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Abstract
In this paper, we propose and analyze a two-point gradient method for solving inverse
problems in Banach spaces which is based on the Landweber iteration and an extrap-
olation strategy. The method allows to use non-smooth penalty terms, including the
L1-like and the total variation-like penalty functionals, which are significant in recon-
structing special features of solutions such as sparsity and piecewise constancy in
practical applications. The design of the method involves the choices of the step sizes
and the combination parameters which are carefully discussed. Numerical simulations
are presented to illustrate the effectiveness of the proposed method.

Mathematics Subject Classification 65J15 · 65J20 · 47H17

1 Introduction

In this paper we are interested in solving inverse problems of the form

F(x) = y, (1.1)

where F : D(F) ⊂ X → Y is an operator between two Banach spaces X and Y .
Throughout this paper we will assume (1.1) has a solution, which is not necessarily
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unique. Such inverse problems are ill-posed in the sense of unstable dependence of
solutions on small perturbations of the data. Instead of exact data y, in practice we are
given only noisy data yδ satisfying

‖y − yδ‖ � δ. (1.2)

Consequently, it is necessary to apply regularization methods to solve (1.1) approxi-
mately [6].

Landweber iteration is one of themost prominent regularizationmethods for solving
inverse problems formulated in Hilbert spaces. A complete analysis on this method
for linear problems as well as nonlinear problems can be found in [6,10]. This method
has received tremendous attention due to its simple implementation and robustness
with respect to noise.

The classical Landweber iteration in Hilbert spaces, however, has the tendency
to over-smooth solutions, which makes it difficult to capture special features of the
sought solution such as sparsity and discontinuity. To overcome this drawback, various
reformulations of Landweber iteration either in Banach spaces or in a manner of
incorporating general non-smooth convex penalty functionals have been proposed,
see [4,16,18,23,27,29]. Assuming the Fréchet differentiability of the forward operator
F , by applying a gradient method for solving

min
1

s
‖F(x) − yδ‖s, (1.3)

the authors in [23,27] proposed the Landweber iteration of the form

ξδ
n+1 = ξδ

n − μδ
n F

′(xδ
n)

∗ JYs (F(xδ
n) − yδ),

xδ
n+1 = JX ∗

q (ξ δ
n+1),

for solving linear as well as nonlinear inverse problems in Banach spaces, assuming
suitable smoothness and convexity on X and Y , where F ′(x) and F ′(x)∗ denote the
Fréchet derivative of F at x and its adjoint,μδ

n denotes the step size, and JYs : Y → Y∗
and JX ∗

q : X ∗ → X with 1 < s, q < ∞ denote the duality mappings with gauge
functions t → t s−1 and t → tq−1 respectively. This formulation of Landweber
iteration, however, exclude the use of the L1 and the total variation like penalty func-
tionals. A Landweber-type iteration with general uniform convex penalty functionals
was introduced in [4] for solving linear inverse problems and was extended in [18]
for solving nonlinear inverse problems. Let Θ : X → (−∞,∞] be a proper lower
semi-continuous uniformly convex functional, the method in [4,18] can be formulated
as

ξδ
n+1 = ξδ

n − μδ
n F

′(xδ
n)

∗ JYs (F(xδ
n) − yδ),

xδ
n+1 = arg min

x∈X
{
Θ(x) − 〈ξδ

n+1, x〉
}
.

(1.4)
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The advantage of this method is the freedom on the choice of Θ so that it can be
utilized in detecting different features of the sought solution.

It is well known that Landweber iteration is a slowly convergent method. As alter-
natives to Landweber iteration, one may consider the second order iterative methods,
such as the Levenberg–Maquardt method [9,19], the iteratively regularized Gauss-
Newton method [20,22], or the nonstationary iterated Tikhonov regularization [21].
The advantage of these methods is that they require less number of iterations to satisfy
the respective stopping rule than the Landweber iteration, however they always require
to spend more computational time in dealing with each iteration step. Therefore, it
becomes more desirable to accelerate Landweber iteration by preserving its simple
implementation feature.

For linear inverse problems in Hilbert spaces, a family of accelerated Landweber
iterations were proposed in [8] using the orthogonal polynomials and the spectral
theory of self-adjoint operators. The acceleration strategy using orthogonal polyno-
mials is no longer available for Landweber iteration in Banach spaces with general
convex penalty functionals. In [13] an acceleration of Landweber iteration in Banach
spaces was considered based on choosing optimal step size in each iteration step. In
[12,28] the sequential subspace optimization strategy was employed to accelerate the
Landweber iteration.

The Nesterov’s strategy was proposed in [26] to accelerate gradient method. It has
played an important role on the development of fast first order methods for solving
well-posed convex optimization problems [1,2]. Recently, an accelerated version of
Landweber iteration based onNesterov’s strategywas proposed in [17] which includes
the following method

zδn = xδ
n + n

n + α
(xδ

n − xδ
n−1),

xδ
n+1 = zδn + μδ

n F
′(zδn)∗(yδ − F(zδn))

(1.5)

with α � 3 as a special case for solving ill-posed inverse problems (1.1) in Hilbert
spaces, where xδ−1 = xδ

0 = x0 is an initial guess. Although no convergence analysis
for (1.5) could be given, the numerical results presented in [17,32] clearly demonstrate
its usefulness and acceleration effect. By replacing n/(n + α) in (1.5) by a general
connection parameters λδ

n , a so called two-point gradient method was proposed in [14]
and a convergence result was proved under a suitable choice of {λδ

n}. Furthermore,
based on the assumption of local convexity of the residual functional around the sought
solution, a weak convergence result on (1.5) was proved in [15] recently.

In this paper, by incorporating an extrapolation step into the iteration scheme (1.4),
we propose a two-point gradientmethod for solving inverse problems inBanach spaces
with a general uniformly convex penalty term Θ , which takes the form

ζ δ
n = ξδ

n + λδ
n(ξ

δ
n − ξδ

n−1),

zδn = argmin
z∈X

{
Θ(z) − 〈ζ δ

n , z〉} ,

ξ δ
n+1 = ζ δ

n − μδ
n F

′(zδn)∗ JYs (F(zδn) − yδ)
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with suitable step sizes μδ
n and combination parameters λδ

n ; after terminated by a
discrepancy principle, we then use

xδ
n := arg min

x∈X
{
Θ(x) − 〈ξδ

n , x〉}

as an approximate solution. We note that when λδ
n = 0, our method becomes the

Landweber iteration of the form (1.4) and when λδ
n = n/(n + α) it becomes a refined

version of the Nesterov acceleration of Landweber iteration proposed in [17]. We
note also that, when both X and Y are Hilbert spaces and Θ(x) = ‖x‖2/2, our
method becomes the two-point gradient methods introduced in [14] for solving inverse
problems in Hilbert spaces. Unlike the method in [14], our method not only works for
inverse problems in Banach spaces, but also allows the use of general convex penalty
functions including the L1 and the total variation like functions. Due to the possible
non-smoothness of Θ and the non-Hilbertian structures of X and Y , we need to use
tools from convex analysis and subdifferential calculus to carry out the convergence
analysis. Under certain conditions on the combination parameters {λδ

n}, we obtain a
convergence result on our method. In order to find nontrivial λδ

n , we adapt the discrete
backtracking search (DBTS) algorithm in [14] to our situation and provide a complete
convergence analysis of the corresponding method. Our analysis in fact improves the
convergence result in [14] by removing the technical conditions on {λδ

n} chosen by the
DBTS algorithm.

The paper is organized as follows, In Sect. 2, we give some preliminaries from
convex analysis. In Sect. 3, we formulate our two-point gradient methodwith a general
uniformly convex penalty term and present the detailed convergence analysis. We also
discuss the choices of the combination parameters by a discrete backtracking search
algorithm. Finally in Sect. 4, numerical simulations are given to test the performance
of the method.

2 Preliminaries

In this section, we introduce some necessary concepts and properties related to Banach
space and convex analysis, we refer to [31] for more details.

Let X be a Banach space whose norm is denoted by ‖ · ‖, we use X ∗ to denote its
dual space. Given x ∈ X and ξ ∈ X ∗, we write 〈ξ, x〉 = ξ(x) for the duality pairing.
For a bounded linear operator A : X → Y between two Banach spaces X and Y , we
useN (A) and A∗ : Y∗ → X ∗ to denote its null space and its adjoint respectively. We
also use

N (A)⊥ := {ξ ∈ X ∗ : 〈ξ, x〉 = 0 for all x ∈ N (A)}
to denote the annihilator of N (A).

Given a convex function Θ : X → (−∞,∞], we use ∂Θ(x) to denote the subd-
ifferential of Θ at x ∈ X , i.e.

∂Θ(x) := {ξ ∈ X ∗ : Θ(x̄) − Θ(x) − 〈ξ, x̄ − x〉 � 0 for all x̄ ∈ X }.
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Regularization of inverse problems by two-point gradient… 717

Let D(Θ) := {x ∈ X : Θ(x) < ∞} be its effective domain and let

D(∂Θ) := {x ∈ D(Θ) : ∂Θ(x) �= ∅}.

