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Abstract
We study solution techniques for an evolution equation involving second order deriva-
tive in time and the spectral fractional powers, of order s ∈ (0, 1), of symmetric,
coercive, linear, elliptic, second-order operators in bounded domains Ω . We real-
ize fractional diffusion as the Dirichlet-to-Neumann map for a nonuniformly elliptic
problem posed on the semi-infinite cylinder C = Ω × (0,∞). We thus rewrite our
evolution problem as a quasi-stationary elliptic problem with a dynamic boundary
condition and derive space, time, and space–time regularity estimates for its solution.
The latter problem exhibits an exponential decay in the extended dimension and thus
suggests a truncation that is suitable for numerical approximation.Wepropose and ana-
lyze two fully discrete schemes. The discretization in time is based on finite difference
discretization techniques: the trapezoidal and leapfrog schemes. The discretization in
space relies on the tensorization of a first-degree FEM in Ω with a suitable hp-FEM
in the extended variable. For both schemes we derive stability and error estimates. We
consider a first-degree FEM in Ω with mesh refinement near corners and the afore-
mentioned hp-FEM in the extended variable and extend the a priori error analysis
of the trapezoidal scheme for open, bounded, polytopal but not necessarily convex
domains Ω ⊂ R

2. We discuss implementation details and report several numerical
examples.
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178 L. Banjai, E. Otárola

1 Introduction

We are interested in the numerical approximation of an initial boundary value problem
for a space-fractional wave equation. Let Ω be an open and bounded domain in R

n

(n ≥ 1) with boundary ∂Ω . Given s ∈ (0, 1), a forcing function f , and initial data g
and h, we seek u such that

{
∂2t u + Lsu = f in Ω × (0, T ),

u(0) = g in Ω, ∂t u(0) = h in Ω.
(1.1)

Here, L denotes the linear, elliptic, self-adjoint, second order, differential operator

Lw = −divx ′(A∇x ′w) + cw,

supplemented with homogeneous Dirichlet boundary conditions. The coefficient A ∈
C0,1(Ω̄,GL(n,R)) is symmetric and uniformly positive definite and 0 ≤ c ∈ L∞(Ω).
By Ls , with s ∈ (0, 1), we denote the spectral fractional powers of the operator L.

One of the most common and studied physical processes is diffusion: the tendency
of a substance to evenly spread into an available space. Classical models of diffu-
sion lead to well-known models and even better studied equations. However, in recent
times, it has become evident that many of the assumptions that lead to these models
are not always satisfactory or even realistic: memory, heterogeneity, or a multiscale
structure might violate them. In this setting, the assumption of locality does not hold
and to describe diffusion one needs to resort to nonlocal operators. Different models
of diffusion have been proposed, fractional diffusion being one of them. An incom-
plete list of problems where fractional diffusion appears includes finance [14,40,51],
turbulent flow [15], quasi-geostrophic flows models [12,36], models of anomalous
thermoviscous behaviors [16], peridynamics [21,56], and image science [28,29].

The design of efficient solution techniques for problems involving fractional diffu-
sion is intricate, mainly due to the nonlocal character of Ls [8–10,13]. Recently, and
in order to overcome such a nonlocal feature, the Caffarelli-Silvestre extension has
been proved useful in numerical analysis [5,46,47]. When L = −Δ andΩ = R

n , i.e.,
in the case of the Laplacian in the whole space, Caffarelli and Silvestre [10] showed
that Ls can be realized as the Dirichlet-to-Neumann map for an extension problem to
the upper half-spaceRn+1+ ; the extension corresponds to a nonuniformly elliptic PDE.
This result was later extended in [9,13,57] to bounded domains Ω and more general
operators, thereby obtaining an extension problem posed on the semi-infinite cylinder
C := Ω×(0,∞).We shall thus rewrite problem (1.1) as the following quasi-stationary
elliptic problem with a dynamic boundary condition [3,18,19,60]:

⎧⎪⎨
⎪⎩

−div
(
yαA∇U

) + yαcU = 0 in C × (0, T ),

U = 0 on ∂LC × (0, T ),

ds∂
2
t U + ∂α

ν U = ds f on (Ω × {0}) × (0, T ),

(1.2)
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A space-fractional wave equation 179

with the initial conditions

U = g on Ω × {0}, t = 0, ∂tU = h on Ω × {0}, t = 0, (1.3)

where ∂LC = ∂Ω × [0,∞) corresponds to the lateral boundary of C, α = 1 − 2s ∈
(−1, 1), ds = 2αΓ (1−s)/Γ (s), and the conormal exterior derivative ofU atΩ×{0}
is

∂α
ν U = − lim

y→0+ yαUy;

the limit must be understood in the sense of distributions [10,13,57]. We will call y the
extended variable and the dimension n+1 inRn+1+ the extended dimension of problem
(1.2), (1.3). Finally, A = diag{A, 1} ∈ C0,1(C,GL(n + 1,R)). With the solution U
to the extension problem (1.2), (1.3) at hand, we can find the solution to (1.1) via
[3,9,10,13,18,19,60]:

u = U |y=0.

To the best of the authors knowledge this is the first work that provides a com-
prehensive treatment of efficient solution techniques for the space-fractional wave
equation (1.1). In (1.1), Ls denotes the spectral fractional powers of the operator L.
Recently, problem (1.1) has been considered in [2] but with Ls = (−Δ)s being the
integral fractional Laplace operator [39]. The authors of this work propose a discrete
scheme that is based on standard Galerkin finite elements for space discretization and
the convolution quadrature approach for the discretization in time. We immediately
comment that the spectral and integral definitions of the fractional Laplace operator
do not coincide. In fact, as shown in [45] their difference is positive and positivity
preserving. This, in particular, implies that the boundary behavior of the respective
solutions is quite different [11,32].

The outline of this paper is as follows. In Sect. 2 we introduce some terminology
used throughout this work. We recall the definition of the fractional powers of elliptic
operators via spectral theory in Sect. 2.1, and in Sect. 2.2 we briefly describe their
localization via the Caffarelli–Silvestre extension and also introduce the functional
framework that is suitable for studying problem (1.2), (1.3). In Sect. 3, we review
existence and uniqueness results together with energy-estimates for problems (1.1)
and (1.2), (1.3). In Sect. 4 we present space, time and space–time regularity results for
the solution of problem (1.2), (1.3). The numerical analysis for problem (1.2), (1.3)
begins in Sect. 5 where we introduce a truncated problem on the bounded cylinder
CY = Ω × (0,Y ) and study some properties of its solution. In Sect. 6 we preset two
fully discrete schemes for the truncated version of (1.2), (1.3) studied in Sect. 5. Both of
them are based on the scheme of [5] for space discretization. For time discretizationwe
consider an implicit finite difference discretization scheme and the so-called leapfrog
scheme. We derive stability and a priori error estimates for the proposed schemes
for all s ∈ (0, 1). In Sect. 7, we extend the a priori error analysis of the trapezoidal
scheme for open, bounded, polytopal but not necessarily convex domains Ω ⊂ R

2
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180 L. Banjai, E. Otárola

on the basis of a continuous, piecewise linear, Lagrangian FEM in Ω with with mesh
refinement near corners and a suitable hp-FEM in the extended variable. In Sect. 8
we comment on some implementation details pertinent to the problem at hand and
present numerical experiments in one and two dimensional domains. An important
conclusion is that due to the nonlocality of (−Δ)s , the explicit nature of the leapfrog
scheme seems to be lost.

2 Notation and preliminaries

Throughout thiswork,with the exception of Sect. 7,Ω is an open, bounded, and convex
polytopal subset ofRn (n ≥ 1)with boundary ∂Ω . In Sect. 7, instead,Ω ⊂ R

2 denotes
an open and bounded, but not necessarily convex, polygon.We define the semi-infinite
cylinder C := Ω × (0,∞) and its lateral boundary ∂LC := ∂Ω ×[0,∞). For Y > 0,
we define the truncated cylinder with base Ω and height Y as CY := Ω × (0,Y );
its lateral boundary is denoted by ∂LCY = ∂Ω × (0,Y ). If x ∈ R

n+1, we write
x = (x ′, y), with x ′ ∈ R

n and y ∈ R.
For an open set D ⊂ R

n (n ≥ 1), if ω is a weight and p ∈ (1,∞), we denote
the Lebesgue space of p-integrable functions with respect to the measure ω dx by
L p(ω, D) [33,37,59]. Similar notation will be used for weighted Sobolev spaces. If
T > 0 and φ : D × (0, T ) → R, we consider φ as a function of t with values in a
Banach space X , φ : (0, T ) 
 t �→ φ(t) ≡ φ(·, t) ∈ X . For 1 ≤ p ≤ ∞, L p(0, T ; X)

is the space of X -valued functions whose norm in X is in L p(0, T ). This is a Banach
space for the norm

‖φ‖L p(0,T ;X) =
(∫ T

0
‖φ(t)‖p

X dt

) 1
p

, 1 ≤ p < ∞,

‖φ‖L∞(0,T ;X) = esssup
t∈(0,T )

‖φ(t)‖X .

Whenever X is a normed space, X ′ denotes its dual and ‖ · ‖X its norm. If, in
addition, Y is a normed space, we write X ↪→ Y to indicate continuous embedding.
The relation a � b means a ≤ Cb, with a constant C that neither depends on a or b.
The value of C might change at each occurrence.

The next result, that follows from Young’s inequality for convolutions, will be
instrumental in the analysis that we will perform.

Lemma 1 (continuity) If g ∈ L2(0, T ) and φ ∈ L1(0, T ), then the operator

g �→ Φ, Φ(t) = φ�g(t) =
∫ t

0
φ(t − r)g(r) dr

is continuous from L2(0, T ) into itself and ‖Φ‖L2(0,T ) ≤ ‖φ‖L1(0,T )‖g‖L2(0,T ).

Finally, since we assumeΩ to be convex, in what followswewill make use, without
explicit mention, of the following regularity result [31]:
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A space-fractional wave equation 181

‖w‖H2(Ω) � ‖Lw‖L2(Ω) ∀w ∈ H2(Ω) ∩ H1
0 (Ω). (2.1)

2.1 Fractional powers of second order elliptic operators

We adopt the spectral definition for the fractional powers of the operator L. To define
Ls , we begin by noticing thatL induces the following inner product aΩ(·, ·) on H1

0 (Ω)

aΩ(w, v) =
∫
Ω

(A∇x ′w · ∇x ′v + cwv) dx ′, (2.2)

and that L : H1
0 (Ω) 
 u �→ aΩ(u, ·) ∈ H−1(Ω) is an isomorphism. The eigenvalue

problem:

(λ, ϕ) ∈ R × H1
0 (Ω)\{0} : aΩ(ϕ, v) = λ(ϕ, v)L2(Ω) ∀v ∈ H1

0 (Ω) (2.3)

has a countable collection of solutions {λ�, ϕ�}�∈N ⊂ R+ × H1
0 (Ω) with the real

eigenvalues enumerated in increasing order, counting multiplicities, and such that,
{ϕ�}∞�=1 is an orthonormal basis of L2(Ω) and an orthogonal basis of (H1

0 (Ω), aΩ(·, ·))
[6,35]. With these eigenpairs at hand, we introduce, for s ≥ 0, the fractional Sobolev
space

H
s(Ω) =

{
w =

∞∑
�=1

w�ϕ� : ‖w‖2
Hs (Ω) :=

∞∑
�=1

λs
�|w�|2 < ∞

}
, (2.4)

where, for � ∈ N,w� = (w, ϕ�)L2(Ω).We denote byH−s(Ω) the dual space ofHs(Ω).
The duality pairing between the aforementioned spaces will be denoted by 〈·, ·〉. We
notice that, if s ∈ (0, 1

2 ), H
s(Ω) = Hs(Ω) = Hs

0 (Ω), while, for s ∈ ( 12 , 1), H
s(Ω)

can be characterized by [41,42,58]

H
s(Ω) = {

w ∈ Hs(Ω) : w = 0 on ∂Ω
}
.

If s = 1
2 , we have thatH

1
2 (Ω) is the so-called Lions–Magenes space H

1
2
00(Ω) [41,58].

If s ∈ (1, 2], owing to (2.1), we have that Hs(Ω) = Hs(Ω) ∩ H1
0 (Ω) [25].

The fractional powers of the operator L are thus defined by

Ls : Hs(Ω) → H
−s(Ω), Lsw :=

∞∑
�=1

λs
�w�ϕ�, s ∈ (0, 1).

2.2 Weighted Sobolev spaces

Both extensions, the one by Caffarelli and Silvestre [10] and the ones in [9,13,57] for
bounded domains Ω and general elliptic operators, require us to deal with a local but
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182 L. Banjai, E. Otárola

nonuniformly elliptic problem. To provide an analysis for the latter it is thus suitable
to define the weighted Sobolev space

◦
H1

L(yα, C) =
{
w ∈ H1(yα, C) : w = 0 on ∂LC

}
. (2.5)

Since α ∈ (−1, 1), |y|α belongs to the Muckenhoupt class A2 [22,43,59]. The follow-
ing important consequences thus follow immediately: H1(yα, C) is a Hilbert space
and C∞(Ω) ∩ H1(yα, C) is dense in H1(yα, C) (cf. [59, Proposition 2.1.2, Corol-
lary 2.1.6], [38] and [30, Theorem 1]). In addition, as [46, inequality (2.21)] shows,
the following weighted Poincaré inequality holds:

‖w‖L2(yα,C) � ‖∇w‖L2(yα,C) ∀w ∈ ◦
H1

L(yα, C). (2.6)

Thus, ‖∇w‖L2(yα,C) is equivalent to the norm in
◦

H1
L(yα, C).

