general. However, observe that div σ + λ = − f ∈ L2(�)

and therefore the functional

J ((u, σ , λ); f ) := ‖ div σ + λ + f ‖2 + ‖∇u − σ‖2 + 〈λ , u〉,

where 〈· , ·〉 denotes a duality pairing, is well-defined for div σ + λ ∈ L2(�). We
will show that minimizing J over a convex set with the additional constraints u ≥ 0,
λ ≥ 0 is equivalent to solving the obstacle problem. We will consider the variational
inequality associated to this problemwith corresponding bilinear form a(·, ·). An issue
that arises is that a(·, ·) is not necessarily coercive. However, as it turns out, a simple
scaling of the first term in the functional ensures coercivity on the whole space. In
view of the aforementioned properties, this means that our method is unconstrained
stable. The recent work [18] based on a Lagrange formulation (without reformulation
to a first-order system) considers augmenting the trial spaces with bubble functions
(mixed method) resp. adding residual terms (stabilized method) to obtain stability.
The authors extended their work also to plate-bending problems, see [20].

Another motivation of the proposed first-order reformulation is that it allows to
simultaneously approximate displacements and stresses. In many problems of struc-
tural engineering the stress is usually the primary quantity of interest. For the present
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First-order least-squares method for the obstacle problem 57

problem of an elastic membrane the stress is directly related to the gradient and for
the problem of bending a plate over an obstacle the physical quantities of interest are
the bending moments.

Furthermore, we will see that the functional J evaluated at some discrete approx-
imation (uh, σ h, λh) with uh, λh ≥ 0 is an upper bound for the error. Note that for
λh ∈ L2(�) the duality 〈λh , uh〉 reduces to the L2 inner product. Thus, all the terms
in the functional can be localized and used as error indicators.

Additionally, we will derive and analyse other variational inequalities that are also
based on the first-order reformulation. The resulting methods are quite similar to
the least-squares scheme since they share the same residual terms. The only dif-
ference is that the complementary condition λu = 0 is incorporated in a different,
non-symmetric, way. We will present a uniform analysis that covers the least-squares
formulation and the novel variational inequalities of the obstacle problem.

Finally, we point out that the use of adaptive schemes for obstacle problems is
quite natural. First, the solutions may suffer from singularities stemming from the
geometry, and second, the free boundary is a priori unknown. There exists plenty
of literature on a posteriori estimators resp. adaptivity for finite elements methods
for the obstacle problem, see e.g., [4,7,10,27,28,31,32] to name a few. Many of the
estimators are based on the use of a discrete Lagrange multiplier which is obtained in
a postprocessing step. In contrast, our proposed methods simultaneously approximate
the Lagrange multiplier. This allows for a simple analysis of reliable a posteriori
bounds.

1.1 Outline

The remainder of the paper is organized as follows. In Sect. 2 we describe the model
problem, introduce the corresponding first-order system and based on that reformu-
lation define our least-squares method. Then, Sect. 3 deals with the definition and
analysis of different variational inequalities. In Sect. 4 we provide an a posteriori anal-
ysis and numerical studies are presented in Sect. 5. The appendix contains an example,
which shows that a(·, ·) is not coercive in general, and proofs of some auxiliary results.

2 Least-squares method

In Sects. 2.1 and 2.2 we describe the model problem and introduce the reader to our
notation. Then, Sect. 2.3 is devoted to the definition and analysis of a least-squares
functional.

2.1 Model problem

Let � ⊂ R
n , n = 2, 3 denote a polygonal Lipschitz domain with boundary � = ∂�.

For given f ∈ L2(�) and g ∈ H1(�)with g|� ≤ 0 we consider the classical obstacle
problem: find a solution u to
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− �u ≥ f in�, (1a)

u ≥ g in�, (1b)

(u − g)(−�u − f ) = 0 in�, (1c)

u = 0 on�. (1d)

It is well-known that this problem admits a unique solution u ∈ H1
0 (�), and it can be

equivalently characterized by the variational inequality: find u ∈ H1
0 (�), u ≥ g such

that
∫

�

∇u · ∇(v − u) dx ≥
∫

�

f (v − u) dx for all v ∈ H1
0 (�), v ≥ g, (2)

see [25]. For a more detailed description of the involved function spaces we refer
to Sect. 2.2 below.

2.2 Notation and function spaces

We use the common notation for Sobolev spaces H1
0 (�), Hs(�) (s > 0). Let (· , ·)

denote the L2(�) inner product, which induces the norm ‖ · ‖. The dual of H1
0 (�) is

denoted by H−1(�) := (H1
0 (�))∗, where duality 〈· , ·〉 is understood with respect to

the extended L2(�) inner product. We equip H−1(�) with the dual norm

‖λ‖−1 := sup
0 �=v∈H1

0 (�)

〈λ , v〉
‖∇v‖ .

Recall Friedrichs’ inequality

‖u‖ ≤ CF‖∇v‖ for v ∈ H1
0 (�),

where 0 < CF = CF (�) ≤ diam(�). Thus, by definition we have ‖λ‖−1 ≤ CF‖λ‖
for λ ∈ L2(�).

Let div : L2(�) := L2(�)n → H−1(�) denote the generalized divergence oper-
ator, i.e., 〈div σ , u〉 := −(σ ,∇u) for all σ ∈ L2(�), u ∈ H1

0 (�). This operator is
bounded,

‖ div σ‖−1 = sup
0 �=v∈H1

0 (�)

〈div σ , v〉
‖∇v‖ = sup

0 �=v∈H1
0 (�)

−(σ ,∇v)

‖∇v‖ ≤ ‖σ‖.

Let v ∈ H1(�). We say v ≥ 0 if v ≥ 0 a.e. in�. Moreover, λ ≥ 0 for λ ∈ H−1(�)

means that 〈λ , v〉 ≥ 0 for all v ∈ H1
0 (�) with v ≥ 0. We also interpret v ≥ w as

v − w ≥ 0 for v,w ∈ H1(�).
Define the space

V := H1
0 (�) × L2(�) × H−1(�)
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First-order least-squares method for the obstacle problem 59

with norm

‖v‖2V := ‖∇v‖2 + ‖τ‖2 + ‖μ‖2−1 for v = (v, τ , μ) ∈ V

and the space

U := {
(u, σ , λ) ∈ V : div σ + λ ∈ L2(�)

}

with norm

‖u‖2U := ‖∇u‖2 + ‖σ‖2 + ‖ div σ + λ‖2 for u = (u, σ , λ) ∈ U .

Observe that ‖ · ‖U is a stronger norm than ‖ · ‖V , i.e.,

‖∇u‖2 + ‖σ‖2 + ‖λ‖2−1 ≤ ‖∇u‖2 + ‖σ‖2 + 2‖ div σ + λ‖2−1 + 2‖ div σ‖2−1

≤ ‖∇u‖2 + 3‖σ‖2 + 2C2
F‖ div σ + λ‖2.

Our first least-squares formulation will be based on the minimization over the non-
empty, convex and closed subset

Ks := {
(u, σ , λ) ∈ U : u − g ≥ 0, λ ≥ 0

}
,

where g is the given obstacle function. We will also derive and analyse variational
inequalities based on non-symmetric bilinear forms that utilize the sets

K 0 := {
(u, σ , λ) ∈ U : u − g ≥ 0

}
,

K 1 := {
(u, σ , λ) ∈ U : λ ≥ 0

}
.

Clearly, Ks ⊂ K j for j = 0, 1.
We write A � B if there exists a constant C > 0, independent of quantities of

interest, such that A ≤ CB. Analogously we define A � B. If A � B and B � A
hold then we write A 
 B.

2.3 Least-squares functional

Let u ∈ H1
0 (�) denote the unique solution of the obstacle problem (1). Define λ :=

−�u − f ∈ H−1(�) and σ := ∇u. Problem (1) can equivalently be written as the
first-order problem

− div σ − λ = f in�, (3a)

σ − ∇u = 0 in�, (3b)

u ≥ g in�, (3c)

λ ≥ 0 in�, (3d)

(u − g)λ = 0 in�, (3e)
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u = 0 on�. (3f)

Observe that div σ + λ ∈ L2(�) and that the unique solution u = (u, σ , λ) ∈ U
satisfies u ∈ Ks . We consider the functional

J (u; f , g) := ‖ div σ + λ + f ‖2 + ‖∇u − σ‖2 + 〈λ , u − g〉

for u = (u, σ , λ) ∈ U , f ∈ L2(�), g ∈ H1
0 (�) and the minimization problem: find

u ∈ Ks with

J (u; f , g) = min
v∈Ks

J (v; f , g). (4)

Note that the definition of the functional only makes sense if g ∈ H1
0 (�).