The Bregman distance induced by Θ at x in the direction ξ ∈ ∂Θ(x) is defined by

DξΘ(x̄, x) := Θ(x̄) − Θ(x) − 〈ξ, x̄ − x〉, ∀x̄ ∈ X

which is always nonnegative and satisfies the identity

Dξ2Θ(x, x2) − Dξ1Θ(x, x1) = Dξ2Θ(x1, x2) + 〈ξ2 − ξ1, x1 − x〉 (2.1)

for all x ∈ D(Θ), x1, x2 ∈ D(∂Θ), and ξ1 ∈ ∂Θ(x1), ξ2 ∈ ∂Θ(x2).
A proper convex function Θ : X → (−∞,∞] is called uniformly convex if there

exists a strictly increasing function h : [0,∞) → [0,∞) with h(0) = 0 such that

Θ(λx̄ + (1 − λ)x) + λ(1 − λ)h(‖x − x̄‖) � λΘ(x̄) + (1 − λ)Θ(x) (2.2)

for all x̄, x ∈ X and λ ∈ [0, 1]. If h(t) = c0t p for some c0 > 0 and p > 1 in (2.2),
then Θ is called p-convex. It can be shown that Θ is p-convex if and only if

DξΘ(x̄, x) � c0‖x − x̄‖p, ∀x̄ ∈ X , x ∈ D(∂Θ), ξ ∈ ∂Θ(x). (2.3)

For a proper lower semi-continuous convex function Θ : X → (−∞,∞], its
Legendre–Fenchel conjugate is defined by

Θ∗(ξ) := sup
x∈X

{〈ξ, x〉 − Θ(x)} , ξ ∈ X ∗

which is also proper, lower semi-continuous, and convex. If X is reflexive, then

ξ ∈ ∂Θ(x) ⇐⇒ x ∈ ∂Θ∗(ξ) ⇐⇒ Θ(x) + Θ∗(ξ) = 〈ξ, x〉. (2.4)

Moreover, if Θ is p-convex with p > 1 then it follows from [31, Corollary 3.5.11]
that D(Θ∗) = X ∗, Θ∗ is Fréchet differentiable and its gradient ∇Θ∗ : X ∗ → X
satisfies

‖∇Θ∗(ξ1) − ∇Θ∗(ξ2)‖ �
(‖ξ1 − ξ2‖

2c0

) 1
p−1

, ∀ξ1, ξ2 ∈ X ∗. (2.5)

Consequently, it follows from (2.4) that

x = ∇Θ∗(ξ) ⇐⇒ ξ ∈ ∂Θ(x) ⇐⇒ x = argmin
z∈X

{Θ(z) − 〈ξ, z〉} . (2.6)
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Lemma 2.1 If Θ is p-convex with p > 1, then for any pairs (x, ξ) and (x̄, ξ̄ ) with
x, x̄ ∈ D(∂Θ), ξ ∈ ∂Θ(x), ξ̄ ∈ ∂Θ(x̄), we have

DξΘ(x̄, x) � 1

p∗(2c0)p∗−1 ‖ξ − ξ̄‖p∗
, (2.7)

where p∗ := p/(p − 1) is the number conjugate to p.

Proof Applying (2.4), x̄ = ∇Θ∗(ξ̄ ) and (2.5), it follows that

DξΘ(x̄, x) = Θ∗(ξ) − Θ∗(ξ̄ ) − 〈ξ − ξ̄ ,∇Θ∗(ξ̄ )〉

=
∫ 1

0
〈ξ − ξ̄ ,∇Θ∗(ξ̄ + t(ξ − ξ̄ )) − ∇Θ∗(ξ̄ )〉dt

� ‖ξ − ξ̄‖
∫ 1

0
‖∇Θ∗(ξ̄ + t(ξ − ξ̄ )) − ∇Θ∗(ξ̄ )‖dt

� 1

p∗(2c0)p∗−1 ‖ξ − ξ̄‖p∗

which shows the result. ��
On a Banach space X , we consider for 1 < s < ∞ the convex function x →

‖x‖s/s. Its subgradient at x is given by

JXs (x) :=
{
ξ ∈ X ∗ : ‖ξ‖ = ‖x‖s−1 and 〈ξ, x〉 = ‖x‖s

}
(2.8)

which gives the duality mapping JXs : X → 2X ∗
ofX with gauge function t → t s−1.

If X is uniformly smooth in the sense that its modulus of smoothness

ρX (t) := sup{‖x̄ + x‖ + ‖x̄ − x‖ − 2 : ‖x̄‖ = 1, ‖x‖ � t}

satisfies limt↘0
ρX (t)

t = 0, then the duality mapping JXs , for each 1 < s < ∞, is
single valued and uniformly continuous on bounded sets. There are many examples
of uniformly smooth Banach spaces, e.g., sequence space 
s , Lebesgue space Ls ,
Sobolev space Wk,s and Besov space Bq,s with 1 < s < ∞.

3 The two-point gradient method

We consider

F(x) = y, (3.1)

where F : D(F) ⊂ X → Y is an operator between two Banach spaces X and Y .
Throughout this paper, we will always assume that X is reflexive, Y is uniformly
smooth, and (3.1) has a solutions. In order to capture the special feature of the sought
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Regularization of inverse problems by two-point gradient… 719

solution, we will use a general convex function Θ : X → (−∞,∞] as a penalty
term. We will need a few assumptions concerning Θ and F .

Assumption 1 Θ : X → (−∞,∞] is proper, weak lower semi-continuous, and p-
convex with p > 1 such that the condition (2.3) is satisfied for some c0 > 0.

Assumption 2 (a) There exists ρ > 0, x0 ∈ X and ξ0 ∈ ∂Θ(x0) such that B3ρ(x0) ⊂
D(F) and (3.1) has a solution x∗ ∈ D(Θ) with

Dξ0Θ(x∗, x0) � c0ρ
p,

where Bρ(x0) denotes the closed ball around x0 with radius ρ.
(b) The operator F is weakly closed on D(F).
(c) There exists a family of bounded linear operators {L(x) : X → Y}x∈B3ρ(x0)∩D(Θ)

such that x → L(x) is continuous on B3ρ(x0) ∩ D(Θ) and there is 0 � η < 1
such that

‖F(x) − F(x̄) − L(x̄)(x − x̄)‖ � η‖F(x) − F(x̄)‖

for all x, x̄ ∈ B3ρ(x0) ∩ D(Θ). Moreover, there is a constant C0 > 0 such that

‖L(x)‖X→Y � C0, ∀x ∈ B3ρ(x0).

All the conditions in Assumption 3.2 are standard. The condition (c) is called
the tangential condition and is widely used in the analysis of iterative regularization
methods for nonlinear ill-posed inverse problems [10]. The weak closedness of F
in condition (b) means that for any sequence {xn} in D(F) satisfying xn⇀x and
F(xn) → v, then x ∈ D(F) and F(x) = v, where we use “⇀” to denote the weak
convergence.

Remark 3.1 The condition B3ρ(x0) ⊂ D(F) in Assumption 2(a) can be replaced by
D(Θ) ⊂ D(F) which is automatically satisfied by replacing Θ by Θ + ιD(F) in
caseD(F) is closed and convex, where ιD(F) denotes the indicator function ofD(F),
i.e. ιD(F)(x) = 0 for x ∈ D(F) and ιD(F)(x) = +∞ otherwise. The corresponding
convergence analysis can be performed by the same argument in the paper without
any change.

Using the p-convex function Θ specified in Assumption 1, we may pick among
solutions of (3.1) the one with the desired feature. We define x† to be a solution of
(3.1) with the property

Dξ0Θ(x†, x0) = min
x∈D(Θ)∩D(F)

{
Dξ0Θ(x, x0) : F(x) = y

}
. (3.2)

When X is reflexive, by using the weak closedness of F , the weak lower semi-
continuity of Θ and the p-convexity of Θ , it is standard to show that x† exists.
According to Assumption 2(a), we always have

Dξ0Θ(x†, x0) � c0ρ
p
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720 M. Zhong et al.

which together with Assumption 1 implies that ‖x† − x0‖ � ρ. The following lemma
shows that x† is uniquely defined.

Lemma 3.1 Under Assumptions 1 and 2, the solution x† of (3.1) satisfying (3.2) is
uniquely defined.

Proof This is essentially proved in [18, Lemma 3.2]. ��
In order to construct an approximate solution to (3.1), wewill formulate a two-point

gradient method with penalty term induced by the p-convex function Θ . Let τ > 1
be a given number. By picking xδ−1 = xδ

0 := x0 ∈ X and ξδ−1 = ξδ
0 := ξ0 ∈ ∂Θ(x0)

as initial guess, for n � 0 we define

ζ δ
n = ξδ

n + λδ
n(ξ

δ
n − ξδ

n−1),

zδn = ∇Θ∗(ζ δ
n ),

ξ δ
n+1 = ζ δ

n − μδ
nL(zδn)

∗ JYs (r δ
n),

xδ
n+1 = ∇Θ∗(ξ δ

n+1),

(3.3)

where r δ
n = F(zδn) − yδ , λδ

n � 0 is the combination parameter, μδ
n is the step sizes

defined by

μδ
n =

⎧
⎪⎨

⎪⎩

min

{
μ̄0‖r δ

n‖p(s−1)

‖L(zδn)
∗ JYs (r δ

n)‖p
, μ̄1

}

‖r δ
n‖p−s if ‖r δ

n‖ > τδ

0 if ‖r δ
n‖ � τδ

(3.4)

for some positive constants μ̄0 and μ̄1, and the mapping JYs : Y → Y∗ with 1 <

s < ∞ denotes the duality mapping of Y with gauge function t → t s−1, which
is single-valued and continuous because Y is assumed to be uniformly smooth. We
remark that when λδ

n = 0 for all n, the method (3.3) reduces to the Landweber iteration
considered in [18] where a detailed convergence analysis has been carried out. When
λδ
n = n/(n+α)with α � 3 for all n, the method (3.3) becomes a refined version of the

Nesterov acceleration of Landweber iteration proposed in [17]; although there is no
convergence theory available, numerical simulations in [17] demonstrate its usefulness
and acceleration effect. In this paper we will consider (3.3) with λδ

n satisfying suitable
conditions to be specified later. Note that our method (3.3) requires the use of the
previous two iterations at every iteration step; on the other hand, our method allows
the use of a general p-convex penalty function Θ , which could be non-smooth, to
reconstruct solutions with special features such as sparsity and discontinuities.

3.1 Convergence

In order to use our two point gradient method (3.3) to produce a useful approximate
solution to (3.1), the iterationmust be terminated properly.Wewill use the discrepancy
principle with respect to zδn , i.e., for a given τ > 1, we will terminate the iteration
after nδ steps, where nδ := n(δ, yδ) is the integer such that

123
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‖F(zδnδ
) − yδ‖ � τδ < ‖F(zδn) − yδ‖, 0 � n < nδ, (3.5)

and use xδ
nδ

as an approximate solution. To carry out the convergence analysis of xδ
nδ

as δ → 0, we are going to show that, for any solution x̂ of (3.1) in B2ρ(x0) ∩ D(Θ),
the Bregman distance Dξδ

n
Θ(x̂, xδ

n), 0 � n � nδ , is monotonically decreasing with
respect to n. To this end, we introduce

Δn := Dξδ
n
Θ(x̂, xδ

n) − Dξδ
n−1

Θ(x̂, xδ
n−1). (3.6)

We will show that, under suitable choice of {λδ
n}, there holds Δn � 0 for 0 � n � nδ .

