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Abstract
We prove generalized Gaffney inequalities and the discrete compactness for finite ele-
ment differential forms on s-regular domains, including general Lipschitz domains.
In computational electromagnetism, special cases of these results have been estab-
lished for edge elements with weakly imposed divergence-free conditions and used
in the analysis of nonlinear and eigenvalue problems. In this paper, we generalize
these results to discrete differential forms, not necessarily with strongly or weakly
imposed constraints. The analysis relies on a new Hodge mapping and its approxi-
mation property. As an application, we show L p estimates for several finite element
approximations of the scalar and vector Laplacian problems.

Mathematics Subject Classification 65N30 · 65N12 · 58J10 · 35D30
1 Introduction

Let� ⊂ R
n be an s-regular domain (1/2 ≤ s ≤ 1) (c.f. [22]) with trivial cohomology
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Zk : = H̊�k ∩ H∗�k(�)

=
{
w ∈ L2�k(�) : dw ∈ L2�k+1(�), tr|∂� w = 0

}

∩
{
w ∈ L2�k(�) : δw ∈ L2�k−1(�)

}
,

be the space of differential k-forms with vanishing trace on the boundary. The gener-
alized Gaffney inequality

‖w‖2L p ≤ C
(
‖dw‖2L2 + ‖δw‖2L2

)
,

and the compactness Zk ↪→ L p(�) are two important properties of Zk and play a
crucial role in the analysis of nonlinear and eigenvalue problems for differential forms
(see, e.g., [5,11,16,25]).

For numerical methods for differential forms and Hodge Laplacian, approximation
of Zk by the classical C0 finite elements will cause notorious pseudo-solutions and
instability (c.f. [2,5,15]). To cure this problem, one could approximate Zk by a finite
dimensional space H̊h�

k ⊂ H̊�k . We refer to [2,7,15] for details on the discrete
differential forms and the finite element exterior calculus. The space H̊h�

k is a non-
conforming approximation of Zk since the codifferential operator cannot be taken in
the L2 sense, and this causes a difficulty in the numerical analysis. In particular, the
generalized Gaffney inequality and the compactness cannot be inherited from Zk .

The discrete differential forms fit in a complex

0 � H̊h�
0 d� H̊h�

1 d� · · · d� H̊h�
n � 0. (1)

A discrete Hodge decomposition follows:

H̊h�
k = dH̊h�

k−1 ⊕
[
dH̊h�

k−1
]⊥ = dH̊h�

k−1 ⊕ d∗
h H̊h�

k+1,

where d∗
h is the L2 adjoint operator of d : H̊h�

k �→ H̊h�
k+1.

In computational electromagnetism, the electromagnetic fields are usually dis-
cretized in the discrete divergence-free edge element space [dH̊h�

0]⊥, i.e., in

Xc
h :=

{
wh ∈ H̊h�

1, (wh, grad φh) = 0, ∀φh ∈ H̊h�
0
}

, (2)

where H̊h�
1 is the Nédélec edge element (first or second kind) and H̊h�

0 is
the Lagrange finite element with a suitable degree [5,11,15,16,25]. The discrete
divergence-free condition in Xc

h reflects the Gauss laws in the Maxwell equations.
In this special case, generalized Gaffney inequalities have been established in, e.g.,
[11,16,25] for discretizations of nonlinear problems. For eigenvalue problems, the
discrete compactness of Xc

h is established and used for the convergence theory
(see, e.g., [5,15] and the references therein). The analysis of both the generalized
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Generalized Gaffney inequality and discrete compactness… 783

Gaffney inequality and the discrete compactness is based on a map H : Xc
h �→

H0(curl) ∩ H(div 0) and its approximation property [15]. This continuous lifting acts
as a connection between the discrete and continuous levels and is sometimes referred
to as the Hodge mapping.

For someproblems in electromagnetism, thedivergence-free constraint inH0(curl)∩
H(div 0) plays a crucial role. Therefore strongly divergence-free Brezzi-Douglas-
Marini or Raviart-Thomas finite elements Hh(div 0) could be used to approximate
electromagnetic fields, see [17]. To show the well-posedness of the finite element
schemes, a new Hodge mapping is studied in [19], see also [18] for another type of
boundary conditions. To the best of our knowledge, discrete compactness has not been
discussed for Hh(div 0).

