
Numerische Mathematik (2020) 144:23–53
https://doi.org/10.1007/s00211-019-01080-4

Numerische
Mathematik

Fast QR iterations for unitary plus low rank matrices

Roberto Bevilacqua1 · Gianna M. Del Corso1 · Luca Gemignani1

Received: 8 February 2019 / Revised: 2 September 2019 / Published online: 23 October 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
Some fast algorithms for computing the eigenvalues of a (block) companion matrix
have recently appeared in the literature. In this paper we generalize the approach to
encompass unitary plus low rank matrices of the form A = U + XY H where U is a
general unitary matrix. Three important cases for applications areU unitary diagonal,
U unitary blockHessenberg andU unitary in block CMV form.Our extension exploits
the properties of a larger matrix Â obtained by a certain embedding of the Hessenberg
reduction of A suitable to maintain its structural properties. We show that Â can be
factored as product of lower and upper unitaryHessenbergmatrices possibly perturbed
in the first k rows, and, moreover, such a data-sparse representation is well suited for
the design of fast eigensolvers based on the QR iteration. The resulting eigenvalue
algorithm is fast and backward stable.

Mathematics Subject Classification 65F15

1 Introduction

The design of specialized algorithms that compute the eigenvalues of unitary matrices
is so far a classical topic in structured numerical linear algebra (compare [16] and
the references given therein). The major applications that stimulate research in this
area lie in signal processing [2], in time series analysis [1], in Gaussian quadrature on

The research of the last two authors was partially supported by GNCS project “Analisi di matrici sparse e
data-sparse: metodi numerici ed applicazioni”and by the project sponsored by University of Pisa under the
Grant PRA-2017-05.

B Gianna M. Del Corso
gianna.delcorso@unipi.it

Roberto Bevilacqua
roberto.bevilacqua@unipi.it

Luca Gemignani
luca.gemignani@unipi.it

1 Dipartimento di Informatica, Università di Pisa, Largo Bruno Pontecorvo 3, 56127 Pisa, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00211-019-01080-4&domain=pdf
http://orcid.org/0000-0001-6509-1140
http://orcid.org/0000-0002-7378-4198
http://orcid.org/0000-0001-8000-4906

24 R. Bevilacqua et al.

the unit circle [33] and in trigonometric approximation theory [23]. In the last years
many authors have dealt with the issue of efficiently computing the eigenvalues of
unitary matrices perturbed by low rank corrections (see the books [22,41] for general
overviews of these developments). Motivations come from (matrix) polynomial root-
finding problems [3,11,12,14,29] and generally from eigenvalue problems associated
with finite truncations of large (block) unitary matrices arising in the aforementioned
applications [39] as well as in certain statistical methods for the analysis of complex
systems [27]. Typically in these applications large unitary matrices are represented in
condensed form using the (block) Hessenberg [32] or the (block) CMV shape [4,36].

The papers [13,17] presented the first fast and numerically reliable eigensolvers
for certain low rank perturbations of unitary matrices, while in [40] the analogous
case of low rank perturbation of Hermitian structure was addressed. Since then two
challenging issues have attracted much work: (1) the search of numerical algorithms
that are computationally efficient with respect to the size both of the matrix and of the
perturbation and (2) a formal proof of the backward stability of these algorithms. Very
recently numerical methods which combine all these two features have been proposed
in [5,7] for computing the eigenvalues of companion and block companion matrices,
respectively. Thesemethods incorporate some techniques that are specifically adjusted
to exploit the properties of companion and block companion forms. In particular, the
Hessenberg reduction of a block companion matrix is found by relying upon the
decomposition of the matrix as product of scalar companion matrices which provides
the factored representation of the Hessenberg reduction to be used in the QR iterative
process.

In this paper we generalize the approach pursued in [5,7] to deal with input matrices
of the form Ai = U + XY H ∈ C

n×n where U is a general n × n unitary matrix and
X ,Y ∈ C

n×k with k ≤ n. Eigenvalue computation is customarily a two-step process.
Firstly the input matrix Ai is reduced in Hessenberg form by unitary similarity, that
is, Ai → A f : = QAi QH , where the final A f is Hessenberg and Q unitary. Then the
QR iteration is applied to the Hessenberg reduction A f for computing its Schur form.
Each iterate generated by a fast adaptation of the QR scheme inherits the condensed
representation of the initial matrix A f obtained at the end of the Hessenberg reduction.
By setting U : = QUQH , X : = QX and Y = QY it is found that this matrix
A f = U + XY H is still unitary plus low rank in Hessenberg form.

The efficient computation of a condensed representation of unitary plus low rank
matrices in Hessenberg form is the subject of the papers [10,30]. There it is shown that
Ai can be embedded into a larger matrix Âi which is converted by unitary similarity
in the Hessenberg matrix Â f . Both Âi and Â f are specified in factored form as the
product of three factors, that is Âi = Li · Fi · Ri and Â f = L f · Ff · R f with Li

and L f unitary lower k-Hessenberg matrices, Ri and R f unitary upper k-Hessenberg
matrices and Fi , Ff unitary upper Hessenberg matrix perturbed in the first k rows.
Then a bulge chasing technique to carry out the transformations Li → L f , Ri → R f

and Fi → Ff using O(n2k) operations is derived. The construction greatly simplifies
when the matrix Ai is a unitary (block) Hessenberg or CMV matrix modified in the
first/last rows/columns since in these cases the three factors Li , Fi and Ri are easily and

123

Fast QR iterations for unitary plus low rank matrices 25

cheaply obtained. In particular, this is the case of block companionmatrices, for which
we can compute the factored Hessenberg representation with O(n2k) operations.

Our present work aims at designing a fast version of the implicit QR eigenvalue
method [26] for unitary plus low rank Hessenberg matrices Â = Â f = U + XY H ,
U ∈ C

n×n unitary and X ,Y ∈ C
n×k , represented in compressed form as Â = L ·F ·R,

where L is the product of k unitary lower Hessenberg matrices, R is the product
of k unitary upper Hessenberg matrices and the middle factor F is a unitary upper
Hessenberg matrix perturbed in the first k rows. The representation is data-sparse
since it involves O(nk) data storage consisting of O(k) vectors of length n and O(nk)
Givens rotations. Specifically, the main results are:

1. The development of a bulge-chasing technique for performing one step of the
implicit QR algorithm applied to amatrix specified in the LFR format by returning
as output the updated factored LFR representation of the new iterate.

2. A careful look at the structural properties ofHessenbergmatrices given in the LFR
format by implying that, under some auxiliary assumptions on the properness of
the factors L and R, the middle matrix F is reducible iff the same holds for the
Hessenberg matrix. It follows that the deflation in the Hessenberg iterate can be
revealed in the middle factor converging to an upper triangular matrix in the limit.

3. A cost and error analysis of the resulting adaptation of the implicit QR algorithm.
We prove that one single QR iteration requires O(nk) ops only and it is backward
stable.

The paper is organized as follows. In Sect. 2 we recall some preliminary material
about the structural properties of possibly perturbed unitary matrices. Section 3 gives
the theoretical foundations of our algorithmwhich is presented and analyzed in Sect. 4.
In Sect. 5 the backward stability of the algorithm is formally proved. Finally, in Sect. 6
we show the results of numerical experiments followed by some conclusions and future
work in Sect. 7.

2 Preliminaries

We first recall some basic properties of unitary matrices which play an important role
in the derivation of our methods.

Lemma 1 Let U be a unitary matrix of size n. Then

rank(U (α, β)) = rank(U (J\α, J\β)) + |α| + |β| − n

where J = {1, 2, . . . , n} andα andβ are subsets of J . Ifα = {1, . . . , h} andβ = J\α,
then we have

rank(U (1 : h, h + 1 : n)) = rank(U (h + 1 : n, 1 : h)), for all h = 1, . . . , n − 1.

Proof This well known symmetry in the rank-structure of unitary matrices follows by
a straightforward application of the nullity theorem [25]. ��

123

26 R. Bevilacqua et al.

Lemma 2 Let U be a unitary matrix of size n, and let α, β ⊆ {1, 2, . . . , n}, such that
|α| = |β|, then

| det(U (α, β))| = | det(U (J\α, J\β))|.

Proof See Gantmacher [28], Property 2 on page 21. ��

Definition 1 A matrix H is called k-upper Hessenberg if hi j = 0 when i > j + k.
Similarly, H is called k-lower Hessenberg if hi j = 0 when j > i + k. In addition,
when H is k-upper Hessenberg (k-lower Hessenberg) and the outermost entries are
non-zero, that is, h j+k, j �= 0 (h j, j+k �= 0), 1 ≤ j ≤ n − k, then the matrix is called
proper.

Note that for k = 1, that is when the matrix is in Hessenberg form, the notion
of properness coincides with that of being unreduced. Also, a k-upper Hessenberg
matrix H ∈ C

n×n is proper iff det(H(k + 1 : n, 1 : n − k)) �= 0. Similarly a k-
lower Hessenberg matrix H is proper iff det(H(1 : n − k, k + 1 : n)) �= 0. For
k < 0 a k-Hessenberg matrix is actually a strictly triangular matrix with−k vanishing
diagonals.

It is well known [42] that, given a non-zero n-vector x we can build a zero-creating
matrix from a product of n− 1 Givens matrices G1 · · ·Gn−1, where Gi = Ii−1 ⊕Gi ⊕
In−i−1 and Gi is a 2 × 2 complex Givens rotations of the form

[
c −s
s c̄

]
such that

|c|2 + s2 = 1, with s ∈ R, s ≥ 0. The subscript index i indicates the active part of the
matrix Gi . The descending sequence of Givens rotations H = G1 · · ·Gn−1 turns out
to be a unitary upper Hessenberg matrix such that Hx = αe1, and |α| = ‖x‖2. Note
that H is proper if and only if all the Givens matrices appearing in its factorization are
non trivial, i. e. s �= 0 [7]. Generalizing this result we obtain the following lemma.

Lemma 3 Let X ∈ C
m×k , k < m, be of full rank. Then

1. there exist a unitary k-upper Hessenberg matrix H and an upper triangular matrix

T ∈ C
m×k, T =

[
Tk
0

]
with Tk ∈ C

k×k nonsingular such that

H X = T . (2.1)

2. The product of the outermost entries of H is given by

m−k∏
i=1

|hi+k,i | = | det(X(m − k + 1 : m, 1 : k))|∏k
i=1 σi (X)

, (2.2)

where σ1(X), σ2(X), . . . , σk(X) are the singular values of X.
3. Let s be the maximum index such that rank(X(s : m, :)) = k, then hi+k,i �= 0 for

i = 1, . . . , s − 1.