Theorem 1 If f ∈ L2(�), g ∈ H1
0 (�), then problems (3) and (4) are equivalent. In

particular, there exists a unique solution u ∈ Ks of (4) and it holds that

J (v; f , g) ≥ CJ‖v − u‖2U for all v ∈ Ks . (5)

The constant CJ > 0 depends only on �.

Proof Let u := (u, σ , λ) = (u,∇u,−�u− f ) ∈ Ks denote the unique solution of (3).
Observe that J (v; f , g) ≥ 0 for all v ∈ Ks and J (u; f , g) = 0, thus, u minimizes
the functional. Suppose (5) holds and that u∗ ∈ Ks is another minimizer. Then, (5)
proves that u = u∗. It only remains to show (5). Let v = (v, τ , μ) ∈ Ks . Note that
all terms in J (v; f , g) are non-negative. Since f = − div σ − λ and ∇u − σ = 0 we
have with the constant CF > 0 that

J (v; f , g) = ‖ div(τ − σ ) + (μ − λ)‖2 + ‖∇(v − u) − (τ − σ )‖2 + 〈μ, v − g〉
= 1

1 + C2
F

(
(1 + C2

F )‖ div(τ − σ ) + (μ − λ)‖2

+ (1 + C2
F )‖∇(v − u) − (τ − σ )‖2

+ (1 + C2
F )〈μ, v − g〉

)

≥ 1

1 + C2
F

(
(1 + C2

F )‖ div(τ − σ ) + (μ − λ)‖2

+ ‖∇(v − u) − (τ − σ )‖2 + 〈μ, v − g〉
)
.

Moreover, 〈λ , u − g〉 = 0 and 〈λ , v − g〉 ≥ 0, 〈μ, u − g〉 ≥ 0. We estimate

〈μ, v − g〉 = 〈μ, v − u〉 + 〈μ, u − g〉 + 〈λ , u − g〉
≥ 〈μ, v − u〉 + 〈λ , u − g〉 + 〈λ , g − v〉
= 〈μ, v − u〉 + 〈λ , u − v〉 = 〈μ − λ , v − u〉.
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First-order least-squares method for the obstacle problem 61

Define w := (w,χ , ν) := v − u. Then, the Cauchy–Schwarz inequality, Young’s
inequality and the definition of the divergence operator yield

J (v; f , g) � (1 + C2
F )‖ div(τ − σ ) + (μ − λ)‖2

+ ‖∇(v − u) − (τ − σ )‖2 + 〈μ, v − g〉
≥ (1 + C2

F )‖ divχ + ν‖2 + ‖∇w − χ‖2 + 〈ν ,w〉
= (1 + C2

F )‖ divχ + ν‖2 + ‖∇w‖2
+ ‖χ‖2 − (∇w ,χ) + 〈divχ , w〉 + 〈ν ,w〉

≥ (1 + C2
F )‖ divχ + ν‖2 + 1

2‖∇w‖2 + 1
2‖χ‖2 + 〈divχ + ν ,w〉.

Application of the Cauchy–Schwarz inequality, Friedrichs’ inequality and Young’s
inequality gives us for the last term and δ > 0

|〈divχ + ν ,w〉| ≤ CF‖ divχ + ν‖‖∇w‖ ≤ C2
F

δ−1

2
‖ divχ + ν‖2 + δ

2
‖∇w‖2.

Putting altogether and choosing δ = 1
2 we end up with

J (v; f , g) � (1 + C2
F )‖ divχ + ν‖2 + ‖∇w − χ‖2 + 〈μ, v − g〉

≥ (1 + C2
F )‖ divχ + ν‖2 + ‖∇w − χ‖2 + 〈ν ,w〉

≥ ‖ divχ + ν‖2 + 1
4‖∇w‖2 + 1

2‖χ‖2 
 ‖w‖2U = ‖v − u‖2U ,

which finishes the proof. ��
Remark 2 Note that (5) measures the error of any function v ∈ Ks , in particular,
it can be used as a posteriori error estimator when v ∈ Ks

h ⊂ Ks is a discrete
approximation. However, in practice the condition Ks

h ⊂ Ks is often hard to realize.
Below we introduce a simple scaling of the first term in the least-squares functional
that allows us to prove coercivity of the associated bilinear form on the whole space
U .

For given f ∈ L2(�), g ∈ H1
0 (�), and fixed parameter β > 0 define the bilinear

form aβ :U ×U → R and the functional Fβ :U → R by

aβ(u, v) := β(div σ + λ , div τ + μ) + (∇u − σ ,∇v − τ ) + 1
2 (〈μ, u〉 + 〈λ , v〉),

(6)

Fβ(v) := −β( f , div τ + μ) + 1
2 〈μ, g〉 (7)

for all u = (u, σ , λ), v = (v, τ , μ) ∈ U . We stress that a1(·, ·) and F1(·) induce the
functional J (·; ·), i.e.,

J (u; f , g) = a1(u, u) − 2F1(u) + ( f , f ).
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62 T. Führer

Since J is differentiable it is well-known that the solution u ∈ Ks of (4) satisfies the
variational inequality

a1(u, v − u) ≥ F1(v − u) for all v ∈ Ks . (8)

Conversely, if J is also convex in Ks , then any solution of (8) solves (4). However,
J is convex on Ks iff a1(v − w, v − w) ≥ 0 for all v,w ∈ Ks , which is not true
in general, see the example from “Appendix A”. In Sect. 3 below we will show that
for sufficiently large β > 1 the bilinear form aβ(·, ·) is coercive, even on the whole
spaceU . This has the advantage that we can prove unique solvability of the continuous
problem and its discretization simultaneously. More important, in practice this allows
the use of non-conforming subsets Ks

h � Ks .

3 Variational inequalities

In this section we introduce and analyse different variational inequalities. The idea of
including the complementary condition in different ways has also been used in [15]
to derive DPG methods for contact problems.

We define the bilinear forms bβ, cβ :U ×U → R and functionals Gβ , Hβ by

bβ(u, v) := β(div σ + λ , div τ + μ) + (∇u − σ ,∇v − τ ) + 〈λ , v〉,
cβ(u, v) := β(div σ + λ , div τ + μ) + (∇u − σ ,∇v − τ ) + 〈μ, u〉,
Gβ(v) := −β( f , div τ + μ)

Hβ(v) := −β( f , div τ + μ) + 〈μ, g〉.

Let u = (u, σ , λ) ∈ Ks ⊂ K j ( j = 0, 1) denote the unique solution of (3) with
f ∈ L2(�), g ∈ H1

0 (�). Recall that div σ + λ = − f . Testing this identity with
div τ + μ, multiplying with (β − 1) and adding it to (8) we see that the solution
u ∈ Ks satisfies the variational inequality

aβ(u, v − u) ≥ Fβ(v − u) for all v ∈ Ks . (VIa)

For the derivation of our second variational inequality let u = (u, σ , λ) ∈ K 0

denote the unique solution of (3) with f ∈ L2(�), g ∈ H1(�), g|� ≤ 0. Recall that
λ = −�u − f . By (2) we have that

〈λ , v − u〉 = (∇u ,∇(v − u)) − ( f , v − u) ≥ 0

for all v ∈ H1
0 (�), v ≥ g. Thus, u ∈ K 0 satisfies the variational inequality

bβ(u, v − u) ≥ Gβ(v − u) for all v ∈ K 0. (VIb)

Our final method is based on the observation that for μ ≥ 0, we have that 〈μ, u −
g〉 ≥ 0 foru ≥ g ∈ H1

0 (�). Togetherwith 〈λ , u−g〉 = 0weconclude 〈μ−λ , u−g〉 ≥
0. Thus, u ∈ K 1 satisfies the variational inequality
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cβ(u, v − u) ≥ Hβ(v − u) for all v ∈ K 1. (VIc)

Note that aβ is symmetric, whereas bβ , cβ are not.

3.1 Solvability

In what follows we analyse the (unique) solvability of the variational inequali-
ties (VIa)–(VIc) in a uniform manner (including discretizations).

Lemma 3 Suppose β > 0. Let A ∈ {aβ, bβ, cβ}. There exists Cβ > 0 depending only
on β > 0 and � such that

|A(u, v)| ≤ Cβ‖u‖U‖v‖U for all u, v ∈ U .

If β ≥ 1 + C2
F , then A is coercive, i.e.,

C‖u‖2U ≤ A(u, u) for all u ∈ U .

