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Abstract
This work is concerned with quasi-optimal a-priori finite element error estimates for
the obstacle problem in the L2-norm. The discrete approximations are introduced as
solutions to a finite element discretization of an accordingly regularized problem. The
underlying domain is only assumed to be convex and polygonally or polyhedrally
bounded such that an application of pointwise error estimates results in a rate less
than two in general. The main ingredient for proving the quasi-optimal estimates is
the structural and commonly used assumption that the obstacle is inactive on the
boundary of the domain. Then localization techniques are used to estimate the global
L2-error by a local error in the inner part of the domain, where higher regularity for
the solution can be assumed, and a global error for the Ritz-projection of the solution,
which can be estimated by standard techniques. We validate our results by numerical
examples.
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1 Introduction

This paper is concerned with error estimates for discrete approximations to the solu-
tion of the obstacle problem. Concerning the underlying domain, we only assume
that it is polygonally or polyhedrally bounded and convex. Under a structural and
commonly used assumption on the obstacle we show that the sequence of discrete
approximations possesses a convergence rate close to two in the L2-norm. Thus, we
obtain convergence results similar to those of the Ritz-projection of the solution. This
is the main contribution of the present paper.

Before going into further details, let us review common discretization concepts
for the obstacle problem and related convergence results from the literature. The first
approach consists of a direct discretization of the variational inequality (corresponding
to the obstacle problem) based on linear finite elements. For this approach, it is well-
known that the resulting sequence of discrete solutions exhibits a convergence rate
of one in the H1-norm if the domain is convex. The corresponding proof has already
become classical in the meanwhile, see [6]. Essentially, it is based on the variational
formulations of the problems (continuous anddiscrete) and standard interpolation error
estimates. In contrast, a universal approach for the derivation of optimal error estimates
in the L2-norm is unknown. A review of L p-error estimates from the literature and
a discussion of their validity can be found in [4]. It has even been shown in this
reference, see [4, Theorem 5 and Theorem 10], that a duality argument, similar to
that for the L2-error of the Ritz-projection, cannot be established as the H2-regularity
of the solution in this situation is not sufficient in order to guarantee second order
convergence in L2. To circumvent this issue, it is possible to consider pointwise error
estimates since such estimates also imply estimates in L2 due to the Hölder inequality.
In [14,15,18] it is shown that a convergence rate of two (times log-factors) can be
achieved in L∞. This result requires sufficiently smooth data, and interior angles,
that are small enough, in order to guarantee sufficiently smooth solutions due to the
presence of corner and edge singularities. For instance, in two dimensional polygonal
domains, it is well-known that in general the interior angles must be less or equal to
π/2 for the validity of those rates. For larger interior angles the convergence rates
are reduced. In addition, based on the pointwise estimates, it is proven in [14] that a
convergence rate close to two can be expected in L2 if the domain is only assumed
to be convex. However, this result requires an obstacle which is sufficiently smooth
and, more importantly, which is inactive on the boundary. It is also crucial to note that
all the pointwise estimates (and hence the L2 estimate in [14]) discussed so far only
hold if a discrete maximum principle holds for the discrete solutions (at least this is
the state of the art). For instance, this can be ensured by weakly acute finite element
meshes. However, in practice, this is a serious restriction on the construction of finite
element meshes, especially in the three dimensional case.

A second strategy to obtain approximations to the solution of the obstacle problem
can be summarized as follows: First appropriately regularize the obstacle problem
(for instance we use a Moreau-Yosida type relaxation) to get a semilinear partial
differential equation, where the nonlinearity depends on the regularization parameter,
and then truncate the regularized equation and discretize it by linear finite elements.
Typically, the regularization parameter is chosen as a function of the mesh parameter
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in order to balance both error contributions. This approach is pursued in the present
paper. In case that the boundary is smooth enough and the data are regular enough, it
is shown in [17] that by this type of discretization a convergence rate of two (times
log-factors) in L∞, and hence in L2, can be achieved. Moreover, the proof can be
extended to polygonal and polyhedral domains if the interior angles are small enough
such that the appearing corner and edge singularities are mild enough. For larger
interior angles the convergence rates in L∞ are again reduced. This is in agreement
with corresponding discretization error estimates for semilinear partial differential
equations, where the nonlinearity does not additionally depend on a (mesh parameter
dependent) regularization parameter. In this case, a convergence rate of two can also
be proven in L2 if the underlying domains are only assumed to be convex. Of course,
this raises the question if such a result (or at least a comparable one) is also valid
for the approximations of the present discretization strategy. Typically, in order to
obtain error estimates in L2, a duality argument is applied. However, a straightforward
application of the duality argument in the L2-setting is not promising here as an
inappropriate coupling between regularization parameter and mesh parameter cannot
be avoided in this case. Nevertheless, under the commonly used structural assumption
that the obstacle is sufficiently smooth and inactive on the boundary, we show that
a convergence rate of two (times log-factors) in L2 can be established in convex
polygonal/polyhedral domains, which represents the main result of the paper.

Our proof heavily relies on the fact that in the continuous and discrete setting the
obstacle is inactive in a non-empty strip at the boundary. This is deduced by basic
pointwise estimates and the structural assumption that the obstacle is inactive on the
boundary. Then, by using in a certain sense new results for locally discrete harmonic
functions, we are able to split the discretization error in L2 into two error terms. The
first one is nothing else than an L2-error for the Ritz-projection in the domain, where
we can rely on standard estimates from the literature. The second error contribution
represents an error in the interior of the domain, where the solution enjoys more
regularity. In order to appropriately bound this term, we employ techniques from [17]
(introduced there for global L∞-error estimates). However, we always take care on
the local support of this error, which lies in the interior of the domain. A more detailed
outline of the proof is given at the beginning of Sect. 4.

The paper is organized as follows: In Sect. 2 we introduce the variational formu-
lation to the obstacle problem and a Moreau-Yosida type relaxation to this problem.
Moreover, we state basic properties of the corresponding solutions, such as regularity
results, and we establish pointwise convergence of these solutions to each other. Some
of the results are already known in a similar fashion in the literature. Nevertheless, we
state the basic ideas in order to be self-contained. Moreover, and more importantly,
this also enables us to ensure that those results do not depend on a smooth boundary
in general, which is very often assumed in the literature. After having introduced the
discrete problem in Sect. 3, we consider the L2-error estimates in Sect. 4. There we
start with giving a short roadmap for the remainder of the paper. This is followed by
the observation that in all problems, which we consider, the obstacle is inactive in
a strip at the boundary, which relies on pointwise estimates and the aforementioned
structural assumption on the obstacle. Then we establish error estimates for locally
discrete harmonic functions, which are new in a certain sense compared to the results
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136 D. Hafemeyer et al.

from the literature. Using these estimates, standard results for the Ritz-projection, and
duality arguments in the L∞-L1-setting, we establish at the end of Sect. 4 the main
result of the paper, the discretization error estimates in L2 in convex polygonal and
polyhedral domains. Finally, in Sect. 5 we state numerical examples which underline
our theoretical findings.

Before closing the introduction, we emphasize that in all what follows C denotes a
generic positive constant which is always independent of the regularization parameter
ε and the mesh parameter h.