Lemma 3.2 Let X be reflexive, let Y be uniformly smooth, and let Assumptions 1 and
2 hold. Then, for any solution x̂ of (3.1) in B2ρ(x0) ∩ D(Θ), there holds

Dζ δ
n
Θ(x̂, zδn) − Dξδ

n
Θ(x̂, xδ

n)

� λδ
nΔn + 1

p∗(2c0)p∗−1

(
λδ
n + (

λδ
n

)p∗) ‖ξδ
n − ξδ

n−1‖p∗
. (3.7)

If zδn ∈ B3ρ(x0) then

Dξδ
n+1

Θ(x̂, xδ
n+1) − Dζ δ

n
Θ(x̂, zδn) � −

(

1 − η − 1

p∗

(
μ̄0

2c0

)p∗−1
)

μδ
n‖F(zδn) − yδ‖s

+ (1 + η)μδ
n‖F(zδn) − yδ‖s−1δ. (3.8)

Proof By using the identity (2.1), Lemma 2.1 and the definition of ζ δ
n , we can obtain

Dζ δ
n
Θ(x̂, zδn) − Dξδ

n
Θ(x̂, xδ

n) = Dζ δ
n
Θ(xδ

n, z
δ
n) + 〈ζ δ

n − ξδ
n , xδ

n − x̂〉
� 1

p∗(2c0)p∗−1 ‖ζ δ
n − ξδ

n‖p∗ + 〈ζ δ
n − ξδ

n , xδ
n − x̂〉

= 1

p∗(2c0)p∗−1 (λδ
n)

p∗‖ξδ
n−1 − ξδ

n‖p∗ + 〈ζ δ
n − ξδ

n , xδ
n − x̂〉.

By using again the definition of ζ δ
n , (2.1) and Lemma 2.1, and referring to the definition

of Δn and λδ
n � 0, we have

〈ζ δ
n − ξδ

n , xδ
n − x̂〉 = λδ

n〈ξδ
n − ξδ

n−1, x
δ
n − x̂〉

= λδ
n

(
Dξδ

n
Θ(x̂, xδ

n) − Dξδ
n−1

Θ(x̂, xδ
n−1) + Dξδ

n−1
Θ(xδ

n, x
δ
n−1)

)

� λδ
nΔn + 1

p∗(2c0)p∗−1 λδ
n‖ξδ

n − ξδ
n−1‖p∗

.

The combination of the above two estimates yields (3.7).
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To derive (3.8), we first use the identity (2.1) and Lemma 2.1 to obtain

Dξδ
n+1

Θ(x̂, xδ
n+1) − Dζ δ

n
Θ(x̂, zδn)

= Dξδ
n+1

Θ(zδn, x
δ
n+1) + 〈ξδ

n+1 − ζ δ
n , zδn − x̂〉

� 1

p∗(2c0)p∗−1 ‖ξδ
n+1 − ζ δ

n ‖p∗ + 〈ξδ
n+1 − ζ δ

n , zδn − x̂〉. (3.9)

Recall the definition of ξδ
n+1 in (3.3), we have

‖ξδ
n+1 − ζ δ

n ‖p∗ = (μδ
n)

p∗‖L(zδn)
∗ JYs (F(zδn) − yδ)‖p∗

.

According to the definition (3.4) of μδ
n , one can see that

μδ
n � μ̄0‖F(zδn) − yδ‖s(p−1)

‖L(zδn)
∗ JYs (F(zδn) − yδ)‖p

,

which implies that

(μδ
n)

p∗−1‖L(zδn)
∗ JYs (F(zδn) − yδ)‖p∗ � μ̄

p∗−1
0 ‖F(zδn) − yδ‖s(p−1)(p∗−1)

= μ̄
p∗−1
0 ‖F(zδn) − yδ‖s .

Therefore, the first term on the right hand side of (3.9) can be estimated as

1

p∗(2c0)p∗−1 ‖ξδ
n+1 − ζ δ

n ‖p∗ � 1

p∗

(
μ̄0

2c0

)p∗−1

μδ
n‖F(zδn) − yδ‖s . (3.10)

For the second term on the right hand side of (3.9), we may use the definition of ξδ
n+1,

the property of JYs , and the definition of μδ
n to derive that

〈ξδ
n+1 − ζ δ

n , zδn − x̂〉 = −μδ
n〈JYs (F(zδn) − yδ), L(zδn)(z

δ
n − x̂)〉

= −μδ
n〈JYs (F(zδn) − yδ), yδ − F(zδn) − L(zδn)(x̂ − zδn)〉

− μδ
n‖F(zδn) − yδ‖s

� μδ
n‖F(zδn) − yδ‖s−1 (

δ + ‖y − F(zδn) − L(zδn)(x̂ − zδn)‖
)

− μδ
n‖F(zδn) − yδ‖s .

Recall that zδn ∈ B3ρ(x0), we may use Assumption 2(c) to further obtain

〈ξδ
n+1 − ζ δ

n , zδn − x̂〉
� μδ

n‖F(zδn) − yδ‖s−1 (
δ + η‖F(zδn) − y‖) − μδ

n‖F(zδn) − yδ‖s
� (1 + η)μδ

n‖F(zδn) − yδ‖s−1δ − (1 − η)μδ
n‖F(zδn) − yδ‖s . (3.11)
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The combination of above two estimates (3.10) and (3.11) with (3.9) yields (3.8). ��
Lemma 3.3 Let X be reflexive, let Y be uniformly smooth, and let Assumptions 1 and
2 hold. Assume that τ > 1 and μ̄0 > 0 are chosen such that

c1 := 1 − η − 1 + η

τ
− 1

p∗

(
μ̄0

2c0

)p∗−1

> 0. (3.12)

If zδn ∈ B3ρ(x0), then, for any solution x̂ of (3.1) in B2ρ(x0) ∩ D(Θ), there holds

Δn+1 � λδ
nΔn + 1

p∗(2c0)p∗−1

(
λδ
n + (λδ

n)
p∗) ‖ξδ

n − ξδ
n−1‖p∗

− c1μ
δ
n‖F(zδn) − yδ‖s, (3.13)

where Δn is defined by (3.6).

Proof By using the definition of μδ
n it is easily seen that μδ

nδ � μδ
n‖F(zδn) − yδ‖/τ .

It then follows from (3.8) that

Dξδ
n+1

Θ(x̂, xδ
n+1) − Dζ δ

n
Θ(x̂, zδn) � −c1μ

δ
n‖F(zδn) − yδ‖s .

Combining this estimate with (3.7) yields (3.13). ��
We will use Lemmas 3.2 and 3.3 to show that zδn ∈ B3ρ(x0) and Δn � 0 for all

n � 0 and that the integer nδ determined by (3.5) is finite. To this end, we need to
place conditions on {λδ

n}. We assume that {λδ
n} is chosen such that

1

p∗(2c0)p∗−1

(
(λδ

n)
p∗ + λδ

n

)
‖ξδ

n − ξδ
n−1‖p∗ � c0ρ

p (3.14)

and

1

p∗(2c0)p∗−1

(
(λδ

n)
p∗ + λδ

n

)
‖ξδ

n − ξδ
n−1‖p∗ − c1

ν
μδ
n‖F(zδn) − yδ‖s � 0 (3.15)

for all n � 0, where ν > 1 is a constant independent of δ and n. We will discuss how
to choose {λδ

n} to satisfy (3.14) and (3.15) shortly.

Proposition 3.4 Let X be reflexive, let Y be uniformly smooth, and let Assumptions 1
and 2 hold. Let τ > 1 and μ̄0 > 0 be chosen such that (3.12) holds. If {λδ

n} is chosen
such that (3.14) and (3.15) hold, then

zδn ∈ B3ρ(x0) and xδ
n ∈ B2ρ(x0) for n � 0. (3.16)

Moreover, for any solution x̂ of (3.1) in B2ρ(x0) ∩ D(Θ) there hold

Dξδ
n
Θ(x̂, xδ

n) � Dξδ
n−1

Θ(x̂, xδ
n−1) (3.17)
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and

n∑

m=0

μδ
m‖F(zδm) − yδ‖s � ν

(ν − 1) c1
Dξ0Θ(x̂, x0) (3.18)

for all n � 0. Let nδ be chosen by the discrepancy principle (3.5), then nδ must be a
finite integer.

Proof We will show (3.16) and (3.17) by induction. Since xδ−1 = xδ
0 = x0, ξδ−1 =

ξδ
0 = ξ0, and zδ0 = ∇Θ∗(ζ δ

0 ) = ∇Θ∗(ξ0) = x0, they are trivial for n = 0. Now we
assume that (3.16) and (3.17) hold for all 0 � n � m for some integer m � 0, we will
show that they are also true for n = m+1. By the induction hypotheses zδm ∈ B3ρ(x0),
we may use Lemma 3.3 and (3.15) to derive that

Δm+1 � λδ
mΔm −

(
1 − 1

ν

)
c1μ

δ
m‖F(zδm) − yδ‖s .

Since λδ
m � 0 and ν > 1, this together with the induction hypothesis Δm � 0 implies

that

Δm+1 � −
(
1 − 1

ν

)
c1μ

δ
m‖F(zδm) − yδ‖s � 0 (3.19)

which shows (3.17) for n = m + 1. Consequently, by taking x̂ = x† and using
Assumption 2(a), we have

Dξδ
m+1

Θ(x†, xδ
m+1) � Dξδ

m
Θ(x†, xδ

m) � · · · � Dξ0Θ(x†, x0) � c0ρ
p.

By virtue of Assumption 1, we then have c0‖xδ
m+1 − x†‖p � c0ρ p which together

with x† ∈ Bρ(x0) implies that xδ
m+1 ∈ B2ρ(x0). Now wemay use (3.7) in Lemma 3.2,

(3.14) and Δm+1 � 0 to derive that

Dζ δ
m+1

Θ(x†, zδm+1) � Dξδ
m+1

Θ(x†, xδ
m+1) + λδ

m+1Δm+1 + c0ρ
p

� Dξδ
m+1

Θ(x†, xδ
m+1) + c0ρ

p

� Dξ0Θ(x†, x0) + c0ρ
p

� 2c0ρ
p.

This togetherwithAssumption 1 yields ‖x†−zδm+1‖ � 21/pρ � 2ρ, and consequently
zδm+1 ∈ B3ρ(x0). We therefore complete the proof of (3.16) and (3.17).