123

Fast QR iterations for unitary plus low rank matrices 27

Proof The existence of H is proved by construction. Relation (2.1) defines a QR
decomposition of the matrix X . The unitary factor H can be determined as product
of k unitary upper Hessenberg matrices H = Hk · · · H1 such that Hh = Ih−1 ⊕ H̃h ,
H0 = Im and H̃h X (h−1)(h : m, h) = thhe1 where X (h−1) = Hh−1 · · · H1H0 · X ,
1 ≤ h ≤ k.

Now, let us split H into blocks

H =
[
H11 H12
H21 H22

]
,

where H12 is k × k and H21 is (m − k) × (m − k), upper triangular. The product of
the outermost entries of H is given by det(H21) = ∏m−k

i=1 hi+k,i . Since H is unitary,
and X = HHT we have

det(X(m − k + 1 : m, :)) = det(HH
12) det(Tk).

From Lemma 2 we have

| det(H21)| = | det(H12)| = | det(X((m − k + 1 : m, :))|
| det(Tk)| .

We get relation (2.2) observing that if X = P�QH is the SVD decomposition of X ,
(HP)�QH is the SVD decomposition of T and hence σi (Tk) = σi (X), i = 1, . . . , k.

Finally, let s be the maximum index such that rank(X(s : m, 1 : k)) = k. Then
s ≤ m − k + 1 and, moreover, from X(s : m, 1 : k) = HH (s : m, 1 : k)Tk we obtain
that rank(H(1 : k, s : m)) = k since Tk is nonsingular. Using Lemma 1 we have
k = rank(HH (s : m, 1 : k)) = rank(H(k + 1 : m, 1 : s − 1) + k + (m − s + 1) −m,
meaning that H(k + 1 : m, 1 : s − 1) has full rank equal to s − 1. Since H(k + 1 :
m, 1 : s − 1) is upper triangular we have that hi+k,i �= 0 for i = 1, . . . , s − 1. ��

Remark 1 From the proof of Lemma 3 we know that H can be written as a product of
k upper Hessenberg matrices, i.e., H = HkHk−1 · · · H1. The j th of these Hessenberg
matrices is the one annihilating the j-th column of X (j−1) from row j + 1 to row m.
Then each Hj can be factored as the product of m − j Givens rotations. From this

observationwe get that Hj = G(j)
j · · ·G(j)

m−1 where eachG(j)
i is aGivens rotation acting

on rows i, i +1. This decomposition of H corresponds to annihilate progressively the
lower subdiagonals of H by means of rotations working on the left. Alternatively, we
can proceed by zeroing the lower subdiagonals of H bymeans of rotations working on
the right and acting on the columns of H . In this way we find a different factorization
of the form H = DĤk Ĥk−1 · · · Ĥ1 where Ĥ j = Ĝ(j)

1 Ĝ(j)
2 · · · Ĝ(j)

m−k+ j−1 and D is
unitary diagonal.

123

28 R. Bevilacqua et al.

3 Representation

Generalizing the approach discussed in [7] for the companion matrix, it is useful
to embed the unitary plus low-rank matrix A into a larger matrix to guarantee the
properness of some factors of the representation that we are going to introduce.

Theorem 1 Let A ∈ C
n×n be such that A = U + X Y H , with U unitary and X ,Y

n × k full rank matrices. We can construct an N × N matrix Â, N = n + k, such that
Â = Û+ X̂ Ŷ H , with Û unitary, X̂ , Ŷ N×k full rank matrices, X̂(n+1 : N , :) = −Ik ,
and such that

Â =
[

A B
0k,n 0k

]
, for a suitable B ∈ C

n×k . (3.1)

Proof The proof is constructive.Wefirst compute the economy sizeQRdecomposition
of matrix Y , Y = QR where Q ∈ C

n×k and R ∈ R
k×k . Set Ỹ = Q and X̃ = XRH .

We still have XY H = X̃ Ỹ H but now Y has orthonormal columns, i.e., Ỹ H Ỹ = Ik .
Define

Û =
[
U −UỸ Ỹ H B

Ỹ H 0k

]
, (3.2)

where B = UỸ and

X̂ =
[
X̃ + B
−Ik

]
Ŷ =

[
Ỹ
0k

]
. (3.3)

Note that Û + X̂ Ŷ H has the structure described in (3.1) and, moreover by direct
calculation we can verify that Û is unitary. ��
From now on we denote by N = n + k the dimension of the matrix Â. It is worth
pointing out that in view of the block triangular structure in (3.1) the Hessenberg
reduction of the original matrix A can be easily adjusted to specify the Hessenberg
reduction of the larger matrix Â. Thus, in the following it is always assumed that both
A and Â are in upper Hessenberg form.

Theorem 2 Let Â = Û + X̂ Ŷ H ∈ C
N×N be the upper Hessenberg matrix obtained

by embedding an n× n proper Hessenberg matrix A as described in Theorem 1. Then
we can factorize Â as follows

Â = L · F · R, where (3.4)

L is a proper unitary k-lower Hessenberg matrix.
R is a unitary k-upper Hessenberg matrix. Moreover, the leading n − 1 entries in the
outermost diagonal of R, ri+k,i , i = 1, . . . , n − 1, are nonzero.
F = Q + T ZH , where Q is a block diagonal unitary Hessenberg matrix, Q =[
Ik

Q̂

]
, with Q̂ proper, T =

[
Tk
0n,k

]
with Tk ∈ C

k×k upper triangular, and Z ∈
C

N×k , with full rank.
If in addition A is nonsingular then R is proper.

123

Fast QR iterations for unitary plus low rank matrices 29

Proof First note that from the properness of A it follows that rank(A) ≥ n − 1. From
Theorem 1 we have that X̂ has full rank, and det(X̂(n + 1 : N , :)) = det(−Ik) �= 0,
hence, by Lemma 3 we can find a proper LH and a nonsingular square triangular Tk
such that LH X̂ = T , with T = [T T

k , 0k,n]T . For the properness of LH and A, we

get that LH Â is a proper (k + 1)-upper Hessenberg matrix and moreover the matrix
V = LHÛ = LH Â − T Ŷ H , is unitary and still a proper (k + 1)-upper Hessenberg
matrix because T Ŷ H is null under the kth row.

Now the matrix V can be factored as V = QR, where R is unitary k-upper Hes-
senberg, and QH is the unitary lower Hessenberg matrix obtained as the product of
the n − 1 Givens rotations annihilating from the top entries in the outermost diagonal
of V , i.e., QH = GN−1 . . .Gk+2Gk+1, where Gi acts on rows i, i + 1. Since the first

k rows are not involved, the matrix Q has the structure Q =
[
Ik

Q̂

]
, where Q̂ is

unitary n × n Hessenberg. Moreover, since V is proper, Q̂ is proper as well.
From the definitions of V , Q and R we have:

Â = LV + LT Ŷ H = L(Q + T ZH)R,

where Z = RY . The matrix Z is full rank, since R is unitary and Y is full rank.
Now let us consider the submatrices R(k + 1 : N , 1 : j), for j = n − 1 and j = n.

In both cases, from the relation R = QH (LH Â − TY H) and the structural properties
of the matrices involved therein, we have that

rank(R(k + 1 : N , 1 : j)) = rank(Q̂H LH (k + 1 : N , 1 : n) Â(1 : n, 1 : j))

= rank(A(1 : n, 1 : j)).

For j = n − 1, since A is proper, the rank of that submatrix is n − 1. This implies that
the entries ri+k,i , i = 1, . . . , n − 1, are nonzero. For j = n, if A is nonsingular, then
the rank is n, so rN ,n is nonzero. ��

The following theoremproves that the product of the factors L, F, R having the
properties stated in Theorem 2 is indeed an upper Hessenberg matrix with the last k
rows equal to zero. It reveals also that deflation can be performed only when one of
the subdiagonal entries of Q approaches zero.

Theorem 3 Let L, R ∈ C
N×N , where L is a proper unitary k-lower Hessenberg

matrix and R is a unitary k-upper Hessenberg matrix. Let Q be a block diagonal

unitary upper Hessenberg matrix of the form Q =
[
Ik

Q̂

]
, with Q̂ n × n unitary

Hessenberg and Tk a k × k nonsingular upper triangular matrix. Then

1. L(n + 1 : N , 1 : k) = −T−1
k .

2. Setting Z H = L(n + 1 : N , :)Q, T = [T H
k , 0]T , and F = Q + T ZH , we have

that

123

30 R. Bevilacqua et al.

(a) the matrix Â = LFR is upper Hessenberg, with Â(n + 1 : N , :) = 0, that is

Â =
[

A ∗
0k,n 0k,k

]
,

(b) Â is a unitary plus rank k matrix.

3. If R is proper then the upper Hessenberg matrix A ∈ C
n×n is nonsingular. In this

case A is proper if and only if Q̂ is proper.

Proof To prove part 1, note that X̂ = LT , and X̂(n + 1 : N , :) = −Ik , hence
−Ik = L(n + 1 : N , :)T = L(n + 1 : N , 1 : k)Tk , and then we have L(n + 1 : N , 1 :
k) = −T−1

k .
For part 2, let us consider the matrix C = L Q. This matrix is unitary with a

k-quasiseparable structure below the k-th upper diagonal. In fact, for any h, h =
2, . . . n + 1 we have

C(h : N , 1 : h + k − 2) = L(h : N , :) Q(:, 1 : h + k − 2)

= L(h : N , 1 : h + k − 1) Q(1 : h + k − 1, 1 : h + k − 2).

Applying Lemma 1 we have rank(L(h : N , 1 : h + k − 1)) = k, implying that
rank(C(h : N , 1 : h + k − 2)) ≤ k.

Since C(n + 1 : N , 1 : k) = L(n + 1 : N , 1 : k) is nonsingular, we conclude
that rank(C(h : N , 1 : h + k − 2)) = k. From this observation we can then find a
set of generators P, S ∈ C

(N×k) and a (1− k)-upper Hessenberg matrix Uk such that
Uk(1, k) = Uk(n, N) = 0 so that C = PSH + Uk (see [9,22]). Moreover, we have
C(n + 1 : N , 1 : k) = L(n + 1 : N . :)Q(:, 1 : k) = M . Then we can recover the rank
k correction PSH from the left-lower corner of C obtaining

PSH = −C(:, 1 : k)TkC(n + 1 : N , :).