We define the bilinear form a : ◦
H1

L(yα, C) × ◦
H1

L(yα, C) → R by

a(w, φ) := 1

ds

∫
C

yα
(
A(x)∇w · ∇φ + c(x ′)wφ

)
dx, (2.7)

which is continuous and, owing to (2.6), coercive on
◦

H1
L(yα, C). Consequently, it

induces an inner product on
◦

H1
L(yα, C) and the following energy norm:

‖w‖2C := a(w,w) ∼ ‖∇w‖2L2(yα,C). (2.8)

For w ∈ H1(yα, C), trw denotes its trace onto Ω × {0}. We recall that, for α =
1 − 2s, [46, Proposition 2.5] yields

tr
◦

H1
L(yα, C) = H

s(Ω), ‖ trw‖Hs (Ω) ≤ Ctr‖w‖C . (2.9)

The seminal work of Caffarelli and Silvestre [10] and its extensions to bounded
domains [9,13,57] showed that the operator Ls can be realized as the Dirichlet-to-
Neumann map for a nonuniformly elliptic boundary value problem. Namely, if U
solves ⎧⎪⎨

⎪⎩
−div

(
yαA∇U

) + cyαU = 0 in C,
U = 0 on ∂LC,
∂α
ν U = ds f on Ω × {0},

(2.10)

where α = 1 − 2s, ∂α
ν U = − limy↓0 yαUy and ds = 2αΓ (1 − s)/Γ (s) is a normal-

ization constant, then u = tr U ∈ H
s(Ω) solves

Lsu = f . (2.11)
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A space-fractional wave equation 183

3 Well-posedness and energy estimates

In this section we briefly review the results of [49] regarding the existence and unique-
ness ofweak solutions for problems (1.1) and (1.2), (1.3).We also provide basic energy
estimates.

3.1 The fractional wave equation

We assume that the data of problem (1.1) is such that f ∈ L2(0, T ; L2(Ω)), g ∈
H

s(Ω), and h ∈ L2(Ω) and define

Λ( f , g, h) := ‖ f ‖L2(0,T ;L2(Ω)) + ‖g‖Hs (Ω) + ‖h‖L2(Ω). (3.1)

Definition 1 (weak solution for (1.1)) We call u ∈ L2(0, T ;Hs(Ω)), with ∂t u ∈
L2(0, T ; L2(Ω)) and ∂2t u ∈ L2(0, T ;H−s(Ω)), a weak solution of problem (1.1) if
u(0) = g, ∂t u(0) = h and, a.e. t ∈ (0, T ),

〈∂2t u, v〉 + 〈Lsu, v〉 = 〈 f , v〉 ∀v ∈ H
s(Ω),

where 〈·, ·〉 denotes the duality pairing between H
s(Ω) and H

−s(Ω).

The following remark is in order.

Remark 1 (initial conditions) Since a weak solution u of (1.1) satisfies that u ∈
L2(0, T ;Hs(Ω)), ∂t u ∈ L2(0, T ; L2(Ω)), and ∂2t u ∈ L2(0, T ;H−s(Ω)), an
application of [52, Lemma 7.3] reveals that u ∈ C([0, T ]; L2(Ω)) and ∂t u ∈
C([0, T ];H−s(Ω)). The initial conditions involved in Definition 1 are thus appro-
priately defined.

Theorem 1 (well-posedness) Given s ∈ (0, 1), f ∈ L2(0, T ; L2(Ω)), g ∈ H
s(Ω),

and h ∈ L2(Ω), problem (1.1) has a unique weak solution. In addition,

‖u‖L∞(0,T ;Hs (Ω)) + ‖∂t u‖L∞(0,T ;L2(Ω)) � Λ( f , g, h), (3.2)

where the hidden constant is independent of the problem data.

Proof The desired results can be obtained by slightly modifying the arguments, based
on a Galerkin technique, of [24,41,52]. ��

3.2 The extended fractional wave equation

We consider the following notion of weak solution for problem (1.2), (1.3).

Definition 2 (extended weak solution) We call U ∈ L∞(0, T ; ◦
H1

L(yα, C)), with
tr ∂tU ∈ L∞(0, T ; L2(Ω)) and tr ∂2t U ∈ L2(0, T ;H−s(Ω)), a weak solution of
problem (1.2), (1.3) if trU (0) = g, tr ∂tU (0) = h and, for a.e. t ∈ (0, T ),

〈tr ∂2t U , tr φ〉 + a(U , φ) = 〈 f , tr φ〉 ∀φ ∈ ◦
H1

L(yα, C), (3.3)
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184 L. Banjai, E. Otárola

where 〈·, ·〉 denotes the duality pairing between H
s(Ω) and H

−s(Ω) and the bilinear
form a is defined as in (2.7).

Remark 2 (dynamic boundary condition) Problem (3.3) is an elliptic problem with the
following dynamic boundary condition: ∂α

ν U = ds( f − tr ∂2t U ) on Ω × {0}.
We present the following important localization result [3,7,9,10,13,18,19,60].

Theorem 2 (Caffarelli–Silvestre extension property) Let s ∈ (0, 1). If f , g, and h
are as in Theorem 1, then the unique weak solution of problem (1.1), in the sense of
Definition 1 satisfies that u = trU , where U denotes the unique weak solution to
problem (1.2), (1.3) in the sense of Definition 2.

Wenow present the well-posedness of problem (3.3) together with energy estimates
for its solution.

Theorem 3 (well-posedness) Given s ∈ (0, 1), f ∈ L2(0, T ; L2(Ω)), g ∈ H
s(Ω)

and h ∈ L2(Ω), then problem (1.2), (1.3) has a unique weak solution in the sense of
Definition 2. In addition,

‖∇U ‖L∞(0,T ;L2(yα,C)) + ‖ tr ∂tU ‖L∞(0,T ;L2(Ω)) � Λ( f , g, h), (3.4)

where the hidden constant is independent of the problem data andΛ( f , g, h) is defined
as in (3.1).

Proof See [49, Theorem 3.11]. ��
Remark 3 (initial data) The initial data g and h of problem (3.3) determineU (0) and
∂tU (0) only on Ω × {0} in a trace sense. However, in the analysis that follows it
will be necessary to consider their extension to the whole cylinder C. We thus define
U (0) = Eαg and Ut (0) = Eαh, where the α-harmonic extension operator

Eα : Hs(Ω) → ◦
H1

L(yα, C) (3.5)

is defined as follows: If w ∈ H
s(Ω), then W = Eαw ∈ ◦

H1
L(yα, C) solves

⎧⎪⎨
⎪⎩

−div(yαA∇W ) + yαcW = 0 in C,
W = 0 on ∂LC,
W = w on Ω × {0}.

(3.6)

References [9,13] provide, for w ∈ H
s(Ω), the estimate ‖∇Eαw‖L2(yα,C) �

‖w‖Hs (Ω).

3.3 Solution representation

In this section we present a solution representation formula for the solution to problem
(3.3). To accomplish this task, we first notice that the solution to problem (1.1) can

123



A space-fractional wave equation 185

be written as u(x ′, t) = ∑
k∈N uk(t)ϕk(x ′), where, for k ∈ N, the coefficient uk(t)

solves

∂2t uk(t) + λs
kuk(t) = fk(t), t > 0, uk(0) = gk, ∂t uk(0) = hk, (3.7)

with gk = (g, ϕk)L2(Ω), hk = (h, ϕk)L2(Ω), and fk(t) = ( f (·, t), ϕk)L2(Ω). We recall
that the sequence {λk, ϕk}k∈N corresponds to the eigenpairs of the operator L and are
defined by (2.3). Basic computations reveal, for k ∈ N, that

uk(t) = gk cos
(
λ

s/2
k t

)
+ hkλ

− s
2

k sin
(
λ

s/2
k t

)
+λ

− s
2

k

∫ t

0
fk(r) sin

(
λ

s/2
k (t − r)

)
dr . (3.8)

With these ingredients at hand, we can write the solution U of problem (3.3) as

U (x, t) =
∑
k∈N

uk(t)ϕk(x
′)ψk(y), (3.9)

where, for α = 1 − 2s, the functions ψk solve

⎧⎪⎨
⎪⎩

d2

dy2
ψk(y) + α

y

d

dy
ψk(y) = λkψk(y), y ∈ (0,∞),

ψk(0) = 1, lim
y→∞ψk(y) = 0.

(3.10)

If s = 1
2 , we thus have ψk(y) = exp(−√

λk y) [9, Lemma 2.10]. If s ∈ (0, 1)\{ 12 },
then [13, Proposition 2.1]

ψk(y) = cs(
√
λk y)s Ks(

√
λk y), (3.11)

where cs = 21−s/Γ (s) and Ks denotes the modified Bessel function of the second
kind.We refer the reader to [1, Chapter 9.6] and [48, Chapter 7.8] for a comprehensive
treatment of the Bessel function Ks . We immediately state the following property of
the function ψk :

lim
s→ 1

2

ψk(y) = exp(−√
λk y) ∀y > 0.

In addition, for a, b ∈ R
+, a < b, we have [46, formula (2.33)]

∫ b

a
yα

(
λkψk(y)2 + ψ ′

k(y)2
)
dy = yαψk(y)ψ ′

k(y)|ba, (3.12)

[46, formula (2.32)]

|yαψk(y)ψ ′
k(y)| � λs

ke−√
λk y, y ≥ 1, (3.13)
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186 L. Banjai, E. Otárola

and [46, formula (2.31)]

lim
y↓0+

yαψ ′
k(y)

dsλ
s
k

= −1. (3.14)

4 Regularity

In this section we review and derive space, time, and space–time regularity results for
the solution U of problem (3.3).

4.1 Space regularity

To present the space regularity properties of U , we introduce the weight

ωβ,θ (y) = yβeθ y, 0 ≤ θ < 2
√
λ1, (4.1)

where β ∈ R will be specified later. With this weight at hand, we define the norm

‖v‖L2(ωβ,θ ,C) :=
(∫ ∞

0

∫
Ω

ωβ,θ (y)|v(x ′, y)|2 dx ′ dy

) 1
2

. (4.2)

We now present the following pointwise, in time, bounds forU [49, Theorem 4.2].

Proposition 1 (pointwise bounds) Let U solve problem (1.2), (1.3) for s ∈ (0, 1).
Let 0 ≤ σ < s and 0 ≤ ν < 1 + s. Then, there exists κ > 1 such that the following
estimates hold for all � ∈ N0:

‖∂�+1
y U (·, t)‖2L2(ωα+2�−2σ,θ ,C) � κ2(�+1)(� + 1)!2‖u(·, t)‖2

Hσ+s (Ω)
, (4.3)

‖∇x ′∂�+1
y U (·, t)‖2L2(ωα+2(�+1)−2ν,θ ,C) � κ2(�+1)(� + 1)!2‖u(·, t)‖2

Hν+s (Ω)
, (4.4)

‖L∂�+1
y U (·, t)‖2L2(ωα+2(�+1)−2ν,θ ,C) � κ2(�+1)(� + 1)!2‖u(·, t)‖2

H1+ν+s (Ω)
. (4.5)

In all inequalities the hidden constants are independent of U , �, and problem data.

The result below shows the spatial analyticity of the solutionU with respect to the
extended variable y ∈ (0,∞):U belongs to countably normed, power-exponentially
weightedBochner spaces of analytic functionswith respect to y taking values in spaces
H

r (Ω).

Proposition 2 (space regularity) Let U solve (1.2), (1.3) for s ∈ (0, 1). Let 0 ≤ σ < s
and 0 ≤ ν < 1+s. Then, there exists κ > 1 such that the following regularity estimates
hold for all � ∈ N0:
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‖∂�+1
y U ‖2L2(0,T ;L2(ωα+2�−2σ,θ ,C)) � κ2(�+1)(� + 1)!2(‖g‖2

Hσ+s (Ω)

+‖h‖2
Hσ (Ω) + ‖ f ‖2L2(0,T ;Hσ (Ω))

)
, (4.6)

‖∇x ′∂�+1
y U ‖2L2(0,T ;L2(ωα+2(�+1)−2ν,θ ,C)) � κ2(�+1)(� + 1)!2(‖g‖2

Hν+s (Ω)

+‖h‖2
Hν (Ω) + ‖ f ‖2L2(0,T ;Hν (Ω))

)
. (4.7)

and

‖L∂�+1
y U ‖2L2(0,T ;L2(ωα+2(�+1)−2ν,θ ,C)) � κ2(�+1)(� + 1)!2(‖g‖2

H1+ν+s (Ω)

+‖h‖2
H1+ν (Ω)

+ ‖ f ‖2L2(0,T ;H1+ν (Ω))

)
. (4.8)

The hidden constants are independent of U , �, and the problem data.