2 The continuous and the regularized problem

We start with introducing some notationwhich is used in the sequel of the paper.We let
� ⊂ RN , N ∈ {2, 3}, denote an open, convex and polygonally/polyhedrally bounded
domain with boundary ∂�. The Sobolev spaces are classically denoted by Wk,p(�)

with k ∈ N0 and p ∈ [1,∞]. In case that p = 2, we also use the notation Hk(�).
The norms in these spaces are denoted by ‖·‖Wk,p(�) and ‖·‖Hk (�), respectively. In
addition, Hk

0 (�) denotes the completion of all functions in C∞
0 (�) (the space of

infinitely often differentiable functions with compact support in �) with respect to
‖·‖Hk (�). Again classically, we denote the norm in L p(�) = W 0,p(�) by ‖·‖L p(�).
For the inner product in L2(�) we use the notation (·, ·). The dual space to H1

0 (�)

is denoted by H−1(�) and we use the notation 〈·, ·〉 to indicate the corresponding
duality pairing.

Let us now formulate the problem which we are dealing with. For f ∈ L∞(�) and
ψ ∈ W 2,∞(�), which satisfies ψ ≤ 0 on ∂�, we consider the variational problem:
Find u ∈ Kψ := {v ∈ H1

0 (�) | v ≥ ψ a.e. in �} such that

(∇u,∇(v − u)) ≥ ( f , v − u) ∀v ∈ Kψ. (1)

That is, we discuss the classical obstacle problem for a function u ∈ Kψ ⊂ H1
0 (�)

with an obstacle ψ ∈ W 2,∞(�). By classical means it is possible to show that there
exists a unique solution to this problem, see for instance [12, Chap. II, Theorem 2.1].
For the existence of a unique solution our regularity assumptions on the domain,
the obstacle and the data can certainly be relaxed. Let us again emphasize that the
assumptions stated above are crucial for our numerical analysis. In Sect. 4 we even
assume that the obstacle is inactive on the boundary.

Next, let us recall a well-known reformulation of the obstacle problemwhich can be
deduced by using concepts from convex analysis, see for instance [2, Sects. 1 and 2].
Let IKψ

denote the indicator functional of the convex setKψ . Then, the subdifferential
∂ IKψ

of IKψ
at a point u ∈ Kψ is given by

∂ IKψ
(u) =

{
v ∈ H−1(�)

∣∣ 〈v, u − w〉 ≥ 0 ∀w ∈ Kψ

}
.

Moreover, a function u ∈ H1
0 (�) solves the obstacle problem (1) if and only if there

exists a Lagrange multiplier β(u − ψ) ∈ ∂ IKψ
(u) such that
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Finite element error estimates in L2 for regularized… 137

(∇u,∇v) + 〈β(u − ψ), v〉 = ( f , v) ∀v ∈ H1
0 (�). (2)

Remark 1 Note that, as the solution u to the obstacle problem is unique, the Eq. (2)
uniquely determines β(u − ψ) ∈ H−1(�) by the relation

β(u − ψ) = f + �u ∈ H−1(�).

Next,we introduce a regularized problem,wherewe replace theLagrangemultiplier
β(u − ψ) by a suitable relaxation. Our approach follows that of [17]. A similar one is
also used in [12, Chap. IV, Sect. 5].

For ε > 0 we substitute β(u − ψ) by the monotonically increasing, and globally
Lipschitz continuous function

βε(s) :=
{
0, if s ≥ 0,

s/ε if s < 0,

and consider the semi-linear partial differential equation

(∇uε,∇v) + (βε(uε − ψ), v) = ( f , v) ∀v ∈ H1
0 (�) (3)

as an approximation of (1). Due to the above formulated assumptions on βε, ψ and
f , existence of a unique solution uε ∈ H1

0 (�)∩C(�̄) to (3) follows for any ε > 0 by
arguments due to Browder andMinty, see for instance [19, Theorem 4.7].We also note
that this is an outer approximation orMoreau–Yosida relaxation, [8], of the variational
inequality (1).

The following two lemmas about regularity issues for the obstacle problem and its
regularized version are in the spirit of [12, Chap. IV, Lemma 5.1 and Theorem 5.2].

Lemma 1 Let uε ∈ H1
0 (�) for ε ∈ (0, 1] denote the solution to (3). Then, βε(uε −ψ)

belongs to L∞(�) fulfilling

‖βε(uε − ψ)‖L∞(�) ≤ ‖ f + �ψ‖L∞(�). (4)

Further, the solution uε possesses the higher regularity H2(�)∩ H1
0 (�) and satisfies

‖uε‖H2(�) ≤ C(‖ f ‖L∞(�) + ‖�ψ‖L∞(�))

with a constant C > 0 independent of ε.

Proof To prove the boundedness of βε(uε−ψ) in L∞(�), one can proceed completely
analogously to the proof of [12, Chap. IV, Lemma 5.1]. For the convenience of the
reader and also to see the exact regularity requirements, let us quickly summarize the
most essential steps of the proof. Since uε ∈ H1

0 (�) ∩C(�̄) and ψ ∈ W 2,∞(�) with
ψ |∂� ≤ 0 we have that βε(u−ψ)|∂� = 0 and βε(u−ψ) ∈ H1(�)∩L∞(�) (accord-
ing to [12, Chap. II, Theorem A.1]). Thus, we may choose −(−βε(uε − ψ))p−1 =
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−|βε(uε − ψ)|p−1, which then belongs to H1
0 (�) ∩ L∞(�) as well (definitely for

p > 2), as a test function in (3). This yields

‖βε(uε − ψ)‖p
L p(�)

= (∇(uε − ψ),∇((−βε(uε − ψ))p−1) + ( f + �ψ,−(−βε(uε − ψ))p−1)

= (1 − p)(∇(uε − ψ), (−βε(uε − ψ))p−2β ′
ε(uε − ψ)∇(uε − ψ))

− ( f + �ψ, |βε(uε − ψ)|p−1),

where we used the integration by parts formula and the chain rule. Then, employing
the monotonicity of βε together with βε ≤ 0 and the Hölder inequality results in

‖βε(uε − ψ)‖p
L p(�) ≤ ‖ f + �ψ‖L p(�)‖βε(uε − ψ)‖p−1

L p(�).

Finally, after having divided by ‖βε(uε − ψ)‖p−1
L p(�), we take the limit p → ∞ and

obtain the desired bound for βε(uε − ψ). As a consequence, the higher regularity can
be deduced from [9, Theorem 3.2.1.2] after having sent βε(uε − ψ) to the right hand
side. ��
Lemma 2 Let u ∈ Kψ and uε ∈ H1

0 (�) denote the solutions to (1) and (3), respec-
tively. Then, we have

uε
ε→0−−→ u weakly in H2(�) and strongly in C(�̄),

βε(uε − ψ)
ε→0−−→ β(u − ψ) weakly in L2(�), (5)

and

‖β(u − ψ)‖L∞(�) ≤ ‖ f + �ψ‖L∞(�).