The constant C > 0 is independent of β and �.

Proof We prove boundedness of A = aβ . Let u = (u, σ , λ), v = (v, τ , μ) ∈ U be
given. The Cauchy–Schwarz inequality together with the Friedrichs’ inequality and
boundedness of the divergence operator yields

|aβ(u, v)| ≤ β‖ div σ + λ‖‖ div τ + μ‖ + ‖∇u − σ‖‖∇v − τ‖
+ 1

2 (〈div τ + μ, u〉 − 〈div τ , u〉 + 〈div σ + λ , v〉 − 〈div σ , v〉)
≤ β‖ div σ + λ‖‖ div τ + μ‖ + ‖∇u − σ‖‖∇v − τ‖

+ 1
2

(
(CF‖ div τ + μ‖ + ‖τ‖)‖∇u‖ + (CF‖ div σ + λ‖ + ‖σ‖)‖∇v‖)

.

This shows boundedness of aβ(·, ·). Similarly, one concludes boundedness of bβ(·, ·)
and cβ(·, ·).

For the proof of coercivity, observe that aβ(w,w) = bβ(w,w) = cβ(w,w) for
all w ∈ U . We stress that coercivity directly follows from the arguments given in the
proof of Theorem 1. Note that the choice of β yields

A(w,w) ≥ (1 + C2
F )‖ divχ + ν‖2 + ‖∇w − χ‖2 + 〈ν ,w〉

for w = (w,χ , ν) ∈ U . The right-hand side can be further estimated following the
argumentation as in the proof of Theorem 1 which gives us

(1 + C2
F )‖ divχ + ν‖2 + ‖∇w − χ‖2 + 〈ν ,w〉 � ‖w‖2U .

This finishes the proof. ��

123



64 T. Führer

Remark 4 Recall that CF ≤ diam(�). Therefore, we can always choose β = 1 +
diam(�)2 to ensure coercivity of our bilinear forms. We stress that a choice of β of
order diam(�) is not only sufficient to ensure coercivity but also necessary in general
as the example from “Appendix A” shows. Another possibility is to rescale � such
that diam(�) ≤ 1 which implies that we can choose β = 2. Furthermore, observe
that a scaling of � transforms (1) to an equivalent obstacle problem (with appropriate
redefined functions f , g). To be more precise, define ũ(x) := u(dx) with d :=
diam(�) > 0 and u ∈ H1

0 (�) the solution of (1). Moreover, set f̃ (x) = d2 f (dx),
g̃(x) := g(dx). Then, ũ solves (1) in �̃ := {

x/d: x ∈ �
}
with f , g replaced by f̃ , g̃.

The variational inequalities (VIa)–(VIc) are of the first kind and we use a standard
framework for the analysis (Lions–Stampacchia theorem), see [16,17,25].

Theorem 5 Suppose β ≥ 1 + C2
F . Let A ∈ {aβ, bβ, cβ} and let F : U → R denote a

bounded linear functional. If K ⊆ U is a non-empty convex and closed subset, then
the variational inequality

Find u ∈ K s.t. A(u, v − u) ≥ F(v − u) for all v ∈ K (9)

admits a unique solution.
In particular, for f ∈ L2(�), g ∈ H1

0 (�) each of the problems (VIa)–(VIc) has a
unique solution and the problems are equivalent to (3).

Proof With the assumption on β, Lemma 3 proves that the bilinear forms are coercive
and bounded. Then, unique solvability of (9) follows from the Lions–Stampacchia
theorem, see e.g., [16,17,25].

Unique solvability of (VIa)–(VIc) follows since the functionals Fβ , Gβ , Hβ are
linear and bounded: For example, boundedness of Fβ can be seen from

|Fβ(v)| = | − β( f , div τ + μ) + 1
2 (div τ + μ, g) − 1

2 〈div τ , g〉|
≤ β‖ f ‖‖ div τ + μ‖ + 1

2‖ div τ + μ‖‖g‖ + 1
2‖τ‖‖∇g‖

� (‖ f ‖ + ‖∇g‖)‖v‖U .

The same arguments prove that Gβ and Hβ are bounded.
Finally, equivalence to (3) follows since all problems admit unique solutions and

by construction the solution of (3) also solves each of the problems (VIa)–(VIc). ��
Remark 6 We stress that the assumption g ∈ H1

0 (�) is necessary. If g ∈ H1(�) then
the term 〈μ, g〉 in Fβ , Hβ is not well-defined. However, this term does not appear in
Gβ and therefore the variational inequality in (VIb) admits a unique solution if we
only assume g ∈ H1(�) with g|� ≤ 0.

Remark 7 Thevariational inequality (VIa) corresponds to a least-squaresfinite element
method with convex functional

Jβ(u; f , g) := aβ(u, u) − 2Fβ(u) + β( f , f ).
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Then, Theorem 5 proves that the problem

Jβ(u; f , g) = min
v∈K Jβ(v; f , g)

admits a unique solution for all non-empty convex and closed sets K ⊆ U . Moreover,
Jβ(u; f , g) 
 J (u; f , g) for u ∈ Ks , so that this problem is equivalent to (4) for
K = Ks .

3.2 A priori analysis

The following three results provide general bounds on the approximation error. The
proofs are based on standard arguments, see e.g., [14]. We give details for the proof
of the first result, the others follow the same lines of argumentation and are left to the
reader.

Theorem 8 Suppose β ≥ 1 + C2
F . Let u ∈ Ks denote the solution of (VIa), where

f ∈ L2(�), g ∈ H1
0 (�). Let Kh ⊂ U denote a non-empty convex and closed subset

and let uh ∈ Kh denote the solution of (9) with A = aβ , F = Fβ and K = Kh. It
holds that

‖u − uh‖2U ≤ Copt

(
inf

vh∈Kh

(‖u − vh‖2U + |〈λ , vh − u〉 + 〈μh − λ , u − g〉|)

+ inf
v∈Ks

|〈λ , v − uh〉 + 〈μ − λh , u − g〉|
)
.

The constant Copt > 0 depends only on β and �.

Proof Throughout let v = (v, τ , μ) ∈ Ks , vh = (vh, τ h, μh) ∈ Kh and let u =
(u, σ , λ) ∈ Ks denote the exact solution of (VIa). Thus, div σ + λ + f = 0 and
∇u − σ = 0. For arbitrary w = (w,χ , ν) ∈ U it holds that

aβ(u,w) = β(div σ + λ , divχ + ν) + (∇u − σ ,∇w − χ) + 1
2 (〈λ ,w〉 + 〈ν , u〉)

= −β( f , divχ + ν) + 1
2 〈ν , g〉 + 1

2 (〈λ ,w〉 + 〈ν , u − g〉)
= Fβ(w) + 1

2 (〈λ ,w〉 + 〈ν , u − g〉). (10)

Using coercivity of aβ(·, ·), identity (10) and the fact that uh solves the discretized
variational inequality (on Kh) shows that

‖u − uh‖2U � aβ(u − uh, u − uh)

= aβ(u, u − uh) − aβ(uh, u − vh) − aβ(uh, vh − uh)

≤ Fβ(u − uh) + 1
2 (〈λ , u − uh〉 + 〈λ − λh , u − g〉)

− aβ(uh, u − vh) − Fβ(vh − uh)

= Fβ(u − vh) + 1
2 (〈λ , u − uh〉 + 〈λ − λh , u − g〉) − aβ(uh, u − vh).
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Note that 0 = 〈λ , u − g〉 ≤ 〈λ , v − g〉 and 〈λ , u − g〉 ≤ 〈μ, u − g〉. Hence,

〈λ , u − uh〉 + 〈λ − λh , u − g〉 = 〈λ , u − g + g − uh〉 + 〈λ − λh , u − g〉
≤ 〈λ , v − g + g − uh〉 + 〈μ − λh , u − g〉.

This and identity (10) with w = u − vh imply that

Fβ(u − vh) − aβ(uh, u − vh) + 1
2 (〈λ , u − uh〉 + 〈λ − λh , u − g〉)

≤ aβ(u − uh, u − vh) − 1
2 (〈λ , u − vh〉 + 〈λ − μh , u − g〉)

+ 1
2 (〈λ , v − uh〉 + 〈μ − λh , u − g〉).

Putting altogether, boundedness of aβ(·, ·) and an application of Young’s inequality
with parameter δ > 0 show that

‖u − uh‖2U � δ

2
‖u − uh‖2U + δ−1

2
‖u − vh‖2U + |〈λ , vh − u〉 + 〈μh − λ , u − g〉|

+ |〈λ , v − uh〉 + 〈μ − λh , u − g〉|.