The purpose of this paper is to prove the generalized Gaffney inequality and the
discrete compactness for discrete differential forms on s-regular domains. This goal
is achieved by defining a Hodge mapping for the entire discrete space without (either
strong or weak) constraints such as the divergence-free conditions. This new Hodge
mapping is a generalization of the classical technique for Xc

h [15] and the result for
Hh(div 0) [19].

We remark that for half of the Hodge decomposition (e.g., Xc
h as a special case), the

discussions in this paper confirm known results. For the second half, the L2 estimate is
straightforward by a duality argument. The idea of the duality argument is also known
(see, e.g., [3]) even if the general form has not been stated elsewhere. The novelty
of this paper lies in a refined treatment of this part of the Hodge decomposition. The
discussions lead to L p-type estimates and discrete compactness via the newly defined
Hodge mapping.

The rest of this paper is organized as follows. In Sect. 2, we introduce some nota-
tion and preliminary results. In Sect. 3 we show the main results. Detailed proofs,
including the new Hodge mapping, are postponed to Sect. 4. In Sect. 5, we show some
applications in the L p estimates of the Hodge Laplacian problems. In Sect. 6 we give
concluding remarks.

2 Preliminaries

We introduce some notation and preliminary results. For differential forms and exterior
derivatives, we follow the convention in [2] and refer to [2,21] for more details.

We use �k(�) to denote the space of smooth differential k-forms on �. Let � :
�k �→ �n−k be the Hodge star operator. We use (·, ·) to denote the L2 inner product
of k-forms (for any nonnegative integer k):

(u, v) :=
∫

�

u ∧ �v, ∀u, v ∈ �k(�).

We denote the norm by
‖u‖2 := (u, u).
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784 J. He et al.

Define L2�k(�) as the space of square integrable differential k-forms, and

H�k(�) :=
{
u ∈ L2�k(�) : du ∈ L2�k+1(�)

}
,

where d is the exterior derivative. Define the H� inner product and the corresponding
norms:

(u, v)H� := (u, v) + (du, dv), ‖u‖2H� := (u, u)H�.

We use Hs�k(�) and L p�k(�) to denote the Hs and L p Sobolev spaces of
differential formswhere s is a positive real number and 1 ≤ p ≤ ∞ is a positive integer
(c.f. [2]). The corresponding norms are denoted by ‖ · ‖s and ‖ · ‖0,p respectively. For
s = 0, we also use ‖ · ‖0 to denote the L2 norm ‖ · ‖.

The codifferential operator δk : �k(�) �→ �k−1(�) is defined by �δk = (−1)kd�.
When there is no possible confusion, we omit the subscript and write δ for any k-form.
We similarly define

H∗�k(�) :=
{
u ∈ L2�k(�) : δu ∈ L2�k−1(�)

}
.

Define the norm

‖w‖2Z := ‖w‖2 + ‖dw‖2 + ‖δw‖2 , ∀w ∈ Zk .

Weuse the notation u � v to denote u ≤ Cv, whereC is a generic positive constant.
For 0 ≤ s ≤ 1, a domain � is called s-regular, if for any z ∈ Zk(�), the following

estimate holds:

‖z‖2s � ‖dz‖2 + ‖δz‖2. (3)

We refer to [2,20] with the references therein for more details on s-regular domains in
R
n and [22] for manifolds. Particularly, any Lipschitz domain is an s-regular domain

for s ≥ 1/2 [22]. For any polyhedron in R
3 we can choose s ∈ (1/2, 1] [1] and for

convex domains we can choose s = 1.
We assume that � is an s-regular domain. For ease of presentation, we further

assume that all Betti numbers except for the zeroth vanish, meaning that the de Rham
complex on � has trivial cohomology. Therefore there are no nontrivial harmonic
forms.

Let tr be the trace operator. We use H̊�k(�), 0 ≤ k ≤ n− 1 to denote the space of
differential k-forms with vanishing traces on ∂�. For n-forms in n space dimensions,
we formally define

H̊�n(�) :=
{
q ∈ H�n(�) :

∫

�

q = 0

}
.
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Generalized Gaffney inequality and discrete compactness… 785

We also define

H̊∗�k(�) :=
{
u ∈ H∗�k(�) : tr�u = 0

}
, 1 ≤ k ≤ n,

H̊∗�0(�) :=
{
u ∈ H∗�0(�) :

∫

�

�u = 0

}
,

and define the spaces with vanishing exterior derivatives and coderivatives:

H�k(0,�) :=
{
u ∈ H�k(�) : du = 0

}
, and

H∗�k(0,�) :=
{
u ∈ H∗�k(�) : δu = 0

}
.