Proof We proceed similar to the proof of [12, Chap. IV, Theorem 5.2]. However,
we rely on the reformulation (2) of the obstacle problem instead of considering the
variational inequality (1). Due to the uniform boundedness of uε in H2(�) ∩ H1

0 (�)

and βε(uε − ψ) ∈ L2(�) according to Lemma 1, we get the existence of functions
û ∈ H2(�) ∩ H1

0 (�) and β̂ ∈ L2(�) such that

uε
ε→0−−→ û weakly in H2(�),

βε(uε − ψ)
ε→0−−→ β̂ weakly in L2(�).

Actually, we only get the convergence of subsequences at first. However, as the limits
will be unique (the unique solution u of the obstacle problem and the corresponding
unique Lagrange multiplier β(u − ψ)), we will have the convergence of the whole
sequences, and therefore we skip this detail in the following. Next, we show that û
and β̂ fulfill (2). Due to the weak convergence, we already know that
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(∇û,∇v) + (β̂, v) = ( f , v) ∀v ∈ H1
0 (�).

Thus, as the duality pairing between H−1(�) and H1
0 (�) is compatible with the inner

product in L2(�), it only remains to show that β̂ ∈ ∂ IKψ
(û). In a first step towards

this, we show that û belongs to Kψ , since then the subdifferential ∂ IKψ
(û) at û can

be characterized as

∂ IKψ
(û) =

{
v ∈ H−1(�)

∣∣ 〈v, û − w〉 ≥ 0 ∀w ∈ Kψ

}
.

As H2(�) is compactly embedded in C(�̄), we get that

uε
ε→0−−→ û strongly in C(�̄).

Assume next that there is a set O ⊂ �with |O| > 0 and δ > 0 such that û ≤ ψ −δ on
O . By the strong convergence inC(�̄)we have for ε small enough that uε ≤ ψ −δ/2.
Thus, by the Cauchy–Schwarz inequality and the definition of βε, we deduce

‖βε(uε − ψ)‖L2(O)‖uε − ψ‖L2(O) ≥ (βε(uε − ψ), uε − ψ)L2(O)

= 1

ε
‖uε − ψ‖2L2(O)

≥ |O| δ
2

4ε
,

which is a contradiction to the boundedness of the left hand side of this inequality
(according to Lemma 1) if we send ε to zero. As a consequence, we have shown
û ∈ Kψ . Now, we show that β̂ belongs to ∂ IKψ

(û). By introducing appropriate
intermediate functions, we get for any w ∈ Kψ , which implies βε(w − ψ) = 0, that

∫

�

β̂(û − w) =
∫

�

(β̂ − βε(uε − ψ))(û − w) +
∫

�

βε(uε − ψ)(û − uε)

+
∫

�

(βε(uε − ψ) − βε(w − ψ))((uε − ψ) − (w − ψ))

≥
∫

�

(β̂ − βε(uε − ψ))(û − w) +
∫

�

βε(uε − ψ)(û − uε),

where we used the monotonicity of βε in the last step. Sending ε to zero implies

∫

�

β̂(û − w) ≥ 0 ∀w ∈ Kψ,

which means that β̂ ∈ ∂ IKψ
(û), and hence u = û and β(u − ψ) = β̂. Finally, the

estimate for the Lagrangemultiplier β(u−ψ) in L∞(�) is a direct consequence of the
weak convergence (5) and the estimate (4) due to the weakly lower semi-continuity
of the norm. ��
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Remark 2 Due to the convergence results of Lemma 2 it is possible to further charac-
terize β(u − ψ). For any non-negative function v ∈ C∞

0 (�) we have according to the
definition of βε

0 ≥ lim
ε→0

∫

�

βε(uε − ψ)v =
∫

�

β(u − ψ)v.

Thus, bymeans of the fundamental lemmaof variational calculus,wegetβ(u−ψ) ≤ 0,
and hence, β(u − ψ)(u − ψ) ≤ 0 almost everywhere, such that the definition of βε

implies

0 ≤ lim
ε→0

∫

�

βε(uε − ψ)(uε − ψ) =
∫

�

β(u − ψ)(u − ψ) ≤ 0

or, equivalently,

‖β(u − ψ)(u − ψ)‖L1(�) = 0.

To summarize, this means in the almost everywhere sense

β(u − ψ)

{
= 0 if u − ψ > 0,

≤ 0 if u − ψ = 0.

The next theorem is concerned with the regularization error in L∞(�) and the
related convergence rate. It basically reflects the results of [17, Theorem 2.1]. Never-
theless, we recall the proof in order to ensure that it does not depend on the smoothness
of the boundary since in [17] a smooth boundary is assumed.

Theorem 1 Let u ∈ Kψ and uε ∈ H1
0 (�) denote the solutions to (1) and (3), respec-

tively. Then there is the estimate

‖u − uε‖L∞(�) ≤ ε‖ f + �ψ‖L∞(�).

Proof Let us abbreviate eε = u − uε. Having in mind the L2-regularity of β(u − ψ)

from Lemma 2, we obtain from (2) and (3)

(∇eε,∇v) = (βε(uε − ψ) − β(u − ψ), v) ∀v ∈ H1
0 (�).

Next, we observe that the function e2p+1
ε , where p is an arbitrary positive integer,

belongs to H1
0 (�) if u and uε belong to H1

0 (�) ∩ L∞(�). The L∞(�) regularity is
given by Lemma 2. Thus, we may choose it as a test function in the above variational
equation. This yields employing the chain rule several times

(βε(uε − ψ) − β(u − ψ), e2p+1
ε )

= (∇eε,∇e2p+1
ε ) = 2p + 1

(p + 1)2
‖∇ep+1

ε ‖2L2(�)

≥ C
2p + 1

(p + 1)2
‖ep+1

ε ‖2L2(�)
= C

2p + 1

(p + 1)2
‖eε‖2(p+1)

L2(p+1)(�)
,
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wherewe applied the Poincaré inequality in between.Notice, that the constant from the
Poincaré inequality is independent of p.We nowestimate the termon the left hand side.
Due to the definition of βε and Remark 2 we notice that βε(u − ψ) = β(u − ψ) = 0
almost everywhere if u − ψ > 0. Then, due to the monotonicity of βε we get

0 ≥ (βε(uε − ψ) − β(u − ψ))(u − uε) a.e. in {x ∈ � | u(x) − ψ(x) > 0}.

According to the definition of βε and Remark 2, we also obtain

0 ≥ (βε(uε − ψ) − β(u − ψ))(u − uε) a.e. in {x ∈ � | uε(x) − ψ(x) > 0 ∧ u(x) = ψ(x)}.

Next, let us define I = {x ∈ � | uε(x) − ψ(x) ≤ 0 ∧ u(x) = ψ(x)} and eψ =
ψ − uε ≥ 0. Then, combining the previous results yields

(βε(uε − ψ) − β(u − ψ), e2p+1
ε ) ≤ (βε(uε − ψ) − β(u − ψ), e2p+1

ψ )L2(I ).

Due to the definition βε(uε − ψ) and Remark 2, this also implies

1

ε
‖eψ‖2(p+1)

L2(p+1)(I )
+ (βε(uε − ψ) − β(u − ψ), e2p+1

ε ) ≤ (|β(u − ψ)|, e2p+1
ψ )L2(I ).