Proof In view of (3.8) and the continuity estimate of Lemma 1, we conclude, for
k ∈ N, that

‖uk‖2L2(0,T )
� T g2

k + Tλ−s
k h2

k + T 2λ−s
k ‖ fk‖2L2(0,T )

.

The desired estimates (4.6)–(4.8) thus follow directly from (4.3)–(4.5). ��

4.2 Time regularity

We begin this section by defining, for � ∈ {1, . . . , 4},

Σ�( f , g, h) := ‖g‖H(�+1)s (Ω) + ‖h‖H�s (Ω) + ‖ f ‖L2(0,T ;H�s (Ω)). (4.9)

In addition, and to shorten notation, we define

Ξ( f , g, h) := Σ4( f , g, h) + ‖∂2t f ‖L2(0,T ;Hs (Ω)). (4.10)

We now derive regularity estimates in time for the solutionU . These estimates will
be needed in the analysis of the fully discrete schemes proposed in Sect. 6.

Theorem 4 (time-regularity) Let U be the solution to problem (1.2), (1.3) for s ∈
(0, 1). The following regularity estimates in time hold:

‖∂t∇U ‖L∞(0,T ;L2(yα,C)) � Σ1( f , g, h), (4.11)

‖∂2t ∇U ‖L∞(0,T ;L2(yα,C)) � Σ2( f , g, h), (4.12)

‖∂3t ∇U ‖L∞(0,T ;L2(yα,C)) � Σ3( f , g, h) + ‖∂t f ‖L2(0,T ;Hs (Ω)), (4.13)

‖∂4t ∇U ‖L∞(0,T ;L2(yα,C)) � Ξ( f , g, h). (4.14)

In all these inequalities the hidden constants do not depend either onU or the problem
data.
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Proof Since {ϕk}k∈N is an orthonormal basis of L2(Ω) and an orthogonal basis of
(H1

0 (Ω), aΩ(·, ·)), the definition of the energy norm ‖·‖C , given in (2.8), and the
properties (3.12) and (3.14) allow us to conclude, for � ∈ N0, that

‖∂�
t ∇U (·, t)‖2C = d−1

s

∫
C

yα
[
A∇∂�

t U (·, t) · ∇∂�
t U (·, t) + c(∂�

t U (·, t))2
]
dx

= d−1
s

∑
k∈N

(∂�
t uk(t))

2
∫ ∞

0
yα

[
λkψk(y)2 + ψ ′

k(y)2
]
dy =

∑
k∈N

(∂�
t uk(t))

2λs
k .

We have thus arrived at the estimate ‖∂�
t ∇U (·, t)‖2C = ‖∂�

t u(·, t)‖2
Hs (Ω)

.
We now invoke the explicit representation of the coefficient uk(t), with k ∈ N,

which is provided in (3.8), to obtain

∂t uk(t) = −gkλ
s/2
k sin

(
λ

s/2
k t

)
+ hk cos

(
λ

s/2
k t

)
+

∫ t

0
fk(r) cos

(
λ

s/2
k (t − r)

)
dr .

This, on the basis of the definition of the norm ‖ · ‖Hr (Ω), given in (2.4), and an
application of Lemma 1, reveal that

‖∂t∇U (·, t)‖2C �
∑
k∈N

(∂t uk(t))
2λs

k

� ‖g‖2
H2s (Ω)

+ ‖h‖2
Hs (Ω) +

∑
k∈N

λs
k‖ fk‖2L2(0,T )

,

which implies the desired estimate (4.11).
To derive (4.12) we invoke, again, the representation formula (3.8) and write

∂2t uk(t) = −gkλ
s
k cos

(
λ

s/2
k t

)
− hkλ

s/2
k sin

(
λ

s/2
k t

)
+ fk(t) − λ

s/2
k

∫ t

0
fk(r) sin

(
λ

s/2
k (t − r)

)
dr . (4.15)

We thus use the definition of the norm ‖ · ‖Hr (Ω) to arrive at (4.12).
The estimates (4.13) and (4.14) follow similar arguments upon taking derivatives

to the explicit representation of the coefficient uk(t), with k ∈ N, provided in (3.8).
This concludes the proof. ��

4.3 Space-time regularity

We present the following regularity result in space and time.

Theorem 5 (space–time regularity) Let U solve (1.2), (1.3) for s ∈ (0, 1). Let 0 ≤
σ < s and 0 ≤ ν < 1+ s. Then, there exists κ > 1 such that the following regularity
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estimates hold for all � ∈ N0:

‖∂2t ∂�+1
y U ‖2L2(0,T ;L2(ωα+2�−2σ,θ ,C)) � κ2(�+1)(� + 1)!2(‖g‖2

Hσ+3s (Ω)

+‖h‖2
Hσ+2s (Ω)

+ ‖ f ‖2L2(0,T ;Hσ+2s (Ω))

)
, (4.16)

‖∂2t ∇x ′∂�+1
y U ‖2L2(0,T ;L2(ωα+2(�+1)−2ν,θ ,C)) � κ2(�+1)(� + 1)!2(‖g‖2

Hν+3s (Ω)

+‖h‖2
Hν+2s (Ω)

+ ‖ f ‖2L2(0,T ;Hν+2s (Ω))

)
, (4.17)

and

‖∂2t L∂�+1
y U ‖2L2(0,T ;L2(ωα+2(�+1)−2ν,θ ,C)) � κ2(�+1)(� + 1)!2(‖g‖2

H1+ν+3s (Ω)

+‖h‖2
H1+ν+2s (Ω)

+ ‖ f ‖2L2(0,T ;H1+ν+2s (Ω))

)
. (4.18)

The hidden constants do not depend either on U or the problem data.

Proof Similar arguments to the ones used to derive (4.3) reveal that

‖∂2t ∂�+1
y U (·, t)‖2L2(ωα+2�−2σ,θ ,C) � κ2(�+1)(� + 1)!2‖∂2t u(·, t)‖2

Hσ+s (Ω)
.

To control the right-hand side of the previous inequality we invoke formula (4.15) and
the definition of theHr (Ω)-norm, given in (2.4). These arguments reveal the estimate

‖∂2t u(·, t)‖2
Hσ+s (Ω)

� ‖g‖2
Hσ+3s (Ω)

+ ‖h‖2
Hσ+2s (Ω)

+
∑
k∈N

λσ+s
k

(
f 2k (t) + λs

k‖ fk‖2L2(0,T )

)
.

(4.19)

This yields (4.16). Similar arguments allow us to derive the regularity estimates (4.17)
and (4.18). ��

As it will be used in the analysis that follows, we introduce

A( f , g, h) = ‖g‖H1+3s (Ω) + ‖h‖H1+2s (Ω) + ‖ f ‖L2(0,T ;H1+2s (Ω)), (4.20)

and notice that, if 0 ≤ σ < s, then

‖∂2t ∂�+1
y U ‖2L2(0,T ;L2(ωα+2�−2σ,θ ,C)) + ‖∂2t ∇x ′∂�+1

y U ‖2L2(0,T ;L2(ωα+2(�+1),θ ,C))
+‖∂2t L∂�+1

y U ‖2L2(0,T ;L2(ωα+2(�+1),θ ,C)) � κ2(�+1)(� + 1)!2A( f , g, h)2. (4.21)

As a consequence of the estimate (4.19) and the previous definition, we can imme-
diately arrive at the following regularity estimate.

Corollary 1 (space–time regularity) Let u solve (1.1) for s ∈ (0, 1). Then

‖∂2t u(t)‖H1+s (Ω) � A( f , g, h). (4.22)
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The hidden constant does not depend either on u or the problem data.

5 Truncation

A first step towards space-discretization is to truncate the semi-infinite cylinder C. In
the next resultwe show that the solutionU to problem (1.2), (1.3) decays exponentially
in the extended variable y for a.e. t ∈ (0, T ). This suggests to truncate C to CY =
Ω×(0,Y ), with a suitable truncation parameter Y , and seek solutions in this bounded
domain.

Proposition 3 (exponential decay) Let s ∈ (0, 1) andU be the solution to (3.3). Then,
for every Y ≥ 1, we have that

‖∇U ‖L2(0,T ;L2(yα,Ω×(Y ,∞))) � e−√
λ1Y /2Λ( f , g, h), (5.1)

where λ1 denotes the first eigenvalue of L and Λ( f , g, h) is defined in (3.1).

Proof We invoke (3.9) and the fact that {ϕk}k∈N is an orthonormal basis of L2(Ω) and
an orthogonal basis of (H1

0 (Ω), aΩ(·, ·)) to conclude that
∫ T

0

∫
C\CY

yα
(
A∇U · ∇U + cU 2

)
dx dt

=
∫ T

0

∑
k∈N

u2
k(t)

∫ ∞

Y
yα

(
λkψ

2
k + ψ ′

k(y)2
)
dy dt .

We now apply formulas (3.12) and (3.13) to obtain that

∫ T

0

∫
C\CY

yα
(
A∇U · ∇U + cU 2

)
dx dt

=
∑
k∈N

|Y αψk(Y )ψ ′
k(Y )|

∫ T

0
u2

k(t) dt

�
∑
k∈N

e−√
λkY λs

k‖uk‖2L2(0,T )
� e−√

λ1Y ‖u‖2L2(0,T ;Hs (Ω))
.

The desired estimate (5.1) is thus a consequence of the energy estimate (3.2) for the
solution u to problem (1.1). ��

To describe the truncated version of (3.3), we define the weighted Sobolev space

◦
H1

L(yα, CY ) =
{
w ∈ H1(yα, CY ) : w = 0 on ∂LCY ∪ ΩY

}
,
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and the bilinear form aY : ◦
H1

L(yα, CY ) × ◦
H1

L(yα, CY ) as

aY (w, φ) = 1

ds

∫
CY

yα
(
A(x)∇w · ∇φ + c(x ′)wφ

)
dx, (5.2)

where CY = Ω × (0,Y ) and ΩY = Ω × {Y }.
On the basis of the results of Proposition 3, we thus consider the following trun-

cated problem: Find U ∈ L∞(0, T ; ◦
H1

L(yα, CY )) with tr ∂tU ∈ L∞(0, T ; L2(Ω))

and tr ∂2t U ∈ L2(0, T ;H−s(Ω)) such that tr U(0) = g, tr ∂tU(0) = h, and, for a.e.
t ∈ (0, T ),

〈tr ∂2t U , tr φ〉 + aY (U , φ) = 〈 f , tr φ〉 ∀φ ∈ ◦
H1

L(yα, CY ). (5.3)

We define Hα : Hs(Ω) → ◦
H1

L(yα, CY ), the truncated α-harmonic extension oper-
ator, as follows: if w ∈ H

s(Ω), then W = Hαw solves⎧⎪⎨
⎪⎩

−div(yαA∇W) + yαcW = 0 in CY ,
W = 0 on ∂LCY ∪ ΩY ,

W = w on Ω × {0}.
(5.4)

Remark 4 (initial data) As in Remark 3, we define U(0) = Hαg and Ut (0) =
Hαh, where Hα is defined by (5.4). References [9,13] provide the estimates
‖U(0)‖L2(yα,C) � ‖g‖Hs (Ω) and ‖∂tU(0)‖L2(yα,C) � ‖h‖Hs (Ω).

The following result shows that by considering (5.3) instead of (3.3) we only incur
an exponentially small error

Lemma 2 (exponential error estimate) Let U and U be the solutions of problems (3.3)
and (5.3), respectively. Then, for every s ∈ (0, 1) and Y ≥ 1, we have

‖ tr ∂t (U − U)‖2L∞(0,T ;L2(Ω))
+ ‖∇(U − U)‖2L∞(0,T ;L2(yα,CY ))

� e−√
λ1Y /2Σ1( f , g, h), (5.5)

where Σ1 is defined by (4.9) and the hidden constant does not depend on either U ,
U , or the problem data.

Proof We begin the proof by defining the cutoff function ρ ∈ W 1,∞(0,∞) as

ρ(y) = 1, 0 ≤ y ≤ Y
2
, ρ(y) = 2

Y
(Y − y) ,

Y
2

< y < Y , ρ(y) = 0, y ≥ Y .

Notice that by a trivial zero extension we realize that U ∈ ◦
H1

L(yα, C). We are thus
allow to set φ = ∂t (U − ρU ) in problems (3.3) and (5.3). With these choices of test
functions, we subtract the ensuing equalities and obtain that

〈tr ∂2t (U − U ), tr ∂t (U − ρU )〉 + aY (U − U , ∂t (U − ρU )) = 0.
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This expression yields

1

2
∂t‖ tr ∂t (U − U )‖2L2(Ω)

+ 1

2
∂t aY (U − U ,U − U ) = aY (U − U , ∂t (ρU − U )).

We thus integrate over time and use that tr ∂t (U − U )|t=0 = 0 to arrive at

‖ tr ∂t (U − U )(t)‖2L2(Ω)
+ ‖∇(U − U )(t)‖2L2(yα,CY )

� ‖∇(U(0) − U (0))‖2L2(yα,CY )
+

∫ t

0
|aY (U − U , ∂ζ (ρU − U ))| dζ

=: I + II.