The de Rham complex

0 � R
⊂� H�0(�)

d� H�1(�)
d� · · · d� H�n(�) � 0, (4)

is exact on � with trivial cohomology, i.e. for any u ∈ H�k(�) satisfying du = 0,
there exists w ∈ H�k−1(�) such that u = dw. Similarly, the spaces with vanishing
traces

0 � H̊�0(�)
d� H̊�1(�)

d� · · · d� H̊�n(�) � 0, (5)

and the L2 dual complex of (4)

0 � H̊∗�0(�) �δ H̊∗�1(�) �δ · · · � δ
H̊∗�n(�) � 0, (6)

are also exact sequences.
Let H = {hn : n = 1, 2, · · · } be a sequence of decreasing positive real numbers

converging to zero and {Th}h∈H be a family of shape-regular meshes on �, where h
is the maximal diameter of the simplicies contained in Th .

We assume that the sequence

0 � R
⊂� Hh�

0 d� Hh�
1 d� · · · d� Hh�

n � 0, (7)

and the sequence with vanishing traces:

0 � H̊h�
0 d� H̊h�

1 d� · · · d� Hh�
n/R � 0, (8)

are subcomplexes of (4), i.e., H̊h�
k ⊂ Hh�

k ⊂ H�k(�), ∀ 0 ≤ k ≤ n, and each
space has finite dimensions. Here Hh�

n/R, also denoted as H̊h�
n , is the space of the

discrete n-forms with vanishing integral. Examples of (7) include the finite element
spaces in the Finite Element Periodic Table [4] with suitable order, e.g. the Lagrange
H1 elements, the 1st or the 2nd Nédélec H(curl) elements and the Raviart-Thomas or
the Brezzi-Douglas-Marini H(div) elements. For these finite elements, the existence
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786 J. He et al.

of Fortin operators implies that both (7) and (8) are exact on domains with trivial
cohomology.

We use 	k : H̊�k(�) �→ H̊h�
k to denote the interpolation operator for k-forms.

The construction of the interpolation operators for the finite element de Rham com-
plexes can be found in e.g., [2,10,14,24]. These interpolations commute with the
exterior derivatives, i.e. dk	k = 	k+1dk , where dk is the exterior derivative for k-
forms.Moreover, these operators are boundedwith respect to both L2 and H�k norms.
Below we assume that the interpolations 	k , k = 0, 1, · · · , n, are L p-L p bounded
[10,13], i.e., there exists a generic positive constant C such that

‖	ku‖0,p ≤ C‖u‖0,p, ∀u ∈ L p�k(�) ∩ H̊�k(�).

The commutativity and the boundedness will be crucial in the sequel. The following
interpolation error estimate will be used repeatedly:

‖u − 	ku‖ ≤ Chs‖u‖s, ∀u ∈ Hs�k(�),

where C is a universal positive constant not depending on a particular choice of u.
For (7), we define d∗

h : Hh�
k �→ Hh�

k−1 as the L2 dual of the exterior derivatives
in (7), i.e., for any nonnegative integer k,

(d∗
huh, vh) = (uh, dvh), ∀vh ∈ Hh�

k−1. (9)

Correspondingly, for (8) we define d∗
h : H̊h�

k �→ H̊h�
k−1 by

(d∗
huh, vh) = (uh, dvh), ∀vh ∈ H̊h�

k−1. (10)

Since (·, ·) is a complete inner product on finite dimensional spaces, the identity (9)
or (10) uniquely defines d∗

h . By definition we have [for either (7) or (8)]

(
d∗
hd

∗
huh, vh

) = (
d∗
huh, dvh

) = (uh, ddvh) = 0, ∀uh, vh .

Therefore we have (
d∗
h

)2 = 0,

which mimics the identity δ2 = 0 at the continuous level. In this way we obtain the
complexes

0 � R � Hh�
0 �d

∗
h Hh�

1 �d
∗
h · · · �d∗

h Hh�
n � 0,

and

0 � H̊h�
0 �d

∗
h H̊h�

1 �d
∗
h · · · �d∗

h Hh�
n/R � 0.