By means of the Hölder and the Young inequality, we get

(|β(u − ψ)|, e2p+1
ψ )L2(I )

≤ ‖β(u − ψ)‖L2(p+1)(I )‖eψ‖2p+1
L2(p+1)(I )

≤ 1

2(p + 1)
ε2p+1‖β(u − ψ)‖2(p+1)

L2(p+1)(I )
+ 2p + 1

2(p + 1)

1

ε
‖eψ‖2(p+1)

L2(p+1)(I )

≤ 1

2(p + 1)
ε2p+1‖β(u − ψ)‖2(p+1)

L2(p+1)(I )
+ 1

ε
‖eψ‖2(p+1)

L2(p+1)(I )
,

such that

(βε(uε − ψ) − β(u − ψ), e2p+1
ε ) ≤ 1

2(p + 1)
ε2p+1‖β(u − ψ)‖2(p+1)

L2(p+1)(I )
,

and hence

‖eε‖L2(p+1)(�) ≤
(
C

p + 1

2p + 1

) 1
2(p+1)

ε
2p+1
2(p+1) ‖β(u − ψ)‖L2(p+1)(I )

≤ C
1

2(p+1) ε
2p+1
2(p+1) ‖β(u − ψ)‖L2(p+1)(I ),

where the constant C is still independent of p. If we let p tend to infinity, the desired
result follows from Lemma 2. ��
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Remark 3 We later consider the error ‖u − uε‖L2(�). Nevertheless, Theorem 1 gives
an upper bound for the error due to the Hölder inequality. Even, in Sect. 5.1, this rate
is numerically validated to be sharp.

We close this section with a interior regularity result for the solution of the Poisson
equation, which is needed later in the proof of Lemma 8.

Lemma 3 Let U ⊂ Uδ ⊂ � denote two connected subsets with dist(∂U , ∂Uδ) ≥ δ,
δ > 0, with boundaries of class C1,1. Let φ ∈ L2(�) ∩ L∞(Uδ) be given and let
z ∈ H1

0 (�) denote the unique solution to

−�z = φ in �,

z = 0 on ∂�.

Then, for p ∈ [2,∞) there holds

‖z‖W 2,p(U ) ≤ Cp(‖φ‖L p(Uδ) + ‖φ‖L2(�)),

where the constant C depends on δ but not on p.

Proof We follow a similar proof from [13, Lemma 2.4], i.e., we apply a boot strapping
argument. First we introduce an intermediate smooth domain Uδ/2 such that U ⊂
Uδ/2 ⊂ Uδ with dist(∂U , ∂Uδ/2) ≥ δ/2 and dist(∂Uδ/2, ∂Uδ) ≥ δ/2. In a first step we
show W 1,∞(Uδ/2)-regularity for z. Let ω ∈ C∞(�) denote a smooth cut-off function
on Uδ/2, such that ω|Uδ/2 ≡ 1, ω|�\Uδ ≡ 0, and |ω|Wr ,∞(�) ≤ Cδ−r for r ∈ {0, 1, 2},
see [10, Theorem 1.4.1 and Eq. (1.42)] for the existence of such a cut-off function and
the corresponding estimates. We set v := ωz. Then v ∈ H1

0 (Uδ) is the weak solution
to

−�v = φω + (−�ω)z − 2∇ω · ∇z =: g in Uδ,

v = 0 on ∂Uδ.

Due to the smoothness properties of ω, the right hand side g can be bounded by

‖g‖L6(Uδ)
≤ C

(‖φ‖L6(Uδ)
+ ‖z‖W 1,6(Uδ)

)
,

where the constant C depends on δ. Moreover, due to the H2-regularity of z, as � is
convex, we have

‖z‖W 1,6(�) ≤ C‖z‖H2(�) ≤ C‖φ‖L2(�).

Consequently, by elliptic regularity, c.f. [7, Theorem 9.9], we obtain

‖v‖W 2,6(Uδ)
≤ C‖g‖L6(Uδ)

≤ C(‖φ‖L6(Uδ)
+ ‖φ‖L2(�)).
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Since ω ≡ 1 on Uδ/2 we have v|Uδ/2 ≡ z|Uδ/2 and therefore

‖z‖W 1,∞(Uδ/2)
≤ C‖z‖W 2,6(Uδ/2)

≤ C(‖φ‖L6(Uδ)
+ ‖φ‖L2(�)). (6)

Next,we repeat the above argumentation forU andUδ/2 with correspondingly changed
cut-off function ω and auxiliary problem for v. Let p > 6 and ω denote a cut-off
function such that ω ≡ 1 on U and ω ≡ 0 on �\Uδ/2. As above, we obtain

‖g‖L p(Uδ/2) ≤ C
(
‖φ‖L p(Uδ/2) + ‖z‖W 1,p(Uδ/2)

)
≤ C

(‖φ‖L p(Uδ) + ‖φ‖L2(�)

)
,

where we used (6). Finally, from elliptic regularity, c.f. [7, Theorem 9.9], we get for
p ∈ [2,∞) the desired result,

‖z‖W 2,p(U ) ≤ Cp(‖φ‖L p(Uδ) + ‖φ‖L2(�)),

where we notice that the constant C is independent of p. This can be seen from the
proof of [7, Theorem 9.9]. ��

3 The discrete problem

In the following we derive optimal a-priori error estimates in L2(�) for a numerical
approximation to (1) which is based on the regularized problem (3). We rely on the
approach of [17]. However, we again notice that the results from that reference are
not directly applicable in our setting as in [17] globalW 2,p-regularity is required with
arbitrarily large p < ∞.

Let us now introduce the numerical approximation which we are dealing with. We
do not discretize (3) directly but an equivalent reformulation of it. According to (4), we
may truncate the nonlinearity βε without changing the solution to (3). More precisely,
if we choose the constant

λ := c‖ f + �ψ‖L∞(�) (7)

with c ≥ 1, we may redefine βε by the bounded, monotonically increasing, and
globally Lipschitz continuous function

βε(s) :=
{
0, if s ≥ 0,

max(s/ε,−λ), if s < 0,
(8)

without changing the solution of (3). This problem with the redefined nonlinearity is
now being discretized by piecewise continuous and linear finite elements. Let {Th}
be a family of conforming and quasi-uniform triangulations of � which are admis-
sible in the sense of Ciarlet. We denote by h := maxT∈Th diam T the global mesh
parameter and assume that h < 1/2. For each element T ∈ Th we assume that it is
isoparametrically equivalent to the unit simplex in RN .

We comment on the case of elements that are equivalent to the unit cube inRemark 4.
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On Th we define

Vh := {vh ∈ C(�) | v|T is affine ∀T ∈ Th, v|∂� ≡ 0},

and determine approximations to the solution uε of (3) by solving the problem: Find
uε,h ∈ Vh such that

(∇uε,h,∇vh) + (βε(uε,h − ψ), vh) = ( f , vh) ∀vh ∈ Vh . (9)

For each mesh parameter h the existence of a unique solution to this finite
dimensional problem follows by standard arguments. For later reference, we define
Ih : C(�) → Vh as the usual Lagrangian interpolation operator, and the Ritz projec-
tion of w ∈ H1

0 (�) as the function Rhw in Vh which satisfies

(∇(Rhw − w),∇vh) = 0 ∀vh ∈ Vh .

Finally, let us stress that we assume exact integration for the non-smooth nonlinear-
ity βε(uε,h−ψ). We refer to [11], where a lumping technique is used for the numerical
approximation of the nonlinear term.

