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Abstract
Wepropose a newnonconforming finite element algorithm to approximate the solution
to the elliptic problem involving the fractional Laplacian. We first derive an integral
representation of the bilinear form corresponding to the variational problem. The
numerical approximation of the action of the corresponding stiffness matrix consists
of three steps: (1) apply a sinc quadrature scheme to approximate the integral repre-
sentation by a finite sum where each term involves the solution of an elliptic partial
differential equation defined on the entire space, (2) truncate each elliptic problem to
a bounded domain, (3) use the finite element method for the space approximation on
each truncated domain. The consistency error analysis for the three steps is discussed
together with the numerical implementation of the entire algorithm. The results of
computations are given illustrating the error behavior in terms of the mesh size of
the physical domain, the domain truncation parameter and the quadrature spacing
parameter.
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1 Introduction

We consider a nonlocal model on a bounded domain involving the Riesz fractional
derivative (i.e., the fractional Laplacian). For theory and numerical analysis of general
nonlocal models, we refer to the review paper [24] and references therein. Particularly,
several applications are modeled by partial differential equations involving the frac-
tional Laplacian: obstacle problems from symmetric α-stable Lévy processes [18,34,
40]; image denoisings [27]; fractional kinetics and anomalous transport [45]; fractal
conservation laws [5,23]; and geophysical fluid dynamics [16,17,19,30].

In this paper, we consider a class of fractional boundary problems on bounded
domains where the fractional derivative comes from the fractional Laplacian defined
on all ofRd . The motivation for these problems is illustrated by an evolution equation
considered by Meuller [38] of the form:

ut = −˜Λsu + f (u), inR+ × D, (1)

u = 0, in Dc. (2)

Here D is a convex polygonal domain in R
d , Dc denotes its complement and

˜Λsu := ((−Δ)s ũ)|D

with ũ denoting the extension of u by zero to R
d . This fractional Laplacian on R

d is
defined using the Fourier transform F :

F((−Δ)s f )(ζ ) = |ζ |2sF( f )(ζ ). (3)

The formula (3) defines an unbounded operator (−Δ)s on L2(Rd) with domain of
definition

D((−Δ)s) :=
{

f ∈ L2(Rd): |ζ |2sF( f ) ∈ L2(Rd)
}

.

It is clear that the Sobolev space

H2s(Rd) :=
{

f ∈ L2(Rd): (1 + |ζ |2)sF( f ) ∈ L2(Rd)
}

is a subset of D((−Δ)s) for any s ≥ 0. Note that (−Δ)sv for s = 1 and v ∈ H2(Rd)

coincides with the negative Laplacian applied to v.
The term −˜Λs along with the “boundary condition” (2) represents the generator

of a symmetric s-stable Lévy process which is killed when it exits D (cf. [38]). The
f (u) term in (1) involves white noise and will be ignored in this paper.
The goal of this paper is to study the numerical approximation of solutions of

partial differential equations on bounded domains involving the fractional operator
˜Λs supplemented with the boundary conditions (2). As finite element approximations
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Numerical approximation of the integral fractional Laplacian 237

to parabolic problems are based on approximations to the elliptic part, we shall restrict
our attention to the elliptic case, namely,

˜Λsu = f , in D,

u = 0, in Dc.
(4)

The above system is sometimes referred to as the “integral” fractional Laplacian prob-
lem.

We note that the variational formulation of (4) can be defined in terms of the
classical spaces ˜Hs(D) consisting of the functions defined in D whose extension by
zero are in Hs(Rd). This is to find u ∈ ˜Hs(D) satisfying

a(u, φ) =
∫

D
f φ dx, for all φ ∈ ˜Hs(D), (5)

where

a(u, φ) =
∫

Rd
[(−Δ)s/2ũ][(−Δ)s/2˜φ] dx (6)

with ũ and ˜φ denoting the extensions by 0. We refer to Sect. 8.1 for the description of
model problems. The bilinear form a(·, ·) is obviously bounded on ˜Hs(D) × ˜Hs(D)

and, as discussed in Sect. 2, it is coercive on ˜Hs(D). Thus, the Lax–Milgram theory
guarantees existence and uniqueness.

We consider finite element approximations of (5). The use of standard finite element
approximation spaces of continuous functions vanishing on ∂D is the natural choice.
The convergence analysis is classical once the regularity properties of solutions to
problem (5) are understood (regularity results for (5) have been studied in [1,41]).
However, the implementation of the resulting discretization suffers from the fact that,
for d > 1, the entries of the stiffness matrix, namely, a(φi , φ j ), with {φk} denoting
the finite element basis, cannot be computed exactly.

When d = 1, s ∈ (0, 1/2) ∪ (1/2, 1) and, for example, D = (−1, 1), the bilinear
form can be written in terms of Riemann–Liouville fractional derivatives (cf. [33]),
namely,

a(φi , φ j ) = (∂sLφi , ∂
s
Rφ j )D + (∂sLφ j , ∂

s
Rφi )D

2 cos(sπ)
. (7)

Here (·, ·)D denotes the inner product on L2(D) and for t ∈ (0, 1) and v ∈ H1
0 (D),

the left-sided and right-sided Riemann–Liouville fractional derivatives of order t are
defined by

∂ tLv(x) = 1

Γ (1 − t)

d

dt

∫ x

−1

v(y)

(x − y)t
dy (8)
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and

∂ tRv(x) = 1

Γ (1 − t)

d

dt

∫ 1

x

v(y)

(x − y)t
dy. (9)

Note that the integrals in (8) and (9) can be easily computed when v is a piecewise
polynomial, i.e, when v is a finite element basis function. The computation of the
stiffness matrix in this case reduces to a coding exercise.