Since (3.16) and (3.17) are valid, the inequality (3.19) holds for all m � 0. Thus

(
1 − 1

ν

)
c1μ

δ
m‖F(zδm) − yδ‖s � Dξδ

m
Θ(x̂, xδ

m) − Dξδ
m+1

Θ(x̂, xδ
m+1) (3.20)
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for m � 0. Hence, for any integer n � 0 we have

(
1 − 1

ν

)
c1

n∑

m=0

μδ
m‖yδ − F(zδm)‖s � Dξ0Θ(x̂, x0) − Dξδ

n+1
Θ(x̂, xδ

n+1)

� Dξ0Θ(x̂, x0) (3.21)

which shows (3.18).
If nδ is not finite, then ‖F(zδm) − yδ‖ > τδ for all integers m and consequently, by

using ‖L(x)‖ � C0 from Assumption 2(c) and the property of JYs , we have

μδ
m = min

{
μ̄0‖F(zδm) − yδ‖p(s−1)

‖L(zδm)∗ JYs (F(zδm) − yδ)‖p
, μ̄1

}

‖F(zδm) − yδ‖p−s

� min

{
μ̄0

C p
0

, μ̄1

}

‖F(zδm) − yδ‖p−s . (3.22)

Therefore, it follows from (3.18) that

ν

(ν − 1)c1
Dξ0Θ(x̂, x0) � min

{
μ̄0

C p
0

, μ̄1

}
n∑

m=0

‖F(zδm) − yδ‖p

� min

{
μ̄0

C p
0

, μ̄1

}

(n + 1)τ pδ p

for all n � 0. By taking n → ∞ we derive a contradiction. Thus nδ must be finite. ��

Remark 3.2 In the proof of Proposition 3.4, the condition (3.15) plays a crucial role.
Note that, by the definition of our method (3.3), zδn depends on λδ

n . Therefore, it is not
immediately clear how to choose λδ

n to make (3.15) satisfied. One may ask if there
exists λδ

n such that (3.15) holds. Obviously λδ
n = 0 satisfies the inequality, which

correspond to the Landweber iteration. In order to achieve acceleration, it is necessary
to find nontrivial λδ

n . Note that when ‖F(zδn)− yδ‖ � τδ occurs, (3.15) forces λδ
n = 0

because μδ
n = 0. Therefore we only need to consider the case ‖F(zδn) − yδ‖ > τδ.

By using (3.22) we can derive a sufficient condition

1

p∗(2c0)p∗−1

(
λδ
n + (λδ

n)
p∗) ‖ξδ

n − ξδ
n−1‖p∗ � Mτ pδ p,

where

M := c1
ν
min

{
μ̄0

C p
0

, μ̄1

}

.
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Considering the particular case when p = 2, this thus leads to the choice

λδ
n := min

{

−1

2
+

√
1

4
+ 4c0Mτ 2δ2

‖ξδ
n − ξδ

n−1‖2
,

n

n + α

}

, (3.23)

where α � 3 is a given number. Note that in the above formula for λδ
n , inside the “min”

the second argument is taken to be n/(n+α)which is the combination parameter used
in Nesterov’s acceleration strategy; in case the first argument is large, this formulamay
lead to λδ

n = n/(n + α) and consequently the acceleration effect of Nesterov can be
utilized. For general p > 1, by placing the requirement 0 � λδ

n � n/(n + α) � 1,
one may choose λδ

n to satisfy

2λδ
n

p∗(2c0)p∗−1 ‖ξδ
n − ξδ

n−1‖p∗ � Mτ pδ p

which leads to the choice

λδ
n = min

{
γ0δ

p

‖ξδ
n − ξδ

n−1‖p∗ ,
n

n + α

}

, γ0 := 1

2
(2c0)

p∗−1 p∗Mτ p. (3.24)

We remark that the choices of λδ
n given in (3.23) and (3.24) may decrease to 0 as

δ → 0, consequently the acceleration effect could also decrease for δ → 0. Since for
small values of δ the acceleration is needed most, other strategies should be explored.
We will give a further consideration on the choice of λδ

n in the next subsection.

In order to establish the regularization property of the method (3.3), we need to
consider its noise-free counterpart. By dropping the superscript δ in all the quantities
involved in (3.3), it leads to the following formulation of the two-point gradientmethod
for the noise-free case:

ζn = ξn + λn(ξn − ξn−1),

zn = ∇Θ∗(ζn),
ξn+1 = ζn − μnL(zn)

∗ JYs (rn),

xn+1 = ∇Θ∗(ξn+1)

(3.25)

with ξ−1 = ξ0, where rn := F(zn) − y, λn � 0 is the combination parameter, and μn

is the step size given by

μn =

⎧
⎪⎨

⎪⎩

min

{
μ̄0‖rn‖p(s−1)

‖L(zn)∗ JYs (rn)‖p
, μ̄1

}

‖rn‖p−s if F(zn) �= y,

0 if F(zn) = y.

(3.26)

We will first establish a convergence result for (3.25). The following result plays a
crucial role in the argument.
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Proposition 3.5 Consider the Eq. (3.1) for which Assumption 2 holds. Let Θ : X →
(−∞,∞] be a proper, lower semi-continuous and uniformly convex function. Let
{xn} ⊂ B2ρ(x0) ∩ D(Θ) and {ξn} ⊂ X ∗ be such that

(i) ξn ∈ ∂Θ(xn) for all n;
(ii) for any solution x̂ of (3.1) in B2ρ(x0) ∩ D(Θ) the sequence {DξnΘ(x̂, xn)} is

monotonically decreasing;
(iii) limn→∞ ‖F(xn) − y‖ = 0.
(iv) there is a subsequence {nk} with nk → ∞ such that for any solution x̂ of (3.1)

in B2ρ(x0) ∩ D(Θ) there holds

lim
l→∞ sup

k�l
|〈ξnk − ξnl , xnk − x̂〉| = 0. (3.27)

Then there exists a solution x∗ of (3.1) in B2ρ(x0) ∩ D(Θ) such that

lim
n→∞ DξnΘ(x∗, xn) = 0.

If, in addition, ξn+1 − ξn ∈ R(L(x†)∗) for all n, then x∗ = x†.

Proof This result essentially follows from [18, Proposition 3.6] and its proof. ��
Theorem 3.6 Let X be reflexive, let Y be uniformly smooth, and let Assumptions 1
and 2 hold. Assume that μ̄0 > 0 is chosen such that

1 − η − 1

p∗

(
μ̄0

2c0

)p∗−1

> 0

and the combination parameters {λn} are chosen to satisfy the counterparts of (3.14)
and (3.15) with δ = 0 and

∞∑

n=0

λn‖ξn − ξn−1‖ < ∞. (3.28)

Then, there exists a solution x∗ of (3.1) in B2ρ(x0) ∩ D(Θ) such that

lim
n→∞ ‖xn − x∗‖ = 0 and lim

n→∞ DξnΘ(x∗, xn) = 0.

If, in addition, N (L(x†)) ⊂ N (L(x)) for all x ∈ B3ρ(x0), then x∗ = x†.

Proof Wewill use Proposition 3.5 to prove the result. By the definition xn = ∇Θ∗(ξn)
we have ξn ∈ ∂Θ(xn)which shows (i) in Proposition 3.5. By using the same argument
for proving Proposition 3.4 we can show that zn ∈ B3ρ(x0) and xn ∈ B2ρ(x0) for all
n with

Dξn+1Θ(x̂, xn+1) � DξnΘ(x̂, xn) (3.29)
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for any solution x̂ of (3.1) in B2ρ(x0) ∩ D(Θ) and

∞∑

n=0

μn‖F(zn) − y‖s < ∞. (3.30)

From (3.29) it follows that (ii) in Proposition 3.5 holds. Moreover, by using the defi-
nition of μn and the similar derivation for (3.22) we have

min

{
μ̄0

C p
0

, μ̄1

}

‖F(zn) − y‖p � μn‖F(zn) − y‖s � μ̄1‖F(zn) − y‖p.

Thus it follows from (3.30) that

∞∑

n=0

‖F(zn) − y‖p < ∞.

Consequently

lim
n→∞ ‖F(zn) − y‖ = 0. (3.31)

By using Assumption 2(c), (3.25), (2.5) and (3.15) with δ = 0, we have

‖F(xn) − F(zn)‖ � 1

1 − η
‖L(zn)(xn − zn)‖ � C0

1 − η
‖xn − zn‖

= C0

1 − η
‖∇Θ∗(ξn) − ∇Θ∗(ζn)‖

� C0

(1 − η)(2c0)p
∗−1 ‖ξn − ζn‖p∗−1

= C0

(1 − η)(2c0)p
∗−1 λ

p∗−1
n ‖ξn − ξn−1‖p∗−1

� C0

1 − η

(
c1 p∗

2c0ν

)1/p

(μn‖F(zn) − y‖s)1/p

� C0

1 − η

(
c1 p∗μ̄1

2c0ν

)1/p

‖F(zn) − y‖. (3.32)

The combination of (3.31) and (3.32) implies that ‖F(xn)− y‖ → 0 as n → ∞which
shows (iii) in Proposition 3.5.

In order to establish the convergence result, it remains only to show (iv) in Propo-
sition 3.5. To this end, we consider ‖F(zn) − y‖. It is known that ‖F(zn) − y‖ → 0
as n → ∞. If ‖F(zn) − y‖ = 0 for some n, then (3.15) with δ = 0 forces
λn(ξn − ξn−1) = 0. Thus ζn = ξn by (3.25). On the other hand, we also have μn = 0
and hence ξn+1 = ζn . Consequently ξn+1 = ζn = ξn and
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ζn+1 = ξn+1 + λn+1(ξn+1 − ξn) = ξn+1 = ζn .

Thus

zn+1 = ∇Θ∗(ζn+1) = ∇Θ∗(ζn) = zn

which implies that F(zn+1) = F(zn) = y. By repeating the argument one can see that
F(zm) = y for allm � n. Based on the above facts, we therefore can choose a strictly
increasing sequence {nk} of integers by letting n0 = 0 and for each k � 1, letting nk
be the first integer satisfying

nk � nk−1 + 1 and ‖F(znk ) − y‖ � ‖F(znk−1) − y‖.

For such chosen strictly increasing sequence {nk}, it is easily seen that

‖F(znk ) − y‖ � ‖F(zn) − y‖, 0 � n < nk . (3.33)

For any integers 0 � l < k < ∞, we consider

〈ξnk − ξnl , xnk − x̂〉 =
nk−1∑

n=nl

〈ξn+1 − ξn, xnk − x̂〉.

By using the definition of ξn+1 we have

ξn+1 − ξn = λn(ξn − ξn−1) − μn L(zn)
∗ JYs (F(zn) − y).