4 Error estimates in L2(Ä)

In Theorem 1 we have already seen that the regularization error can appropriately be
bounded in L2(�), even in L∞(�). In the following we derive a priori bounds with
respect to the discretization parameter h for the discretization error uε −uε,h in L2(�),
see Theorem 3. Afterwards, we combine these results in Theorem 4.

Before going into detail, let us quickly elucidate the structure of the main part of
this section, the proof of estimates for the discretization error. Based on the assumption
that ψ < 0 on the boundary, i.e., the obstacle is inactive on the boundary, we show
in a first step that there exists a (non-empty) strip Dd at the boundary ∂� of width d
(independent of ε and h) such that

β(u − ψ) = βε(uε − ψ) = βε(uε,h − ψ) = 0 a.e. in Dd ⊂ �, (10)

see Lemma 5, and hence, the constraint is inactive in the neighborhood Dd of the
boundary for each problem. The proof requires that ε and h are small enough as it
relies on the fact that we already have pointwise convergence of uε towards u, see
Theorem 1, and pointwise convergence of uε,h towards uε with some (maybe not
optimal) rate, see Lemma 4. According to (10), we also have that Rhuε − uε,h is
discretely harmonic, see (13), on Dd . This implies that there exists another strip D at
the boundary (for instance of width d/2) such that

‖Rhuε − uε,h‖H1(D) ≤ C‖Rhuε − uε,h‖L2(Dd\D) ≤ C‖Rhuε − uε,h‖L2(�\D),

(11)
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where the constant C depends on the distance between D and Dd , see Theorem 2.
Based on this, we get after having introduced Rhuε as an intermediate function

‖uε − uε,h‖L2(�)

≤ ‖uε − Rhuε‖L2(D) + ‖Rhuε − uε,h‖L2(D) + ‖uε − uε,h‖L2(�\D)

≤ ‖uε − Rhuε‖L2(D) + C‖Rhuε − uε,h‖L2(�\D) + ‖uε − uε,h‖L2(�\D)

≤ C
(‖uε − Rhuε‖L2(�) + ‖uε − uε,h‖L2(�\D)

)
, (12)

wherewe introduced uε as an intermediate function in the last step. Estimating the error
of the Ritz-projection Rhuε is standard, taking into account the H2(�)-regularity of uε

according to Lemma 2. It remains to bound the second term in the previous inequality.
More precisely, we estimate the difference uε − uε,h in L∞(�\D). Here we rely on a
duality argument as in [17], see Theorem 3. However, we always take care on the fact
that this term only lives in the interior of the domain, where we have higher regularity.
This is the main reason for having second order convergence (times a log-factor) in
L2(�) in case of general convex polygonal/polyhedral domains.

We start with providing an L∞(�)-estimate for the discretization error, which is
valid in convex domains, but only has a lower convergence rate.

Lemma 4 Let uε and uε,h be the solutions of (3) and (9), respectively. Then, there is
the estimate

‖uε − uε,h‖L∞(�) ≤ Ch2−
N
2 (‖ f ‖L∞(�) + ‖�ψ‖L∞(�)),

where the constant C is independent of ε and h.

Proof This follows from [17, Lemma 2.2 and Theorem 2.3] using only H2(�)-
regularity which holds in general convex domains. Equivalently, one can set D = ∅
within the proof of Theorem 3 and Lemma 8. Then, by taking into account only the
H2(�)-regularity of z within the proof of Lemma 8 for estimating ‖z − Rhz‖L∞(�),
one obtains the desired result as well. ��

Based on the previous lemma, we next show that (10) holds.

Lemma 5 Let u, uε and uε,h be the solutions of (2), (3) and (9), respectively. In
addition assume that ψ < 0 on the boundary. Then, there exist constants d > 0,
ε0 > 0 and h0 > 0 such that for all ε ≤ ε0 and h ≤ h0 there holds

β(u − ψ) = βε(uε − ψ) = βε(uε,h − ψ) = 0 a.e. in Dd := {x ∈ � | dist(x, ∂�) ≤ d}.

Proof As the obstacle ψ is a continuous function on the boundary, which represents
a compact set, we obtain that there exists a τ > 0 such that ψ ≤ −τ on the boundary,
and hence, there holds u − ψ ≥ τ on the boundary. Next, we notice that u − ψ

is a continuous function up to the boundary, see Lemma 2. Consequently, there is a
constant d > 0 such that u − ψ ≥ 1

2τ on Dd . Further, from Theorem 1 we have that
|u(x) − uε(x)| ≤ ε‖ f + �ψ‖L∞ for all x ∈ �. Consequently, there exists a constant
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ε0 > 0 such that uε −ψ ≥ 1
4τ on Dd for all ε ≤ ε0. In the samemanner, now using the

L∞(�)-estimate from Lemma 4 (note that the constant there is independent of ε and
h), we deduce the existence of a constant h0 > 0 such that for all h ≤ h0 there holds
uε,h − ψ ≥ 1

8τ on Dd . The assertion now follows from the discussion in Remark 2
and the definition of βε in (8). ��

Next, we are concerned with proving (11). For that reason, let us first introduce
the notion of locally discrete harmonic functions as it is used in the following. LetUδ

denote a subset of �. We call a function wh ∈ Vh discretely harmonic on Uδ if

(∇wh,∇vh) = 0 ∀vh ∈ Vh ∩ {v ∈ H1(�) | v = 0 a.e. in �\Uδ}. (13)

It is well-known that discretely harmonic functions fulfill the following Caccioppoli-
type estimate: LetU andUδ be subsets of� such thatU ⊂ Uδ and dist(U , ∂Uδ\∂�) =
δ with δ > 0. Further, assume that wh ∈ Vh is discretely harmonic on Uδ . Then for h
small enough (depending on δ) there is the estimate

‖∇wh‖L2(U ) ≤ Cδ−1‖wh‖L2(Uδ)
, (14)

where the constant C is independent of δ. Estimates of this kind are essential when
proving local energy norm estimates, which can be traced back to [16]We alsomention
[5] where in contrast to [16] the assumption on quasi-uniform meshes is avoided and
sharply varying grids are admitted. Amore sophisticated discussion on local estimates
and a survey on related results from the literature can be found in [5] as well.

In (14) the norm on the right hand side is defined on Uδ but not on Uδ\U as it is
required for our purposes. However, the results from the literature can be extended to
this by minor modifications. We summarize this in the following lemma. We assume
that the mesh is quasi-uniform, and only notice that the results also extend to the more
general setting of [5].

Lemma 6 Let U and Uδ be subsets of � such that U ⊂ Uδ and dist(U , ∂Uδ\∂�) = δ

with δ > 0. Further, assume that wh ∈ Vh is discretely harmonic on Uδ in the sense
of (13). Then, there exists a constant hδ > 0 (depending on δ) such that for h ≤ hδ

there is the estimate

‖∇wh‖L2(U ) ≤ Cδ−1‖wh‖L2(Uδ\U ),

where the constant C is independent of δ.