(5.6)

It thus remains to bound the right-hand side of (5.6). First, in view of the fact that
U (0) = Eαg and U(0) = Hαg, with Eα and Hα being defined as in (3.5) and (5.4),
respectively, the results of [46, Lemma 3.3] allow us to conclude the estimate

I = ‖∇(Hα − Eα)g‖L2(yα,CY ) � e−√
λ1Y /4‖g‖Hs (Ω). (5.7)

To bound the term II, we notice that if y ≤ Y /2, (ρ − 1)U ≡ 0. If y > Y /2, then

|∇(ρ − 1)∂tU |2 ≤ 2

(
4

Y 2 |∂tU |2 + |∂t∇U |2
)
.

Consequently,

‖∇(ρ − 1)∂tU ‖2L2(yα,CY )
� 1

Y 2

∫ Y

Y
2

∫
Ω

yα|∂tU |2 dx ′ dy

+
∫ Y

Y
2

∫
Ω

yα|∂t∇U |2 dx ′ dy. (5.8)

A weighted Poincaré inequality, an application of (3.12) and (3.13), as in the proof of
Proposition 3, and the use of the estimate (5.1) allow us to conclude the estimate

‖∇(ρ − 1)∂tU ‖2L2(yα,CY )
� ‖∂t∇U ‖2L2(yα,Ω×(Y /2,Y ))

≤ ‖∂t∇U ‖2L2(yα,Ω×(Y /2,∞))
� e−√

λ1Y /2‖∂t∇U ‖2L2(yα,C).

The regularity estimate (4.11) thus implies that

II ≤ Ce−√
λ1Y /2Σ2

1 ( f , g, h) + 1
2‖∇(U − U )‖2L∞(0,T ;L2(yα,CY ))

,

where C denotes a positive constant. Replacing the previous estimate for II and the
one in (5.7) for I into (5.6) we obtain the desired exponential error estimate (5.5). ��
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6 Space and time discretization

In this section we present two fully discrete schemes for approximating the solution to
problem (1.1). In viewof the localization results ofTheorem2and the exponential error
estimate (5.5) we shall thus discretize the truncated problem (5.3).We begin by setting
notation on finite element spaces and introducing a finite element approximation in
Ω .

6.1 Finite elementmethods

We follow [5] and present a scheme based on the tensorization of a first-degree FEM
inΩ with a suitable hp-FEM in the extended variable. The scheme achieves log-linear
complexity with respect to the number of degrees of freedom in Ω . To describe it, on
the interval [0,Y ], we consider geometric meshes GM

σ = {Im | m = 1, . . . M} with M
elements and grading factor σ ∈ (0, 1):

I1 = [0,Y σ M−1], Ii = [Y σ M−m+1,Y σ M−m], m ∈ {2, . . . , M}. (6.1)

Notice that the meshes GM
σ are refined towards y = 0 in order to capture the singular

behavior exhibited by the solution U on the extended variable y as described in
Propositions 1 and 2. On the aforementioned meshes, we consider a linear degree
vector r = (r1, . . . , rM ) ∈ N

M with slope s: rm := 1 + �s(m − 1)�, where m =
1, 2, ..., M . With these ingredients at hand, we define the finite element space

Sr((0,Y ),GM
σ ) =

{
vM ∈ C[0,Y ] : vM |Im ∈ Prm (Im), Im ∈ GM

σ ,m = 1, . . . , M
}

and the subspace of Sr((0,Y ),GM
σ ) containing functions that vanish at y = Y :

Sr{Y }((0,Y ),GM
σ ) =

{
vM ∈ Sr((0,Y ),GM

σ ) : vM (Y ) = 0
}
.

Let T = {K } be a conforming partition of Ω̄ into simplices K . We denote by T a
collection of conforming and shape regular meshes that are refinements of an original
mesh T0. For T ∈ T, we define hT = max{diam(K ) : K ∈ T } and N = #T , the
number of degrees of freedom of T . We introduce the finite element space:

S1
0(Ω,T ) = {

vh ∈ C(Ω̄) : vh |K ∈ P1(K ) ∀K ∈ T , vh |∂Ω = 0
}
. (6.2)

With the meshes GM
σ and T at hand, we define TY = T ⊗ GM

σ and the finite-
dimensional tensor product space

V
1,r
N ,M (TY ) := S1

0(Ω,T ) ⊗ Sr{Y }((0,Y ),GM
σ ) ⊂ ◦

H1
L(yα, CY ). (6.3)

We write V(TY ) if the arguments are clear from the context.
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Finally, we recall the standard L2(Ω)-orthogonal projection operator Πx ′ :
L2(Ω) → S1

0(Ω,T ) which is such that

(Πx ′w, W )L2(Ω) = (w, W )L2(Ω) ∀W ∈ S1
0(Ω,T ). (6.4)

If T is quasi-uniform, then [23, Lemma 1.131]

‖Πx ′w‖L2(Ω) ≤ ‖w‖L2(Ω), ‖∇Πx ′w‖L2(Ω) � ‖∇w‖L2(Ω) (6.5)

for all w ∈ H1(Ω). If, in addition, w ∈ H2(Ω), then [23, Proposition 1.134]

‖w − Πx ′w‖L2(Ω) + hT ‖∇(w − Πx ′w)‖L2(Ω) � h2
T |w|H2(Ω). (6.6)

6.2 Weighted elliptic projector

We define the weighted elliptic projector

GTY : ◦
H1

L(yα, CY ) → V(TY )

such that, for w ∈ ◦
H1

L(yα, CY ), it is given by

aY
(
GTY w, W

) = aY (w, W ) ∀W ∈ V(TY ). (6.7)

This operator is stable in
◦

H1
L(yα, CY ) [47, Proposition 26]:

‖∇GTY w‖L2(yα,CY ) � ‖∇w‖L2(yα,CY ) ∀w ∈ ◦
H1

L(yα, CY ). (6.8)

In what follows we present approximation properties for GTY .

Lemma 3 (error estimates for GTY ) Fix 0 < σ < 1 and, for each �, denote by GM
σ

the geometric mesh defined in (6.1) where Y ∼ | log hT | with a sufficiently large
constant. Assume that M is such that c1M ≤ Y ≤ c2M with absolute constants c1
and c2. Let w ∈ H

1+s(Ω). If W denotes the truncated α-harmonic extension of w,
then there exists a minimal slope smin such that for linear degree vectors r with slope
s ≥ smin there holds

‖∇(W − GTY W)‖L2(yα,CY ) � hT ‖w‖H1+s (Ω). (6.9)

In addition, if W denotes the α-harmonic extension of w, i.e., the solution to (3.6)
with w ∈ H

1+s(�) as a datum, then

‖ tr(W − GTY W )‖Hs (Ω) � ‖∇(W − GTY W )‖L2(yα,C)
� hT ‖w‖H1+s (Ω). (6.10)

The hidden constants are independent of W , W , w, and hT .
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Proof Let Π r
y,{Y } and Πx ′ be the univariate hp-interpolation operator of [5, Sec-

tion 5.5.1] and the L2(Ω)-projection operator defined in (6.4), respectively:

Π r
y,{Y } : C([0,Y ]) → Sr{Y }((0,Y ),GM

σ ), Πx ′ : L2(Ω) → S1
0(Ω,T ). (6.11)

SetW = Πx ′⊗Π r
y,{Y }W . SinceW ∈ V(TY ), Galerkin orthogonality and definition

(6.7) yield

‖∇(W − GTY W)‖2L2(yα,CY )
� aY (W − GTY W,W − W ).

It suffices to bound ‖∇(W−W )‖L2(yα,CY ). The stability properties ofΠx ′ , as described
in (6.5), reveal that

‖∇(W − W )‖L2(yα,CY ) � ‖∇(W − Πx ′W)‖L2(yα,CY )

+‖∇(W − Π r
y,{Y }W)‖L2(yα,CY ).

The estimate (6.9) thus follows from the approximation properties ofΠx ′ as described
in (6.6), the exponential interpolation error estimates of [5, Lemma 11], and the regu-
larity properties ofW [5, Theorem 1]. The estimate (6.10) follows similar arguments
by using first the exponential decay of W in the extended dimension [46, Proposi-
tion 3.1]:

‖∇(W − GTY W )‖L2(yα,C) ≤ ‖∇W ‖L2(yα,C\CY ) + ‖∇(W − GTY W )‖L2(yα,CY )

� e−√
λ1Y /2‖w‖Hs (Ω) + ‖∇(W − GTY W )‖L2(yα,CY ).

This concludes the proof. ��
The following improved estimate for the weighted elliptic projection GTY in the

L2(Ω)-norm can be obtained by invoking the estimates of Lemma 3 and the arguments
elaborated in the proof of [47, Proposition 28].

Lemma 4 (L2(Ω)-error estimates for GTY ) Let GM
σ be the geometric mesh defined in

(6.1) where Y ∼ | log hT | with a sufficiently large constant. Let w ∈ H
1+s(Ω). If W

denotes the truncated α-harmonic extension of w, then there exists a minimal slope
smin such that for linear degree vectors r with slope s ≥ smin there holds

‖ tr(W − GTY W)‖L2(Ω) � h1+s
T ‖w‖H1+s (Ω). (6.12)

In addition, if W denotes the α-harmonic extension of w, i.e., the solution to (3.6)
with w ∈ H

1+s(Ω) as a datum, then

‖ tr(W − GTY W )‖L2(Ω) � h1+s
T ‖w‖H1+s (Ω). (6.13)

The hidden constants are independent of W , W , w, and hT .
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6.3 Time discretization

Let K ∈ N be the number of time steps.We define the uniform time step asΔt = T /K ,
and we set tk = kΔt , k = 0, . . . , K . IfX is a normed space with norm ‖ · ‖X , then for
w ∈ C([0, T ];X )we denotewk = w(tk) ∈ X andwΔt = {wk}K

k=0 ⊂ X . In addition,
for wΔt ⊂ X and p ∈ [1,∞), we define

‖wΔt‖�p(X ) =
(

K∑
k=1

Δt‖wk‖p
X

) 1
p

, ‖wΔt‖�∞(X ) = max
0≤k≤K

‖wk‖X . (6.14)

For a sequence of time-discrete functionswΔt ⊂ X , we define, for k = 0, . . . , K −1,

dwk+1 := (Δt)−1(wk+1 − wk), wk+1/2 := 1
2 (wk+1 + wk). (6.15)

We also define, for k = 1, . . . , K − 1,

cwk := 1
4 (wk+1 + 2wk + wk−1) = 1

2 (wk+1/2 + wk−1/2), (6.16)

and

d2wk := (Δt)−2(wk+1 − 2wk + wk−1). (6.17)

6.4 Trapezoidal multistepmethod

Let us now describe our first fully discrete numerical scheme to solve problem (5.3).
The space discretization is based on the finite elementmethod on the truncated cylinder
CY described in Sect. 6.1. The discretization in time is based on a trapezoidal multistep
method.

The fully discrete scheme computes the sequence VΔt ⊂ V(TY ), an approximation
of the solution to (5.3) at each time step. We initialize the scheme by setting

V0 = GTY Hαg, V1 = GTY

(
Hαg + ΔtHαh + 1

2
(Δt)2∂2t U(0)

)
, (6.18)

where Hα denotes the truncated α-harmonic extension and ∂2t U(0) = Hαw with
w ∈ H

s(Ω) satisfying

〈w, tr φ〉 = −aY (U(0), φ) + 〈 f (0), tr φ〉 ∀φ ∈ ◦
H1

L(yα, CY ). (6.19)

Note that, if tr φ = 0 the previous equation is satisfied for any w.
For k = 1, . . . , K − 1, let Vk+1 ∈ V(TY ) solve

1

Δt2
〈tr(Vk+1 − 2Vk + Vk−1), tr W 〉 + aY (cVk, W ) = 〈c fk, tr W 〉 (6.20)
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for all W ∈ V(TY ), where cVk and c fk are defined in (6.16). To obtain an approximate
solution to the fractional wave equation (1.1), we define the sequence

UΔt = {Uk}K
k=0 ⊂ S1

0(Ω,T ) : UΔt := tr VΔt . (6.21)

Remark 5 (locality) The main advantage of problem (6.18)–(6.20) is that it provides
an approximated solution to the fractional wave equation (1.1) based on the resolution
of the local elliptic problem with a dynamic boundary condition (5.3).

6.4.1 Stability

To present the stability of the scheme we introduce, for k = 1, . . . , K , the uncondi-
tionally nonnegative discrete energy

Ek(WΔt ) := 1
2‖ tr dWk‖2L2(Ω)

+ 1
2‖Wk−1/2‖2C . (6.22)

Lemma 5 (energy conservation) If f ≡ 0, then the fully discrete scheme (6.18)–(6.20)
conserves energy, i.e., for all k ∈ {1, . . . , K }, we have that

Ek(VΔt ) = E1(VΔt ). (6.23)

If f �= 0, then, for � ∈ {1, . . . , K }, we have that

E�(VΔt )
1
2 ≤ E1(VΔt )

1
2 + 1√

2

�∑
k=1

Δt‖c fk‖L2(Ω). (6.24)

In particular, we have that EK (VΔt )
1
2 ≤ E1(VΔt )

1
2 + 1√

2
‖c f ‖�1(L2(Ω)).