Since C(:, 1 : k) = LQ(:, 1 : k) = L(:, 1 : k), we get that PSH = − LT ZH , and
hence Uk = L(Q + T ZH) = L F . We conclude the proof of part (b), by noticing
that Â = Uk R is upper Hessenberg as it is the product of a (1− k)-upper Hessenberg
matrix by a k-upper Hessenberg matrix. Moreover, we find that Â(n + 1 : N , :) =
Uk(n + 1 : N , :)R = 0 since Uk(n + 1 : N , :) = 0.

To prove part 3, as already observed in the proof of Theorem 2, we use the rank
equation

rank(R(k + 1 : N , 1 : n)) = rank(Â(k + 1 : n, 1 : n)) = rank(A),

thus, if R is proper then A is nonsingular. In this case, from the properness of L and
noticing that

ai+1,i = qi+k+1,i+k ri+k,i/l̄i+1,i+k+1, i = 1, . . . , n − 1, (3.5)

we get that ai+1,i = 0 iff qi+k+1,i+k = 0. ��

123

Fast QR iterations for unitary plus low rank matrices 31

Remark 2 From the previous Theorem, one sees that when a matrix Â is represented
in the LFR form where L, F and R have the structural properties required, then A is
nonsingular if and and only if R is proper. Moreover, from (3.5) one deduces that one
of the outermost entries ai+1,i can be zero only if we have either qi+k+1,i+k = 0 or
ri,i+k = 0. Vice-versa, we can have that rN ,n = 0 without any subdiagonal entry of
A being equal to zero. This is the only case where A is proper and singular.

The next theorem shows that the compressed representation Â = LFR is eligible
to be used under the QR eigenvalue algorithm for computing the eigenvalues of Â and,
a fortiori, of A.

Theorem 4 Let Â = Û+ X̂ Ŷ H ∈ C
N×N , N = n+k be aHessenbergmatrix obtained

by embedding a proper n × n Hessenberg matrix A = U + XY H as described in
Theorem 1. Let P be the unitary factor of the QR factorization of pd(Â), where pd(x)
is a monic polynomial of degree d. Let Â(1) = PH ÂP be the matrix obtained by
applying a step of the multi-shifted QR algorithm to the matrix Â with shifts being the
roots of pd(x). Then, we have that

Â(1) =
[
A(1) B(1)

0k,n 0k

]
,

where A(1) is the matrix generated by applying one step of the multi-shifted QR algo-
rithm to the matrix A with shifts being the roots of pd(x). Both Â(1) and A(1) are upper
Hessenberg and if A(1) is proper then the factorization of Â(1) = L(1) F (1) R(1) exists
and has still the same properties stated in Theorem 2; in particular, L(1) is proper
and, if A is nonsingular also R(1) is proper.

Proof From (3.1) we have

Â =
[

A B
0k,n 0k

]
.

Since pd(Â) is also block triangular, we can take

P =
[

P1 0n,k

0k,n P2

]
, (3.6)

where P1 and P2 are unitary. Hence,

Â(1) =
[
A(1) B(1)

0k,n 0k

]
,

where A(1) is the matrix generated by applying one step of the multi-shifted QR
algorithm to the matrix A with shifts being the roots of pd(x). We have Â(1) =
PH ÂP = PHÛ P + PH X̂ Ŷ H P = U1 + X̂1Ŷ H

1 , setting U1 = PHÛ P and X̂1 =
PH X̂ , Ŷ1 = PH Ŷ . Because P2 is unitary, we have that | det(X̂1(n + 1 : N , :))| =

123

32 R. Bevilacqua et al.

| det(X̂(n + 1 : N , :))| �= 0, then the conditions given by Lemma 3 are satisfied and
we can conclude that L(1) is proper. We note that Â(1) and A(1) are upper Hessenberg
for the well known properties of the shifted QR algorithm. When A(1) is proper then
we can apply Theorem 2 which guarantees the existence of the representation of Â(1).

��
The algorithmwe propose is an implicitly shifted QRmethod, and hence the factors

L(1), F (1), R(1) are obtained by manipulating Givens rotations. In Sect. 4 we describe
the algorithm and we show that the factors obtained with the implicit procedure agree
with the requirements given in Theorem 3. The implicit Q-Theorem [31] guarantees
that the matrix obtained after an implicit step is basically the same matrix one get
with an explicit one. The next result gives a quantitative measure of the properness of
matrices L and R generated along the QR iterative method.

Corollary 1 Let Û , X̂ , Ŷ as described inTheorem1and let Â = L F R as inTheorem2.
Let K = 1/

∏k
i=1 σi (X), where σi (X) are the singular values of X. We have:

1. the module of the product of the outermost entries of L, is such that
∏n

i=1 |li,i+k | =
K and is constant over QR steps. Moreover for each outermost entry of L we have
K ≤ |li,i+k | ≤ 1.

2. themodule of the product of the outermost entries of R is
∏n

i=1 |ri+k,i | = K | det A|
and is constant over QR steps. Moreover for each outermost entry of R we have
K | det(A)| ≤ |ri+k,i | ≤ 1.

Proof To prove part 1 we first observe that | det(X̂(n + 1 : N , :))| = 1, because
X̂(n + 1 : N , :)) = −Ik by construction. To prove that the product of the outermost
entries remains unchangedoverQRsteps,weuseTheorem4observing that | det(X̂(n+
1 : N , :))| = | det(X̂1((n+1 : N , :))| and that X̂ and X̂1 have the same singular values.
We get the thesis applying part 2 of Lemma 3.

We can also see that 0 < |l j, j+k | ≤ 1 and that |l j, j+k | = K/| ∏n
i=1,i �= j li,i+k |.

Since | ∏n
i=1,i �= j li,i+k | ≤ 1 we have |l j, j+k | ≥ K .

The relation on
∏n

i=1 |ri+k,i | is similarly deduced by applying Binet rule to equality
L(k + 1 : N , 1 : n)A = Q̂R(k + 1 : N , 1 : n). After a QR step the first k rows of
V1 = L(1)HÛ (1) are orthonormal and, moreover, the k×k submatrix in the right upper
corner of V1 satisfies

| det(V1(1 : k, n + 1 : N))| = det(V1(k + 1 : N , 1 : n))|
= | det(L(1)(1 : n, k + 1 : N))| | det(A(1))| = K | det(A)|.

��
Remark 3 As observed in [5,7] also for our representation it is possible to recover
the structure of the N × k matrix Z from the representation (3.4). In fact, we have
Â(n + 1 : N , :) = L(n + 1 : N , :)(Q + T ZH)R = 0k,N . Since R is nonsingular, and
L(n + 1 : N , 1 : k) = −T−1

k we have that

ZH = L(n + 1 : N , :)Q. (3.7)

123

Fast QR iterations for unitary plus low rank matrices 33

4 The algorithm

In this section we show how to carry out a single step of Francis’s implicitly shifted
QR algorithm acting directly on the representation of the matrix described in Sect. 3.
In the sequel we assume R to be a proper k-upper Hessenberg matrix. In the view of
the previous sections this means that A is nonsingular. If, otherwise, A is singular then
we can perform a step of the QR algorithm with zero shift to remove the singularity. In
this way the parametrization of R is automatically adjusted to specify a proper matrix
in its active part.

It is convenient to describe the representation and the algorithmusing a pictorial rep-
resentation already introduced in several papers (compare with [6] and the references
given therein). Specifically, the action of a Givens rotation acting on two consecutive

rows of the matrix is depicted as �� . A chain of descending two-pointed arrows as

below

��
��

��
��

��

represents a unitary upper Hessenberg matrix (in this case a 6 × 6 matrix). Vice
versa, since any unitary Hessenberg matrix H of size n can be factored as H =
G1(c1)G2(c2) · · ·Gn−1(cn−1) D, where Gk(ck) = Ik−1 ⊕Gk(ck) ⊕ In−k−1, Gk(ck) =[

ck sk
−sk c̄k

]
, with |ck |2 + s2k = 1, sk ≥ 0, and D is unitary diagonal, we have that H

can be represented as follows

� ×�
� ×�

� ×�
� ×�

� ×� ×

where the × represent the entries of the diagonal phase matrix D. Similarly the chain

�
�

�

�
�

�
�

�
�

�

123

34 R. Bevilacqua et al.

represents a unitary lower Hessenberg matrix. As observed in Remark 1 the k-
Hessenberg matrices L and R appearing in the representation of Â can be factored as
the product of k unitary Hessenberg matrices, and any unitary Hessenberg can be rep-
resented through their Schur parametrization [32] by ascending or descending chains
of Givens rotations times a unitary diagonal matrix. In our case the unitary diagonal
matrices that would be necessary to get the Schur parametrization in terms of Givens
factors, can all be accumulated in the unitary factor Q. In the light of Theorem 2 the
careful reader will not be surprised by the shape of the chains of Givens rotations in
the factorization of factors L and R where some of the Givens rotations are missing.
Hence, using our pictorial representations we can exemplify the case n = 6, k = 3,
N = n + k = 9, as follows

Â =

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
︸ ︷︷ ︸

L

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

· · · × × × × × ×
· · · × × × × × ×
· · · × × × × × ×

� ×�
� ×�

� ×�
� ×�

� ×� ×︸ ︷︷ ︸
Q+T ZH

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�
�

�
�

�
�

�
�

��
�

�
�

�
��

�
�

�
�

��
�

�
�

�
��

�
�

�
�

��
�

�
�

�
�� � �

︸ ︷︷ ︸
R

where the central matrix can be expressed as

· · · × × × × × ×
· · · × × × × × ×
· · · × × × × × ×

� ×�
� ×�

� ×�
� ×�

� ×� ×︸ ︷︷ ︸
Q+T ZH

=

×
×

×
� ×�

� ×�
� ×�

� ×�
� ×� ×︸ ︷︷ ︸

Q

+

× × × × × × ×
× × × × × × ×

× × × × × × ×

︸ ︷︷ ︸
T ZH

and the · represent zeros. These zeros are obtained summing the contribution of the
k × k principal blocks of Q and of T ZH which sums up to zero. We have used the
fact that

Q =
[
Ik

Q̂

]
D = Gk+1 · · ·GN−1 D̂,

123

Fast QR iterations for unitary plus low rank matrices 35

wherte Gi are Givens matrices acting on rows i, i + 1 and D̂ is a unitary diagonal
matrix. Furthermore, in the lower left corner of the Schur parametrization of L we
have trivial Givens rotations since X(n+1 : N , :) = −Ik . The description of the bulge
chasing algorithm in Sect. 4.1 will make it clear why this structure is not modified.