Therefore, by using the property of JYs , we have

∣∣〈ξnk − ξnl , xnk − x̂〉∣∣ �
nk−1∑

n=nl

λn|〈ξn − ξn−1, xnk − x̂〉|

+
nk−1∑

n=nl

μn|〈JYs (F(zn) − y), L(zn)(xnk − x̂)〉|

�
nk−1∑

n=nl

λn‖ξn − ξn−1‖‖xnk − x̂‖

+
nk−1∑

n=nl

μn‖F(zn) − y‖s−1‖L(zn)(xnk − x̂)‖. (3.34)

By using Assumption 2(c) and (3.33), we obtain for n < nk that

‖L(zn)(xnk − x̂)‖ � ‖L(zn)(xnk − zn)‖ + ‖L(zn)(zn − x̂)‖
� (1 + η)

(‖F(xnk ) − F(zn)‖ + ‖F(zn) − y‖)
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� 2(1 + η)‖F(zn) − y‖ + (1 + η)‖F(xnk ) − y‖
� 2(1 + η)‖F(zn) − y‖

+ (1 + η)
(‖F(xnk ) − F(znk )‖ + ‖F(znk ) − y‖)

� 3(1 + η)‖F(zn) − y‖ + (1 + η)‖F(xnk ) − F(znk )‖.

By using (3.32) and (3.33), we have for n < nk that

‖F(xnk ) − F(znk )‖ � C0

1 − η

(
c1 p∗μ̄1

2c0ν

)1/p

‖F(znk ) − y‖

� C0

1 − η

(
c1 p∗μ̄1

2c0ν

)1/p

‖F(zn) − y‖.

Therefore

‖L(zn)(xnk − x̂)‖ � C1‖F(zn) − y‖ (3.35)

for n < nk , where C1 := 3(1 + η) + (1+η)C0
1−η

(
c1 p∗μ̄1
2c0ν

)1/p
. Combining (3.35) with

(3.34) and using xnk ∈ B2ρ(x0) we obtain

∣∣〈ξnk − ξnl , xnk − x̂〉∣∣ �
nk−1∑

n=nl

λn‖ξn − ξn−1‖‖xnk − x̂‖ + C1

nk−1∑

n=nl

μn‖F(zn) − y‖s

� 4ρ
nk−1∑

n=nl

λn‖ξn − ξn−1‖ + C1

nk−1∑

n=nl

μn‖F(zn) − y‖s .

By making use of (3.20) with δ = 0, we obtain, with C2 := νC1/((ν − 1)c1), that

∣∣〈ξnk − ξnl , xnk − x̂〉∣∣

� 4ρ
nk−1∑

n=nl

λn‖ξn − ξn−1‖ + C2

nk−1∑

n=nl

(
DξnΘ(x̂, xn) − Dξn+1Θ(x̂, xn+1)

)

= 4ρ
nk−1∑

n=nl

λn‖ξn − ξn−1‖ + C2

(
Dξnl

Θ(x̂, xnl ) − Dξnk
Θ(x̂, xnk )

)
. (3.36)

Let γ := limn→∞ DξnΘ(x̂, xn) whose existence is guaranteed by the monotonicity
of {DξnΘ(x̂, xn)}. Then, for each fixed l, we have

sup
k�l

∣∣〈ξnk − ξnl , xnk − x̂〉∣∣ � 4ρ
∞∑

n=nl

λn‖ξn − ξn−1‖ + C2

(
Dξnl

Θ(x̂, xnl ) − γ
)

.
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Thus it follows from (3.28) that

lim
l→∞ sup

k�l

∣∣〈ξnk − ξnl , xnk − x̂〉∣∣ � C2

(
lim
l→∞ Dξnl

Θ(x̂, xnl ) − γ

)
= 0

which verifies (iv) in Proposition 3.5.
To show x∗ = x† under the additional condition N (L(x†)) ⊂ N (L(x)) for all

x ∈ B3ρ(x0), we observe from (3.25) and ξ0 − ξ−1 = 0 that

ξn+1 − ξn = −μnL(zn)
∗(F(zn) − y) + λn(ξn − ξn−1)

= −
n∑

k=0

(
n∏

i=k+1

λi

)

μk L(zk)
∗(F(zk) − y).

Since X is reflexive and N (L(x†)) ⊂ N (L(x)), we have R(L(x)∗) ⊂ R(L(x†)∗)
for all x ∈ B3ρ(x0). Recall that zk ∈ B3ρ(x0). It thus follows from the above formula

that ξn+1 − ξn ∈ R(L(x†)∗). Therefore we may use the second part of Proposition 3.5
to conclude the proof. ��

Next, we are going to show that, using the discrepancy principle (3.5) as a stopping
rule, our method (3.3) becomes a convergent regularization method, if we additionally
assume that λδ

n depends continuously on δ in the sense that λδ
n → λn as δ → 0 for all

n. We need the following stability result.

Lemma 3.7 Let X be reflexive, let Y be uniformly smooth, and let Assumptions 1 and
2 hold. Assume that τ > 1 and μ̄0 > 0 are chosen to satisfy (3.12). Assume also that
the combination parameters {λδ

n} are chosen to depend continuously on δ as δ → 0
and satisfy (3.14), (3.15) and (3.28). Then for all n � 0 there hold

ζ δ
n → ζn, zδn → zn, ξ δ

n → ξn and xδ
n → xn as δ → 0.

Proof The result is trivial for n = 0. We next assume that the result is true for all
0 � n � m and show that the result is also true for n = m+1. We consider two cases.

Case 1: F(zm) = y. In this case we haveμm = 0 and ‖F(zδm)− yδ‖ → 0 as δ → 0
by the continuity of F and the induction hypothesis zδm → zm . Thus

ξδ
m+1 − ξm+1 = ζ δ

m − ζm − μδ
mL(zδm)∗ JYs (F(zδm) − yδ),

which together with the definition of μδ
m and the induction hypothesis ζ δ

m → ζm
implies that

‖ξδ
m+1 − ξm+1‖ � ‖ζ δ

m − ζm‖ + C0μ̄1‖F(zδm) − yδ‖p−1 → 0 as δ → 0.

Consequently, by using the continuity of ∇Θ∗ we have xδ
m+1 = ∇Θ∗(ξ δ

m+1) →
∇Θ∗(ξm+1) = xm+1 as δ → 0. Recall that

ζ δ
m+1 = ξδ

m+1 + λδ
m+1(ξ

δ
m+1 − ξδ

m), zδm+1 = ∇Θ∗(ζ δ
m+1).
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Wemay use the condition λδ
m+1 → λm+1 to conclude that ζ δ

m+1 → ζm+1 and zδm+1 →
zm+1 as δ → 0.

Case 2: F(zm) �= y. In this case we have ‖F(zδm) − yδ‖ � τδ for small δ > 0.
Therefore

μδ
m = min

{
μ̄0‖F(zδm) − yδ‖p(s−1)

‖L(zδm)∗ JYs (F(zδm) − yδ)‖p
, μ̄1

}

‖F(zδm) − yδ‖p−s,

μm = min

{
μ̄0‖F(zm) − y‖p(s−1)

‖L(zm)∗ JYs (F(zm) − y)‖p
, μ̄1

}

‖F(zm) − y‖p−s .

If L(zm)∗ JYs (F(zm)−y) �= 0, then, by the induction hypothesis on zδm , it is easily seen
that μδ

m → μm as δ → 0. If L(zm)∗ JYs (F(zm) − y) = 0, then μm = μ̄1‖F(zm) −
y‖p−s and μδ

m = μ̄1‖F(zδm) − yδ‖p−s for small δ > 0. This again implies that
μδ
m → μm as δ → 0. Consequently, by utilizing the continuity of F , L , JYs and ∇Θ∗

and the induction hypotheses, we can conclude that ξδ
m+1 → ξm+1, xδ

m+1 → xm+1,
ζ δ
m+1 → ζm+1 and zδm+1 → zm+1 as δ → 0. ��

We are now in a position to give the main convergence result on our method (3.3).

Theorem 3.8 LetX be reflexive, letY be uniformly smooth, and let Assumptions 1 and
2 hold. Assume that τ > 1 and μ̄0 > 0 are chosen to satisfy (3.12). Assume also that
the combination parameters {λδ

n} are chosen to depend continuously on δ as δ → 0
and satisfy (3.14), (3.15) and (3.28). Let nδ be chosen according to the discrepancy
principle (3.5). Then there exists a solution x∗ of (3.1) in B2ρ(x0) ∩ D(Θ) such that

lim
δ→0

‖xδ
nδ

− x∗‖ = 0 and lim
δ→0

Dξδ
nδ

Θ(x∗, xδ
nδ

) = 0.

If, in addition, N (L(x†)) ⊂ N (L(x)) for all x ∈ B3ρ(x0), then x∗ = x†.

Proof This result can be proved by the same argument in the proof of Theorem 3.10.
So we omit the details. ��

3.2 DBTS: the choice of �ı
n

In this section we will discuss the choice of the combination parameter λδ
n which leads

to a convergent regularization method.
In Remark 3.2 we have briefly discussed how to choose the combination parameter

leading to the formulae (3.23) and (3.24). However, these choices of λδ
n decrease to 0

as δ → 0, and consequently the acceleration effect will decrease as δ → 0 as well.
Therefore, it is necessary to find out other strategy for generating λδ

n such that (3.14)
and (3.15) hold. We will adapt the discrete backtracking search (DBTS) algorithm
introduced in [14] to our situation. To this end,we take a function q : N∪{0} → (0,∞)

that is non-increasing and
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∞∑

i=0

q(i) < ∞. (3.37)

The DBTS algorithm for choosing the combination parameter λδ
n in our method (3.3)

is formulated in Algorithm 1 below. Comparing with the one in [14], there are two
modifications: The first modification is the definition of βn in which we place βn(i) �
n/(n + α) instead of βn(i) � 1; this modification gives the possibility to speed
up convergence by making use of the Nesterov’s acceleration strategy. The second
modification is in the “Else” part, where instead of setting λδ

n = 0 we calculate λδ
n by

(3.24); this modification can provide additional acceleration to speed up convergence.

Algorithm 1 Discrete backtracking search (DBTS) algorithm for λδ
n , n � 1.

Given ξδ
n , ξ

δ
n−1, τ , δ, c1, ν, q : N → N, iδn−1 ∈ N, jmax ∈ N

Set γ1 = c1 p
∗(2c0)p

∗−1/ν

Calculate ‖ξδ
n − ξδ

n−1‖ and define, with α � 3,

βn(i) = min

{
q(i)

‖ξδ
n − ξδ

n−1‖
,

p∗(2c0)p
∗
ρ p

4‖ξδ
n − ξδ

n−1‖p∗ ,
n

n + α

}

.