Proof Set W = (2Δt)−1(Vk+1 − Vk−1) = 2−1(dVk+1 + dVk) = (Δt)−1(Vk+1/2 −
Vk−1/2) in (6.20). Basic computations reveal that

1

Δt
(Ek+1(VΔt ) − Ek(VΔt )) = 1

2
〈c fk, tr(dVk+1 + dVk)〉. (6.25)

If f ≡ 0, the previous relation immediately yields (6.23). If f �= 0, an application of
the Cauchy–Schwarz inequality allows us to conclude

Ek+1(VΔt ) − Ek(VΔt ) ≤ Δt√
2
‖c fk‖L2(Ω)

(
Ek+1(VΔt )

1
2 + Ek(VΔt )

1
2

)
,

which yields Ek+1(VΔt )
1
2 − Ek(VΔt )

1
2 ≤ Δt√

2
‖c fk‖L2(Ω). Adding over � we arrive at

the desired estimate (6.24). This concludes the proof. ��
Let us now show the stability of the scheme.
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Lemma 6 (stability) The fully discrete scheme (6.18)–(6.20) is stable, namely, for
� ∈ {1, . . . , K }, we have that

‖ tr dV�‖L2(Ω) + ‖V�−1/2‖C � ‖ tr dV1‖L2(Ω) + ‖V1/2‖C +
�∑

k=1

Δt‖c fk‖L2(Ω),

where the hidden constant is independent of VΔt and Δt .

Proof The proof follows immediately from (6.24). ��

6.4.2 Error analysis

Let us now present an error analysis for the fully discrete scheme (6.18)–(6.20). To
accomplish this task, we introduce the error eΔt := VΔt − UΔt and write, as usual,

eΔt = (VΔt − GTY UΔt ) + (GTY UΔt − UΔt ) =: ΘΔt + PΔt . (6.26)

The control of PΔt follows from (6.9) and (6.12): For � ∈ {0, 1, 2}, we have the error
estimates

‖∂�
t ∇ PΔt‖�2(L2(yα,CY )) � hT A( f , g, h) (6.27)

and

‖∂�
t tr PΔt‖�2(L2(Ω)) � h1+s

T A( f , g, h), (6.28)

where A( f , g, h) is defined in (4.20). Notice that to obtain the estimates (6.27) and
(6.28) the regularity estimates of Corollary 1 are essential.

In what follows we bound the sequence ΘΔt .

Lemma 7 (error estimate forΘΔt ) Let U be the solution to (5.3) and let VΔt be its fully
discrete approximation defined as the solution to (6.18)–(6.20). If A( f , g, h) < ∞
and Ξ( f , g, h) < ∞, then

EK (ΘΔt )
1
2 � h1+s

T A( f , g, h) + (Δt)2Ξ( f , g, h), (6.29)

where ΘΔt = VΔt − GTY UΔt , A( f , g, h) and Ξ( f , g, h) are defined in (4.20) and
(4.10), respectively, and the hidden constant is independent of VΔt , U , Δt , and hT .

Proof We proceed in three steps.
Step 1. We invoke the continuous problem (5.3), the discrete equation (6.20), and

the definition of GTY , given by (6.7), to arrive at the problem that controls the error:
For k = 1, . . . , K − 1, Θk+1 ∈ V(TY ) solves

1

Δt2
〈tr(Θk+1 − 2Θk + Θk−1), tr W 〉 + aY (cΘk, W )

= 〈tr[c∂2t U(tk) − d2GTY U(tk)], tr W 〉 ∀W ∈ V(TY ), (6.30)
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where c∂2t U(tk) and d2GTY U(tk) are defined by (6.16) and (6.17), respectively. On
the other hand, in view of Remark 4 and (6.18), we have that

Θ0 = GTY (Hαg − U(0)) = 0,

and

Θ1 = GTY

(
Hαg + ΔtHαh + 1

2
(Δt)2∂2t U(0) − U(t1)

)
.

Now, we write, for k ≥ 1, the difference c∂2t U(tk) − d2GTY U(tk) as follows:

c∂2t U(tk) − d2GTY U(tk) =
[
∂2t U(tk) − d2U(tk)

]
+

[
d2U(tk) − d2GTY U(tk)

]
+Δt

4

[
d∂2t U(tk+1) − d∂2t U(tk)

]
=: Ik + IIk + IIIk .

We thus apply the stability estimate (6.24) to (6.30) and obtain

EK (ΘΔt )
1
2 ≤ E1(ΘΔt )

1
2 + 1√

2
‖δΔt‖�1(L2(Ω)), (6.31)

where δΔt = {δk}K−1
k=1 and δk = tr[c∂2t U(tk) − d2GTY U(tk)].

Step 2. We proceed to control the term ‖δΔt‖�1(L2(Ω)). First, notice that

‖δΔt‖�1(L2(Ω)) ≤
K−1∑
k=1

Δt
(‖ tr Ik‖L2(Ω) + ‖ tr IIk‖L2(Ω)

+‖ tr IIIk‖L2(Ω)

)
. (6.32)

To control ‖ tr Ik‖L2(Ω) we employ a basic result based on Taylor’s Theorem. In
fact, for k ≥ 1, we have

‖ tr Ik‖L2(Ω) � (Δt)2 sup
z

‖ tr ∂4t U(·, z)‖L2(Ω). (6.33)

Now, notice that in view of (6.26)we have that IIk = −d2P(tk). The same argument
that yields (6.33) allow us to conclude the estimate

‖ tr IIk‖L2(Ω) � ‖ tr ∂2t P(tk)‖L2(Ω) + (Δt)2 sup
z

‖ tr ∂4t P(·, z)‖L2(Ω).

We invoke the trace estimate (2.9) and the stability estimate (6.8) of the weighted
elliptic projection to conclude, for z ∈ (0, T ), that ‖ tr ∂4t P(·, z)‖L2(Ω) is bounded by

‖ tr ∂4t (U − GTY U)(·, z)‖L2(Ω) � ‖ tr ∂4t U(·, z)‖L2(Ω) + ‖∇∂4t U(·, z)‖L2(yα,CY ).
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Consequently, an application, again, of the trace estimate allows us to conclude an
estimate for tr IIk :

‖ tr IIk‖L2(Ω) � h1+s
T A( f , g, h) + (Δt)2‖∇∂4t U‖L∞(0,T ;L2(yα,CY ), (6.34)

where we have used (6.28) with � = 2; A( f , g, h) is defined in (4.20).
We finally bound IIIk . To accomplish this task, we invoke an argument based on

Taylor’s Theorem. In fact, for k ≥ 1, we have

‖ tr IIIk‖L2(Ω)

= Δt
4 ‖ tr[∂3t U(·, tk+1) + Δt

2 ∂4t U(·, z) − ∂3t U(·, tk) − Δt
2 ∂4t U(·, z)]‖L2(Ω)

� (Δt)2‖ tr ∂4t U‖L∞(0,T ;L2(Ω)), (6.35)

where z and z belong to (tk−1, tk+1).
Replacing the estimates (6.33), (6.34), and (6.35) into (6.32) we arrive at

‖δΔt‖�1(L2(Ω)) � h1+s
T A( f , g, h) + (Δt)2‖∂4t ∇U‖L∞(0,T ;L2(yα,CY )). (6.36)

Step 3. We bound E1(ΘΔt ). Since Θ0 = 0, we utilize (6.15) and write

E1(ΘΔt ) = 1

2
‖ tr dΘ1‖2L2(Ω)

+ 1

2
‖Θ1/2‖2C

= 1

2(Δt)2
‖ trΘ1‖2L2(Ω)

+ 1

8
‖Θ1‖2C .

In view of the trace estimate (2.9) and the stability property of GTY , given in (6.8),
we can thus conclude that

‖ trΘ1‖L2(Ω) � ‖Θ1‖C
� ‖U(0) + ΔtUt (0) + 1

2 (Δt)2∂2t U(0) − U(t1)‖C .
(6.37)

An application of Taylor’s Theorem reveals that

‖ trΘ1‖L2(Ω) � ‖Θ1‖C � (Δt)3‖∂3t ∇U‖L∞(0,T ;L2(yα,CY )),

which immediately yields

E1(ΘΔt )
1
2 � (Δt)2‖∂3t ∇U‖L∞(0,T ;L2(yα,CY )). (6.38)

The desired estimate follows from replacing (6.36) and (6.38) into (6.31) and using
the time-regularity results of Theorem 4. ��

The exponential error estimate of Lemma 2 combined with the error estimate of
Lemma 7 allow us to conclude the following error estimates.
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Lemma 8 (error estimates for (6.18)–(6.20)) Let U be the solution to (3.3) and let
VΔt be the solution to the fully discrete problem (6.18)–(6.20). If A( f , g, h) < ∞ and
Ξ( f , g, h) < ∞ then, we have the following error estimates

‖ tr(∂tU (tK−1/2) − dVK )‖L2(Ω) � h1+s
T A( f , g, h)

+(Δt)2Ξ( f , g, h), (6.39)

and

‖U (tK−1/2) − VK−1/2‖C � hT A( f , g, h) + (Δt)2Ξ( f , g, h), (6.40)

where A( f , g, h) and Ξ( f , g, h) are defined by (4.20) and (4.10), respectively, and
the hidden constants are independent of VΔt , U , U , Δt , and hT .

Proof We proceed in several steps.
Step 1. We begin with the following trivial application of the triangle inequality:

‖ tr[∂tU (tK−1/2) − dVK ]‖L2(Ω) ≤ ‖ tr ∂t [U (tK−1/2) − U(tK−1/2)]‖L2(Ω)

+‖ tr[∂tU(tK−1/2) − dVK ]‖L2(Ω) =: I + II. (6.41)

To control the term I we invoke the exponential error estimate (5.5). The latter yields

I = ∥∥tr ∂t [U (tK−1/2) − U(tK−1/2)]
∥∥

L2(Ω)
� e−√

λ1Y /2Σ1( f , g, h).

The control of the term II is as follows:

II ≤ ∥∥tr[∂tU(tK−1/2) − dUK ]∥∥L2(Ω)
+ ‖tr deK ‖L2(Ω) =: II1 + II2,

where we recall that eK = VK −UK . Replace the obtained estimates into (6.41). This
yields

‖ tr[∂tU (tK−1/2) − dVK ]‖L2(Ω) � e−√
λ1Y /2Σ1( f , g, h) + II1 + II2. (6.42)

Step 2. The control of II1 = ‖ tr[∂tU(tK−1/2)− dUK ]‖L2(Ω) follows from a simple
application of Taylor’s Theorem. In fact, we have that

II1 =
∥∥∥tr (

∂tU(tK−1/2) − UK −UK−1
Δt

)∥∥∥
L2(Ω)

� (Δt)2 sup
z

‖ tr ∂3t U(·, z)‖L2(Ω).

We now focus on the term II2 = ‖ tr deK ‖L2(Ω). The triangle inequality yields

II2 ≤ ‖ tr dΘK ‖L2(Ω) + ‖ tr dPK ‖L2(Ω).
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The result of Lemma 7 implies that

‖ tr dΘK ‖L2(Ω) � h1+s
T A( f , g, h)

+(Δt)2Ξ( f , g, h). (6.43)

The control of ‖ tr dPK ‖L2(Ω) follows the same arguments used to bound II1 :

‖ tr dPK ‖L2(Ω) = (Δt)−1‖ tr(PK − PK−1)‖L2(Ω)

� ‖ tr ∂t P(tK−1/2)‖L2(Ω) + (Δt)2‖ tr ∂3t P‖L∞(0,T ;L2(Ω)).

The stability property (6.8) and the estimate (6.28) imply the estimates

‖ tr dPK ‖L2(Ω) � ‖ tr ∂t P‖L∞(0,T ;L2(Ω)) + (Δt)2‖∇∂3t U‖L∞(0,T ;L2(yα,CY )

� h1+s
T A( f , g, h) + (Δt)2‖∇∂3t U‖L∞(0,T ;L2(yα,CY ).

The previous estimate combined with (6.43) allow us to control II2. Replacing the
obtained estimates for II1 and II2 into (6.42) yield the desired estimate (6.39).

Step 3. To obtain (6.40) we invoke similar arguments upon using the estimate

‖PK−1/2‖C � ‖PK ‖C + ‖PK−1‖C � ‖∇ PΔt‖�∞(L2(yα,CY )) � hT A( f , g, h).

This concludes the proof. ��
The following error estimates follow immediately from Lemma 8 and show how

the fully discrete approximation UΔt approximates u.

Theorem 6 (error estimates for (6.21)) Let u be the solution to (1.1) and let UΔt be its
fully discrete approximation defined by (6.21). If A( f , g, h) < ∞ and Ξ( f , g, h) <

∞, then

‖∂t u(tK−1/2) − dUK ‖L2(Ω) � h1+s
T A( f , g, h) + (Δt)2Ξ( f , g, h), (6.44)

and

‖u(tK−1/2) − UK−1/2‖Hs (Ω) � hT A( f , g, h) + (Δt)2Ξ( f , g, h), (6.45)

where A( f , g, h) and Ξ( f , g, h) are defined by (4.20) and (4.10), respectively, and
the hidden constants are independent of UΔt , u, Δt , and hT .