Givens transformations can also interact with each other by means of the fusion or
the turnover operations (see [41], pp.112–115). The fusion operation will be depicted
as follows:

�↪→�� � resulting in �� ,

and consists of the concatenation of two Givens transformations acting on the same
rows. The turnover operation allows to rearrange the order of some Givens transfor-
mations (see [41]).

Graphicallywewill depict this rearrangement ofGivens transformations as follows:

� � ��
�

�
� → �

�
�

�� � or
�

�
�

��

�

� → � ��
�

�
� .

� ���
�

�
� → �

�
�

�� � or
�

�
�

��

�

� → � ��
�

�
� .

When we apply a sequence of r consecutive turnover operations we will use the
same symbol surmounted by the number of turnovers such as �

r
.

Each fusion and turnover has a constant cost since consists in the operations involv-
ing 2×2 or 3×3matrices. Note that while the fusion between twoGivens rotations can
result in a trivial rotation, this is never the case when we perform a turnover between
three non-trivial rotations.

4.1 Initialization and bulge chasing

As observed in Remark 3 we do not have to perform the Givens transformations on
the rank k part since the matrix Z can be recovered at the end of the QR process and
the matrix T is not affected by the transformations which act on rows k + 1 to N .
As we will explain in Sect. 5 we prefer to store explicitly the vectors Z rather then
recovering them at the end of the process because in this way we are able to prove a
tighter bound for the backward error of the method.

The implicit QR algorithm starts with the computation of the shift. Using aWilkin-
son shift strategy we need to reconstruct the 2× 2 lower-right hand corner of Â. This
can be done by operating on the representation and it requires O(k) flops. Once the
shift μ is computed, we retrieve the first two components of the first column of Â, i.e.,
â11, â21 and we compute the 2 × 2 Givens rotation G1 such that

G1

[
â11 − μ

â21

]
=

[×
0

]
.

123

36 R. Bevilacqua et al.

Let G1 = G1 ⊕ IN−2, we have that matrix G1 ÂGH
1 becomes

G1

� �
3

��
�

�
�

�
�

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
︸ ︷︷ ︸

G1L

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

· · · × × × × × ×
· · · × × × × × ×
· · · × × × × × ×

� ×�
� ×�

� ×�
� ×�

� ×� ×︸ ︷︷ ︸
Q+T ZH

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

GH
1

� �
�

�
�

�

�
�

�
�

��
�

�
�

�
��

�
�

�
�

��
�

�
�

�
��

�
�

�
�

��
�

�
�

�
�� � �

︸ ︷︷ ︸
RGH

1

Applying a series of k turnovers operations we can pass G1 through the ascending
sequence of Givens transformations, and a new Givens transformation Gk+1 acting
on rows k + 1 and k + 2, will appear before the bracket, and then is fused with the
first nontrivial rotation of Q.

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
︸ ︷︷ ︸

L̄

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

· · · × × × × × ×
· · · × × × × × ×
· · · × × × × × ×
�↪→� ×� �

� ×�
� ×�

� ×�
� ×� ×︸ ︷︷ ︸

Gk+1Q+T ZH

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

GH
1

� �
3

�
�

�
�

�

�
�

�
�

��
�

�
�

�
��

�
�

�
�

��
�

�
�

�
��

�
�

�
�

��
�

�
�

�
�� � �

︸ ︷︷ ︸
RGH

1

Similarly the Givens rotation GH
1 on the right is shifted through the sequence of

Givens transformations representing R and applied to the columns of ZH and on the
right of Gk+1Q. Then another turnover operation is applied giving

123

Fast QR iterations for unitary plus low rank matrices 37

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

� �

3

�
Gk+2�

�
�

�
�

�
�

�
�

︸ ︷︷ ︸
L̄Gk+2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

· · · × × × × × ×
· · · × × × × × ×
· · · × × × × × ×

� ×�
� ×�

� ×�
� ×�

� ×� ×︸ ︷︷ ︸
Q2+T ZH

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�
�

�
�

�
�

�
�

��
�

�
�

�
��

�
�

�
�

��
�

�
�

�
��

�
�

�
�

��
�

�
�

�
�� � �

︸ ︷︷ ︸
R2

At the end of the initialization phase the Givens rotation Gk+2 on the right of L̄ can be
brought on the left giving rise to the bulge represented by a Givens rotation G2 acting
on rows 2 and 3, namely L̄Gk+2 = GH

2 L2. We have

�
GH

2 � �
�

��
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
︸ ︷︷ ︸

GH
2 L2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

· · · × × × × × ×
· · · × × × × × ×
· · · × × × × × ×

� ×�
� ×�

� ×�
� ×�

� ×� ×︸ ︷︷ ︸
Q2+T ZH

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�
�

�
�

�
�

�
�

��
�

�
�

�
��

�
�

�
�

��
�

�
�

�
��

�
�

�
�

��
�

�
�

�
�� � �

︸ ︷︷ ︸
R2

The bulge needs to be chased down.
At this pointwe haveG1 ÂGH

1 = GH
2 L2(Q2+T ZH

2)R2, whereG2 = 1⊕G2⊕ IN−3.
Performing a similarity transformation to get rid of GH

2 , we have that the matrix GH
2

on the right can be brought to the left applying turnover operations. Repeating the
same reasoning n − 1 times, we have finally to remove a Givens rotation acting on
columns n − 1 and n.

123

38 R. Bevilacqua et al.

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
︸ ︷︷ ︸

Ln−1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

· · · × × × × × ×
· · · × × × × × ×
· · · × × × × × ×

� ×�
� ×�

� ×�
� ×�

� ×� ×︸ ︷︷ ︸
Qn−1+T ZH

n−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�
�

�
�

�
�

�
��

�
�

�
�

� GH
n−1�

�
�

�
�

� �
3

��
�

�
�

�
�

�
�

�
�

�
�

��
�

�
�

�
�� � �

︸ ︷︷ ︸
Rn−1GH

n−1

With the application of k turnover operations, we get that Rn−1GH
n−1 = Gn+k−1Rn ,

where Gn+k−1 = IN−2 ⊕ GN−1. The Givens rotation GN−1 acts on the last two
columns and will modify the last two columns of ZH

n−1 and then fuses with matrix
Qn−1. At this point the Hessenberg structure is restored, and the implicit step ends.

The graphical representation of the algorithm corresponds to the following updating
of the matrices involved in the representation for suitable P, S, V

L(1) = PH LS, Q(1) = SH QV , T (1) = SHT ,

Z (1) = V H Z , and R(1) = V H RP.

In particular in P are gathered the n− 1 rotations needed to restore the Hessenberg
structure of the full matrix, so that there are no operations involving the last k rows of
L , meaning that we can assume P2 = P(n + 1 : N , n + 1 : N) = Ik . S is the product
of the Givens rotations that have shifted through the factor L when turnover operations
are performed, and similarly V is the product of the Givens matrices shifted through
R from the right.

To show that this corresponds actually to aQRstep it is sufficient to verify thatwe are
under the hypothesis of Theorem 3, i.e., that L(1) and R(1) are unitary k-Hessenberg
matrices, T (1) is still of the form T (1) = [T T

k , 0]T and that Z (1) has the structure
described in point 2 of Theorem 3. From the description of the algorithm we can see
that thematrices S and V are block diagonalwith the leading block of size k equal to the
identitymatrix since the turnover operations shift downof k rows the rotations actingon
rows and columns of L and R respectively. We note that at the end of the chasing steps
the k-Hessenberg structure of L(1) and R(1) is restored, and T (1) = [T H

k , 0]T because
S(1 : k, 1 : k) = Ik . Moreover, L(1) is still proper since the turnover operations
cannot introduce trivial rotations. Matrix Q(1) is still block-diagonal with the leading
block k × k unitary diagonal, and the tailing block with Hessenberg structure. For
Z (1) = V H Z we need to prove that Z (1)H = L(1)(n + 1 : N , :)Q(1). From (3.6), and
observing that P2 = Ik we have L(1)(n + 1 : N , :) = L(n + 1 : N , :)S. Substituting
we get

123

Fast QR iterations for unitary plus low rank matrices 39

Z (1)H = ZHV = L(n + 1 : N , :)QV = L(n + 1 : N , :)SSH QV

= L(1)(n + 1 : N , :)Q(1) (4.1)

as required. To apply the implicit Q-Theorem we need to observe that the first column
of A is only affected by the first rotation during the initialization step and is never
changed after that.

4.2 Computational cost

The reduction of a generic matrix to Hessenberg form requires in the general case
O(n3) flops, but as we observed in the introduction, in special cases the reduction
can be achieved with O(n2k) operations. In [10] is proposed an O(n2k) algorithm
to reduce a unitary-plus-low-rank matrix to Hessenberg form and obtain directly the
LFR factorization suitable as starting point of the QR method we just described in
this paper. The algorithm in [10] can be applied when

1. A = D + UV H , U , V ∈ C
n×k , and D is unitary block diagonal with block size

k < n.
2. A = H + [Ik, 0]T Z H , Z ∈ C

n×k , and H is unitary block upper Hessenberg with
block size k < n;

3. A = G + [Ik, 0]T Z H , Z ∈ C
n×k , and G is unitary block CMV with block size

k < n;

These three cases cover the most interesting structures of low-rank perturbation of
unitary matrices. In the general case of unitary matrices, where the spectral factor-
ization of the unitary part is not known, in general we cannot expect to recover the
eigenvalues even of the unitary part in o(n3).

Unitary matrices are always diagonalizable, so we fall in case (1) if we know the
eigen-decomposition of the unitary part. Block companion matrices belong to case
(2), and applying the algorithm in [10] to reduce them in Hessenberg form we get
directly the factored representation.

We assume hence that A is already in Hessenberg form and we know that the
embedding preserves this structure. If we are not in cases (1)–(3) it is necessary to
compute the matrices required for embedding A in Â which can be performed using
O(n2k) operations. Similarly the cost of the representation is O(n2k) operations, since
we need to compute O(nk) Givens rotations and apply them to N × N matrices.

The key ingredients of the algorithm are turnover or fusion operations. Each of such
operations can be performed with a bounded number of operations since they involve
only 2×2 or 3×3matrices. Each QR step consists of an inizialization phase, requiring
3k + 1 turnovers and a fusion as well as the updating of two rows of the n × k matrix
Z in the case we choose to update it at each step. Each of the remaining n− 2 chasing
steps consists of 2k + 1 turnovers and the possible update of Z . In the final step we
have k turnovers and a fusion with the last Givens rotation in Q. Overall the cost of
an implicit QR step is O(nk), and assuming as usual that deflation happens after a
constant number of steps, we get an overall cost of O(n2k) arithmetic operations for
retrieving all the eigenvalues. Comparing the cost of this algorithm with the cost of

123

40 R. Bevilacqua et al.

the unstructured QR method, which requires O(n2) flops per iteration and then a total
cost of O(n3), shows the advantage of using this approach.