Subtracting the term δ/2‖u − uh‖2U for some sufficiently small δ > 0 finishes the
proof since v ∈ Ks , vh ∈ Kh are arbitrary. ��

Theorem 9 Suppose β ≥ 1 + C2
F . Let u ∈ K 0 denote the solution of (VIb), where

f ∈ L2(�), g ∈ H1(�) with g|� ≤ 0. Let Kh ⊂ U denote a non-empty convex and
closed subset and let uh ∈ Kh denote the solution of (9) with A = bβ , F = Gβ , and
K = Kh. It holds that

‖u − uh‖2U ≤ Copt

(
inf

vh∈Kh

(‖u − vh‖2U + |〈λ , vh − u〉|) + inf
v∈K 0

|〈λ , v − uh〉|
)
.

The constant Copt > 0 depends only on β and �.

Theorem 10 Suppose β ≥ 1 + C2
F . Let u ∈ K 1 denote the solution of (VIc), where

f ∈ L2(�), g ∈ H1
0 (�). Let Kh ⊂ U denote a non-empty convex and closed subset

and let uh ∈ Kh denote the solution of (9) with A = cβ , F = Hβ , and K = Kh. It
holds that

‖u − uh‖2U ≤ Copt

(
inf

vh∈Kh

(‖u − vh‖2U+|〈μh−λ , u−g〉|)+ inf
v∈K 1

|〈μ−λh , u−g〉|
)
.

The constant Copt > 0 depends only on β and �.
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3.3 Discretization

Let T denote a regular triangulation of�,
⋃

T∈T T = �.We assume that T is κ-shape
regular, i.e.,

sup
T∈T

diam(T )n

|T | ≤ κ < ∞.

Moreover, let V denote the vertices of the mesh T and V0 := V\�. Let hT ∈
L∞(�) denote the mesh-size function, hT |T := hT := diam(T ) for T ∈ T . Set
h := maxT∈T diam(T ). We use standard finite element spaces for the discretization.
Let P p(T ) denote the space of T -elementwise polynomials of degree less or equal
than p ∈ N0. Let RT p(T ) denote the Raviart–Thomas space of degree p ∈ N0,
S p+1
0 (T ) := P p+1(T ) ∩ H1

0 (�), and

Uhp := S p+1
0 (T ) × RT p(T ) × P p(T ).

Clearly, Uhp ⊂ U . We stress that the polynomial degree is chosen, so that the best
approximation in the norm ‖ · ‖U is of order h p+1.

To define admissible convex sets for the discrete variational inequalities we need
to put constraints on functions from the space S p+1

0 (T ) or from P p(T ) or both. Let
us remark that for a polynomial degree ≥ 2 such constraints are not straightforward to
implement. One possibility would be to impose such constraints pointwise and then
analyse the consistency error. We comment on the case p = 1 and n = 2 below.
For some hp-FEM method for elliptic obstacle problems we refer to [2,3]. In order
to avoid such quite technical treatments and for a simpler representation of the basic
ideas we consider from now on the lowest-order case only, where the linear constraints
can easily be built in. To that end define the non-empty convex subsets

Ks
h := {

(vh, τ h, μh) ∈ Uh0: μh ≥ 0, vh(x) ≥ g(x) for all x ∈ V0
}
, (11a)

K 0
h := {

(vh, τ h, μh) ∈ Uh0: vh(x) ≥ g(x) for all x ∈ V0
}
, (11b)

K 1
h := {

(vh, τ h, μh) ∈ Uh0: μh ≥ 0
}
. (11c)

In the definition of Ks
h , K

0
h we assume g ∈ H1(�)∩C0(�) so that the point evaluation

is well-defined.
Let us shortly comment on how to incorporate the constraints for the higher-order

spaceUh1 and n = 2. LetVm denote themidpoints of interior edges of the triangulation
T . Then, a choice for the discrete convex set is

Ks
h1 := {

(vh, τ h, μh) ∈ Uh1:μh ≥ 0, vh(z) ≥ g(z) for all z ∈ V0 ∪ Vm
}
.

In the same manner one defines K 0
h1 resp. K

1
h1.

123



68 T. Führer

3.4 Auxiliary results

For the analysis of the convergence rates we use the nodal interpolation oper-
ator Ih : H2(�) → S1(T ) := P1(T ) ∩ C0(�), the Raviart–Thomas projector
�div

h : H1(�)n → RT 0(T ), and the L2(�) projector �h : L2(�) → P0(T ). Observe
that with v ≥ 0, μ ≥ 0 we have (with sufficient regularity) that Ihv ≥ 0, �hμ ≥ 0.
Moreover, recall the commutativity property div�div

h = �h div, as well as the approx-
imation properties

‖v − Ihv‖ + h‖∇(v − Ihv)‖ � h2‖D2v‖, (12)

‖τ − �div
h τ‖ � h‖∇τ‖, (13)

‖μ − �hμ‖ � ‖hT ∇T μ‖. (14)

Here, ∇τ is understood componentwise, ∇T μ denotes the T -elementwise gradient
of μ ∈ H1(T ) := {

ν ∈ L2(�): ν|T ∈ H1(T ), T ∈ T
}
. Set ‖ν‖2

H1(T )
:= ‖ν‖2 +

‖∇T ν‖2. The involved constants depend only on the κ-shape regularity of T but are
otherwise independent of T . Furthermore, for μ ∈ L2(�), it also holds that

‖μ − �hμ‖−1 � ‖hT (μ − �hμ)‖,

which follows from the definition of the dual norm, the projection and approximation
property of �h .

The proof of optimal a priori convergence rates will also rely on the following two
results. Scaling arguments and the continuous embedding H2(Tref) ↪→ C0(Tref) show
the next result. Here, Tref denotes some reference element.

Lemma 11 There exists a constant C > 0 depending only on Tref and κ-shape regu-
larity of the triangulation such that

‖v‖L∞(T ) ≤ C |T |−1/2(‖v‖T + hT ‖∇v‖T + h2T ‖D2v‖T
)

for all v ∈ H2(T ).

(15)

The next result is proven along the lines of [12, Lemma 7]. For completeness we
present the proof of the nontrivial result adapted to our situation in “Appendix B”. For
each element T ∈ T and v ∈ H2(T ) we define the level set

TC(v) := {
x ∈ T : v(x) = 0

}
as well as the set TNC(v) := {

x ∈ T : v(x) �= 0
}
.

Note that v ∈ H2(T ) implies that these sets are measurable. Moreover, |TC(v)| +
|TNC(v)| = |T |.
Lemma 12 Let v ∈ H2(T ). Assume |TC(v)| > 0. Then,

‖v‖T ≤ ChT
|T |1/2

|TC(v)|1/2 ‖∇v‖T
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and in particular

‖∇v‖T ≤ ChT
|T |1/2

|TC(v)|1/2 ‖D2v‖T .

Here, C = √
n for n = 2, 3.

3.5 Optimal a priori convergence rates

Theorem 13 Suppose β ≥ 1 + C2
F . Let u ∈ Ks denote the solution of (VIa) with

data f ∈ L2(�), g ∈ H1
0 (�). Let K s

h denote the set defined in (11a) and let uh ∈ Ks
h

denote the solution of (9) with A = aβ , F = Fβ , and K = Ks
h. If u ∈ H2(�),

g ∈ H2(�) and f ∈ H1(T ), then

‖u − uh‖U ≤ Capph(‖u‖H2(�) + ‖∇T f ‖ + ‖λ‖ + ‖g‖H2(�)).

The constant Capp > 0 depends only on β, �, and κ-shape regularity of T .

Proof Choose vh = (Ihu,�div
h σ ,�hλ) ∈ Ks

h . The commutativity property of �div
h

shows that

div(σ − �div
h σ ) + λ − �hλ = (1 − �h)(div σ + λ) = (1 − �h) f .

Therefore, using the approximation properties of the involved operators proves

‖u − vh‖U ≤ ‖(1 − �h) f ‖ + ‖σ − �div
h σ‖ + ‖∇(u − Ihu)‖

� h‖∇T f ‖ + h‖u‖H2(�).

Moreover,

|〈λ , Ihu − u〉| ≤ ‖λ‖h2‖D2u‖ � h2(‖u‖2H2(�)
+ ‖λ‖2).

We have to estimate the term

|〈�hλ − λ , u − g〉|.