6.5 The leapfrog scheme

We now present a second fully discrete scheme to approximate the solution to (1.1).
To advance in time we use the leapfrog time-stepping method while the discretization
in space is based on the finite element method described in Sect. 6.1. The scheme
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computes a sequence VΔt ⊂ V(TY ), an approximation to the solution to (5.3) at each
time step. To begin with the description of the scheme, we first initialize it by setting

V0 = GTY Hαg, V1 = GTY

(
Hαg + ΔtHαh + 1

2
(Δt)2∂2t U(0)

)
, (6.46)

where ∂2t U(0) = Hαw and w solves (6.19). For k = 1, . . . , K − 1, Vk+1 ∈ V(TY )

solves

1

Δt2
〈tr(Vk+1 − 2Vk + Vk−1), tr W 〉 + aY (Vk, W ) = 〈 fk, tr W 〉 (6.47)

for all W ∈ V(TY ). As in the previous section, we define an approximated solution
to problem (1.1) as

UΔt = {Uk}K
k=0 ⊂ S1

0(Ω,T ), UΔt = tr VΔt . (6.48)

Note that in the k-th step we can assume to have tr Vk and tr Vk−1 already computed.
However, to be able to compute aY (Vk, W ) we need the discrete function Vk on the
whole cylinder CY . The function Vk can be obtained by solving the following discrete
problem: Find Vk ∈ V(TY ), an extension of tr Vk , such that

aY (Vk, W ) = 0 ∀W ∈ V(TY ) : tr W = 0.

Hence, the leapfrog scheme when applied to our problem requires the resolution of a
linear system at each time step even when using mass-lumping. As a consequence of
the nonlocality of (−Δ)s , the explicit nature of the leapfrog scheme seems to be lost.
Further details on the implementation of this scheme are given in Sect. 8.2.

In the analysis that follows, the following discrete inverse inequality will be instru-
mental.

Lemma 9 (discrete inverse inequality) Let η ∈ H
−s(Ω) and let X ∈ V(TY ) be the

solution to

aY (X , W ) = 〈η, tr W 〉 ∀W ∈ V(TY ). (6.49)

We thus have that ‖X‖C � ‖ tr X‖Hs (Ω) and that

‖X‖C ≤ Cinvh−s
T ‖ tr X‖L2(Ω), (6.50)

for some constant Cinv > 0

Proof Define Z := tr X ∈ S1
0(Ω,T ). There exists χ ∈ ◦

H1
L(yα, CY ) such that tr χ =

Z . In fact χ = Hα Z , where Hα is defined in (5.4).
Let us introduce the operator Π̃ = Πx ′ ⊗ Π̃ r

y , where Π̃ r
y is a slight modification

of the operator of [5, Section 5.5.1]: on the first interval I1, interpolation at the edge
point 0 is used rather than in the middle point of I1. The operator Πx ′ corresponds
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to the L2(Ω)-orthogonal projection operator defined in (6.4). Define X̃ = Π̃χ and
notice that the stability properties of Π̃ and Π̃ r

y yield

‖X̃‖C � ‖χ‖C .

This, in view of the fact that ‖χ‖C � ‖Z‖Hs (Ω), implies ‖X̃‖C � ‖Z‖Hs (Ω).
Now, since Z ∈ S1

0(Ω,T ), we have that tr X̃ = tr χ = Z = tr X and then that
tr(X − X̃) = 0. Since X − X̃ ∈ V(TY ), we can thus invoke problem (6.49) and
conclude that

aY (X , X − X̃) = 〈η, tr(X − X̃)〉 = 0,

which yields

aY (X̃ , X̃) = aY ((X̃ − X) + X , (X̃ − X) + X)

= aY ((X̃ − X), (X̃ − X)) + aY (X , X) ≥ aY (X , X).

This immediately implies that ‖X‖C ≤ ‖X̃‖C, and thus, since ‖X̃‖C � ‖Z‖Hs (Ω), we
can conclude that

‖X‖C � ‖Z‖Hs (Ω).

Since Z = tr X , we have thus obtained the desired estimate ‖X‖C � ‖ tr X‖Hs (Ω).
The estimate (6.50) thus follows, for instance, from the results of [17]. ��

6.5.1 Stability

To analyze the fully discrete scheme (6.46), (6.47), we define, for k = 1, . . . , K , the
discrete energy

Ek(WΔt ) := 1
2‖ tr dWk‖2L2(Ω)

+ 1
2aY (Wk, Wk−1), (6.51)

where the bilinear form aY is defined in (5.2).
In the result that follows we show the nonnegativity of the discrete energy Ek under

the following CFL condition: Δt is chosen to be sufficiently small such that

1 − C
2

inv
(Δt)2

2h2s
T

≥ θ > 0, θ ∈ (0, 1). (6.52)

The constant Cinv is as in (6.50).
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Lemma 10 (CFL condition and nonnegativity of Ek) If (6.52) holds, then

Ek(VΔt ) ≥ θ

2
‖ tr dVk‖2L2(Ω)

+ 1

4

[
‖Vk‖2C + ‖Vk−1‖2C

]
≥ 0 (6.53)

for all k ∈ {1, · · · , K }.

Proof We invoke the inverse inequality (6.50) and the CFL condition (6.52) to arrive
at

2aY (Vk, Vk−1) = ‖Vk‖2C + ‖Vk−1‖2C − ‖Vk − Vk−1‖2C
≥ ‖Vk‖2C + ‖Vk−1‖2C − C2

invh−2s
T ‖ tr(Vk − Vk−1)‖2L2(Ω)

≥ ‖Vk‖2C + ‖Vk−1‖2C + 2(θ − 1)‖ tr dVk‖2L2(Ω)
,

where, in the last step, we have used definition (6.15). Consequently,

Ek(VΔt ) ≥ 1

2
‖ tr dVk‖2L2(Ω)

+ 1

4
‖Vk‖2C + 1

4
‖Vk−1‖2C + (θ − 1)

2
‖ tr dVk‖2L2(Ω)

,

which immediately yields (6.53). This concludes the proof. ��

Lemma 11 (energy conservation) If f ≡ 0, then the fully discrete scheme (6.46),
(6.47) conserves energy, i.e., for all k ∈ {1, . . . , K }, we have that

Ek(VΔt ) = E1(VΔt ). (6.54)

If f �= 0, then, for � ∈ {1, . . . , K }, we have that

E�(VΔt )
1
2 ≤ E1(VΔt )

1
2 + 1√

2θ

�∑
k=1

Δt‖ fk‖L2(Ω). (6.55)

In particular, we have that EK (VΔt )
1
2 ≤ E1(VΔt )

1
2 + 1√

2θ
‖ f ‖�1(L2(Ω)).

Proof Set W = (2Δt)−1(Vk+1 − Vk−1) = 2−1(dVk+1 + dVk) in (6.47). This yields

1

Δt
(Ek+1(VΔt ) − Ek(VΔt )) = 1

2
〈 fk, tr(dVk+1 + dVk)〉. (6.56)

In the case that f ≡ 0, (6.56) immediately yields (6.54). If f �= 0, a trivial application
of the Cauchy–Schwarz inequality reveals that

Ek+1(VΔt ) − Ek(VΔt ) ≤ Δt

2
‖ fk‖L2(Ω)

(‖ tr dVk+1‖L2(Ω) + ‖dVk‖L2(Ω)

)
.
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Invoke the estimate (6.53) and conclude, for k ∈ {1, . . . , K − 1}, that Ek(VΔt ) ≥
(θ/2)‖ tr dVk‖2L2(Ω)

. Thus,

Ek+1(VΔt ) − Ek(VΔt ) ≤ Δt√
2θ

‖ fk‖L2(Ω)

(
E

1
2

k+1(VΔt ) + E
1
2

k (VΔt )

)
.

Consequently, we arrive at Ek+1(VΔt )
1
2 − Ek(VΔt )

1
2 ≤ (Δt/

√
2θ)‖ fk‖L2(Ω) which,

by adding over �, yields (6.55). This concludes the proof. ��
Lemma 12 (stability) The fully discrete scheme (6.46), (6.47) is stable: for � ∈
{1, . . . , K }, we have that

‖ tr dV�‖L2(Ω) + ‖V�‖C � ‖ tr dV1‖L2(Ω) + ‖V0‖C

+‖V1‖C +
�∑

k=1

Δt‖ fk‖L2(Ω), (6.57)

where the hidden constant is independent of VΔt , Δt and hT but depends on the
parameter θ .

Proof We begin by noticing that (6.53) yields

‖ tr dV�‖L2(Ω) + ‖V�‖C � (θ−1/2 + 1)El(VΔt )
1
2 . (6.58)

Now, since

2aY (V1, V0) = aY (V1, V1) + aY (V0, V0) − aY (V1 − V0, V1 − V0)

≤ aY (V1, V1) + aY (V0, V0),

an application of the estimate (6.55) allows us to conclude that

E�(VΔt )
1
2 � ‖ tr dV1‖L2(Ω) + ‖V0‖C + ‖V1‖C + 1√

θ

�∑
k=1

Δt‖ fk‖L2(Ω).

The desired estimate (6.57) thus follows from replacing the previous estimate into
(6.58). This concludes the proof. ��

6.5.2 Error analysis

We now present error estimates for the fully discrete approximation UΔt defined in
(6.48) that is based on the solution VΔt to the fully discrete scheme (6.46), (6.47). The
arguments are similar to the ones used to prove the results in Lemma 7, Lemma 8, and
Theorem 6. For brevity we leave details to the reader.
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Theorem 7 (error estimates for (6.48)) Let u be the solution to (1.1) and let UΔt be its
fully discrete approximation defined by (6.48). If A( f , g, h) < ∞ and Ξ( f , g, h) <

∞, then

‖∂t u(tK−1/2) − dUK ‖L2(Ω) � h1+s
T A( f , g, h) + (Δt)2Ξ( f , g, h), (6.59)

and

‖u(tK ) − UK ‖Hs (Ω) � hT A( f , g, h) + (Δt)2Ξ( f , g, h), (6.60)

where A( f , g, h) and Ξ( f , g, h) are defined by (4.20) and (4.10), respectively, and
the hidden constants are independent of UΔt , u, Δt , and hT .

6.6 Computable data

In (6.18) we considered

V0 = GTY Hαg, V1 = GTY

(
Hαg + ΔtHαh + 1

2
(Δt)2∂2t U(0)

)
(6.61)

as initial data for the fully discrete schemes of Sects. 6.4 and 6.5. Since the action of
Hα involves the resolution of a problem posed on an infinite dimensional space, we
immediately conclude that the initial data V0 and V1 are not computable.

To overcome this deficiency, we introduce the discrete extension operator HT
α ,

which is defined as follows: if e ∈ S1
0(Ω,T ), thenHT

α e := E ∈ V(TY ) is such that

aY (E, W ) = 0 ∀W ∈ V(TY ) : tr W = 0, tr E = e.

WithHT
α at hand, we define the following computable initial data:

Ṽ0 = HT
α Πx ′ g, Ṽ1 = HT

α

(
Πx ′ g + ΔtΠx ′h + 1

2
(Δt)2Z

)
, (6.62)

where Z ∈ S1
0(Ω,T ) solves 〈Z , tr W 〉 = −aY (Ṽ0, W ) + 〈 f (0), tr W 〉 for all W ∈

V(TY ). Notice that Z corresponds to a finite element approximation of tr ∂2t U(0).
If we consider Ṽ0 and Ṽ1, instead of V0 and V1, as initial data for the schemes of

Sects. 6.4 and 6.5, then, to provide an a priori error analysis, it is necessary to modify
the first two elements of the sequence ΘΔt , defined in (6.26), as follows:

Θ0 = Ṽ0 − GTY U(t0), Θ1 = Ṽ1 − GTY U(t1).

In particular, it suffices to estimate

E1(ΘΔt )
1
2 =

(
1
2‖ tr dΘ1‖2L2(Ω)

+ 1
2‖Θ1/2‖2C

) 1
2
.
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We present the following error estimates.

Lemma 13 (error estimates for Θ0 and Θ1) If (V0, V1) and (Ṽ0, Ṽ1) are defined by
(6.61) and (6.62), respectively, then

‖Θ0‖C � hT ‖g‖H1+s (Ω), (6.63)

and

‖Θ1‖C � hT A( f , g, h) + (Δt)2Ξ( f , g, h), (6.64)

where A( f , g, h) and Ξ( f , g, h) are defined by (4.20) and (4.10), respectively, and
the hidden constants are independent of g, h, (V0, V1), (Ṽ0, Ṽ1), and hT .

Proof Since V0, Ṽ0 ∈ V(TY ), we can invoke property (6.7) and conclude that

‖Ṽ0 − V0‖2C = aY (Ṽ0 − V0, Ṽ0−GTY HαΠx ′ g)+aY (Ṽ0−V0, GTY Hα(Πx ′ g−g))

= aY (Ṽ0 − V0, Ṽ0 − HαΠx ′ g)+aY (Ṽ0 − V0,Hα(Πx ′ g − g))= I+II.