4.3 Deflation

Deflation techniques are based on equation (3.5) which shows that the possibility of
performing deflation can be recognized by direct inspection on the representationwith-
out reconstructing the matrix A. In practice it is equivalent to check the subdiagonal
entries of the factor Q.

Lemma 4 Assume that the QR iteration applied to the matrix Â is convergent to an
upper triangular matrix. Denote by Â(s) = L(s)(Q(s) + T Z (s)H)R(s) the matrix
obtained after s steps of the QR algorithm. Then, for i = 1, . . . , n − 1, we have
lims→∞ q(s)

i+k+1,i+k = 0, and moreover, for any prescribed tolerance τ , if s is such

that |q(s)
i+k+1,i+k | < τK, then |a(s)

i+1,i | < τ .

Proof From relation (3.5) we have that

|q(s)
i+k+1,i+k | = |a(s)

i+1,i |
∣∣∣l̄(s)i+1,i+k+1

∣∣∣
|r (s)
i+k,i |

,

where a(s)
i, j are the entries of the matrix A(s) defined according to Theorem 4. Using

Corollary 1 and the convergence of theQRalgorithmwehave lims→∞ q(s)
i+k+1,i+k = 0.

From Corollary 1 we have |r (s)
i+k,i | ≤ 1 and

∣∣∣l̄(s)i+1,i+k+1

∣∣∣ ≥ K . Hence

|a(s)
i+1,i | = |q(s)

i+k+1,i+k |
|r (s)
i+k,i |∣∣∣l̄(s)i+1,i+k+1

∣∣∣ ≤ τ.

��
Remark 4 Lemma 4 suggests to use as deflation criteria the condition |q(s)

i+k+1,i+k | <

εK , where ε is the machine precision. The value of K as described in Corollary 1
can be computed as 1/| det(Tk)| for the upper triangular matrix Tk given in the proof
of Theorem 2. Note that, as we represent the matrix Q in terms of Givens rotations[

c s
−s c̄

]
, with s ∈ R, s ≥ 0,we can simply checkwhen a sine value is smaller than εK .

When this condition is satisfied we replace the corresponding Givens transformation

with the 2 × 2 unitary diagonal matrix Dj =
[
c/|c|

c̄/|c|
]
. In [37] it is shown, in a

more general setting, that the eigenvalues of the matrix obtained by replacing a Givens
transformation by a 2 × 2 identity matrix are accurate approximations of the original
ones when the Givens rotation is close to the identity. This is a consequence of the
Bauer-Fike Theorem. Applying the same idea to our framework it is immediate to see

123

Fast QR iterations for unitary plus low rank matrices 41

that the absolute error introduced in a single eigenvalue is bounded by κ2‖G j − Dj‖2
where κ2 is the condition number of the eigenvector matrix (assuming to work with

diagonalizable matrices) and G j =
[

c s
−s c̄

]
, j = i + k + 1 is the Givens rotation

such that |qi+k+1,i+k | = s ≤ εK . Moreover we can bound ‖G j − Dj‖2 by
√
2εK .

5 Backward error analysis

In this section we bound the backward error of the shifted QR algorithm presented in
Sect. 4. The algorithm basically can be described by the following steps:

1. Preliminaryphase: the input unitary-plus-low-rankHessenbergmatrix A is embed-
ded into a larger Hessenberg matrix Â;

2. Initialization phase: a compressed LFR-type representation of Â is computed,
Â = L(0)F (0)R(0);

3. Iterative phase: at each step h, given the representation of the matrix Â(h) =
L(h)F (h)R(h) we perform a shifted QR iteration with the proposed algorithm, and
return A(h+1) = L(h+1)F (h+1)R(h+1).

As suggested in the introduction the initialization phase can be determined in several
different ways depending on the additional features of the input matrix. In this section
to be consistent with the approach pursued in the previous sections we only consider
the case where the representation is found by a sequence of QR factorizations.

Concerning the preliminary phase we notice that as in the proof of Theorem 1 we
can first compute the economy size QR decomposition of the full rank matrix Y . If
we set Y = QR and then rename the components of A = U + XY H as follows
U ← U , X ← XRH and Y ← Q we find that Y HY = Ik . In this way the embedding
is performed at a negligible cost by introducing a small error perturbation of order
γ̃k‖A‖2 where γ̃k = ckε/(1 − ckε) [34] and c and ε denote a small integer constant
and the machine precision, respectively. For the sake of simplicity it is assumed that
‖X‖2 = ‖X‖2‖Y‖2 ≈ ‖A‖2, and we refer to the notation used in [34].

5.1 Backward stability of the representation

In this section we prove that our representation is backward stable. The ingredients
of the representation essentially are: the k-lower Hessenberg matrix L , the upper
Hessenberg matrix Q, the k×k upper triangular matrix T , matrix ZH and the k-upper
Hessenberg matrix R. In particular, given un upper Hessenberg matrix Â = Û + X̂ Ŷ H

wewould like to show that the exact representation of Â = L(Q+T ZH)R differs from
the computed one Ã = L̃(Q̃ + T̃ Z̃ H)R̃ by an amount proportional to ‖ Â‖2 ≈ ‖A‖2
and to the machine precision ε.

The computation proceeds by the following steps.

– Computation of T and L . We note that L and T , T = [T T
k ; 0]T in exact arithmetics

are respectively the Q and the R factors of the QR factorization of matrix X̂ . From
Theorem 19.4 of [34] and consequent considerations there exists a perturbation

123

42 R. Bevilacqua et al.

�X such that
(X̂ + �X) = L̃ T̃ , (5.1)

where ‖�X (:, j)‖2 ≤ √
k γ̃Nk‖X̂(:, j)‖2, L̃ = L + �L , ‖�L(:, j)‖2 ≤ γ̃Nk .

– Computation of Q. The computed matrix Q̃ is obtained starting from matrix B̃ =
L̃ H (Û + �U)

.= LHÛ + �L
HÛ + LH�U , and ‖�U‖2 � γ̃N2 , which derives

from the backward analysis of the product of two unitary factors. The computed
factor is

Q̃ =
[
Ik

Q̃1

]
,

where Q1 is obtained applying the QR factorization to B̃(k + 1 : N , 1 : n).
Reasoning similarly as done before we have

B̃(k + 1 : N , 1 : n) + �
(1)
B = Q̃1 R̃1,

where ‖�(1)
B(:, j)‖2 ≤ γ̃nk , and Q̃ = Q + �Q with ‖�Q(:, j)‖2 ≤ γ̃nk .

– Computation of R. Similarly the computed R̃ is such that B̃ +�
(2)
B = Q̃ R̃, where

||�(1)
B ‖2 is small and R̃ = R + �R with ‖�R(:, j)‖2 ≤ γ̃Nk .

– Computation of ZH . As we have seen we can perform QR iterations without com-
puting Z explicitly because we can retrieve the matrix Z at convergence using
formula 3.7. However for the stability of the all process we prefer to work with
explicit Z , updating it at each step. This will affect the computational cost of a
factor O(nk) at each step but results in a more stable method (see Fig. 2 and the
related discussion).

Note that in exact arithmetic Z = RY . Since the product by a small perturbation
of a unitary matrix is backward stable, we get

Z̃ = R̃(Y + �Y), where ‖�Y‖2 � γ̃N2 .

We can conclude that

Ã = L̃(Q̃ + T̃ Z̃ H)R̃ = L̃(B̃ + �
(2)
B) + L̃ T̃ Z̃ H R̃ (5.2)

= L̃(L̃ H (Û + �U) + �
(2)
B) + (X̂ + �X)(Ŷ + �Y)H R̃H R̃. (5.3)

Since L̃ L̃ H = I + �1, and R̃H R̃ = I + �2 with ‖�1‖2 and ‖�2‖2 bounded by a
constant times γ̃N2 , we have

Ã
.= Û + X̂ Ŷ H + E = Â + E

where E = �1Û +�U + L�
(2)
B + X̂ Ŷ H�2 +�X Ŷ H + X̂�H

Y , and ‖E‖2 is bounded
by a constant times ‖X̂‖2‖Ŷ‖2 ≈ ‖A‖2.

123

Fast QR iterations for unitary plus low rank matrices 43

5.2 Backward stability of the implicit QR steps

Matrix A(1), computed by a QR step applied to matrix Â, is such that A(1) = PH ÂP
with P unitary. In this section we want to show that there exists a perturbation matrix
EA such that the computedmatrix Ã(1) = PH (Â+EA)P where ‖EA‖2 is proportional
to ‖A‖2 and to the machine precision ε.

Let Â = L(Q + T ZH)R be the representation of Â in floating point arithmetic
(note that for not overloading the notation we dropped the superscripts). Similarly
the new representation of the matrix A(1) = PH ÂP = PH L(Q + T ZH)R P is
A(1) = L(1)(Q(1) + T (1)Z (1)H)R(1), where

L(1) = PH LS, Q(1) = SH QV , T (1) = SHT ,

Z (1) = V H Z , and R(1) = V H RP,

and the unitarymatrices S and V are those originating from the turnovers on theGivens
rotations composing L and R.

Theorem 5 After one step of the implicit QR method where the operations are per-
formed in floating point arithmetic we have

L̃(1) = PH (L + EL)S, Q̃(1) = SH (Q + EQ)V , T (1) = SHT ,

Z (1) = V H (Z + EZ), and R(1) = V H (R + ER)P,

where ‖EL‖2, ‖EQ‖2, ‖ER‖2 are bounded by a small multiple of the machine preci-
sion ε, while ‖EZ‖2 is a bounded by γ̃N , where γ̃N = cNε/(1 − cNε), and c is a
small constant.

Proof The backward analysis of the error in the unitary factors, L, R and Q is similar
to the one performed in Theorem 7.1 in [7]. To prove that the backward error in T (1) is
zero we note that, because of the structure of S and of T , the product SHT is in practice
never computed since, SHT = T . The computation of Z (1) is the result of the product
of a unitary factor and the rectangular matrix Z whose columns are orthonormal. For
this reason ‖EZ‖2 is bounded by γ̃N‖Y‖2 = γ̃N . ��

Summarizing we obtain the following result.