Define TC := TC(u − g) and TNC := TNC(u − g). Note that these two sets are
measurable andwehave that |TC|+|TNC| = |T |.We consider three cases: First, assume
that |TC| = 0. This implies that u − g > 0 a.e. in T but since (u − g)λ = 0 we infer
that λ = 0 a.e. in T . Therefore, �hλ|T = 0 and we have that 〈�hλ−λ , u− g〉T = 0.
Second, assume that |TNC| = 0. But then, u − g = 0 a.e. in T and we have again
〈�hλ − λ , u − g〉T = 0. The final case to be considered is |TNC| > 0, |TC| > 0: We
have that

|〈�hλ − λ , u − g〉T | = |〈λ , (�h − 1)(u − g)〉T |
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≤ ‖λ‖L1(T )‖(1 − �h)(u − g)‖L∞(T ).

Note that λ|TNC = 0. Thus, ‖λ‖L1(T ) = ‖λ‖L1(TC) ≤ |TC|1/2‖λ‖T . For the second term
we apply Lemma 11 with v = (1− �h)(u − g) and together with the approximation
property of �h we get the estimate

‖(1 − �h)(u − g)‖L∞(T ) � |T |−1/2(‖(1 − �h)(u − g)‖T
+ hT ‖∇(u − g)‖T + h2T ‖D2(u − g)‖T

)
� |T |−1/2(hT ‖∇(u − g)‖T + h2T ‖D2(u − g)‖T

)
.

We can estimate the gradient term by applying the second inequality of Lemma 12
which gives us

‖∇(u − g)‖T � hT |T |1/2
|TC|1/2 ‖D2(u − g)‖T .

Clearly |TC|1/2 ≤ |T |1/2, thus |T |−1/2 ≤ |TC|−1/2 and we conclude that

‖(1 − �h)(u − g)‖L∞(T ) �
h2T

|TC|1/2 ‖D2(u − g)‖T .

Using ‖λ‖L1(T ) ≤ |TC|1/2‖λ‖T then yields that

|〈�hλ − λ , u − g〉T | � |TC|1/2‖λ‖T h2T
|TC|1/2 ‖D2(u − g)‖T

≤ h2T

(
‖λ‖2T + ‖u‖2H2(T )

+ ‖g‖2H2(T )

)
.

Summing up we have that

inf
vh∈Ks

h

(‖u − vh‖2U + |〈λ , vh − u〉 + 〈μh − λ , u − g〉|)

� h2
(‖u‖2H2(�)

+ ‖∇T f ‖2 + ‖λ‖2 + ‖g‖2H2(�)

)
.

Therefore, in view of Theorem 8 it only remains to estimate the consistency error

inf
v∈Ks

|〈λ , v − uh〉 + 〈μ − λh , u − g〉|.

Define v := (v,χ , μ) := (v, 0, λh) ∈ U with v := sup{uh, g} and observe that
v ∈ Ks . This directly leads to 〈μ−λh , u− g〉 = 0. For the remaining term we follow
the seminal work [14] of Falk. The same lines as in the proof of [14, Lemma 4] show
that

|〈λ , v − uh〉| ≤ ‖λ‖‖v − uh‖ ≤ ‖λ‖‖g − Ihg‖ � h2‖g‖H2(�)‖λ‖.
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This finishes the proof. ��
The proof of the following result can be obtained in the same fashion as the previous

one and is therefore omitted.

Theorem 14 Suppose β ≥ 1 + C2
F . Let u ∈ K 0 denote the solution of (VIb) with

data f ∈ L2(�), g ∈ H1(�), g|� ≤ 0. Let uh ∈ Kh denote the solution of (9) with
A = bβ , F = Gβ , and K = Kh, where either Kh = Ks

h or Kh = K 0
h . If u ∈ H2(�),

g ∈ H2(�) and f ∈ H1(T ), then

‖u − uh‖U ≤ Capph(‖u‖H2(�) + ‖∇T f ‖ + ‖λ‖ + ‖g‖H2(�)).

The constant Capp > 0 depends only on β, �, and κ-shape regularity of T .

Finally, we show convergence rates for problem (VIc) and its approximation. Note
that for the sets K 1

h , K
s
h defined in (11c), (11a) it holds that Ks

h ⊂ K 1
h ⊂ K 1 and

thus the consistency error, see Theorem 10, vanishes. The proof is similar to the one
of Theorem 13 and is therefore left to the reader.

Theorem 15 Suppose β ≥ 1 + C2
F . Let u ∈ K 1 denote the solution of (VIc) with

data f ∈ L2(�), g ∈ H1
0 (�). Let uh ∈ Kh denote the solution of (9) with A = cβ ,

F = Hβ , and K = Kh, where either Kh = Ks
h or Kh = K 1

h . If u ∈ H2(�),
g ∈ H2(�) and f ∈ H1(T ), then

‖u − uh‖U ≤ Capph
(‖u‖H2(�) + ‖∇T f ‖ + ‖λ‖ + ‖g‖H2(�)

)
.

The constant Capp > 0 depends only on β, �, and κ-shape regularity of T .

4 A posteriori analysis

In this section we derive reliable error bounds that can be used as an a posteriori
estimator. We define

osc := osc( f ) := ‖(1 − �h) f ‖.

The estimator below includes the residual term

η2 := η(uh, f )2 := ‖ div σ h + λh + �h f ‖2 + ‖∇uh − σ h‖2,

which can be localized. The derivation of our estimators is quite simple and is based
on the following observation. Let u ∈ Ks ⊂ K j denote the unique solution of (3)
and let uh ∈ Uh0 be arbitrary. Take β = 1 + C2

F and recall that by Lemma 3 it holds
that aβ(v, v) = bβ(v, v) = cβ(v, v) � ‖v‖2U for all v ∈ U . Then, together with the
Pythagoras theorem ‖μ‖2 = ‖(1 − �h)μ‖2 + ‖�hμ‖2 for μ ∈ L2(�) and using
div σ + λ + f = 0, ∇u = σ , div σ h + λh ∈ P0(T ), it follows that

‖u − uh‖2U � β‖ div σ h + λh + f ‖2 + ‖∇uh − σ h‖2 + 〈λh − λ , uh − u〉
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= β‖ div σ h + λh + �h f ‖2 + β osc2

+ ‖∇uh − σ h‖2 + 〈λh − λ , uh − u〉
≤ β(η2 + osc2) + 〈λh − λ , uh − u〉. (16)

The remaining results in this section are proved by estimating the duality term
〈λh − λ , uh − u〉 from (16). In particular, the proof of the next result employs only
λh ≥ 0 We will need the positive resp. negative part of a function v: � → R,

v+ := max{0, v}, v− := −min{0, v}.

This definition implies that v = v+ − v−. The ideas of estimating the duality term
are similar as in [18,31] and references therein, see also [15] for a related estimate for
Signorini-type problems. Note that we do not need to assume g ∈ H1

0 (�).

Theorem 16 Let u ∈ Ks denote the solution of (3). Let uh ∈ Kh, where Kh ∈
{Ks

h, K
1
h }, be arbitrary. The error satisfies

‖u − uh‖2U ≤ Crel
(
η2 + ρ2 + osc2

)
,

where the estimator contribution ρ is given by

ρ2 := 〈λh , (uh − g)+〉 + ‖∇(g − uh)+‖2.

The constant Crel > 0 depends only on �.

Proof In view of estimate (16) we only have to tackle the term 〈λh−λ , uh−u〉. Define
vh := max{uh, g}. Clearly, vh ≥ g and vh ∈ H1

0 (�). Note that λ = −�u − f ∈
H−1(�). Therefore, 〈λ , v〉 = (∇u ,∇v) − ( f , v) for all v ∈ H1

0 (�) and using the
variational inequality for the exact solution (2) yields

−〈λ , uh − u〉 = −〈λ , uh − vh〉 − 〈λ , vh − u〉 ≤ −〈λ , uh − vh〉
= 〈λ , (uh − g)−〉 = 〈λ − λh , (uh − g)−〉 + 〈λh , (uh − g)−〉

≤ δ

2
‖λ − λh‖2−1 + δ−1

2
‖∇(uh − g)−‖2 + 〈λh , (uh − g)−〉

for all δ > 0. Employing λh ≥ 0, g − u ≤ 0, and v + v− = v+ we further infer that

〈λh − λ , uh − u〉 ≤ 〈λh , uh − g + (uh − g)−〉 + 〈λh , g − u〉

+ δ

2
‖λ − λh‖2−1 + δ−1

2
‖∇(uh − g)−‖2

≤ 〈λh , (uh − g)+〉 + δ

2
‖λ − λh‖2−1 + δ−1

2
‖∇(uh − g)−‖2.