We define the range
B̊k

h := dH̊h�
k−1(�).
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Generalized Gaffney inequality and discrete compactness… 787

Since we assume that � has trivial cohomology, the range is identical to the kernel
space

B̊k
h = Z̊k

h := {uh ∈ H̊h�
k : duh = 0}.

For the discrete L2 adjoint operators, we define B̊∗
k,h := d∗

h H̊h�
k+1. For uh ∈ B̊∗

k,h

and wh ∈ Z̊k
h , we have

(uh, wh) = (d∗
hφh, wh) = (φh, dwh) = 0.

Therefore B̊∗
k,h ⊥ Z̊k

h . The orthogonality can be understood either with respect to the
inner product (·, ·) or with respect to (·, ·)H�.

The discrete Hodge decomposition with vanishing boundary conditions holds:

H̊h�
k = dH̊h�

k−1 ⊕ d∗
h H̊

∗
h �k+1. (11)

Analogously, we can decompose Hh�
k :

Hh�
k = Bk

h ⊕ B∗
k,h . (12)

3 Main results

The generalized Gaffney inequality and the discrete compactness below are based on
a key result:

Lemma 1 (Generalized Hodge mapping) Let � be an s-regular domain. There exists
a map Hk : H̊h�

k(�) �→ Zk such that

‖uh − Hkuh‖ � hs
(‖duh‖ + ‖d∗

huh‖
)
, ∀uh ∈ H̊h�

k .

We postpone the proof of this technical result to Sect. 4.
Based on Lemma 1, we establish the generalized Gaffney inequality.

Theorem 1 (Generalized Gaffney inequality) Assume that � is an s-regular domain.
We have

‖uh‖0,p � ‖duh‖ + ‖d∗
huh‖, ∀uh ∈ H̊h�

k(�),

where p = 2n/(n − 2s) and n is the space dimension.

For n = 3, s = 1/2, we have p = 3 and for n = 3, s = 1, we have p = 6.

Proof From the triangle inequality, we have

‖uh‖0,p ≤ ‖uh − 	kHkuh‖0,p + ‖	kHkuh‖0,p.
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788 J. He et al.

From the inverse estimates, the interpolation error estimates and the approximation of
the Hodge mapping (Lemma 1),

‖uh − 	kHkuh‖0,p � h
−

(
n
2− n

p

)
‖uh − 	kHkuh‖

� h
−

(
n
2− n

p

)
(‖uh − Hkuh‖ + ‖Hku − 	kHkuh‖)

� h
−

(
n
2− n

p

)
hs

(‖duh‖ + ‖d∗
huh‖

)

� ‖duh‖ + ‖d∗
huh‖.

From the L p boundedness of the interpolation operators and the regularity of Zk , we
have

‖	kHkuh‖0,p � ‖Hkuh‖0,p � ‖dHkuh‖ + ‖δHkuh‖ ≤ ‖duh‖ + ‖d∗
huh‖.

This completes the proof. ��
Theorem 2 (Discrete compactness) Given a sequence uh ∈ H̊h�

k(�), h ∈ H satis-
fying ‖duh‖+‖d∗

huh‖ ≤ C, where C is a positive constant, there exists a subsequence
uhn which converges strongly in L2�k(�).

Proof From the regularity of Zk (3) and the definition of Hk , we have

‖Hkuh‖Z � ‖dHkuh‖ + ‖δHkuh‖ ≤ ‖duh‖ + ‖d∗
huh‖ ≤ C .

Since Zk is compactly imbedded in L2�k(�), there exists a sequence converging
strongly in L2�k(�):

Hkuhn → u0, as n → ∞. (13)

Next we prove uhn → u0 strongly in L2�k(�). In fact, from the triangle inequality:

‖uhn − u0‖ ≤ ‖uhn − Hkuhn‖ + ‖Hkuhn − u0‖. (14)

Due to the approximation property of the Hodge mapping (Lemma 5),

‖uhn − Hkuhn‖ � hs
(‖duhn‖ + ‖d∗

huhn‖
)

� hs → 0,

as n → ∞ (and hence hn → 0).
Due to (13),

‖Hkuhn − u0‖ → 0.