To bound I, we notice that tr(Ṽ0 −HαΠx ′ g) = 0. On the other hand, V0 − Ṽ0 satisfies

aY (V0 − Ṽ0, W ) = 0 ∀W ∈ V(TY ) : tr W = 0

and tr(V0 − Ṽ0) = tr GTY Hαg −Πx ′ g. Consequently, I = 0. Now, sinceHα satisfies
‖Hαw‖C � ‖w‖Hs (Ω) for all w ∈ H

s(Ω), we arrive at

|II| � ‖Ṽ0 − V0‖C‖g − Πx ′ g‖Hs (Ω) � hT ‖V0 − V0‖C‖g‖H1+s (Ω).

Since I = 0, the estimate for II yields (6.63).
We now control ‖Θ1‖C . A basic application of the triangle inequality together with

estimate (6.37) reveal that

‖Θ1‖C ≤ ‖Ṽ1 − V1‖C + ‖V1 − GTY U(t1)‖C
� ‖Ṽ1 − V1‖C + (Δt)3‖∂3t ∇U‖L∞(0,T ;L2(yα,CY )).

It thus suffices to bound ‖Ṽ1 − V1‖C . To accomplish this task, we first notice that a
simple application of Taylor’s Theorem yields

Ṽ1 = HT
α Πx ′

[
tr U(0) + Δt tr ∂tU(0) + (Δt)2

2 tr ∂2t U(0)
]

+ (Δt)2

2 HT
α (Z − Πx ′ tr ∂2t U(0)) = HT

α Πx ′
[
tr U(t1) − (Δt)3

6 tr ∂3t U(ζ )
]

+ (Δt)2

2 HT
α (Z − Πx ′ tr ∂2t U(0)), (6.65)

123



A space-fractional wave equation 209

with ζ ∈ (0, t1). Similar arguments allow us to conclude that

V1 = GTY

(
U(t1) − (Δt)3

6
∂3t U(ζ )

)
, (6.66)

with ζ ∈ (0, t1). Consequently,

‖Ṽ1 − V1‖C � ‖HT
α Πx ′ tr U(t1) − GTY U(t1)‖C

+ (Δt)3‖∂3t ∇U‖L∞(0,T ;L2(yα,C))
+ (Δt)2‖HT

α (Z − Πx ′ tr ∂2t U(0))‖C = I + II + III.

To estimate I we invoke the same arguments that lead to (6.63):

I � hT ‖ tr U(t1)‖H1+s (Ω) � hT ‖ tr U‖L∞(0,T ;H1+s (Ω)).

Abound for the term III follows from stability results. The collection of these estimates
yield (6.64) ��
Lemma 14 (estimate for E1(ΘΔt )) If we consider Ṽ0 and Ṽ1 as initial data for the
schemes of Sects. 6.4 and 6.5, we then have that

‖ tr dΘ1‖L2(Ω) = 1

Δt
‖ tr(Θ1 − Θ0)‖L2(Ω)

� h1+s
T A( f , g, h) + (Δt)2Ξ( f , g, h),

(6.67)

and

‖Θ1/2‖C � ‖Θ0‖C + ‖Θ1‖C � hT A( f , g, h) + (Δt)2Ξ( f , g, h), (6.68)

where A( f , g, h) and Ξ( f , g, h) are defined by (4.20) and (4.10), respectively, and
the hidden constants are independent of g, h, (V0, V1), (Ṽ0, Ṽ1), and hT

Proof The proof of (6.68) follows directly from the estimates (6.63) and (6.64). In
what follows we derive (6.67). To accomplish this task and simplify notation, we
define

D(U) := U(0) + Δt∂tU(0) + 1

2
(Δt)2∂2t U(0).

Now, notice that

‖ tr(Θ1 − Θ0)‖L2(Ω) = ‖ tr(Ṽ1 − GTY U(t1) − Ṽ0 + GTY U(0))‖L2(Ω)

≤ ‖ tr(Ṽ1 − D(GTY U) − Ṽ0 + GTY U(0))‖L2(Ω)

+‖ tr(D(GTY U) − GTY U(t1))‖L2(Ω).
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The trace estimate (2.9), the stability property (6.8) and an application of Taylor’s
Theorem reveal that

‖ tr(D(GTY U) − GTY U(t1))‖L2(Ω) � ‖D(GTY U) − GTY U(t1)‖C
� ‖D(U) − U(t1)‖C � (Δt)3‖∂3t ∇U(·, z)‖L∞(0,T ;L2(yα,C)).

We now use the definitions of Ṽ0 and Ṽ1 to arrive at

‖ tr(Ṽ1 − D(GTY U) − Ṽ0 + GTY U(0))‖L2(Ω)

≤ (Δt)‖Πx ′h − tr GTY ∂tU(0)‖L2(Ω) + (Δt)2‖Z − tr GTY ∂
2
t U(0)‖L2(Ω).

To bound ‖Πx ′h − tr GTY ∂tU(0)‖L2(Ω) we proceed as follows:

‖Πx ′h − tr GTY ∂tU(0)‖L2(Ω) ≤ ‖Πx ′h − h‖L2(Ω)

+‖ tr ∂tU(0) − tr GTY ∂tU(0)‖L2(Ω) � h1+s
T (‖h‖H1+s (Ω) + A( f , g, h)),

where we have used (6.28) with � = 1. Similar arguments allow us to control ‖Z −
tr GTY ∂

2
t U(0)‖L2(Ω). This concludes the proof. ��

Remark 6 (influence of computable data in error estimates) If (Ṽ0, Ṽ1) are used as
initial data for the trapezoidal multistep method of Sect. 6.4 and the leapfrog scheme
of Sect. 6.5, then the error estimates of Theorems 6 and 7 hold with no modifications.

7 Polygonal domains ⊂ R
2

In this section, we let Ω ⊂ R
2 be an open and bounded, but not necessarily convex,

polygon and provide a priori error estimates for the trapezoidal multistep method
(6.18)–(6.21). Notice that the error estimates that we have previously derived for this
scheme, i.e., estimates (6.44) and (6.45), rely on the convexity of the domainΩ . Given
g ∈ H−1(Ω), we consider the Dirichlet problem

Lw = g in Ω, w = 0 on ∂Ω. (7.1)

It is immediate that problem (7.1) has a unique solution w ∈ H1
0 (Ω). However, in

general the solution w /∈ H2(Ω), even if g ∈ C∞(Ω̄) [31]. More precisely, for every
ε > 0, there exists a polygonΩε and a smooth function gε such that the corresponding
solutionwε does not belong to H3/2+ε(Ωε) [53]. However, under additional regularity
assumptions on A, c, and g, a regularity analysis can be carried out inweighted function
spaces related to the geometry of ∂Ω; see Proposition 4 below.

7.1 Regularity estimates in weighted spaces

LetΩ ⊂ R
2 be an open and bounded, but not necessarily convex, polygonwith straight

sides and corners {c} and β ≥ 0. We define the weight and the weighted Lebesgue
space
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Ω 
 x �→ Φ(x) =
∏
c

|x − c|, L2
β(Ω) = L2(Φ2β,Ω).

We also define H2
β (Ω) as the closure of H2(Ω) ∩ H1

0 (Ω) with respect to the norm

‖v‖H2
β (Ω) = ‖v‖H1(Ω) + ‖D2v‖L2(Φ2β ,Ω). (7.2)

With this setting at hand, we present the following regularity result for (7.1).

Proposition 4 (weighted regularity estimate)Let A ∈ W 1,∞(Ω,GL(R2))be uniformly
positive definite and c ∈ W 1,∞(Ω,R) with c ≥ 0. Then, there exists β ∈ [0, 1),
depending only on Ω , A, and c, such that for g ∈ L2

β(Ω) the solution w of (7.1)

belongs to H2
β (Ω). In addition, the solution w satisfies the estimate

‖w‖H2
β (Ω) � ‖Lw‖L2

β (Ω) = ‖g‖L2
β(Ω), (7.3)

where the hidden constant is independent of g.

Proof The result follows from [4, Theorem 1.1]. To observe this, it suffices to set, in
the notation of that reference, m = 1, b j = 0, and β = 1 − a. ��

The following space regularity estimates follow from Propositions 2 and 4.

Theorem 8 (global regularity of U : weighted estimates in Ω) Let A and c satisfy
the assumptions of Proposition 4. Let U solve (1.2), (1.3) for s ∈ (0, 1). Then, there
exists β ∈ [0, 1), depending only on Ω , A, and c, such that the following regularity
assertions hold:

(i) For 0 ≤ ν′ < 1 − s, we have that

‖U ‖2
L2(0,T ;L2(ωα−2ν′,θ ,(0,∞);H2

β (Ω)))
�

(
‖g‖2

H1+ν′+s (Ω)

+‖h‖2
H1+ν′

(Ω)
+ ‖ f ‖2

L2(0,T ;H1+ν′
(Ω))

)
. (7.4)

(ii) For 0 ≤ ν̃ < 1 + s, there exists κ > 1 such that

‖∂�+1
y U ‖2

L2(0,T ;L2(ωα+2(�+1)−2ν̃,θ ,(0,∞);H2
β (Ω)))

� κ2(�+1)(� + 1)!2

·
(
‖g‖2

H1+ν̃+s (Ω)
+ ‖h‖2

H1+ν̃ (Ω)
+ ‖ f ‖2

L2(0,T ;H1+ν̃ (Ω))

)
, (7.5)

for all � ∈ N0.

In both estimates the hidden constants are independent of U and the problem data.
In addition, in (7.5) the hidden constant is also independent of �.
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Proof The proof of (7.5) follows from (4.8) and (7.3). In fact, for fixed y > 0 and
t > 0, set w = ∂�+1

y U (·, y, t) in (7.1) and hence g = ∂�+1
y LU (·, y, t). Since β ≥ 0,

we have that g ∈ L2
β(Ω). We can thus apply the estimate (7.3) to arrive at

‖∂�+1
y U (·, y, t)‖H2

β (Ω) � ‖∂�+1
y LU (·, y, t)‖L2

β (Ω).

Square the previous estimate, multiply by the weight ωα+2(�+1)−2ν̃,γ and integrate,
first, with respect to y over (0,∞) and then with respect to t over (0, T ). We thus
utilize (4.8) to arrive at the desired estimate (7.5).

Similar arguments allow us to derive (7.4). For brevity, we skip details. ��
We conclude this section by mentioning that, on the basis of the estimate (4.18),

the following space–time regularity estimate can be derived. Let 0 ≤ σ < s and
0 ≤ ν̃ < 1+ s. Then, there exists κ > 1 such that the following estimate holds for all
� ∈ N0:

‖∂2t ∂�+1
y U ‖2

L2(0,T ;L2(ωα+2(�+1)−2ν̃,θ ,(0,∞);H2
β (Ω)))

� κ2(�+1)(� + 1)!2

·
(
‖g‖2

H1+ν̃+3s (Ω)
+ ‖h‖2

H1+ν̃+2s (Ω)
+ ‖ f ‖2

L2(0,T ;H1+ν̃+2s (Ω))

)
. (7.6)

The hidden constant is independent of U , �, and the problem data. Consequently,

‖∂2t ∂�+1
y U ‖2

L2(0,T ;L2(ωα+2(�+1),θ ,(0,∞);H2
β (Ω)))

� κ2(�+1)(� + 1)!2A( f , g, h)2,

where A is defined in (4.20); compare with (4.21).

7.2 Meshes, finite element spaces, and quasi-interpolation operators

In the next section we will present error estimates for the trapezoidal scheme on the
basis of a piecewise linear finite element discretization on properly refined meshes
in Ω . We stress that Ω ⊂ R

2 is an open and bounded, but not necessarily convex,
polygon. The analysis requires meshes and approximation operators suitable for the
approximation of functions with H2

β (Ω) regularity. This is achieved with appropriate
refinement toward the vertices of Ω [27].

In what follows, we will consider nested sequences {T �}�≥0 of triangulations ofΩ
that are generated by bisection-tree refinement of a coarse, regular initial triangulation
T 0 of Ω . We denote by h� = max{diam(K ) : K ∈ T �} the meshwidth of T �. On
these meshes we will consider the finite element spaces S1

0(Ω,T �) defined in (6.2).
We present the existence of a sequence of meshes {T �

β }�≥0 and operators Π�
β that

satisfy a series of properties on which our theory rests. In what follows, β ∈ (0, 1].
Lemma 15 (meshes {T �

β }�≥0 and operators Π�
β ) There is a sequence {T �

β }�≥0 of
nested, regular bisection-tree meshes with corresponding quasi-interpolation opera-
tors Π�

β : L2(Ω) → S1
0(Ω,T �

β ) such that the following properties hold:
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(i) N� := dim S1
0(Ω,T �

β ) � h−2
� .

(ii) Simultaneous stability:

‖Π�
βv‖L2(Ω) � ‖v‖L2(Ω) ∀v ∈ L2(Ω),

‖Π�
βv‖H1(Ω) � ‖v‖H1(Ω) ∀v ∈ H1

0 (Ω).