Recall that ‖λ − λh‖−1 ≤ ‖u − uh‖V � ‖u − uh‖U , where the involved constant
depends only on �. Thus, choosing δ > 0 sufficiently small the proof is concluded
with (16). ��
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We could derive a similar estimate if uh ∈ K 0
h by changing the role of uh and λh

resp. u and λ in the proof. However, this leads to an estimator with a non-local term.
To see this, suppose g = 0. Then, following the last proof we get

〈λh − λ , uh − u〉 ≤ 〈(λh)+ , uh〉 + δ

2
‖∇(u − uh)‖2 + δ−1

2
‖(λh)−‖2−1

for δ > 0. For the total error this would yield

‖u − uh‖2U � η2 + osc2 +〈(λh)+ , uh〉 + ‖(λh)−‖2−1.

The last term is not localizable and therefore it is not feasible to use this estimate as
an a posteriori error estimator in an adaptive algorithm.

Remark 17 The derived estimator is efficient up to the term ρ, i.e.,

η2 + osc2 � ‖u − uh‖2U .

To see this, we employ the Pythagoras theorem to obtain

η2 + osc2 = ‖ div σ h + λh + f ‖2 + ‖∇uh − σ h‖2.

Then, div σ +λ = − f ,∇u = σ and the triangle inequality prove the asserted estimate.
The proof of the efficiency estimate ρ � ‖u−uh‖U (up to possible data resp. obstacle
oscillations) is an open problem, see also the related works [1,18].

5 Examples

In this section we present numerical studies that demonstrate the performance of our
proposed methods in different situations:

• In Sect. 5.3 we consider a problem on the unit square with smooth obstacle and
known smooth solution.

• In Sect. 5.4 we consider the example from [4, Section 5.2] where the solution is
known and exhibits a singularity.

• In Sect. 5.5 we consider a problem on an L-shaped domain with a pyramid-like
obstacle and unknown solution.

Before we come to a detailed discussion on the numerical studies some remarks are
in order. In all examples we choose β = 1 + diam(�)2 to ensure coercivity of the
bilinear forms (Lemma 3). This also implies that the Galerkin matrices associated
to the bilinear forms aβ , bβ , and cβ are positive definite. Choosing standard basis
functions for S1

0 (T ) (nodal basis),RT 0(T ) (lowest-order Raviart–Thomas basis) and
P0(T ) (characteristic functions), the constraints in the discrete convex sets K �

h , where
� = 0, � = 1 or � = s, are straightforward to impose. The resulting discrete variational
inequalities are then solved using a (primal-dual) active set strategy, see e.g., [21–23].
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5.1 Active set method and discrete variational inequalities

In this section we first define and collect results on the (primal-dual) active set method.
Then, we recall the variational inequalities (VIa)–(VIc) and write down their discrete
variants.

5.1.1 Active set method

Let N = {1, . . . , N }, N ∈ N, and let Nγ ⊆ N be a non-empty subset. We set
Nω := N \Nγ . For a vector x ∈ R

N we write x = 0 if all components are equal to
0. Similarly, x ≥ 0 means that all components of x are ≥ 0. For a subset I ⊆ N ,
xI = 0 means xi = 0 for all i ∈ I. We also use the notation xI ≥ 0, which means
xi ≥ 0 for all i ∈ I and xI ≥ yI stands for xI − yI ≥ 0.

For g ∈ R
N we consider the convex set

K := K g := {
x ∈ R

N : xNγ
≥ gNγ

}
.

Let S ∈ R
N×N denote a positive definite (but possibly non-symmetric) matrix, and

b ∈ R
N some arbitrary vector. We consider the variational inequality: find x ∈ K ,

such that

〈Sx , y − x〉2 ≥ 〈b , y − x〉2 for all y ∈ K , (17)

where 〈· , ·〉2 denotes the Euclidean inner product on R
N . Since S is positive definite

this problem admits a unique solution. It is well-known that problem (17) can be
rewritten as follows: find (x,λ) ∈ R

N × R
N such that

Sx − λ = b, (18a)

λNω
= 0, (18b)

λNγ
= max{0,λNγ

− C(xNγ
− gNγ

)}, (18c)

where max{·, ·} denotes the componentwise maximum and C > 0 is some constant.
Note that the solution is independent of C . Now following the seminal work [21]
one defines a (semi-smooth) Newton method for solving (18). The same lines of
argumentation as in [21] show that the method can be written as an active set strategy.
The algorithm adapted to our situation is given in Algorithm 1.

The solution of the linear system in Line 8 of Algorithm 1 can be written (with
I = Ik , J = J k) as

(
SII SIJ
SJI SJJ

) (
xI
xJ

)
−

(
λI
λJ

)
=

(
bI
bJ

)
.

With the constraints xJ = gJ and λI = 0 this reduces to the solution of the system

SII xI = bI − SIJ gJ
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Algorithm 1 Active Set Method for solving (17)

Input: x0, λ0 and C > 0
1: Set k = 0
2: while TRUE do
3: λ̂

k
Nγ

← max{0, λkNγ
− C(xkNγ

− gNγ
)} and λ̂

k
Nω

← 0

4: Determine set of active (J ) and inactive (I) degrees of freedom

J k ← {
j ∈ Nγ : λ̂kj > 0

}
,

Ik ← N \J k .

5: if k ≥ 1 & J k = J k−1 then
6: return x = xk

7: end if
8: Solve

Sx − λ = b,

λIk = 0,

xJ k = gJ k .

9: Set xk+1 := x and λk+1 := λ

10: Increase counter k ← k + 1
11: end while

and the definition

λJ := SJI xI + SJJ gJ − bJ .

Since S is positive definite the subblock SII is as well and thus SII is invertible.
Some remarks are in order. We can follow the analysis of [21] to see that the basic

(local) convergence result holds true in our case as well.

Proposition 18 [21, Theorem 3.1] If the initial guess (x0,λ0) is sufficient close to
the exact solution (x,λ) of (18) then the iterates (xk,λk) in Algorithm 1 converge
superlinearly to (x,λ).

The stopping criterion in Line 5 can be replaced by other criterions. Here, we choose
J k = J k−1 because then we know that we have hit the exact solution of (17). The
proof of the following result is a slight modification of the proof of [23, Lemma 3.1]
and the interested reader can find it in “Appendix C”.

Lemma 19 If the stopping criterion in Line 5 of Algorithm 1 is satisfied, then x = xk

is the solution of (17).

5.1.2 Discrete variational inequalities

In this sectionwe recall the discrete versions of the variational inequalities (VIa)–(VIc)
and present them in matrix-vector form. They fit into the abstract framework given
in Sect. 5.1.1.
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Let us recall the discrete space from Sect. 3.3,

Uh0 = S1
0 (T ) × RT 0(T ) × P0(T ).

Let E denote the set of edges (n = 2) resp. faces (n = 3). Then, dim(Uh0) =
#V0 + #E + #T =: N . Numbering the nodes x j of V0, the edges/faces E j in E and
the elements Tj in T , we consider the following functions:

• For j = 1, . . . , #V0 let v j denote the nodal basis functions associated to the node
x j ∈ V0.

• For j = 1, . . . , #E let τ ( j) denote the Raviart–Thomas basis functions associated
to the edge/face E j ∈ E .

• For j = 1, . . . , #T letχ j denote the characteristic function of the element Tj ∈ T .

We define the basis (ξ ( j))Nj=1 for the space Uh0 by

ξ ( j) := (v j , 0, 0) for j = 1, . . . , #V0,

ξ (#V0+ j) := (0, τ ( j), 0) for j = 1, . . . , #E,

ξ (#V0+#E+ j) := (0, 0, χ j ) for j = 1, . . . , #T .

Recall from Eq. 11 the discrete convex sets

Ks
h := {

(vh, τ h, μh) ∈ Uh0: μh ≥ 0, vh(x) ≥ g(x) for all x ∈ V0
}
,

K 0
h := {

(vh, τ h, μh) ∈ Uh0: vh(x) ≥ g(x) for all x ∈ V0
}
,

K 1
h := {

(vh, τ h, μh) ∈ Uh0: μh ≥ 0
}
.

These convex subsets ofUh0 correspond to convex subsets ofR
N as follows: For given

obstacle function g ∈ H1
0 (�) ∩ C0(�) define the vector g ∈ R

N by

g j =
{
g(x j ) for j = 1, . . . , #V0,

0 else
.

Let N = {1, . . . , N } and define N s
γ , N 0

γ , N 1
γ by

N s
γ := {1, . . . , #V0, #V0 + #E + 1, . . . , N } ⊂ N ,

N 0
γ := {1, . . . , #V0} ⊂ N ,

N 1
γ := {#V0 + #E + 1, . . . , N } ⊂ N .