This completes the proof. ��
Theorems 1 and 2 are based on the complexes (5) and (8) with vanishing boundary

conditions. The same conclusions in Theorems 1 and 2 hold for Hh�
k and the proof

can be translated verbatim in this case by using the complexes (4) and (7).
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4 Generalized Hodgemapping

This section is devoted to the proof of Lemma 1. The proof consists of two steps: first,
we generalize the classical Hodge mapping for the edge elements to discrete differ-
ential forms with weak constraints (uh ∈ H̊h�

k(�) satisfying d∗
huh = 0); second,

we define a generalized Hodge mapping for the entire space H̊h�
k(�) and prove its

approximation properties.

Hodge mapping for weakly constrained spaces Let Zk
0 := H̊�k(�) ∩ H∗�k(0,�)

be the subspace of Zk with vanishing codifferential.
For discrete differential forms, we define a Hodge mapping Hk

0 : B̊∗
k,h �→ Zk

0:

dHk
0φh = dφh, ∀φh ∈ B̊∗

k,h .

The Poincaré inequality in Zk
0 ((3) with s = 0) implies that Hk

0 is well-defined. Here
Hk

0 is a generalization of the Hodge mapping for the weakly divergence-free edge
elements Xc

h [15].
We then show the approximation property of Hk

0. The proof is a generalization of
the properties of the Hodge mapping for Xc

h (c.f. [15, Lemma 4.5]), and resembles [3,
Lemma 3.12] with η = O(hs).

Theorem 3 Assume that � is an s-regular domain where s ∈ [1/2, 1]. We have

‖uh − Hk
0uh‖ � hs‖duh‖, ∀uh ∈ B̊∗

k,h . (15)

Proof We have

‖uh − Hk
0uh‖ ≤ ‖uh − 	kHk

0uh‖ + ‖	kHk
0uh − Hk

0uh‖.

For the first term,

‖uh − 	kHk
0uh‖2 =

(
uh − 	kHk

0uh, uh − 	kHk
0uh

)

= (uh − 	kHk
0uh, uh − Hk

0uh)

+ (uh − 	kHk
0uh,Hk

0uh − 	kHk
0uh).

We note that
d(uh − 	kHk

0uh) = 0,

due to the commuting diagram and the definition of Hk
0. Therefore there exists φh ∈

H̊h�
k−1(�), such that

uh − 	kHk
0uh = dφh .

This implies

(uh − 	kHk
0uh, uh − Hk

0uh) = (dφh, uh − Hk
0uh) = (φh, d

∗
huh − δHk

0uh) = 0.
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790 J. He et al.

Consequently,

‖uh − Hk
0uh‖ � ‖	kHk

0uh − Hk
0uh‖ � hs‖Hk

0uh‖s � hs‖dHk
0uh‖ = hs‖duh‖.

Here the second inequality follows from the estimates for the interpolation operators
[2]. ��
Hodge mapping for the entire space We first prove a discrete Poincaré inequality for
the entire space H̊h�

k(�). Special cases of this estimate for the edge and face elements
were discussed in [8,19]. On the continuous level the corresponding result was proved
in [3, p. 132].

Theorem 4 (Discrete Poincaré inequality) There exists a generic positive constant C
such that

‖uh‖2 ≤ C
(
‖duh‖2 + ‖d∗

huh‖2
)

, ∀uh ∈ H̊h�
k(�). (16)

Proof For any uh ∈ H̊h�
k(�), we have the Hodge decomposition uh = u1 + u2,

where u1 ∈
(
B̊k

h

)⊥
satisfies d∗

hu1 = 0 and u2 ∈ B̊k
h satisfies du2 = 0. For u1,

we have ‖u1‖ ≤ C‖du1‖ = C‖duh‖ (c.f. [2]). Then it remains to show ‖u2‖ ≤
C‖d∗

hu2‖ = C‖d∗
hu‖.

In fact, for u2 ∈ B̊k
h we can choose vh ∈ H̊h�

k−1(�) such that dvh = u2 and
d∗
hvh = 0. By the classical discrete Poincaré inequality in [2], we have ‖vh‖H� �

‖dvh‖ = ‖u2‖.
Then we have

‖d∗
hu2‖ = sup

wh∈H̊h�
k−1(�)

(d∗
hu2, wh)

‖wh‖ = sup
wh∈H̊h�

k−1(�)

(u2, dwh)

‖wh‖ ≥ (u2, dvh)

‖vh‖ � ‖u2‖.
(17)

��
Now we are in a position to define a generalized Hodge mapping. Define Hk :

H̊h�
k(�) �→ Zk by

{
dHkuh = duh,(
δHkuh, δz

) = (
d∗
huh, δz

)
, ∀z ∈ Zk .