Proof For i = 1, . . . , 4, let Uiδ/5 be a subset of � such that U ⊂ Uiδ/5 ⊂ Uδ

and dist(U , ∂Uiδ/5\∂�) = iδ/5. Moreover, we define the smooth cut-off function
ω ∈ C∞(�) which satisfies

ω|U2δ/5 ≡ 1, ω|�\U3δ/5 ≡ 0, and |ω|Wr ,∞(�) ≤ Cδ−r for 0 ≤ r ≤ 2,
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see [10, Theorem 1.4.1 and Eq. (1.42)] for the existence of such a cut-off function and
the corresponding estimates. By simple calculations we deduce

‖∇wh‖2L2(U )
≤ ‖ω∇wh‖2L2(Uδ)

=
∫

Uδ

ω2∇wh · ∇wh

=
∫

Uδ

∇wh · ∇(ω2wh) −
∫

Uδ

wh∇wh · ∇ω2. (15)

For the second term we obtain by the Cauchy–Schwarz inequality and the properties
of ω

∣∣∣∣
∫

Uδ

wh∇wh · ∇ω2
∣∣∣∣ = 2

∣∣∣∣
∫

Uδ

ω∇wh · wh∇ω

∣∣∣∣ ≤ 2‖ω∇wh‖L2(Uδ)
‖wh∇ω‖L2(Uδ\U )

≤ Cδ−1‖ω∇wh‖L2(Uδ)
‖wh‖L2(Uδ\U ) ≤ 1

4
‖ω∇wh‖2L2(Uδ)

+ Cδ−2‖wh‖2L2(Uδ\U )
,

(16)

where we applied Young’s inequality in the last step. Next, we consider the first term
in (15). We notice that there exists a constant hδ > 0 such that for all h ≤ hδ there
holds Ih(ω2wh) ∈ Vh ∩ {v ∈ H1(�) | v = 0 a.e. in �\U4δ/5} and Ih(ω2wh) ≡ ω2wh

on Uδ/5. Thus, using (13) to insert Ih(ω2wh) we obtain

∫

Uδ

∇wh · ∇(ω2wh) =
∫

Uδ

∇wh · ∇
(
ω2wh − Ih(ω

2wh)
)

=
∫

U4δ/5\Uδ/5

∇wh · ∇
(
ω2wh − Ih(ω

2wh)
)

≤
∑

T⊂Uδ\U
‖∇wh‖L2(T )‖∇

(
ω2wh − Ih(ω

2wh)
)

‖L2(T ).

For each element T ⊂ Uδ\U we deduce by means of an inverse inequality and a
standard interpolation error estimate

‖∇wh‖L2(T )‖∇
(
ω2wh − Ih(ω

2wh)
)
‖L2(T ) ≤ Ch−1‖wh‖L2(T )h|ω2wh |H2(T )

= C‖wh‖L2(T )|ω2wh |H2(T ). (17)

Moreover, using the bounds forω and its derivatives, we get by elementary calculations

|ω2wh |H2(T ) ≤ C
(
|ω|W 1,∞(T )‖ω∇wh‖L2(T ) + |ω2|W 2,∞(T )‖wh‖L2(T )

)

≤ C
(
δ−1‖ω∇wh‖L2(T ) + δ−2‖wh‖L2(T )

)
. (18)
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Note that all second derivatives of the affine function wh vanish on T . The previous
inequalities imply

∫

Uδ

∇wh · ∇(ω2wh) ≤ C
∑

T⊂Uδ\U

(
δ−1‖wh‖L2(T )‖ω∇wh‖L2(T ) + δ−2‖wh‖2L2(T )

)

≤ 1

4
‖ω∇wh‖2L2(Uδ)

+ Cδ−2‖wh‖2L2(Uδ\U )
, (19)

where we applied Young’s inequality in the last step. We finally get the assertion from
(15), (16) and (19). ��
Remark 4 For the proof of Lemma 6 it is essential that second derivatives of wh

vanish on each element T , see (17) and (18). This is no longer the case if the elements
are isoparametrically equivalent to the unit cube in Rn as the corresponding shape
functions on the reference element (unit cube) are multilinear. However, using sharper
versions of the Bramble-Hilbert Lemma in (17), which only involve pure, but not
mixed, second derivatives, lead to a comparable result. For instance, such a version of
the Bramble-Hilbert Lemma is valid if the underlying mesh is rectangular, see e.g. [1,
Sect. 2.4.2].

We now combine the previous results to deduce (11).

Theorem 2 Let uε and uε,h be the solutions of (3) and (9), respectively. In addition
assume that ψ < 0 on the boundary. Then, there exist a non-empty strip D at the
boundary and constants ε1 > 0 and h1 > 0 such that for all ε ≤ ε1 and h ≤ h1 there
holds

‖Rhuε − uε,h‖H1(D) ≤ C‖Rhuε − uε,h‖L2(�\D).

Proof Define D := {x ∈ � | dist(x, ∂�) ≤ d/2}, where d denotes the width of the
strip Dd in Lemma 5. From the same lemma we obtain that Rhuε − uε,h is discretely
harmonic on Dd for all h ≤ h0 and ε ≤ ε1 := ε0 as βε(uε − ψ) = βε(uε,h − ψ) = 0
on Dd . Consequently, employing Lemma 6 there exists a constant hd such that for all
h ≤ h1 := min{h0, hd} there holds

‖∇(Rhuε − uε,h)‖L2(D) ≤ C‖Rhuε − uε,h‖L2(Dd\D) ≤ C‖Rhuε − uε,h‖L2(�\D).

As Rhuε − uε,h fulfills homogeneous boundary conditions on ∂�, the estimate of the
assertion is finally a consequence of the Poincaré inequality. ��

For the remainder of this section let D denote a strip at the boundary where we
have

βε(uε − ψ)|D = βε(uε,h − ψ)|D = 0. (20)

This is the same strip as introduced in Theorem 2 when we collect all the intermediate
estimates in Theorem 4. In a next step for the final result, we estimate uε − uε,h in
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L∞(�\D). As already announced, we use a duality argument for that purpose. For
the corresponding dual problem, we define

b :=
{

[βε(uε − ψ) − βε(uε,h − ψ)]/(uε − uε,h) if (uε − uε,h)(x) �= 0,

0 else.
(21)

Note that 0 ≤ b ≤ ε−1 almost everywhere in �. The upper bound follows from
the Lipschitz-continuity of βε with Lipschitz constant ε−1, while the lower bound is
a consequence of the monotonicity of βε.

Moreover, let

δ̃ be a function from C∞(�) with supp δ̃ ⊂ �\D and ‖δ̃‖L1(�) ≤ 1. (22)

Then, we define G ∈ H1
0 (�) as the weak solution to the dual problem

− �G + bG = δ̃ in �,

G = 0 on ∂�. (23)

Before applying the duality argument in Theorem 3, let us state several auxiliary
results.

Lemma 7 Let D with |D| ≥ 0 be a strip at the boundary where (20) holds. Moreover,
let b and δ̃ be the functions from (21) and (22), respectively, and let G ∈ H1

0 (�) be
the solution of (23). Then, there holds

(i) ‖bG‖L1(�) ≤ 1,
(ii) supp bG ⊂ �\D.

Proof (i) For t > 0 we define the regularized sign function sgnt (x) := x√
x2+t

.