Then, the three sets Ks
h , K

0
h , K

1
h correspond to the sets

Ks
N := {

x ∈ R
N : xN s

γ
≥ gN s

γ

}
,

K 0
N := {

x ∈ R
N : xN 0

γ
≥ gN 0

γ

}
,
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K 1
N := {

x ∈ R
N : xN 1

γ
≥ 0

}
.

With these definitions we can now state the algebraic forms of the discrete variational
inequalities:

Discrete version of (VIa) with Ks
h

The discrete version of (VIa) with convex set Ks
h reads: find uh ∈ Ks

h such that

aβ(uh, vh − uh) ≥ Fβ(vh − uh) for all vh ∈ Ks
h . (19)

Let S(s) ∈ R
N × R

N denote the Galerkin matrix of the bilinear form aβ(·, ·) and let
b(s) ∈ R

N denote the load vector, i.e.,

S(s)
jk = aβ(ξ (k), ξ ( j)), b(s)

j = Fβ(ξ ( j))

for all j, k = 1, . . . , N . Note that S(s) is symmetric and positive definite. Problem (19)
then reads in algebraic form as: find x ∈ Ks

N such that

〈S(s)x , y − x〉2 ≥ 〈b(s) , y − x〉2 for all y ∈ Ks
N . (20)

Discrete version of (VIb) with K0
h

The discrete version of (VIb) with convex set K 0
h reads: find uh ∈ K 0

h such that

bβ(uh, vh − uh) ≥ Gβ(vh − uh) for all vh ∈ K 0
h . (21)

Let S(0) ∈ R
N × R

N denote the Galerkin matrix of the bilinear form bβ(·, ·) and let
b(0) ∈ R

N denote the load vector, i.e.,

S(0)
jk = bβ(ξ (k), ξ ( j)), b(0)

j = Gβ(ξ ( j))

for all j, k = 1, . . . , N . Note that S(0) is non-symmetric and positive definite. Prob-
lem (21) then reads in algebraic form as: find x ∈ K 0

N such that

〈S(0)x , y − x〉2 ≥ 〈b(0) , y − x〉2 for all y ∈ K 0
N . (22)

Discrete version of (VIc) with K1
h

The discrete version of (VIc) with convex set K 1
h reads: find uh ∈ K 1

h such that

cβ(uh, vh − uh) ≥ Hβ(vh − uh) for all vh ∈ K 1
h . (23)
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Let S(1) ∈ R
N × R

N denote the Galerkin matrix of the bilinear form cβ(·, ·) and let
b(1) ∈ R

N denote the load vector, i.e.,

S(1)
jk = cβ(ξ (k), ξ ( j)), b(1)

j = Hβ(ξ ( j))

for all j, k = 1, . . . , N . Note that S(1) is non-symmetric and positive definite. Prob-
lem (23) then reads in algebraic form as: find x ∈ K 1

N such that

〈S(1)x , y − x〉2 ≥ 〈b(1) , y − x〉2 for all y ∈ K 1
N . (24)

Solver setup

The algebraic problems (20), (22) and (24) are then solved using Algorithm 1. The
initial data (x0,λ0) is chosen as the solution of

S(�)x0 = b(�),

x0N �
γ

= gN �
γ

and

λ0 := max{0, S(�)x0 − b(�)},

where � = s, � = 0 or � = 1. The constant C in Algorithm 1 is choosen as C = 1.
The linear systems in Line 8 of Algorithm 1 are solved using theMATLAB backslash
operator.

5.2 Error and estimator quantities

We define the error resp. total estimator by

errU := ‖u − uh‖U , est2 := η2 + ρ2 + osc2 .

Note that the estimator can be decomposed into local contributions,

est2 =
∑
T∈T

est(T )2 :=
∑
T∈T

(
‖ div σ h + λh + �h f ‖2T + ‖∇uh − σ h‖2T

+ (λh , (uh − g)+)T + ‖∇(g − uh)+‖2T + ‖(1 − �h) f ‖2T
)
,

where ‖ · ‖T denotes the L2(T ) norm and (· , ·)T the L2(T ) inner product. Moreover,
we will estimate the error in the weaker norm ‖ · ‖V . To do so we consider an upper
bound given by

err2V := ‖∇(u − uh)‖2 + ‖σ − σ h‖2 + ‖λ − λh‖2−1,h,
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where the evaluation of ‖ · ‖−1,h is based on the discrete H−1(�) norm discussed
in the seminal work [8]: Let Qh : L2(�) → S1

0 (T ) denote the L2(�) projector. Let
μ ∈ L2(�). We stress that using the projection and local approximation property of
Qh yields

‖(1 − Qh)μ‖−1 = sup
0 �=v∈H1

0 (�)

〈(1 − Qh)μ , (1 − Qh)v〉
‖∇v‖ � ‖hT μ‖,

where the involved constant depends on shape regularity of T . Following [8] it holds
that

‖μ‖−1 ≤ ‖(1 − Qh)μ‖−1 + ‖Qhμ‖−1 � ‖hT μ‖ + ‖∇uh[μ]‖

where uh[μ] ∈ S1
0 (T ) is the solution of

(∇uh[μ] ,∇vh) = 〈μ, vh〉 for all vh ∈ S1
0 (T ).

Note that ‖∇uh[μ]‖ ≤ ‖μ‖−1. The estimate ‖Qhμ‖−1 � ‖∇uh[μ]‖ depends on the
stability of the projection Qh in H1(�), ‖∇Qhv‖ � ‖∇v‖ for v ∈ H1

0 (�), i.e.,

‖Qhμ‖−1 = sup
0 �=v∈H1

0 (�)

〈Qhμ, v〉
‖∇v‖ = sup

0 �=v∈H1
0 (�)

〈μ, Qhv〉
‖∇v‖

= sup
0 �=v∈H1

0 (�)

(∇uh[μ] ,∇Qhv)

‖∇v‖

� sup
0 �=v∈H1

0 (�)

(∇uh[μ] ,∇Qhv)

‖∇Qhv‖ = ‖∇uh[μ]‖.

Here, we use newest-vertex bisection [30] as refinement strategy where stability of
the L2(�) projection is known [24].

We use an adaptive algorithm that basically consists of iterating the four steps

SOLVE → ESTIMATE → MARK → REFINE ,

where themarking step is done with the bulk criterion, i.e., we determine a setM ⊆ T
of (up to a constant) minimal cardinality with

θ est2 ≤
∑
T∈M

est(T )2.

For the experiments the marking parameter θ is set to 1
4 .

Convergence rates in the figures are indicated by triangles, where the number α

besides the triangle denotes the experimental rateO((#T )−α). For uniform refinement
we have h2α 
 #T −α .
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Fig. 1 Convergence rates for the problem from Sect. 5.3

5.3 Smooth solution

Let � = (0, 1)2, u(x, y) = (1 − x)x(1 − y)y,

f (x, y) :=
{
0 x < 1

2

−�u(x, y) x ≥ 1
2

.

Then, u solves the obstacle problem (1) with data f and obstacle

g(x, y) =

⎧⎪⎨
⎪⎩

(1 − x)x(1 − y)y x ≤ 1
2

g̃(x)(1 − y)y x ∈ ( 1
2 ,

3
4

)
0 x ≥ 3

4

,

where g̃ is the unique polynomial of degree 3 such that g and∇g are continuous at the
lines x = 1

2 ,
3
4 . In particular, g ∈ H2(�). Note that λ = −�u− f ∈ H1(T ). Figure 1
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Fig. 2 Convergence rates for the problem fromSect. 5.4. The upper plot shows the total errors and estimators
for uniform and adaptive refinement. The lower plot compares the error and estimator contributions in the
case of adaptive refinements

shows that the convergence rates for the solutions of the discrete variational inequali-
ties (VIa)–(VIc) based on the convex sets Ks

h , K
0
h , K

1
h are optimal. This perfectly fits

to our theoretic considerations in Theorems 13–15. Additionally, we plot errV which
is in all cases slightly smaller than errU but of the same order. Note that since λ is a
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Fig. 3 Approximation λh (left) and distribution of the estimator contribution ρ2 (right) for the example
from Sect. 5.4

T -elementwise polynomial, an inverse inequality shows that h‖λ−λh‖ � ‖λ−λh‖−1
and thus errV is equivalent to ‖u − uh‖V .