For j = 1, . . . , jmax
Set λδ

n = βn(iδn−1 + j);

Calculate ζ δ
n = ξδ

n + λδ
n(ξδ

n − ξδ
n−1) and zδn = ∇Θ∗(ζ δ

n );

Calculate μδ
n by (3.4);

If ‖yδ − F(zδn)‖ � τδ

λδ
n = 0;

iδn = iδn−1 + j ;
break;

Else if (λδ
n +

(
λδ
n

)p∗
)‖ξδ

n − ξδ
n−1‖p

∗ � γ1μ
δ
n‖F(zδn) − yδ‖s

iδn = iδn−1 + j ;
break;

Else
calculate λδ

n by (3.24);
iδn = iδn−1 + jmax;

End If
End For
Output: λδ

n , i
δ
n

Weneed to show that the combination parameter λδ
n chosen byAlgorithm 1 satisfies

(3.14) and (3.15). From Algorithm 1 it is easily seen that 0 � λδ
n � β(iδn). Therefore

(3.14) holds automatically. When ‖F(zδn) − yδ‖ � τδ, Algorithm 1 gives λδ
n = 0

which ensures (3.15) hold. When ‖F(zδn) − yδ‖ > τδ, Algorithm 1 either finds λδ
n

of the form βn(iδn) to satisfy (3.15) or gives λδ
n by (3.24) which again satisfies (3.15).

Thus Algorithm 1 always produces a λδ
n satisfying (3.15).

We can not use Theorem3.8 to conclude the regularization property of the two-point
gradient method (3.3) when the combination parameter is determined by Algorithm 1
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because the produced parameter λδ
n is not necessarily continuously dependent on δ

as δ → 0. In fact, λδ
n may have many different cluster points as δ → 0. Using

these different cluster points as the combination parameter in (3.25) may lead to
many different iterative sequences for noise-free case. We need to consider all these
possible iterative sequences altogether. We will use Γμ̄0,μ̄1,ν,q(ξ0, x0) to denote the
set consisting of all the iterative sequences {(ξn, xn, ζn, zn)} ⊂ X ∗ × X × X ∗ × X
defined by (3.25), where the combination parameters {λn} are chosen to satisfy

1

p∗(2c0)p∗−1

(
λ
p∗
n + λn

)
‖ξn − ξn−1‖p∗ � c1

ν
μn‖F(zn) − y‖s (3.38)

and

0 � λn � min

{
q(in)

‖ξn − ξn−1‖ ,
p∗(2c0)p

∗
ρ p

4‖ξn − ξn−1‖p∗ ,
n

n + α

}

(3.39)

with a sequence {in} of integers satisfying i0 = 0 and 1 � in − in−1 � jmax for all n.
Given a sequence {(ξn, xn, ζn, zn)} ∈ Γμ̄0,μ̄1,ν,q(ξ0, x0), we can check that the

corresponding combination parameters {λn} satisfy (3.14), (3.15) and (3.28) with δ =
0. Indeed, (3.38) is exactly (3.15). Since 0 � λn � p∗(2c0)p

∗
ρ p

4‖ξn−ξn−1‖p∗ and λn � n
n+α

< 1,

we have

1

p∗(2c0)p∗−1

(
λ
p∗
n + λn

)
‖ξn − ξn−1‖p∗ � 2

p∗(2c0)p∗−1 λn‖ξn − ξn−1‖p∗ � c0ρ
p

which shows (3.14). Moreover, we note that λn � q(i)/‖ξn −ξn−1‖. By the definition
of in one can see that in � in−1 + 1 and thus in � n. Therefore, by using the
monotonicity of q, we have

∞∑

n=0

λn‖ξn − ξn−1‖ �
∞∑

n=0

βn(in)‖ξn − ξn−1‖ �
∞∑

n=0

q(in) �
∞∑

n=0

q(n) < ∞.

Hence (3.28) is satisfied. Thus we may use Theorem 3.6 to conclude the convergence
of {xn}.

We have the following stability result on the two point gradient method (3.3) with
the combination parameters chosen by Algorithm 1.

Lemma 3.9 Let X be reflexive, let Y be uniformly smooth, and let Assumptions 1 and
2 hold. Let τ > 1 and μ̄0 > 0 be chosen to satisfy (3.12). Let {yδl } be a sequence
of noisy data satisfying ‖yδl − y‖ � δl with δl → 0 as l → ∞. Assume that the
combination parameters {λδl

n } are chosen by Algorithm 1 with iδl0 = 0. Then, by
taking a subsequence of {yδl } if necessary, there is a sequence {(ξn, xn, ζn, zn)} ∈
Γμ̄0,μ̄1,ν,q(ξ0, x0) such that

ξδl
n → ξn, xδl

n → xn, ζ δl
n → ζn and zδln → zn as l → ∞
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for all n � 0.

Proof Note that ξδl
0 = ξ0, x

δl
0 = x0, ζ

δl
0 = ζ0, z

δl
0 = z0 and i

δl
0 = i0. Therefore, by the

diagonal sequence argument, it suffices to show that, for each integer n � 1, if ξn−1,
xn−1, ζn−1, zn−1 and in−1 are constructed such that

ξ
δl
n−1 → ξn−1, xδl

n−1 → xn−1, ζ
δl
n−1 → ζn−1, zδln−1 → zn−1 and iδln−1 = in−1

(3.40)

as l → ∞, then, by taking a subsequence of {yδl } if necessary, we can construct ξn ,
xn , ζn , zn and in with the desired properties.

To this end, we set

ξn := ζn−1 − μn−1L(zn−1)
∗ Jr (F(zn−1) − y) and xn := ∇Θ∗(ξn),

where μn−1 is defined by (3.26) with n replaced by n − 1. By the similar argument in
the proof of Lemma 3.7, we can show that

ξδl
n → ξn and xδl

n → xn as l → ∞. (3.41)

Note that the combination parameter λ
δl
n determined by Algorithm 1 satisfies

1

p∗(2c0)p∗−1

((
λδl
n

)p∗ + λδl
n

)
‖ξδl

n − ξ
δl
n−1‖p∗ � c1

ν
μδl
n ‖F(zδln ) − yδl‖s (3.42)

and

0 � λδl
n � min

{
q(iδln )

‖ξδl
n − ξ

δl
n−1‖

,
p∗(2c0)p

∗
ρ p

4‖ξδl
n − ξ

δl
n−1‖p∗ ,

n

n + α

}

or

λδl
n = min

{
(2c0)p

∗−1 p∗Mτ pδ
p
l

2‖ξδl
n − ξ

δl
n−1‖p∗ ,

n

n + α

} (3.43)

with 1 � iδln − iδln−1 � jmax. Since 0 � λ
δl
n � n/(n + α) and n � iδln � njmax, by

taking a subsequence of {yδl } again if necessary, we have

lim
l→∞ λδl

n = λn and iδln = in for all l (3.44)

for some number λn and some integer in . We set

ζn := ξn + λn(ξn − ξn−1) and zn := ∇Θ∗(ζn).

By using (3.40), (3.41), (3.44) and the continuity of ∇Θ∗, we can obtain ζ
δl
n → ζn

and zδln → zn as l → ∞. Now we define μn by (3.26). By using the similar argument
in the proof of Lemma 3.7 again we have
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μδl
n ‖F(zδln ) − yδl‖s → μn‖F(zn) − y‖s as l → ∞.

Therefore, by taking l → ∞ in (3.42) and (3.43), we can see that λn satisfies (3.38)
and (3.39). Furthermore, by using 1 � iδln − iδln−1 � jmax, i

δl
n−1 = in−1 and iδln = in ,

we immediately have 1 � in − in−1 � jmax. We thus complete the proof. ��
We are now ready to show the regularization property of the method (3.3) when the

combination parameter λδ
n is chosen by Algorithm 1.

Theorem 3.10 Let X be reflexive, let Y be uniformly smooth, and let Assumptions 1
and 2 hold. Let τ > 1 and μ̄0 > 0 be chosen to satisfy (3.12). Let {yδ} be a family
of noisy data satisfying ‖yδ − y‖ � δ → 0. Assume that the combination parameters
{λδ

n} are chosen by Algorithm 1 with iδ0 = 0. Let nδ be the integer determined by the
discrepancy principle (3.5).

(a) For any subsequence {yδl } of {yδ}with δl → 0 as l → ∞, by taking a subsequence
of {yδl } if necessary, there hold

lim
l→∞ ‖xδl

nδl
− x∗‖ = 0 and lim

l→∞ D
ξ

δl
nδl

Θ(x∗, xδl
nδl

) = 0

for some solution x∗ of (3.1) in B2ρ(x0) ∩ D(Θ).
(b) If, in addition, N (L(x†)) ⊂ N (L(x)) for all x ∈ B3ρ(x0) ∩ D(Θ), then

lim
δ→0

‖xδ
nδ

− x†‖ = 0 and lim
δ→0

Dξδ
nδ

Θ(x†, xδ
nδ

) = 0.

Proof Let {yδl } be a sequence of noisy data satisfying ‖yδl − y‖ � δl → 0 as l → ∞.
Let N := lim infl→∞ nδl . By taking a subsequence of {yδl } if necessary, we may
assume N = liml→∞ nδl , and according to Lemma 3.9, we can find a sequence
{(ξn, xn, ζn, zn)} ∈ Γμ̄0,μ̄1,ν,q(ξ0, x0) such that

ξδl
n → ξn and xδl

n → xn as l → ∞ (3.45)

for all n � 0. Due to the properties of the sequences in Γμ̄0,μ̄1,ν,q(ξ0, x0), we can
apply Theorem 3.6 to conclude that DξnΘ(x∗, xn) → 0 as n → ∞ for some solution
x∗ of (3.1) in B2ρ(x0) ∩ D(Θ), and if, in addition, N (L(x†)) ⊂ N (L(x)) for all
x ∈ B3ρ(x0) ∩ D(Θ), then x∗ = x†. We will show that

lim
l→∞ D

ξ
δl
nδl

Θ(x∗, xδl
nδl

) = 0. (3.46)

Case 1: N < ∞. We have nδl = N for large l. According to the definition of nδl ,
there holds

‖F(zδlN ) − yδl‖ � τδl .
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By using the similar argument for deriving (3.32) we have

‖F(xδl
N ) − F(zδlN )‖ � C‖F(zδlN ) − yδl‖

for some universal constant C . Thus

‖F(xδl
N ) − yδl‖ � (1 + C)‖F(zδlN ) − yδl‖ � (1 + C)τδl .

Taking l → ∞ and using the continuity of F gives F(xN ) = y. Thus xN is a solution
of (3.1) in B2ρ(x0) ∩ D(Θ). By the monotonicity of {DξnΘ(xN , xn)} with respect to
n, we then obtain

DξnΘ(xN , xn) � DξN Θ(xN , xN ) = 0, ∀n � N .