Theorem 6 Let Ã(1) be the result computed in floating point arithmetic of a QR step
applied to thematrix Â. Then there exists a perturbation�A such that Ã(1) = PH (Â+
�A)P, and ‖�A‖2 ≤ γ̃N2‖ Â‖2, where γ̃N2 = cN 2ε/(1 − cN 2ε), and c is a small
constant.

Proof The proof follows easily by using the results proved in Theorem5 by assembling
together the contributions of each error in the factors of A. ��

6 Numerical experiments

We tested our algorithm on several classes of matrices. The purpose of the experimen-
tation is to show that the algorithm is indeed backward stable as proved in Sect. 5 and

123

44 R. Bevilacqua et al.

Table 1 In the upper part of the table scalar polynomials whose roots are known

Description, roots Degree

1 Wilkinson polynomial 1, 2, . . . n n

2 Scaled and shifted Wilkinson polynomial −2.1,−1.9, . . . , 1.7 n

3 Reverse Wilkinson polynomial 1, 1/2, . . . , 1/n n

4 Prescribed roots 2−m , 2−(m−1), . . . , 2m 2m + 1

5 Prescribed roots shifted 2−m − 3, . . . , 2m − 3 2m + 1

6 Chebyshev polynomial cos
(

(2 j−1)π
2n

)
n

7
∑n

i=0 x
i cos

(
2π j
n+1

)
+ i sin

(
2π j
n+1

)
n

8 Bernoulli polynomial – n

9 p1(z) = 1 + (m/(m + 1) + (m + 1)/m) zm + z2m – 2m

10 p2(z) = 1
m

(∑m−1
j=0 (m + j)z j + (m + 1)zm + ∑m−1

j=0 z2m− j
)

– 2m

11 p3(z) = (1 − λ)zm+1 − (λ − 1)zm + (λ + 1)z + (1 − λ) , λ = 0.999 – m + 1

These polynomials have also been tested in [7,17], at the bottom of the table polynomials with particular
structures, tested also in [12,35]

to confirm that the computation of all the eigenvalues by our method requires O(n2k)
operations as proved theoretically.

The test suite consists of the following:

– Companion matrices associated with scalar polynomials whose roots are known
(see description in Table 1).

– Companionmatrices associated with scalar polynomials whose roots are unknown
(see description in Table 1).

– Random fellow matrices [41] with a prescribed norm.
– Block companion matrices associated with matrix polynomials from the NLEVP
collection [8].

– Random unitary plus rank-k matrices.
– Random unitary-diagonal-plus-rank-k matrices.
– Fiedler penta-diagonal companion matrices [24,38]. The associated polynomials
are the scalar polynomials in Table 1 and we have then associated the same refer-
ence number.

In [20] the backward stability of polynomial rootfinding using Fiedler matrices
different from the companion matrix is analyzed. The analysis shows that, when some
coefficients of the monic polynomial are large, it is preferable to use the standard
companion form. However, when the coefficients can be bounded by a moderate
number, the algorithms using Fielder matrices are as backward stable as the ones
using the companion. The purpose of our experiments with Fiedler pentadiagonal
matrices is not to suggest to use these matrices for polynomial rootfinding, but to
show that the backward stability of the proposed method is not affected by a larger k
since for Fiedler pentadiagonal matrices we have k = n/2.

The algorithm is implemented in Matlab and the code is available upon request. In
order to check the accuracy of the output we compare the computed approximations

123

Fast QR iterations for unitary plus low rank matrices 45

with the actual eigenvalues of the matrix, in the case these are known. Otherwise we
consider the values returned by the internal Matlab function eig applied to the initial
matrix A already in Hessenberg form and with the balancing option on. Specifically,
we match the two lists of approximations and then find the average error as

fwerr = 1

n

n∑
j=1

err j ,

where err j is the relative error in the computation of the j th eigenvalue. The eigen-
values are retrieved reconstructing the matrix at convergence and taking the diagonal
entries. Note that unitary factor in F has reduced to a unitary diagonal matrix, plus
the the rank k part confined in the first k rows.

To validate the results provided in Sect. 5 we show the behavior of the backward
error on the computed Schur form. Let P be the accumulated unitary similarity trans-
formation obtained applying steps of the implicit QR algorithm as described in Sect. 4
to the augmentedmatrix Â. Because the last k rows of Â are null according to Theorem
4, P is block diagonal

P =
[
P1

P2

]
,

where P1 ∈ C
n×n, P2 ∈ C

k×k are unitary matrices. We can set P2 = Ik since no
rotations act on the last k rows of the enlarged matrix. Assume that m is the number
of iterations needed to reach convergence and that Ã(m) is the matrix reconstructed
from the computed factors L̃m , F̃m , R̃m produced by performingm steps of the implicit
algorithm. Not to overload the notation we denote with the same symbol Ã(m) its n×n
leading principal submatrix. As in [17] we consider as a measure of the backward
stability the relative error

bwerr(A) = ‖PT
1 AP1 − Ã(m)‖∞

‖A‖∞
. (6.1)

In order to compare the stability of our algorithm with that of algorithm tailored for
polynomial rootfinding [7,15] we computed also the backward error in terms of the
coefficient of the polynomial. In particular, let p(x) = ∑n

i=0 pi x
i = ∏n

i=1(x−λi) be
our monic test polynomial with roots λi , and denote by λ̃i the computed roots obtained
with our algorithm applied to the companion matrix A. We denote by p̂(x) the poly-
nomial having λ̃i as exact roots, i.e., p̂(x) = ∏

(x − λ̃i). Using the extended precision
arithmetic of Matlab we computed the coefficients p̂i of p̂(x) in the monomial basis.
We define the backward error in terms of the coefficients of the polynomial as follows

bwerr(p) = max
i

|pi − p̂i |
‖x‖∞

, (6.2)

x = (1, p + n − 1, . . . , p0).

123

46 R. Bevilacqua et al.

100 101 102 103 104 105 106 107 108 109
10-14

10-12

10-10

10-8

10-6

10-4

102 103 104 105 106 107 108 109 1010 1011
10-12

10-10

10-8

10-6

10-4

10-2

Fig. 1 Absolute backward error in the computation of the eigenvalues respect to the norm of the matrix.
On the left the results obtained from thousand random unitary-plus-rank-5 matrices of size 50 that were
generated as explained in Theorem 3. On the right the absolute backward error is plotted against the norm of
the matrix for one thousand unitary diagonal-plus-rank-5 matrices of size 100. The dashed lines represent
a reference line for the theoretical backward stability

100 102 104 106 108 1010 1012
10-15

10-10

10-5

100

105

Fig. 2 Comparison on the backward errors of the algorithm with an explicit and implicit Z . We plotted the
absolute backward error respect to the norm of the matrix. The results are obtained from a thousand random
matrix polynomials of degree 10 where the coefficients are 5 × 5 matrices, whose norms range from 1 to
109. The solid lines represent a reference lines to show that in the case Z is explicitly computed the absolute
backward error behaves as O(‖A‖)ε while, keeping Z implicit, the backward error increases as O(‖A‖2)ε

To confirm experimentally the stability of the algorithmwemeasured the backward
error for matrices with prescribed norms. In particular, in Fig. 1 for matrices in the
class i.e., generic unitary-plus-rank-5, and unitary diagonal-plus-rank-5, we report the
results obtained on one thousand matrices of size 50 with norm ranging from 1 to
1013, and we plot the absolute backward error ‖PT

1 AP1 − Ã(m)‖∞ versus ‖A‖∞. The
dashed lines represent a slope proportional to ε‖A‖∞ and as we can see the plots agree
with the results proved in Sect. 5.

In Fig. 2, for matrix polynomials, we compare backwards stability of the algorithm
using implicit Z or updating explicitly Z at each iteration.We observe that the absolute
backward error behaves as ε‖A‖when Z is updated at each iterations, while it b ehaves
as ε‖A‖2 when Z is retrieved only at the end of the computations. This shows in a

123

Fast QR iterations for unitary plus low rank matrices 47

Table 2 Results on scalar companion matrices from Table 1

n ‖A‖∞ bwerr(A) bwerr(p) AMVW BEGG ZHSEQR

1 10 1.93e+07 1.68e−15 6.31e−15 5.12e−15 1.55e−15 4.11e−16

1 15 9.62e+12 1.00e−15 8.90e−15 3.96e−15 3.45e−15 1.33e−15

1 20 2.28e+19 2.03e−15 5.28e−14 1.04e−14 3.35e−01 4.47e−15

2 20 6.69e+02 1.55e−15 1.36e−14 8.21e−16 2.17e−15 1.09e−15

3 20 1.03e+01 3.58e−15 8.08e−15 2.23e−15 2.93e−14 1.24e−15

4 20 1.93e+14 1.55e−15 4.98e−14 2.70e−15 4.32e−14 4.44e−16

5 20 1.33e+18 1.44e−15 4.41e−14 2.72e−14 5.42e−01 4.38e−15

6 20 2.02e+01 1.63e−15 1.70e−14 1.54e−15 1.79e−14 2.52e−15

7 20 6.32e+00 3.41e−15 1.81e−14 2.00e−15 2.67e−14 2.85e−15

8 20 6.76e+04 1.86e−15 2.50e−14 2.17e−15 1.70e−14 4.56e−15

9 40 6.71e+00 7.98e−15 1.87e−13 9.95e−17 7.07e−01 3.52e+13

10 40 1.14e+01 5.00e−15 3.10e−14 4.99e−15 3.92e−14 6.11e−15

10 20 7.99e+00 2.89e−15 1.27e−14 2.94e−15 1.96e−14 4.85e−15

11 31 2.83e+03 1.91e−15 4.64e−13 4.89e−15 2.43e−13 1.03e−14

We see that the backward error is always very small, the forward error (with is not shown) is dependent
on the conditioning of the problem. In the last three column we report [7] the backward error in terms
of the polynomial coefficients of the unbalanced, single shifted version of the algorithm AMVW [7], of
BEGG [15], and the LAPACK routine ZHSEQR

Table 3 Results on the NLEVP collection. On the top part of the table results for quadratic problems with
k = n/2