5.4 Manufactured solution on L-shaped domain

We consider the same problem as given in [4, Section 5.2], where g = 0, � =
(−2, 2)2\[0, 2]2 and

f (r , ϕ) := −r2/3 sin(2/3ϕ)(γ ′(r)/r + γ ′′(r)) − 4/3r−1/3γ ′(r) sin(2/3ϕ) − δ(r),
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Fig. 4 Experimental convergence rates for the problem from Sect. 5.5

where (r , ϕ) denote polar coordinates. With r∗ = 2(r − 1/4), γ, δ are given by

γ (r) :=

⎧⎪⎨
⎪⎩
1 r∗ < 0,

− 6r5∗ + 15r4∗ − 10r3∗ + 1 0 ≤ r∗ < 1,

0 1 ≤ r∗,
δ(r) :=

{
0 r ≤ 5/4,

1 r > 5/4.

The exact solution then reads u(r , ϕ) = r2/3 sin(2/3ϕ)γ (r). Note that u has a generic
singularity at the reentrant corner. We consider the discrete version of (VIa), where
solutions are sought in the convex set Ks

h . We conducted various tests with β between
1 and 100 and the results were in all cases comparable. For the results displayed here
we have used β = 3. Figure 2 displays convergence rates in the case of uniform
and adaptive mesh-refinement. We note that in the first plot the lines for errU and est
are almost identical. In the second plot we compare the contributions of the overall
error and estimator in the adaptive case. The lines for osc and ‖ div σ h + λh + f ‖ are
almost identical. This means that the estimator contribution ‖ div σ h + λh + �h f ‖
in η is negligible and osc is dominating the overall estimator. We observe from the
first plot that errV is much smaller than errU but has the same rate of convergence. In
the uniform case we see that the errors and estimators approximately converge at rate
0.45. One would expect a smaller rate due to the singularity. However, in this example
the solution has a large gradient so that the algorithm first refines the regions where
the gradient resp. f is large. This preasymptotic behavior was also observed in [4,
Section 5.2]. Nevertheless, adaptivity yields a significant error reduction.

Figure 3 shows the approximation λh (left column) and the distribution of the
estimator contribution ρ2 (right column) on some adaptively refined meshes.

5.5 Unknown solution

For our final experiment, we choose� = (−1, 1)2\[− 1, 0]2, f = 1, and the pyramid-
like obstacle g(x) = max{0, dist(x, ∂�u) − 1

4 }, where �u = (0, 1)2. The solution
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Fig. 5 Adaptively refined meshes and corresponding solution component uh for the problem from Sect. 5.5
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in this case is unknown. We solve the discrete version of (VIa) with convex set Ks
h .

Since f is constant we have osc = 0. Figure 4 shows the overall estimator (left)
and its contributions (right). We observe that uniform refinement leads to the reduced
rate 1

3 , whereas for adaptive refinement we recover the optimal rate. Heuristically, we
expect the solution to have a singularity at the reentrant corner as well as in the contact
regions. This would explain the reduced rates. Figure 5 visualizes meshes produced by
the adaptive algorithm and corresponding solution components uh . We observe strong
refinements towards the corner (0, 0) and around the point ( 12 ,

1
2 ), which coincides

with the tip of the pyramid obstacle.

Acknowledgements This work was supported by CONICYT through FONDECYT project “Least-squares
methods for obstacle problems” under Grant 11170050.

Appendix A: Non-convexity of functional J

Recall that the functional J (·; f , g) is convex if and only if

a1(u − v, u − v) ≥ 0 for all u, v ∈ Ks := {
(w,χ , ν) ∈ U :w ≥ g, ν ≥ 0

}
.

In the following we construct a simple example that shows that the above inequality
does not hold in general, thus J is not convex resp. a(·, ·) = a1(·, ·) is not coercive.

To that end, let u ∈ H1
0 (�) denote the solution of �u = 1 in the square domain

� = (0, d)2. Then, u ≤ 0 in �. Choose the obstacle as g = u (or g ≤ u). Note that
v := (0, 0, 0) ∈ Ks and that u := (u, σ ,�u) := (u,∇u,�u) ∈ Ks . We have that

‖1‖−1 = sup
0 �=v∈H1

0 (�)

〈1 , v〉
‖∇v‖ = sup

0 �=v∈H1
0 (�)

−(∇u ,∇v)

‖∇v‖ = ‖∇u‖.

Therefore ‖1‖2−1 = ‖∇u‖2 = −〈1 , u〉. Using this we infer that

a1(u − v, u − v) = ‖ div σ + 1‖2 + ‖∇u − σ‖2 + 〈1 , u〉 = ‖2‖2 − ‖1‖2−1.

Hence, a1(u−v, u−v) < 0 if and only if ‖2‖ < ‖1‖−1. Clearly, ‖2‖ = 2|�|1/2 = 2d.
We investigate the scaling of the negative order norm. Let �̂ denote the unit square
(0, 1)2. Then,

‖1‖−1 = sup
0 �=v∈H1

0 (�)

〈1 , v〉
‖∇v‖ = |�| sup

0 �=v̂∈H1
0 (�̂)

(1 , v̂)�̂

‖∇v̂‖�̂

= |�| ‖1‖−1,�̂ =: |�|C .

Finally, ‖2‖ < ‖1‖−1 if

2d < Cd2

which holds for sufficiently large d.
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Appendix B: Proof of Lemma 12

We use TC := TC(v) and TNC := TNC(v). If |TNC| = 0, then v = 0 on T and the first
inequality is trivial. Note that also ∇v = 0. Therefore, the second inequality is trivial
as well. From now on we thus assume |TNC| > 0. Using that v = 0 on TC and the
identity

v(x) − v( y) = (x − y) ·
∫ 1

0
∇v(sx + (1 − s) y) ds for all x, y ∈ T

we obtain that

‖v‖2T = ‖v‖2TNC =
∫
TNC

v(x)2 dx = 1

|TC|
∫
TNC

∫
TC

(v(x) − v( y))2 d y dx

= 1

|TC|
∫
TNC

∫
TC

(
(x − y) ·

∫ 1

0
∇v(sx + (1 − s) y) ds

)2

≤ h2T
|TC|

∫
T

∫
T

∫ 1

0
|∇v(sx + (1 − s) y)|2 ds d y dx

= 2
h2T
|TC|

∫
T

∫ 1

1/2

∫
T

|∇v(sx + (1 − s) y)|2 dx ds d y,

where in the ultimate step we have used symmetry in x and y. With the substitution
z = φ(x) = sx + (1 − s) y ∈ T we further get that

∫
T

∫ 1

1/2

∫
T

|∇v(sx + (1 − s) y)|2 dx ds d y =
∫
T

∫ 1

1/2
s−n

∫
φ(T )

|∇v(z)|2 d z ds d y

≤
∫
T

∫ 1

1/2
s−n

∫
T

|∇v(z)|2 d z ds d y

= |T |1 − (1/2)1−n

1 − n
‖∇v‖2T .

Putting altogether this proves the first inequality.
For the second inequality we use the fact that the gradient on level sets vanishes,

see [13, Theorem 3.3]. This means that ∇v = 0 a.e. in TC. Then, the same lines of
proof as above (with v replaced by the components of∇v) show the second inequality,
which finishes the proof.

Appendix C: Proof of Lemma 19

We consider the decompositions

J k−1 = {
j ∈ J k−1: λk

j > 0
}

︸ ︷︷ ︸
=:J k−1

1

∪ {
j ∈ J k−1: λk

j = 0
}

︸ ︷︷ ︸
=:J k−1

2

,
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Ik−1 = {
i ∈ Ik−1: i ∈ Nω or i ∈ Nγ with xki ≥ gi

}
︸ ︷︷ ︸

=:Ik−1
1

∪ {
i ∈ Ik−1 ∩ Nγ : xki < gi

}
︸ ︷︷ ︸

=:Ik−1
2

.

For the decomposition of J k note that from Lines 8–9 of Algorithm 1 we have that
λNγ ∩Ik−1 = 0 and xJ k = gJ k . This yields

J k = {
j ∈ J k−1: λkj > 0

} ∪ {
i ∈ Ik−1 ∩ Nγ : xki < gi

} = J k−1
1 ∪ Ik−1

2

If J k = J k−1, then, since all decompositions are disjoint,

Ik−1
2 = ∅ = J k−1

2 .

This also means that λ̂
k
j > 0 if and only if λk

j > 0 with xkj = g j . Thus,

λk
Nγ

= max{0,λk
Nγ

− C(xNγ
− gNγ

)},
λkNω

= 0,

which implies that (18) is satisfied for x = xk , λ = λk or equivalently x = xk

solves (17).
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