Therefore xn = xN for all n � N . Since xn → x∗ as n → ∞, we must have
xN = x∗ and thus xδl

nδl
= xδl

N → xN = x∗ as l → ∞. This together with the lower
semi-continuity of Θ shows that

0 � lim inf
l→∞ D

ξ
δl
nδl

Θ(x∗, xδl
nδl

) � lim sup
l→∞

D
ξ

δl
nδl

Θ(x∗, xδl
nδl

)

� Θ(x∗) − lim inf
l→∞ Θ(xδl

nδl
) − lim

l→∞〈ξδl
nδl

, x∗ − xδl
nδl

〉
� Θ(x∗) − Θ(x∗) = 0

which shows (3.46)
Case 2: N = ∞. Let n be any fixed integer, then nδl > n for large l. It then follows

from Lemma 3.4 that

D
ξ

δl
nδl

Θ(x∗, xδl
nδl

) � D
ξ

δl
n

Θ(x∗, xδl
n ) = Θ(x∗) − Θ(xδl

n ) − 〈ξδl
n , x∗ − xδl

n 〉.

By using (3.45) and the lower semi-continuity of Θ we obtain

0 � lim inf
l→∞ D

ξ
δl
nδl

Θ(x∗, xδl
nδl

) � lim sup
l→∞

D
ξ

δl
nδl

Θ(x∗, xδl
nδl

)

� Θ(x∗) − lim inf
l→∞ Θ(xδl

n ) − lim
l→∞〈ξδl

n , x∗ − xδl
n 〉

� Θ(x∗) − Θ(xn) − 〈ξn, x∗ − xn〉
= DξnΘ(x∗, xn).

Since n can be arbitrary and limn→∞ DξnΘ(x∗, xn) = 0, by taking n → ∞ in the
above equation we therefore obtain (3.46) again.

If, in addition, N (L(x†)) ⊂ N (L(x)) for all x ∈ B3ρ(x0) ∩ D(Θ), we have
x∗ = x†. Thus, the above argument shows that any subsequence {yδl } of {yδ} has
a subsequence, denoted by the same notation, such that D

ξ
δl
nδl

R(x†, xδl
nδl

) → 0 as

l → ∞. Therefore Dξδ
nδ
R(x†, xδ

nδ
) → 0 as δ → 0. ��

123



738 M. Zhong et al.

Remark 3.3 A two-point gradient method in Hilbert spaces was considered in [14] in
which the combination parameter is chosen by a discrete backtracking search (DBTS)
algorithm. The regularization property was proved under the condition that the noise-
free counterpart of the method never terminates at a solution of (3.1) in finite many
steps if the combination parameter is chosen by the DBTS algorithm. This technical
condition seems difficult to be verified because the exact data y is unavailable. In
Theorem 3.10 we removed this condition by using a stability result established in
Lemma 3.9.

4 Numerical simulations

In this section we will present numerical simulations on our TPG-DBTS method, i.e.
the two point gradient method (3.3) with the combination parameter λδ

n chosen by the
DBTS algorithm (Algorithm 1). In order to illustrate the performance of TPG-DBTS
algorithm, we will compare the computational results with the ones obtained by the
Landweber iteration (1.4) and the Nesterov acceleration of Landweber iteration, i.e.
the method (3.3) with λδ

n = n/(n + α) for some α � 3. In order to be fair, the step
sizes μδ

n involved in all these methods are computed by (3.4) and all the iterations are
terminated by the discrepancy principle with τ = 1.05.

A key ingredient for the numerical implementation is the determination of x =
∇Θ∗(ξ) for anygiven ξ ∈ X ∗ which is equivalent to solving theminimizationproblem

x = argmin
z∈X

{Θ(z) − 〈ξ, z〉} . (4.1)

For some choices of Θ , this minimization problem can be easily solved numerically.
For instance, when X = L2(Ω) and the sought solution is piecewise constant, we
may choose

Θ(x) = 1

2β
‖x‖22 + |x |T V (4.2)

with a constant β > 0, where |x |T V denotes the total variation of x . Then the mini-
mization problem (4.1) becomes the total variation denoising problem

x = arg min
z∈L2(Ω)

{
1

2β
‖z − βξ‖22 + |z|T V

}
(4.3)

which is nonsmooth and convex. Note that for thisΘ , Assumption 1 holds with p = 2
and c0 = 1

2β . Many efficient algorithms have been developed for solving (4.3), includ-
ing the fast iterative shrinkage-thresholding algorithm [2,3], the alternating direction
method of multipliers [5], and the primal dual hybrid gradient (PDHG) method [33].

In the following numerical simulations we will only consider the situation that the
sought solution is piecewise constant. We will use the PDHG method to solve (4.3)
iteratively. Our simulations are performed via MATLAB R2012a on a Lenovo laptop
with Intel(R) Core(TM) i5 CPU 2.30GHz and 6GB memory.
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4.1 Computed tomography

Computed tomography (CT) consists in determining the density of cross sections of
a human body by measuring the attenuation of X-rays as they propagate through the
biological tissues. Mathematically, it requires to determine a function supported on
a bounded domain from its line integrals [25]. In order to apply our method to solve
the CT problems, we need a discrete model. In our numerical experiment, we assume
that the image is supported on a rectangular domain in R

2 which is divided into I × J
pixels so that the discrete image has size I × J and can be represented by a vector
x ∈ R

N with N = I × J . We further assume that there are nθ projection directions
and in each direction there are p X-rays emitted. We want to reconstruct the image by
using the measurement data of attenuation along the rays which can be represented
by a vector b ∈ R

M with M = nθ × p. According to a standard discretization of the
Radon transform [11], we arrive at a linear algebraic system

Fx = b,

where F is a sparsematrix of sizeM×N whose formdepends on the scanner geometry.
In the numerical simulationswe consider only test problems thatmodel the standard

2Dparallel-beam tomography. The true image is taken to be themodifiedShepp-Logan
phantom of size 256 × 256 generated by MATLAB. This phantom is widely used in
evaluating tomographic reconstruction algorithms. We use the full angle model with
45 projection angles evenly distributed between 1 and 180 degrees, with 367 lines
per projection. The function paralleltomo in MATLAB package AIR TOOLS
[11] is used to generate the sparse matrix F , which has the size M = 16,515 and
N = 66,536. Let x† denote the vector formed by stacking all the columns of the true
image and let b = Fx† be the true data. We add Gaussian noise on b to generate a
noisy data bδ with relative noise level δrel = ‖bδ − b‖2/‖b‖2 so that the noise level
is δ = δrel‖b‖2. We will use bδ to reconstruct x†. In order to capture the feature
of the sought image, we take Θ to be the form (4.2) with β = 1. In our numerical
simulations we will use ξ0 = 0 as an initial guess. According to (3.12) we need
μ̄0 < 2(1 − 1/τ)/β. Therefore we take the parameters μ̄0 and μ̄1 in the definition
of μδ

n to be μ̄0 = 1.8(1 − 1/τ)/β and μ̄1 = 20,000. For implementing TPG-DBTS
method with λδ

n chosen by Algorithm 1, we take jmax = 1, α = 5, γ0 = 10 in (3.24),
γ1 = 1; we also choose the function q : N → N by q(m) = m−1.1. For implementing
the Nesterov acceleration of Landweber iteration, we take λδ

n = n/(n+α)with α = 5.
During the computation, the total variation denoising problem (4.3) involved in each
iteration step is solved approximately by the PDHG method after 100 iterations.

The computational results by TPG-DBTS, Landweber, and Nesterov acceleration
of Landweber are reported in Table 1, including the number of iterations nδ , the CPU
running time and the relative errors ‖xδ

nδ
− x†‖2/‖x†‖2, using noisy data with vari-

ous relative noise level δrel > 0. Table 1 shows that both TPG-DBTS and Nesterov
acceleration, terminated by the discrepancy principle, lead to a considerable decrease
in the number of iterations and the amount of computational time, which demon-
strates that these two methods have the striking acceleration effect. Moreover, both
TPG-DBTS and Nesterov acceleration produce more accurate results than Landwe-
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Table 1 Numerical results for computed tomography (β = 1, τ = 1.05)

δrel Method nδ CPU time (s) ‖xδ
n − x†‖2/‖x†‖2

0.05 Landweber 111 29.94 0.19216

Nesterov 34 7.45 0.17573

TPG-DBTS 34 11.99 0.17573

0.01 Landweber 489 106.97 0.06410

Nesterov 79 16.25 0.05923

TPG-DBTS 79 29.51 0.05923

0.005 Landweber 879 197.65 0.03578

Nesterov 109 22.25 0.03165

TPG-DBTS 109 43.02 0.03165

0.001 Landweber 3299 775.10 0.00694

Nesterov 247 51.05 0.00521

TPG-DBTS 247 105.29 0.00521

0.0005 Landweber 5703 1328.31 0.00326

Nesterov 351 82.93 0.00199

TPG-DBTS 351 153.79 0.00199

0 20 40 60 80
0

0.5

1

0 200 400 600
0

0.5

1

TPG-DBTS
Landweber

Fig. 1 The computed tomography using noisy data with relative noise level δrel = 0.01

ber iteration. With the above setup, our computation shows that TPG-DBTS produces
the combination parameter λδ

n which is exactly same as the combination parameter
n/(n + α) in Nesterov acceleration in each iteration step. Therefore, TPG-DBTS and
Nesterov acceleration require the same number of iterations and produce the same
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reconstruction result. Because TPG-DBTS spends more time on determining λδ
n , the

Nesterov acceleration requires less amount of computational time than TPG-DBTS.
However, unlike TPG-DBTS, there exists no convergence result concerning Nesterov
acceleration for ill-posed inverse problems.

In order to visualize the reconstruction accuracy of the TPG-DBTS method, we
plot in Fig. 1 the true image, the reconstruction result by TPG-DBTS using noisy data
with relative noise level δrel = 0.01, the curve of λδ

n versus n, and the relative error
‖xδ

n − x†‖2/‖x†‖2 versus n for TPG-DBTS and Landweber iteration.

4.2 Elliptic parameter identification

Weconsider the identification of the parameter c in the elliptic boundary value problem

{−�u + cu = f in Ω,

u = g on ∂Ω
(4.4)

from an L2(Ω)-measurement of the state u, where Ω ⊂ R
d with d � 3 is a bounded

domain with Lipschitz boundary ∂Ω , f ∈ H−1(Ω) and g ∈ H1/2(Ω). We assume
that the sought parameter c† is in L2(Ω). This problem reduces to solving F(c) = u
if we define the nonlinear operator F : L2(Ω) → L2(Ω) by

F(c) := u(c), (4.5)

where u(c) ∈ H1(Ω) ⊂ L2(Ω) is the unique solution of (4.4). This operator F is
well defined on

D :=
{
c ∈ L2(Ω) : ‖c − ĉ‖L2(Ω) � ε0 for some ĉ � 0, a.e.