(18)

Using the identity (dHkuh, δHkuh) = 0 and the Poincaré inequality in Zk , i.e.,

‖Hkuh‖ � ‖dHkuh‖ + ‖δHkuh‖,

we see that Hk is well-defined.
Taking z = Hkuh in (18), we obtain

‖δHkuh‖ ≤ ‖d∗
huh‖. (19)
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Generalized Gaffney inequality and discrete compactness… 791

By the Hodge decomposition at the continuous level [2], we have δ H̊∗�k(�) =
δZk . Therefore taking δz = w ∈ δ H̊∗�k−1(�) in (18), we have

(
δHkuh, w

)
= (

d∗
huh, w

)
, ∀w ∈ δ H̊∗�k(�). (20)

Finally we prove the approximation ofHk .

Theorem 5 Let � be an s-regular domain. We have

‖uh − Hkuh‖ � hs
(‖duh‖ + ‖d∗

huh‖
)
, ∀uh ∈ H̊h�

k .

Proof Thanks to the commutingdiagram (the interpolationoperator	• commuteswith
the exterior derivatives), we have d

(
uh − 	kHkuh

) = 0, so there exists φh ∈ B̊∗
k−1,h

such that uh − 	kHku = dφh = dHk−1
0 φh and

‖φh − Hk−1
0 φh‖ � hs‖dφh‖ = hs‖uh − 	kHkuh‖, (21)

From the definition of Hkuh , we have

(d∗
huh,Hk−1

0 φh) = (δHkuh,Hk−1
0 φh) = (Hkuh, dHk−1

0 φh),

and

(uh, dφh) = (d∗
huh, φh) = (d∗

huh, φh − Hk−1
0 φh) + (Hkuh, dHk−1

0 φh).

The last identity is due to (20). Therefore,

(uh − Hkuh, uh − 	kHkuh) = (d∗
huh, φh − Hk−1

0 φh).

Thus

‖uh − Hkuh‖2 = (uh − Hkuh, uh − 	kHkuh) + (uh − Hkuh,	kHkuh − Hkuh)

= (d∗
huh, φh − Hk−1

0 φh) + (uh − Hkuh,	kHkuh − Hkuh).

From Theorem 3,

‖Hkuh − 	kHkuh‖ � hs‖Hkuh‖s � hs
(
‖dHkuh‖ + ‖δHkuh‖

)

≤ hs
(‖duh‖ + ‖d∗

huh‖
)
.
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By (21) and

∣∣∣(d∗
huh, φh − Hk−1

0 φh)

∣∣∣ � hs‖uh − 	kHkuh‖‖d∗
huh‖

≤ hs
(
‖uh − Hkuh‖ + ‖Hkuh − 	kHkuh‖

)
‖d∗

huh‖
� hs‖uh − Hkuh‖‖d∗

huh‖ + h2s‖d∗
huh‖2 + h2s‖duh‖2

≤ 1

2
‖uh − Hkuh‖2 + 1

2
h2s‖d∗

huh‖2 + h2s‖d∗
huh‖2

+ h2s‖duh‖2,

we obtain

‖uh − Hkuh‖2 � ‖Hkuh − 	kHkuh‖2 + h2s
(
‖d∗

huh‖2 + ‖duh‖2
)

.

This completes the proof. ��

5 Vector proxies and applications

With the vector proxies [3], the generalized Gaffney inequalities for discrete differen-
tial forms yield estimates for the finite element methods. Some of these estimates are,
as far as we know, new.

The Hodge Laplacian problems in three space dimensions boil down to the Poisson
equation

−�u = f ,

and the vector Laplacian problem

curl curlw − grad divw = g,

respectively. Let� be an s-regular domain and p = 3/(3−s), and let gradh , curlh , divh
be the L2 adjoint operators of− div, curl,− grad on finite element spaces, respectively.
Below we use the generalized Gaffney inequality to give some estimates for various
finite element discretizations for these two problems.

Primal formulation for the scalar Poisson In this case we have

− divh grad uh = P0 f , (22)

where uh is discretized by the Lagrange elements and P0 is the L2 projection to the
finite element space. The energy estimate gives ‖ grad uh‖ ≤ ‖ f ‖. Then the standard
Poincaré inequality and the Sobolev imbedding imply ‖uh‖0,p � ‖ f ‖.