Testing (23) with sgnt (G) yields

1 ≥ (δ̃, sgnt (G)) = (∇G, sgn′
t (G)∇G) + (bG, sgnt (G)).

As a consequence, by means of the monotonicity of sgnt , we get

1 ≥ (bG, sgnt (G))L2(�).

Sending t to zero and recalling thatb ≥ 0 yields 1 ≥ ∫
�
b sgn(G)G = ‖bG‖L1(�).

(ii) According to (20) we have βε(uε − ψ) = βε(uε,h − ψ) = 0 a.e. on D such that
b = 0 a.e. on D, and hence bG = 0 a.e. on D.

��
Lemma 8 Let D with |D| > 0 (independent of ε and h) be a strip at the boundarywhere
(20) holds. Moreover, let b and δ̃ be the functions from (21) and (22), respectively.
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Then, there exists a constant hd > 0 such that for all h ≤ hd the solution G of (23)
and its Ritz-projection RhG fulfill

‖G − RhG‖L1(�) ≤ Ch2|log h|2

with a constant C > 0 independent of ε, h and δ̃.

Proof Let z ∈ H1
0 (�) denote the unique weak solution to

−�z = sgn(G − RhG) in �,

z = 0 on ∂�.

Bymeans of this equation, the orthogonality of the Ritz-projection, (23) and Lemma 7,
we obtain

‖G − RhG‖L1(�)

= (G − RhG, sgn(G − RhG)) = (∇(G − RhG),∇z)

= (∇(G − RhG),∇(z − Rhz)) = (∇G,∇(z − Rhz))

= (δ̃ − bG, z − Rhz)L2(�\D) ≤ (‖δ̃‖L1(�) + ‖bG‖L1(�))‖z − Rhz‖L∞(�\D)

≤ 2‖z − Rhz‖L∞(�\D).

For technical reasons, we have to introduce another subset D′ of �, which is
smoothly bounded, fulfills D′ ⊂ D, and has a fixed and positive distance to D and to
∂�. Using local L∞-error estimates from [20, Theorem 10.1] in combination with a
standard interpolation error estimate we get for h small enough

‖z − Rhz‖L∞(�\D) ≤ C
(
h2−

N
p |log h|‖z‖W 2,p(�\D′) + ‖z − Rhz‖L2(�)

)
.

A standard L2(�)-error estimate for the Ritz-projection together with elliptic regular-
ity for z, and Lemma 3 implies

‖z − Rhz‖L∞(�\D)

≤ C
(
ph2−

N
p |log h|‖sgn(G − RhG)‖L p(�) + h2‖sgn(G − RhG)‖L2(�)

)

≤ Ch2|log h|2(p|log h|−1h− N
p + 1),

where we used that ‖sgn(G − RhG)‖L∞(�) ≤ 1. If we set p = |log h|, the desired
result follows as h− N

|log h| = eN . ��
Theorem 3 Let D with |D| > 0 (independent of ε and h) be a strip at the boundary
where (20) holds.Moreover, let uε and uε,h be the solutions of (3) and (9), respectively.
Then, there exists a constant hd > 0 such that for all h ≤ hd there holds

‖uε − uε,h‖L∞(�\D) ≤ Ch2|log h|2(‖ f ‖L∞(�) + ‖�ψ‖L∞(�))
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with a constant C > 0 independent of ε and h.

Proof As L∞(�\D) = (L1(�\D))∗ we have that

‖uε − uε,h‖L∞(�\D) = sup
δ̃∈C∞(�)

supp δ̃⊂�\D
‖δ̃‖L1(�)

≤1

∣∣∣∣
∫

�

(uε − uε,h)δ̃

∣∣∣∣ .

Let such a δ̃ be the right hand side of (23). Consequently, we get

∫

�

(uε − uε,h)δ̃

= (∇(uε − uε,h),∇G) + (βε(uε − ψ) − βε(uε,h − ψ),G)

= (∇(uε − uε,h),∇(G − RhG) + (βε(uε − ψ) − βε(uε,h − ψ),G − RhG),

where we also used (3) and (9). The orthogonality of the Ritz-projection and (3) imply

∫

�

(uε − uε,h)δ̃ = (∇uε,∇(G − RhG) + (βε(uε − ψ) − βε(uε,h − ψ),G − RhG)

= ( f − βε(uε,h − ψ),G − RhG)

≤ ‖ f − βε(uε,h − ψ)‖L∞(�)‖G − RhG‖L1(�).

The assertion follows from theboundedness‖βε(uε,h−ψ)‖L∞(�) ≤ c‖ f +�ψ‖L∞(�)

according to (8), and Lemma 8. ��
If we now combine the results from Theorem 1, Lemma 5, Theorems 2, and 3, as

outlined in (12), we obtain the following result.

Theorem 4 Let u, uε and uε,h be the solutions of (1), (3) and (9), respectively. In
addition assume that ψ < 0 on the boundary. Then, there exist constants εd > 0 and
hd > 0 such that for all ε ≤ εd and h ≤ hd there holds

‖u − uε,h‖L2(�) ≤ C
(
ε + h2|log h|2

)
(‖ f ‖L∞(�) + ‖�ψ‖L∞(�))

with a constant C > 0 independent of ε and h, and using ε = O(h2|log h|2) we get

‖u − uε,h‖L2(�) ≤ Ch2|log h|2(‖ f ‖L∞(�) + ‖�ψ‖L∞(�)).

We close this section with some remarks on certain additional aspects of our
approach.

Remark 5 (Inactivity at the boundary ∂�) The previous results are derived under the
assumption that the obstacle is inactive on the boundary. This is due to the appearance
of singular terms within the primal and dual solutions at the singular points of the
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boundary, which are the corners of the domain for N = 2, and the corners and edges
for N = 3. However, the singularities are local phenomena. Away from the singular
points, the regularity of the primal and dual solutions is only limited by the regularity of
the data and the obstacle. For that reason, it is also sufficient to only assume inactivity
of ψ on the boundary at the singular points.

Remark 6 (Non-convex domains) Throughout the whole paper, we have assumed that
the domain is convex. Let us briefly comment on the non-convex case. As already
noticed in the previous remark, the singularities are only local phenomena around the
singular points. Thus, the W 2,p(�\D′) regularity in the interior of the domain still
holds. Further, the global H1(�) ∩ C(�) regularity is valid. Only the H2(�) regu-
larity up to the boundary might no longer be true. Instead one may employ H1+t (�)

regularity with some t ∈ (1/2, 1] (depending on the singularities). Consequently, one
may use the weak convergence of uε to û in H1+t (�) (instead of H2(�)) within the
proof of Lemma 2 in order to show the strong convergence of the sequence in C(�).
In addition, one has to replace the estimates for

‖uε − Rhuε‖L2(�) in (12) and ‖z − Rhz‖L2(�) within the proof of Lemma 8

by the correspondingly adapted estimates. In general, this will lead to reduced all
over convergence rates of order 2t (due to the corner/edge singularities affecting those
estimates). However, it is possible to use mesh grading techniques to retain the full
order of convergence for the critical terms. As a consequence, and as the results of
Lemma 6 also hold on sharply varying grids (see the discussion before Lemma 6),
graded meshes can also be used for the present discretization strategy for the obstacle
problem to retain the convergence rates of Theorem 4 in non-convex domains.