}

for some positive constant ε0 > 0. It is well-known [6] that the operator F is weakly
closed and Fréchet differentiable with

F ′(c)h = v and F ′(c)∗σ = −u(c)w

for c ∈ D and h, σ ∈ L2(Ω), where v,w ∈ H1(Ω) are the unique solutions of the
problems

{−�v + cv = −hu(c) in Ω,

v = 0 on ∂Ω
and

{−�w + cw = σ in Ω,

w = 0 on ∂Ω

respectively. Moreover, F satisfies Assumption 2(c).
In our numerical simulation, we consider the two-dimensional problem with Ω =

[0, 1] × [0, 1] and the sought parameter is assumed to be

c†(x, y) =
⎧
⎨

⎩

1, if (x − 0.65)2 + (y − 0.36)2 � 0.182,
0.5, if (x − 0.35)2 + 4(y − 0.75)2 � 0.22,
0, elsewhere.
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Table 2 Numerical results for 2-dimensional elliptic parameter estimation (β = 10, τ = 1.05)

δ Method nδ CPU time (s) ‖cδn − c†‖L2
0.005 Landweber 27 8.27 0.27821

Nesterov 16 5.06 0.22922

TPG-DBTS 16 4.90 0.22922

0.001 Landweber 135 38.65 0.13500

Nesterov 57 16.53 0.11433

TPG-DBTS 57 17.34 0.11433

0.0005 Landweber 201 59.66 0.11200

Nesterov 92 26.86 0.09416

TPG-DBTS 91 33.95 0.104

0.0001 Landweber 799 250.03 0.08113

Nesterov 190 56.60 0.07774

TPG-DBTS 266 96.54 0.077217

0.00005 Landweber 1689 528.06 0.07189

Nesterov 358 107.46 0.06546

TPG-DBTS 484 171.31 0.070146

Assuming u(c†) = x + y, we add random Gaussian noise to produce noisy data uδ

satisfying ‖uδ − u(c†)‖L2(Ω) � δ with various noise level δ > 0. We will use uδ

to reconstruct c†. In order to capture the feature of the sought parameter, we take
Θ to be the form (4.2) with β = 10. We will use the initial guess ξ0 = 0 to carry
out the iterations. The parameters μ̄0 and μ̄1 in the definition of μδ

n are taken to be
μ̄0 = 1.8(1 − 1/τ)/β and μ̄1 = 20000. For implementing TPG-DBTS method with
λδ
n chosen by Algorithm 1, we take jmax = 1, α = 5, γ0 = 10 in (3.24), γ1 = 1;

we also choose the function q : N → N by q(m) = m−1.1. For implementing the
Nesterov acceleration of Landweber iteration, we take λδ

n = n/(n + α) with α = 5.
In order to carry out the computation, we divide Ω into 128 × 128 small squares
of equal size and solve all partial differential equations involved approximately by a
multigrid method [7] via finite difference discretization. The total variation denoising
problem (4.3) involved in each iteration step is solved by the PDHG method after 200
iterations.

In Table 2 we report the computational results by TPG-DBTS, Landweber, and
Nesterov acceleration of Landweber, including the number of iterations nδ , the CPU
running time and the absolute errors ‖cδ

nδ
− c†‖L2(Ω), for various noise level δ > 0.

Table 2 shows that both TPG-DBTS and Nesterov acceleration, terminated by the
discrepancyprinciple, reduce the number of iterations and the amount of computational
time significantly, and produce more accurate results than Landweber iteration. This
demonstrates that these twomethods have a remarkable acceleration effect. In order to
visualize the reconstruction accuracy of the TPG-DBTS method, we plot in Fig. 2 the
true solution, the reconstruction result by TPG-DBTS with noise level δ = 0.0001,
the curve of λδ

n versus n, and the error ‖cδ
n − c†‖L2(Ω) versus n for TPG-DBTS and

Landweber iteration.
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Fig. 2 The 2-dimensional elliptic parameter identification using noisy data with noise level δ = 0.0001

4.3 Robin coefficient reconstruction

We consider the heat conduction process in a homogeneous solid rod located on
the interval [0, π ]. If the endpoints of the rod contacts with liquid media, then the
convective heat transfer occurs. The temperature field of u(x, t) during a time interval
[0, T ] with a fixed time of interest T > 0 can be modeled by

⎧
⎨

⎩

ut − a2uxx = 0, x ∈ (0, π), t ∈ (0, T );
ux (0, t) = f (t), ux (π, t) + σ(t)u(π, t) = ϕ(t), t ∈ [0, T ];
u(x, 0) = u0(x), x ∈ [0, π ].

(4.6)

The function σ(t) � 0 represents the corrosion damage, which is interpreted as a
Robin coefficient of energy exchange. We will assume f , ϕ and u0 are all continuous.
Notice that if σ(t) is given, the problem (4.6) is a well-posed direct problem. The
inverse problem of identifying the Robin coefficient σ(t) requires additional data to
be specified. We consider the reconstruction of σ(t) from the temperature information
measured at the boundary

u(0, t) = g(t), t ∈ [0, T ].

Define

D := {σ ∈ L2[0, T ], 0 < σ− � σ � σ+, a.e. in [0, T ]}, (4.7)
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and define the nonlinear operator F : σ ∈ D → u[σ ](0, t) ∈ L2[0, T ], where
u[σ ] denotes the unique solution of (4.6). Then the above Robin coefficient inversion
problem reduces to solving the equation F(σ ) = g. We refer to [30] for the well-
posedness of F and the uniqueness of the inverse problem in the L2 sense. By the
standard theory of parabolic equation, one can show that F is Fréchet differentiable
in the sense that

‖F(σ + h) − F(σ ) − F ′(σ )h‖L2(0,T ) = o(‖h‖L2(0,T ))

for all σ, σ + h ∈ D , where [F ′(σ )h](t) = w(0, t) and w is the unique solution of

⎧
⎨

⎩

wt − a2wxx = 0, x ∈ (0, π), t ∈ (0, T );
wx (0, t) = 0, wx (π, t) + σ(t)w(π, t) = −h(t)u[σ ](π, t), t ∈ [0, T ];
w(x, 0) = 0, x ∈ [0, π ].

In addition, the adjoint of the Fréchet derivative is given by

[F ′(σ )∗ζ ](t) = u[σ ](π, t)v(π, τ ),

where v(x, t) solves the adjoint system

⎧
⎨

⎩

−vt − a2vxx = 0, x ∈ (0, π), t ∈ (0, T );
vx (0, t) = ζ(t), vx (π, t) + σ(t)v(π, t) = 0, t ∈ [0, T ];
v(x, T ) = 0, x ∈ [0, π ].

In our numerical simulations, we take a = 5, T = 1, and assume the sought Robin
coefficient is

σ †(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1.5, 0 � t � 0.1563,
2, 0.1563 < t � 0.3125,
1.2, 0.3125 < t � 0.5469,
2.5, 0.5469 < t � 0.6250,
1.8, 0.6250 < t � 0.7813,
1, 0.7813 < t � 1.

We also assume that the exact solution of the forward problem (4.6) with σ = σ † is

u(x, t) = e−a2t sin x + x2 + 2a2t (4.8)

through which we can obtain the expression of ( f (t), u0(x), ϕ(t)) and the inversion
input g(t) := u(0, t). We add random Gaussian noise on g to produce noisy data gδ

satisfying ‖gδ − g‖L2(0,T ) � δ with various noise level δ > 0. We will use gδ to
reconstruct σ †. In order to capture the feature of the sought Robin coefficient, we take
Θ to be the form (4.2) with β = 1. We will use the initial guess ξ0 = 0 to carry out
the computation. The parameters μ̄0 and μ̄1 in the definition of μδ

n are taken to be
μ̄0 = 1.8(1 − 1/τ)/β and μ̄1 = 20000. For implementing TPG-DBTS method with

123



Regularization of inverse problems by two-point gradient… 745

Table 3 Numerical results for Robin coefficient reconstruction (β = 1, τ = 1.05)

δ Method nδ CPU time (s) ‖σδ
n − σ †‖L2

0.1 Landweber 242 1.18 0.120974

Nesterov 76 0.56 0.119851

TPG-DBTS 76 1.03 0.119851

0.01 Landweber 1431 5.33 0.042751

Nesterov 240 1.14 0.038788

TPG-DBTS 223 2.30 0.040195

0.001 Landweber 12,033 42.14 0.007127

Nesterov 706 2.76 0.002754

TPG-DBTS 763 7.20 0.0023295

0.0001 Landweber 31,021 109.85 0.000702

Nesterov 959 3.65 0.000236

TPG-DBTS 1866 15.67 1.7341e−05

0 5000 10000 15000
10-4

10-2

100

102

Landweber
TPG-DBTS

0 0.5 1

1

1.5

2

2.5

3 Reconstruction
Exact

0 200 400 600 800
0

0.5

1

0 200 400 600 800
10-5

100

105

Fig. 3 Robin coefficient reconstruction using noisy data with noise level δ = 0.001

λδ
n chosen by Algorithm 1, we take jmax = 2, α = 5, γ0 = 10 in (3.24), γ1 = 1;

we also choose the function q : N → N by q(m) = m−1.1. For implementing the
Nesterov acceleration of Landweber iteration, we take λδ

n = n/(n + α) with α = 5.
During the computation, the initial-boundary value problems for parabolic equation
are transformed into integral equations by the potential theory [24] and then solved
by a boundary element method by dividing [0, T ] into N = 64 subintervals of equal
length. The total variation denoising problem (4.3) involved in each iteration step is
solved approximately by the PDHG method after 200 iterations.

123



746 M. Zhong et al.

In Table 3 we report the computational results by TPG-DBTS, Landweber, and
Nesterov acceleration of Landweber, using noisy data for various noise level δ > 0,
which clearly demonstrates the acceleration effect of TPG-DBTS and Nesterov accel-
eration and shows that these two methods have superior performance over Landweber
iteration. In Fig. 3 we also plot the computational results by TPG-DBTS using noisy
data with noise level δ = 0.001. We note that the combination parameter λδ

n produced
by TPG-DBTSmay be different from n/(n+α) for some n, but eventually λδ

n becomes
the same as the combination parameter n/(n + α) in Nesterov acceleration.
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