Name n k Degree ‖ceig(A)‖∞ ‖A‖∞ forwerr backerr

Acousticwave1d 20 10 2 5.96e+01 1.37e+01 1.42e−15 1.02e−14

Bicycle 4 2 2 5.70e+02 9.62e+03 2.60e−15 8.29e−16

Cdplayer 120 60 2 4.50e+03 2.67e+07 5.17e−16 5.85e−15

Closedloop 4 2 2 9.00e+00 3.00e+00 8.99e−16 1.42e−15

Dirac 160 80 2 2.11e+03 1.38e+03 5.24e−14 1.39e−13

Hospital 48 24 2 4.49e+01 1.11e+04 7.84e−13 2.57e−14

Metalstrip 18 9 2 1.71e+02 3.48e+02 7.78e−16 2.42e−15

Omnicam1 18 9 2 5.04e+15 1.73e+05 4.03e−07 2.60e−15

Omnicam2 30 15 2 4.66e+17 6.22e+07 1.16e−02 4.90e−15

Powerplant 24 8 2 1.72e+05 3.73e+07 7.13e−08 2.68e−15

qep2 6 3 2 1.80e+16 4.00e+00 3.31e−09 3.65e−16

Sign1 162 81 2 3.29e+09 1.53e+01 4.10e−09 5.84e−14

Sign2 162 81 2 9.61e+02 5.63e+01 4.27e−13 3.54e−14

Spring 10 5 2 2.33e+00 8.23e+01 3.00e−16 1.93e−15

Wiresaw1 20 10 2 1.57e+01 1.42e+03 6.00e−14 4.20e−15

Butterfly 240 64 4 2.97e+01 5.18e+01 5.15e−14 1.29e−13

Orrsommerfeld 40 10 4 1.88e+06 9.67e+00 1.83e−14 6.35e−15

Plasmadrift 384 128 3 6.64e+04 3.24e+02 1.02e−13 4.86e−14

On the bottom matrix polynomials with degree greater than 2

123

48 R. Bevilacqua et al.

very clear way that it is better to update the rank-k part at each iteration. In order to
explain these discrepancies theoretically we recall that at the beginning of our error
analysis in the previous section we assume that the matrix Â is upper Hessenberg.
However the actual matrix obtained at the end of the Hessenberg reduction process
only satisfies this requirement up to a backward error of order ε‖A‖. The different
behavior of the explicit and the implicit algorithm depends on the propagation of
this error. Specifically we can show that in the explicit variant the error propagates
additively whereas in the implicit counterpart the error increases by a factor of order
‖A‖. Similar error bounds have appeared in [5] where a backward stable method
for eigenvalues and eigenvectors approximation of matrix polynomials is proposed.
The algorithm is a variant of Francis’s implicitly shifted QR algorithm applied on
the companion pencil, and the rank correction is not explicitly computed but it is
computed only once at the end of the computation when retrieving the eigenvalues.
The authors of [5] proved that on the unscaled pencil (S, T) the computed Schur form
is the exact Schur form of a perturbed pencil (S + δS, T + δT), where ‖δS‖ ≤ ε‖S‖2
and ‖δT ‖ ≤ ε‖T ‖2. Working with the pencil they are able to remove the dependence
from the norm by scaling the pencil. In our case it is not possible to scale A without
destroying the unitary plus low rank structure, but we prove that the absolute error is
O(‖A‖)ε keeping Z explicit. In specific cases as for polynomial rootfinding where
the Hessenberg structure of Â is determined exactly we achieve very good results
also when keeping Z implicit. In Table 2 we report the backward errors in the scalar
polynomials described in Table 1. We report both the backward error in terms of the
matrix coefficients and of the coefficients of the polynomial and we see that the tests
confirm the backward stability of the algorithm. Edelman and Murakami [21] proved
that the analysis of the backward error in terms of the polynomial coefficients might
introduce an additional factor proportional to ‖A‖ but Table 2 revels that we do better
than expected because bwerr(p) = ε O(‖A‖), and not ε O(‖A‖2). We report also
the values of bwerr(p) obtained on the same tests by two specialized algorithms for
polynomial rootfinding, namely AMVW [7] and BEGG [15] and by ZHSEQR, the
LAPACK routine for computing the eigenvalues of a Hessenberg matrix without any
further structure. We obtain better results than those one gets using BEGG method,
but sometimes we lose a digit of precision compared to AMVW. We think that this
is mostly due to differences in shift and in deflation criteria or in the retrieving, in
hight precision, the coefficients of the polynomial p̂(x) from the computed roots. Our
method provides a unified framework to treat a larger class of matrices that contains
companions and block companions but also perturbations of CMV shapes, or unitary
diagonal plus low rank, and so on. See [27] for some real world applications different
from scalar/matrix polynomials computation.

Table 3 reports the results obtained for several problems form the NLEVP collec-
tion [8], which contains polynomial eigenvalue problems from real-life applications.
To apply our method we needed to invert the coefficient corresponding to the higher
degree of the polynomial so not all the problems of the collection were suitable for our
algorithm. In the collection we find mainly quadratic polynomial and a few examples
of polynomial of degree ≥ 3. Table 3 reportsthe degree d of the polynomials, the size
k of the coefficients, and n = kd that is the size of the matrix of the linearization.
We cannot compare directly with the method proposed in [5] since the authors of that

123

Fast QR iterations for unitary plus low rank matrices 49

Table 4 Top: Random polynomials of low degree with different norm sizes

n k Degree ‖A‖∞ ‖ceig(A)‖∞ forwerr backerr

50 2 25 2.46e+01 1.77e+01 3.63e−15 1.10e−14

50 2 25 1.42e+06 2.85e+01 2.65e−12 9.37e−15

50 5 10 2.34e+01 2.32e+01 2.26e−15 8.11e−15

50 5 10 2.23e+06 3.86e+01 7.73e−12 8.31e−15

50 10 5 2.75e+01 3.24e+01 1.78e−15 9.25e−15

50 10 5 3.16e+06 3.90e+01 1.08e−11 7.78e−15

100 5 20 1.02e+06 3.43e+01 7.05e−13 9.88e−15

200 5 40 1.96e+06 3.73e+01 2.62e−13 1.93e−14

400 5 80 3.90e+06 1.01e+02 1.44e−13 3.19e−14

750 5 130 7.09e+06 9.79e+01 5.59e−13 5.30e−14

1000 5 200 9.57e+07 2.60e+04 8.49e−11 7.53e−14

We see that, in agreement with the theoretical results, the relative backward error is not affected by the norm
of the matrix. Bottom: Random polynomials with higher degree and moderately high norm. We see that
also in the larger example the stability is not compromised. The figures for the larger tests are the average
over 10 runs

paper work on a pencil (S, T) and then were able to scale each matrix of the pencil
by a factor α = max(‖S‖, ‖T ‖} to remove the dependence of the error on the norm.
In principle the algorithm BEGG [15], based on quasiseparable representation as well
as other methods based on Givens weight and Givens vector representation, can be
extended to deal with these matrices but with a cost of order at least O(n2k3) which
is not competitive for k = O(n). The results of our algorithm for higher degree ran-
dom matrix polynomials are reported in Table 4 where also the forward and backward
errors for different values of the norm of the coefficients of the polynomials are shown.
Each line refers to the average value over 50 tests on generalized companion matrices
associated to matrix polynomials of size k and degree d = n/k. For each pair (k, d)

we performed experiments varying the norm of the resulting generalized companion
matrix. We see that as expected, for matrices with larger norm, we may have a loss of
accuracy in the computed solutions.

Figure 3 shows, for a set of randommatrices, that the cost of the algorithm is linear in
k and quadratic in n. Tables 5, 6, and 7, contain the results for randomunitary-plus-low-

100 101 102
102

103

104

101 102 103
100

102

104

106

Fig. 3 On the right the double logarithmic plot for randommatrices of size 180 that are unitary-plus-rank-k
with k ranging from 1 to 60. The reference line shows the linear dependence on k. On the right, for k = 2
and k = 5 and matrices of size ranging from 25 to 1000. The dashed lines represent the O(n2) slope

123

50 R. Bevilacqua et al.

Table 5 Unitary plus low rank random matrices, with different sizes, rank of the correction and norm of
the matrix

n k ‖A‖∞ ‖ceig(A)‖∞ forwerr backerr

50 1 7.14e+00 4.19e+00 7.33e−15 9.45e−15

50 1 9.70e+04 3.52e+01 1.70e−16 3.10e−15

50 2 7.19e+00 3.78e+00 7.51e−15 9.92e−15

50 2 9.83e+04 3.27e+01 1.97e−16 2.91e−15

50 25 8.27e+00 1.00e+15 5.36e−15 1.10e−14

50 25 9.98e+04 7.85e+14 1.95e−16 3.15e−15

100 1 1.00e+01 1.37e+01 1.46e−14 1.79e−14

100 1 9.85e+04 2.04e+02 2.46e−16 4.86e−15

100 2 1.01e+01 1.97e+01 1.52e−14 1.89e−14

100 2 9.91e+04 1.80e+02 2.60e−16 4.78e−15

100 25 1.10e+01 2.18e+07 1.30e−14 2.07e−14

100 25 9.99e+04 1.79e+06 3.30e−16 5.21e−15

For each n and k we tested two cases ‖A‖∞ = O(1) and ‖A‖∞ = O(104). Each result reported is the
average over 50 random tests

Table 6 Unitary diagonal plus
low rank random matrices, with
different rank of the correction
and norm of the matrix

n k ‖A‖∞ ‖ceig(A)‖∞ forwerr backerr

50 1 3.46e+01 2.25e+00 2.66e−16 2.78e−15

50 1 3.34e+06 2.25e+00 3.11e−17 2.32e−15

50 2 5.96e+01 1.40e+01 1.57e−16 2.78e−15

50 2 5.86e+06 2.18e+01 8.83e−14 2.63e−15

50 25 6.37e+02 5.59e+01 7.22e−17 2.58e−15

50 25 6.36e+07 9.34e+01 8.63e−13 2.21e−15

For each n and k we tested two cases ‖A‖∞ = O(1) and ‖A‖∞ =
O(104). Each result reported is the average over 50 random tests

rank matrices, for perturbed unitary diagonal matrices and for Fiedler pentadiagonal
matrices. In all the cases, and independently on the matrix norm, we get very good
results for the backward stability. Note that when the actual eigenvalues are unknown
the results for the forward error show that the computed approximations agree with
those returned by Matlab eig command.