5 Numerical validation

For the numerical realization of the fully discrete Eq. (9) we employ the finite element
toolbox iFEM[3] insideMatlab® R2018a. In the numerical examples of the subsequent
Sects. 5.1 and 5.2 the discrete subspaces Vh are constructed by piecewise linear and
globally continuous functions on a sequence of subdivisions of � into triangles. The
computational domains � ⊂ R2 are exactly specified below. Moreover, we fix f =
−30 and ψ = −1. The constant c in the definition of λ (7) is chosen as c = 6.

The example in Sect. 5.1 shows that the convergence rates of uε,h in terms of ε and
h are sharp. More precisely, we see that the exponents of ε and h|log h| in

‖u − uε,h‖L2(�) ≤ C(ε + h2| log h|2), (24)

proven in Theorem 4, can essentially not be improved.
The example in Sect. 5.2 studies the influence of the largest interior angle of a

polygonal domain on the convergence rates in L2(�) and L∞(�). It illustrates that
the result of Theorem 4, and hence estimate (24), is valid in general convex domains.
However, the convergence rates in L∞(�) may be reduced depending on the largest
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10−7 10−6 10−5 10−4 10−3

10−5

10−3

O(ε)

ε

uref − uε,h L2(Ω)

h = 2−4

h = 2−5

h = 2−6

h = 2−7

h = 2−8

Fig. 1 Evolution of ‖ure f − uε,h‖L2(�) for ε → 0 and for several values of h

interior angle due to the appearance of corner singularities. Let us denote by α ∈
[π/3, π) the largest interior angle of the domain. Then, one can show (neglecting
log-terms)

‖u − uε,h‖L∞(�) ≤ C(ε + hmin{2,π/α}−δ) (25)

for an arbitrarily small δ > 0. For instance, this can be deduced from [17, Lem.
2.2 and Thm. 2.3] having in mind the reduced regularity stemming from the corner
singularities.

Before turning our attention to the numerical examples, we notice that we use ref-
erence solutions (computed on a fine mesh and with a small regularization parameter)
for the purpose of comparison, as we do not have analytic solutions to any of our
numerical examples.

5.1 Validation of the discretization error estimates in L2(Ä)

In this section we verify (24). As underlying domain we choose the unit square
� = (0, 1)2. The reference solution is computed with εre f = 10−7 and
hre f = 0.511 ≈ 4.8 · 10−4. From the structure of the estimate one expects
that for small h the total error is dominated by the error caused by ε and vice versa.
To show this, we calculate solutions uε,h to (9) for sequences ε and h tending to zero.
In Fig. 1 we show ‖uε,h − ure f ‖L2(�) as a function of ε for fixed values of h, while in
Fig. 2 we show ‖uε,h − ure f ‖L2(�) as a function of h for fixed values of ε.

In Fig. 1 we observe, that for every fixed h, the error becomes stationary for small
ε and cannot be further reduced by reducing ε. Hence, the discretization error is
dominating in this case. Moreover, for h sufficiently small we observe first order
convergence in terms of ε. This is in agreement with our theoretical findings, see (24).
An analogous result is observed in Fig. 2, but with ε and h changing their roles. Of
course, in terms of h we see a convergence rate of close to two.
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10−3 10−2 10−1
10−6

10−5

10−4

10−3

O(h2)

h

uref − uε,h L2(Ω)

ε = 1.0 · 10−4

ε = 3.1 · 10−5

ε = 1.0 · 10−5

ε = 3.1 · 10−6

ε = 1.0 · 10−6

ε = 3.1 · 10−7

Fig. 2 Evolution of ‖ure f − uε,h‖L2(�) for h → 0 and for several values of ε

Table 1 Experimental orders of

convergence of ηL
2

h = ‖ure f
− uε,h‖L2(�) and ηL

∞
h

= ‖ure f − uε,h‖L∞(�) on
� 5

8π

h ηL
2

h EOC of ηL
2

h ηL
∞

h EOC of ηL
∞

h

2−5 4.85e−04 – 5.04e−03 –

2−6 1.26e−04 1.93 1.84e−03 1.44

2−7 3.15e−05 2.00 6.54e−04 1.49

2−8 7.76e−06 2.01 2.26e−04 1.52

2−9 1.84e−06 2.07 7.68e−05 1.56

Expected 2 8
5 − δ

Table 2 Experimental orders of

convergence of ηL
2

h = ‖ure f
− uε,h‖L2(�) and ηL

∞
h

= ‖ure f − uε,h‖L∞(�) on
� 3

4π

h ηL
2

h EOC of ηL
2

h ηL
∞

h EOC of ηL
∞

h

2−5 4.16e−04 5.35e−03 –

2−6 1.02e−04 2.02 2.28e−03 1.22

2−7 2.47e−05 2.04 9.44e−04 1.27

2−8 6.32e−06 1.96 3.82e−04 1.30

2−9 1.51e−06 2.06 1.50e−04 1.35

Expected 2 4
3 − δ

5.2 Influence of the largest interior angle on the error in L2 and L∞

In this section we verify (24) and (25) on domains � with varying largest interior
angle. The reference solution for each experiment is calculated with εre f = 10−4

and hre f = 2−11 ≈ 4.9 · 10−4. Moreover we fix ε = 10−4 for all experiments, and
hence, we only investigate the error behavior with respect to h depending on the largest
interior angle. As computational domains, we consider the domains �α with largest
interior angle α ∈ [π/2, π) which are defined by
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Table 3 Experimental orders of

convergence of ηL
2

h = ‖ure f
− uε,h‖L2(�) and ηL

∞
h

= ‖ure f − uε,h‖L∞(�) on
� 17

18π

h ηL
2

h EOC of ηL
2

h ηL
∞

h EOC of ηL
∞

h

2−5 2.69e−03 – 2.69e−03 –

2−6 9.17e−04 2.01 9.17e−04 1.55

2−7 4.68e−04 2.05 4.68e−04 0.96

2−8 2.28e−04 1.96 2.28e−04 1.03

2−9 1.02e−04 2.03 1.02e−04 1.15

Expected 2 18
17 − δ

�̄α := conv{(0, 0), (1, 0), (0, 1), 1
2
(1 + tan(α/2)−1)(1, 1)}.

In particular, the case α = 1
2π leads to the unit square (0, 1)2, while for α → π the

domain �α degenerates to a rectangular triangle.
We perform experiments for three particular domains with largest interior angle

5
8π ,

3
4π , and

17
18π . Our observations are presented in Tables 1, 2, and 3. Here ηL p

h :=
‖uε,h − ure f ‖L p(�) abbreviates the error between the numerical solution uε,h and the
reference solution ure f in the L p-norm (p ∈ {2,∞}). For sequences (hk) and (ηk)we
define the experimental order of convergence (EOC) by

EOCk = log(ηk) − log(ηk−1)

log(hk) − log(hk−1)

as an approximation to the convergence rate of (ηk) with respect to (hk). We observe
that the experimental orders of convergence for ηL2

h are two on all three domains,
as expected from (24). In case of ηL∞

h , we observe a decreasing convergence rate
for an increasing largest interior angle. The corresponding experimental orders of
convergence nicely follow the theoretical result from (25).
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