Considering grad uh as a discrete 1-form, we conclude from Theorem 1with k = 1,
the equation (22) and the identity curl grad uh = 0 that the inequality ‖ grad uh‖0,p �
‖ f ‖ holds.
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Mixed formulation for the scalar Possion The mixed finite element formulation for
the scalar Poisson equation boils down to solving

− div gradh uh = P3 f , (23)

where uh is discretized by piecewise polynomials identified as a discrete 3-form and
P3 is the L2 projection to this space. In the implementation, one more variable σ h =
gradh uh in the BDM/RT space is introduced.

Testing the equation by uh , we get ‖ grad uh‖ ≤ ‖ f ‖. Together with proper
boundary conditions, Theorem 1 with k = 3 lets us conclude with the estimate
‖uh‖0,p � ‖ f ‖. Considering σ h = gradh uh as a discrete 2-form, we further get
from (23) and the identity curlh gradh uh = 0 that ‖σ h‖0,p � ‖ f ‖.
1-form based mixed formulation for the vector Laplacian Treating wh as a discrete 1-
form,we obtain amixed finite element discretization for the vector Laplacian problem:

curlh curlwh − grad divh wh = P1g, (24)

where wh is discretized by the 1st/2nd Nédélec element and P1 is the corresponding
L2 projection.

Testing (24) by wh , one obtains the estimate ‖ curlwh‖+‖ divh wh‖ ≤ ‖g‖. Then
Theorem 1 with k = 1 implies ‖wh‖0,p � ‖g‖.
2-form based mixed formulation for the vector LaplacianDiscretizingwh as a discrete
2-form in the BDM/RT space, we get another mixed finite element method for the
vector Laplacian:

curl curlh wh − gradh divwh = P2g,

where P2 is the L2 projection to the finite element space. In this case, we have
‖ curlh wh‖ + ‖ divwh‖ ≤ ‖g‖ and Theorem 1 with k = 2 lets us conclude that
‖wh‖0,p � ‖g‖.

6 Conclusion

We generalize the Hodge mapping for the weakly divergence-free edge elements [15]
and the strongly divergence-free face elements [19] to general discrete differential
forms. Based on the new Hodge mapping, we further prove the generalized Gaffney
inequality and the discrete compactness for discrete differential forms.

In the study of the Hodge mappings, the commuting interpolations act as a bridge
between the continuous and the discrete levels. Therefore we hope that the techniques
presented in this paper could be further explored for high order methods (p- version)
or problems involving general Hilbert complexes [3] provided that we have regularity
results at the continuous level and suitable bounded commuting interpolations.

Discrete compactness is a key tool for the analysis of some numerical eigenvalue
problems [5,15,23]. The two parts of a Hodge decomposition correspond to differ-
ent eigenvalue problems. In the case of the Maxwell system, at least two different
eigenvalue problems arise:
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– Type 1: find uh ∈ Hh
0 (curl,�) and λh ∈ R, such that

curlh curl uh = λhuh, (25)

divh uh = 0; (26)

– Type 2: find ũh ∈ Hh
0 (div,�) and λ̃h ∈ R, such that

curl curlh ũh = λ̃h ũh, (27)

div uh = 0. (28)

The Type 1 problem (25)–(26), which corresponds to the “primal form” of the
Maxwell eigenvalue problem, is associated with the discrete compactness of the
discrete divergence-free Nédélec space Xc

h , while the Type 2 problem (27)–(28),
corresponding to the “mixed form”, is associated with the discrete compactness of
the strongly divergence-free finite element space Hh

0 (div) which was established in
this paper. However, by taking curl on both sides of (25) or taking curlh on (27),
one observes that if (uh, λh) is a solution of (25), then (curl uh, λh) is a solution for
(27)–(28); conversely, if (ũh, λh) solves (27), then (curlh ũh, λh) solves (25)–(26).
We refer to [6] and [5, p. 109] for this observation, which means that the Type 1 and
Type 2 eigenvalue problems are equivalent. So the generalized discrete compactness
established in this paper does not seem to yield new results for the classical Hodge
Laplacian eigenvalue problems directly. However, this new result may have potential
applications for eigenvalue problemswith lower order terms or nonlinear terms, where
the two types of formulations may not be equivalent.

Several notions of discrete compactness exist (c.f. [12]). The results in this paper
may be further explored for these variants and generalizations of the div–curl lemma
[9].
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