(iii) Projection property: Π�
βv = v for all v ∈ S1

0(Ω,T �
β ).

(iv) Optimal approximation rates for H1
0 (Ω) and H2

β (Ω)-functions:

N�‖w − Π�
βw‖2L2(Ω)

� ‖w‖2H1(Ω)
(7.7)

N�‖w − Π�
βw‖2L2(Ω)

+ ‖∇x ′(w − Π�
βw)‖2L2(Ω)

� N−1
� ‖w‖2

H2
β (Ω)

, (7.8)

for all w ∈ H1
0 (Ω) and all w ∈ H1

0 (Ω) ∩ H2
β (Ω), respectively.

In (ii) and (iv), constants hidden in � are independent of �.

Proof The meshes {T �
β }�≥0 are constructed as described in [27]. By construction,

property (i) follows. Approximation properties follow from [27] and [44, Section 5]:

h−1
� ‖w − IT w‖L2(Ω) + ‖∇x ′(w − IT w)‖L2(Ω) � h�|w|H2

β (Ω), (7.9)

where IT denotes the nodal interpolant. The operatorΠ�
β can be taken as the L2(Ω)-

orthogonal projection. The results of [26] thus guarantee the stability estimates stated
in item (ii). The estimates (7.7) and (7.8) follow from the fact that Π�

β preserves
the finite element space combined with (7.9). We refer the reader to the proof of [5,
Lemma 8] for further details. ��

7.3 Approximation properties for the elliptic projector

We derive approximation properties for the elliptic projector GTY , defined in (6.7),
within the finite element framework described in Sect. 7.2.

Let β ∈ (0, 1] be such that (7.3) holds. Let (T �
β )�≥0 be a sequence of uniformly

shape-regular meshes of meshwidth h� such that the properties stated in Lemma 15
hold. Within this framework, the following error estimates can be derived; see also [5,
Theorem 5].

Lemma 16 (error estimates) Fix 0 < σ < 1 and, for each �, denote by GM
σ the

geometric mesh on (0,Y ) defined in (6.1), where Y ∼ | log hT | with a sufficiently
large constant. Assume that M is such that c1M ≤ Y ≤ c2M with absolute constants
c1 and c2. Let w ∈ H

1+s(Ω). If W = Hαw denotes the truncated α-harmonic
extension of w, then there exists a minimal slope smin such that for linear degree
vectors r with slope s ≥ smin there holds

‖∇(W − GTY W)‖L2(yα,CY ) � h�‖w‖H1+s (Ω), (7.10)
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and

‖ tr(W − GTY W)‖L2(Ω) � h1+s
� ‖w‖H1+s (Ω). (7.11)

The hidden constants are independent of W , w, and h�.

Proof Replace, in the proof of Lemma 3, the operatorΠx ′ byΠ�
β . Invoke the stability

and approximation properties of the latter, as described in Lemma 15, items (ii) and
(iv), respectively, and utilize the weighted regularity estimate of [5, Theorem 2]. This
concludes the proof. ��

7.4 Error estimates

In previous sectionswe have elaborated all the ingredients that can allowus to conclude
the following error estimates for the trapezoidal scheme.

Theorem 9 (error estimates for (6.21)) Let u be the solution to (1.1) and let UΔt be
its fully discrete approximation defined by (6.21). In the framework of Lemma 16, we
have the following error estimates for the trapezoidal scheme

‖∂t u(tK−1/2) − dUK ‖L2(Ω) � h1+s
� + (Δt)2, (7.12)

and

‖u(tK−1/2) − UK−1/2‖Hs (Ω) � h� + (Δt)2. (7.13)

The hidden constants are independent of UΔt , u, Δt , and h�.

Proof Invoke the arguments developed in the proof of Lemmas 7 and 8 upon utilizing
the error estimates (7.10) and (7.11) for the weighted elliptic projector. ��

We conclude this section with the following remark.

Remark 7 (Leapfrog scheme) The extension of the error estimates (6.59) and (6.60)
to the setting described in Sect. 7.2 would require a stability result as (6.57). This, in
turns, requires a CFL condition that limits the choice of the size of the time step to be
bounded by the minimal meshsize in the spatial finite element mesh. In view of the
nature of the meshes {T �

β }�≥0 this would lead to an impractical algorithm. Several
techniques have been developed in order to remove such a critical restriction. These
include local time-stepping [20,34] and the incorporation of a subspace projection step
inspired by numerical homogenisation [50].

123



A space-fractional wave equation 215

8 Numerical results and implementation

Let {φ1, . . . , φM}denote a basis of Sr((0,Y ),GM
σ ) such thatφ1(0) = 1 andφ j (0) = 0

for j > 1. The corresponding mass and stiffness matrices are denoted by BY and AY :

(
BY

)
i j =

∫ Y

0
yαφi (y)φ j (y)dy,

(
AY

)
i j =

∫ Y

0
yαφ′

i (y)φ′
j (y)dy.

We denote by BΩ and AΩ the standard mass and stiffness matrices corresponding to
the finite element space S1

0(Ω,T ). In what follows, we describe the implementation
of a discrete Dirichlet-to-Neumann map. Once this operation is available the time-
stepping methods that are proposed in this work can be implemented in a standard
way; in the case of the implicit method some further steps may be needed in order to
obtain an efficient algorithm.

8.1 Discrete Dirichlet-to-Neumannmap

GivenU ∈ S1
0(Ω,T ), we consider the problem: Find V ∈ V(TY ) and η ∈ S1

0(Ω,T )

such that

aY (V , W ) = 〈η, tr W 〉 ∀W ∈ V(TY ),

tr V = U .
(8.1)

Let us denote by U, V, and η the coefficient vectors associated with the discrete
functions U , V , and η, respectively. Note that the first N components of V and U are
equal; we recall that N = #T , the number of degrees of freedom ofT . We denote the
remaining components of V by Ṽ = (V)i , i = N + 1, . . . , NM. With this notation
at hand, the matrix system (8.1) takes the form

(BY ⊗ AΩ + AY ⊗ BΩ)

(
U
Ṽ

)
=

(
BΩη

0

)
.

We denote by B̃Y and ÃY the matrices that are obtained by removing the first row
and first column from BY and AY , respectively. Let b̃Y and ãY denote the vectors
containing the first components of the rows i ∈ {2, . . . ,M} of the matrices BY and
AY .

The vector Ṽ is the solution to

(B̃Y ⊗ AΩ + ÃY ⊗ BΩ)Ṽ = −
(

b̃Y ⊗ AΩ + ãY ⊗ BΩ

)
U. (8.2)

Once this system is solved we can obtain η by solving

BΩη = (bAΩ + aBΩ)U + (b̃T
Y ⊗ AΩ + ãT

Y ⊗ BΩ)Ṽ,
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where b = (BY )11 and a = (AY )11. We denote by Ls
h the matrix that describes the

linear map u �→ η:

Ls
hU = BΩη. (8.3)

The main computational cost when solving (8.1) is the resolution of (8.2). This
can be done efficiently by diagonalizing the small matrices B̃Y and ÃY . In fact, since
both matrices are symmetric and positive definite, we can find a matrix of generalized
eigenvectors X such that

X T B̃Y X = diag(μ1, . . . , μM), X T ÃY X = diag(1, . . . , 1),

where μ j > 0 denote the eigenvalues of the generalized eigenvalue problem B̃Y X =
ÃY Xdiag(μ1, . . . , μM). The system (8.2) can thus be transformed toM independent
linear systems

(μ j AΩ + BΩ)V̂ j =
(
(X T b̃Y ) j AΩ + (X T ãY ) j BΩ

)
U,

where V̂T = (V̂T
1 , . . . , V̂

T
M),

Ṽ = (X ⊗ I )V̂,

and I ∈ R
N×N is the identity matrix.

8.2 Leapfrog time-stepping scheme

Using the previously defined operator Ls
h , the leapfrog scheme can be now written in

the familiar form

1

Δt2
BΩ(Uk+1 − 2Uk + Uk−1) + Ls

hUk = BΩ fk,

where fk is the coefficient vector containing the L2 projection of f (tk) onto the space
S1
0(Ω,T ). The main cost is the application of Ls

hUk in each step followed by the
inversion of the mass matrix BΩ ; the latter being usually cheap.

8.3 Trapezoidal time-stepping scheme

The matrix system can be written, in a familiar form, involving only functions in
S1
0(Ω,T ):

1

Δt2
BΩ(Uk+1 − 2Uk + Uk−1) + 1

4
Ls

h(Uk+1 + 2Uk + Uk−1) = cBΩ fk .

123



A space-fractional wave equation 217

The difficulty now is that at each step we need to solve the system(
BΩ + Δt2

4 Ls
h

)
Uk+1 = f̃k,

where f̃k contains known terms.While we could solve this system iteratively, it is more
efficient to unwrap again the operator Ls

h to see that Uk+1 satisfies the system

(BY ⊗ AΩ + AY ⊗ BΩ)

(
Uk+1

Ṽk+1

)
=

(
BΩηk+1

0

)

and

BΩUk+1 + Δt2
4 BΩηk+1 = f̃k .

Denoting by E1 = diag(1, 0, . . . , 0), we can write this as a single system

(
Δt2
4 BY ⊗ AΩ + (E1 + Δt2

4 AY ) ⊗ BΩ

) (
Uk+1

Ṽk+1

)
=

(
f̃k
0

)
.

As the matrices BY and E1 + (Δt2/4)AY are again symmetric and positive definite a
similar diagonalization procedure results in a decoupled system of linear systems that
can be solved in parallel.

Remark 8 (comparison of the two schemes) When compared with the trapezoidal
scheme the leapfrog scheme is easier to implement. However, it seems to lose one
of the main advantages that it has for the resolution of the standard wave equation. As
the diffusion operator is nonlocal, the explicit nature of the scheme is no longer an
advantage; it requires the resolution of a linear system at each time step even when
using mass-lumping. We would also like to mention that, in each time-step and for
both schemes, the costliest operation is the solution of the decoupled linear systems.
However, if the spatial mesh is graded, for instance, as in Sect. 7, the CFL condition
for the leapfrog scheme requires a time-step that is much smaller. In conclusion, there
seems to be little to recommend leapfrog over trapezoidal rule for the problem that we
are considering.

8.4 Numerical results

8.4.1 A 1D example

Let us first perform a numerical example for n = 1. Let Ω = (0, 1) and consider the
space–fractional wave equation

∂2t u + (−Δ)su = f ,

with f (x ′, t) = (π2s −1) sin(t) sin(πx ′). The initial data are such that the exact solu-
tion is u(x ′, t) = sin(t) sin(πx ′). The initial values for both time-stepping schemes

123



218 L. Banjai, E. Otárola
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Fig. 1 Experimental rates of convergence for the error (8.4) for a one dimensional example. The experiment
for s = 1/4 is shown on the left and the one for s = 3/4 on the right

can be taken as U0 = 0 and U1 = ΔtΠx ′ sin(πx ′). Note that the additional O(Δt2)
term that is needed in the definition of U1 is zero because u′′(0) = 0.

We set the final time as T = π/2 and perform numerical experiments for the
following choices of the parameter s: s = 1/4 and s = 3/4. For space discretization
in Ω , we consider a uniform mesh with meshwidth hT . For the trapezoidal scheme,
and to obtain linear convergence, we set Δt = (0.5hT )1/2. For the leapfrog scheme,
in order to ensure the stability of the scheme, we choose Δt = (0.5hT )max(1/2,s).
Notice that, the aforementioned choices of the parameter s would render the leapfrog
scheme unstable as a solution technique for the standard wave equation.

In Fig. 1 we show the experimental rate of convergence for

error = ‖UK − u(T )‖Hs (Ω). (8.4)

We observe that, as expected, the error decays linearly with respect to hT . We also
notice that the errors for both discretization schemes are almost identical.

8.4.2 A 2D example

We let n = 2, and consider the square domain Ω = (−1, 1)2 ⊂ R
2 and the space-

fractional wave equation

∂2t u + (−Δ)su = f .

The data of the problem is such that the exact solution is given by

u(x ′, t) = cos(2s/2π s t) sin(πx ′
1) sin(πx ′

2).

We set T = 1.5 andΔt = 0.5hT . In this experiment wemeasure, in the L2(Ω)-norm,
the error committed in the approximation of the time-derivative:

error2D = ‖dUK − ∂t u(tK−1/2)‖L2(Ω). (8.5)
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Fig. 2 Experimental rates of convergence for the error (8.5) when Ω = (−1, 1)2 and for different values
of s. Leapfrog time-discretization is used

The computations were done using the NGSolve/Netgen software package [54,55].
The convergence properties of the leapfrog scheme are presented in Fig. 2. It can be

observed that, for both values of the parameter s considered, the experimental rate of
convergence for the error2D decays quadratically with respect to hT . We notice that
the observed rates are better than the ones derived in Theorem 7, but are in agreement
with approximation theory since, in this case, u is smooth. The improvement of the
estimate (6.59) of Theorem 7 from h1+s

T to h2
T is an open problem.
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