7 Conclusions

In this paper we have presented a novel algorithm for eigenvalue computation of
unitary-plus-low-rank Hessenberg matrices. The algorithm is computationally effi-
cient with respect to both the size of the matrix and the size of the perturbation.
Further, the algorithm is shown to be backward stable. At the core of the algorithm is a
compressed data-sparse representation of the matrix as a product of three factors. The
outermost factors are unitary generalized Hessenberg matrices whereas the factor in

123

Fast QR iterations for unitary plus low rank matrices 51

Table 7 Results on Fiedler pentadiagonal matrices [38] associated to scalar polynomials

n k ‖ceig(A)‖∞ ‖A‖∞ forwerr backerr

1 20 10 1.87e+21 2.30e+19 7.17e−01 2.88e−15

2 20 10 2.08e+04 9.48e+02 2.80e−01 3.68e−15

3 20 10 2.45e+15 1.52e+01 2.45e−01 4.39e−15

4 20 10 3.19e+15 2.67e+14 7.70e−02 5.71e−15

5 20 10 4.72e+20 1.66e+18 7.02e−02 2.17e−15

6 30 15 1.11e+18 1.05e+02 3.08e−01 1.31e−14

7 20 10 4.90e+00 5.18e+00 1.97e−15 7.31e−15

8 20 10 2.21e+15 7.10e+04 7.03e−11 5.16e−15

9 40 3 8.06e+15 4.04e+00 1.28e−03 1.02e−14

10 30 15 3.83e+01 1.06e+01 3.51e−15 1.08e−14

11 29 15 2.37e+00 4.00e+00 3.03e−15 1.88e−14

As proved in [18,19] the rank-correction for dense polynomials is in general k = �n/2� but it can be lower
in the case the polynomial is sparse

the middle is a unitary upper Hessenberg matrix corrected by a low rank perturbation
located in the first rows. In particular cases it is possible to obtain the data-sparse
Hessenberg form with cost O(n2k) flops instead of the customary O(n3) flops. It
is shown that deflation and convergence of the QR iteration can be checked directly
from the representation by greatly simplifying the resulting fast scheme. Future work
is concerned with the analysis of efficient procedures for computing the factored rep-
resentation of the initial matrix as well as the design of a fast QZ iteration for matrix
pencils.

Acknowledgements We would like to thank the anonymous reviewers whose helpful comments allowed
to improve the quality of the presentation.

References

1. Ammar, G., Calvetti, D., Reichel, L.: Computing the poles of autoregressive models from the reflection
coefficients. In: Proceedings of 31st Annual Allerton Conference on Communication, Control, and
Computing, pp. 255–264 (1993)

2. Ammar, G., Gragg, W., Reichel, L.: Direct and inverse unitary eigenproblems in signal processing: an
overview. In: De Moor, B.L.R., Moonen, F.T., Golub, G.H. (eds.) Linear Algebra for Large Scale and
Real-Time Applications. Springer, New York (1993)

3. Ammar, G.S., Calvetti, D., Reichel, L.: Continuation methods for the computation of zeros of Szegö
polynomials. Linear Algebra Appl. 249, 125–155 (1996)

4. Ammar, G.S., Gragg, W.B., Reichel, L.: On the eigenproblem for orthogonal matrices. In: 1986 25th
IEEE Conference on Decision and Control, pp. 1963–1966 (1986)

5. Aurentz, J., Mach, T., Robol, L., Vandebril, R., Watkins, D.S.: Fast and backward stable computation
of the eigenvalues and eigenvectors of matrix polynomials. Math. Comput. 88, 313–347 (2019)

6. Aurentz, J., Mach, T., Robol, L., Vandebril, R., Watkins, D.S.: Core-Chasing Algorithms for the
Eigenvalue Problem. Fundamentals of Algorithms. SIAM, Philadelphia (2018)

7. Aurentz, J.L., Mach, T., Vandebril, R., Watkins, D.S.: Fast and backward stable computation of roots
of polynomials. SIAM J Matrix Anal. Appl. 36(3), 942–973 (2015)

123

52 R. Bevilacqua et al.

8. Betcke, T., Higham, N.J., Mehrmann, V., Schröder, C., Tisseur, F.: NLEVP: a collection of nonlinear
eigenvalue problems. ACM Trans. Math. Softw. 39(2), 7:1–7:28 (2013)

9. Bevilacqua, R., Del Corso, G.M.: Structural properties of matrix unitary reduction to semiseparable
form. Calcolo 41(4), 177–202 (2004)

10. Bevilacqua, R., Del Corso, G.M., Gemignani, L.: On computing efficient data-sparse representations
of unitary plus low-rank matrices. Technical report (2019)

11. Bindel, D., Chandresekaran, S., Demmel, J., Garmire, D., Gu, M.: A fast and stable nonsymmetric
eigensolver for certain structured matrices. Technical report (2005)

12. Bini, D.A., Daddi, F., Gemignani, L.: On the shifted QR iteration applied to companion matrices.
Electron. Trans. Numer. Anal. 18(electronic), 137–152 (2004)

13. Bini, D.A., Eidelman, Y., Gemignani, L., Gohberg, I.: Fast QR eigenvalue algorithms for Hessenberg
matrices which are rank-one perturbations of unitary matrices. SIAM J. Matrix Anal. Appl. 29(2),
566–585 (2007)

14. Bini, D.A., Gemignani, L., Pan, V.Y.: Fast and stable QR eigenvalue algorithms for generalized com-
panion matrices and secular equations. Numer. Math. 100(3), 373–408 (2005)

15. Boito, P., Eidelman, Y., Gemignani, L., Gohberg, I.: Implicit QR with compression. Indagationes
Mathematicae 23(4), 733–761 (2012)

16. Bunse-Gerstner, A., Elsner, L.: Schur parameter pencils for the solution of the unitary eigenproblem.
Linear Algebra Appl. 154(156), 741–778 (1991)

17. Chandrasekaran, S., Gu, M., Xia, J., Zhu, J.: A fast QR algorithm for companion matrices. In: Ball,
J.A., Eidelman, Y., Helton, J.W., Olshevsky, V., Rovnyak, J. (eds.) Recent Advances in Matrix and
Operator Theory. Operator Theory: Advances and Applications, vol. 179, pp. 111–143. Birkhäuser,
Basel (2007)

18. Del Corso, G.M., Poloni, F., Robol, L., Vandebril, R.: When is a matrix unitary or hermitian plus low
rank? Numer. Linear Algebra Appl. (To appear) (2019)

19. Del Corso, G.M., Poloni, F., Robol, L., Vandebril, R.: Factoring block Fiedler companion matrices.
Springer INdAM Ser. 30, 129–155 (2019)

20. De Terán, F., Dopico, F.M., Pérez, J.: Backward stability of polynomial root-finding using Fiedler
companion matrices. IMA J. Numer. Anal. 36(1), 133–173 (2016)

21. Edelman, A., Murakami, H.: Polynomial roots from companion matrix eigenvalues. Math. Comput.
64(210), 763–776 (1995)

22. Eidelman, Y., Gohberg, I., Haimovici, I.: Separable type representations of matrices and fast algo-
rithms. In: Eigenvalue method, Volume 235 of Operator Theory: Advances and Applications, vol. 2,
Birkhäuser/Springer, Basel (2014)

23. Fassbender, H.: On numerical methods for discrete least-squares approximation by trigonometric poly-
nomials. Math. Comput. 66(218), 719–741 (1997)

24. Fiedler, M.: A note on companion matrices. Linear Algebra Appl. 372, 325–331 (2003)
25. Fiedler, M., Markham, T.L.: Completing a matrix when certain entries of its inverse are specified.

Linear Algebra Appl. 74, 225–237 (1986)
26. Francis, J.G.F.: The QR transformation-part 2. Comput. J. 4(4), 332–345 (1962)
27. Fyodorov, Y.V., Sommers, H.-J.: Randommatrices close to Hermitian or unitary: overview of methods

and results. J. Phys. A Math. Gen. 36(12), 3303–3347 (2003)
28. Gantmacher, F.R.: The Theory of Matrices. Number v. 1 in the Theory of Matrices. Chelsea Pub. Co.

(1960)
29. Gemignani, L.: A unitary Hessenberg QR-based algorithm via semiseparable matrices. J. Comput.

Appl. Math. 184(2), 505–517 (2005)
30. Gemignani, L., Robol, L.: Fast Hessenberg reduction of some rank structuredmatrices. SIAM J.Matrix

Anal. Appl. 38(2), 574–598 (2017)
31. Golub, G.H., Van Loan, C.F.: Matrix Computations. Johns Hopkins Studies in the Mathematical Sci-

ences, 3rd edn. Johns Hopkins University Press, Baltimore (1996)
32. Gragg, W.B.: The QR algorithm for unitary Hessenberg matrices. J. Comput. Appl. Math. 16, 1–8

(1986)
33. Gragg,W.B.: Positive definite Toeplitz matrices, the Arnoldi process for isometric operators, andGaus-

sian quadrature on the unit circle. J. Comput. Appl. Math. 46(1–2), 183–198 (1993). (Computational
complex analysis)

34. Higham, N.J.: Accuracy and Stability of Numerical Algorithms, 2nd edn. Society for Industrial and
Applied Mathematics (SIAM), Philadelphia (2002)

123

Fast QR iterations for unitary plus low rank matrices 53

35. Jenkins, M.A., Traub, J.F.: Principles for testing polynomial zerofinding programs. ACM Trans. Math.
Softw. 1(1), 26–34 (1975)

36. Kimura, H.: Generalized Schwarz form and lattice-ladder realizations of digital filters. IEEE Trans.
Circuits Syst. 32(11), 1130–1139 (1985)

37. Mach, T., Vandebril, R.: On deflations in extended QR algorithms. SIAM J. Matrix Anal. Appl. 35(2),
559–579 (2014)

38. Moler, C.: Fiedler Companion Matrix. Cleve’s Corner (2013)
39. Sinap, A., Van Assche, W.: Orthogonal matrix polynomials and applications. In: Proceedings of the

Sixth International Congress on Computational and Applied Mathematics (Leuven, 1994), vol. 66, pp.
27–52 (1996)

40. Vandebril, R., Del Corso, G.M.: An implicit multishift QR-algorithm for Hermitian plus low rank
matrices. SIAM J. Sci. Comput. 32(4), 2190–2212 (2010)

41. Vandebril, R., Van Barel, M., Mastronardi, N.: Matrix Computations and Semiseparable Matrices, vol.
I, II. Johns Hopkins University Press, Baltimore (2008)

42. Watkins, D.S.: The Matrix Eigenvalue Problem: GR and Krylov Subspace Methods, 1st edn. Society
for Industrial and Applied Mathematics, Philadelphia (2007)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	Fast QR iterations for unitary plus low rank matrices
	Abstract
	1 Introduction
	2 Preliminaries
	3 Representation
	4 The algorithm
	4.1 Initialization and bulge chasing
	4.2 Computational cost
	4.3 Deflation

	5 Backward error analysis
	5.1 Backward stability of the representation
	5.2 Backward stability of the implicit QR steps

	6 Numerical experiments
	7 Conclusions
	Acknowledgements
	References