A representation of the fractional Laplacian for d ≥ 1 is given by [44]:

((−Δ)sη)(x) = cd,s PV
∫

Rd

η(x) − η(y)

|x − y|d+2s dy, for all η ∈ S, (10)

where S denotes the Schwartz space of rapidly decreasing functions on R
d , PV

denotes the principle value and cd,s is a normalization constant. It follows that for
η, θ ∈ S,

a(η, θ) = ((−Δ)sη, θ) = cd,s

2

∫

Rd

∫

Rd

(η(x) − η(y))(θ(x) − θ(y))

|x − y|d+2s dy dx . (11)

A density argument implies that the stiffness entries are given by

a(φi , φ j ) = cd,s

2

∫

Rd

∫

Rd

(˜φi (x) − ˜φi (y))(˜φ j (x) − ˜φ j (y))

|x − y|d+2s dy dx, (12)

where again ˜φ denotes the extension of φ by zero outside D. It is possible to apply
the techniques developed for the approximation of boundary integral stiffness matri-
ces [42] to deal with some of the issues associated with the approximation of the
double integral above, namely, the application of special techniques for handling the
singularity and quadratures. However, (12) requires additional truncation techniques
as the non-locality of the kernel implies a non-vanishing integrand over Rd . These
techniques are used to approximate (12) in [1,21]. In particular, Acosta and Bortha-
garay [1] use their regularity theory to do a priori mesh refinement near the boundary
to develop higher order convergence under the assumption of exact evaluation of the
stiffness matrix.

The method to be developed in this paper is based on a representation of the under-
lying bilinear form given in Sect. 4, namely, for s ∈ (0, 1), 0 ≤ r ≤ s, η ∈ Hr (Rd)

and θ ∈ Hs−r (Rd),

∫

Rd
[(−Δ)r/2η][(−Δ)(s−r)/2θ ] dx=cs

∫ ∞

0
t2−2s((−Δ)(I − t2Δ)−1η, θ)

dt

t
(13)

where (·, ·) denotes the inner product on L2(Rd) (see also [3]). We note that for t > 0,
(I − t2Δ)−1 is a bounded map of L2(Rd) into H2(Rd) so that the integrand above
is well defined for η, θ ∈ L2(Rd). In Theorem 4.1, we show that for η ∈ Hr (Rd)
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and θ ∈ Hs−r (Rd), the formula (13) holds and the right hand side integral converges
absolutely. It follows that the bilinear form a(·, ·) is given by

a(η, θ)=cs

∫ ∞

0
t2−2s((−Δ)(I−t2Δ)−1η̃, θ)D

dt

t
, for all η, θ ∈ ˜Hs(D). (14)

There are threemain issues needed to be addressed in developingnumericalmethods
for (5) based on (14):

(a) The infinite integral with respect to t must be truncated and approximated by
numerical quadrature;

(b) At each quadrature node t j , the inner product term in the integrand involves an
elliptic problem onRd . This must be replaced by a problemwith vanishing bound-
ary condition on a bounded truncated domain ΩM (t j ) (defined below);

(c) Using a fixed subdivision of D, we construct subdivisions of the larger domain
ΩM (t j ) which coincide with that on D. We then replace the problems on ΩM (t j )
of (b) above by their finite element approximations.

We address (a) above by first making the change of variable t−2 = ey which results
in an integral over R. We then apply a sinc quadrature obtaining the approximate
bilinear form

ak(η, θ) := csk

2

N+
∑

j=−N−
esy j ((−Δ)(ey j I−Δ)−1η̃, θ)D, for all θ, η∈ L2(D), (15)

where k is the quadrature spacing, y j = k j , and N− and N+ are positive integers.
Theorem 5.1 shows that for θ ∈ ˜Hs(D) and η ∈ ˜H δ(D) with δ ∈ (s, 2− s], we have

|a(η, θ) − ak(η, θ)|
≤ C(δ, s,d)

[

e−2πd/k + e(s−δ)N+k/2 + e−skN−]‖η‖
˜H δ(D)‖θ‖

˜Hs (D),

where 0 < d < π is a fixed constant. Balancing of the exponentials gives rise to an
O(e−2πd/k) convergence rate with the relation N+ + N− = O(1/k2).

The size of the truncated domain ΩM (t j ) in (b) is determined by the decay of
(ey j I −Δ)−1 f for functions f supported in D. For technical reasons, we first extend
D to a bounded convex (star-shaped with respect to the origin) domainΩ and set (with
t j = e−y j /2)

ΩM (t j ) :=
{{

(1 + t j (1 + M))x : x ∈ Ω
}

, t j ≥ 1
{(2 + M)x : x ∈ Ω} , t j < 1.

Let Δt denote the unbounded operator on L2(ΩM (t)) corresponding to the Lapla-
cian on ΩM (t) supplemented with vanishing boundary condition. We define the
bilinear form ak,M (η, θ) by replacing (−Δ)(ey j I − Δ)−1 in (15) by (−Δt j )(e

y j I −
Δt j )

−1. Theorem 6.2 guarantees that for sufficiently large M , we have
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|ak(η, θ) − ak,M (η, θ)| ≤ Ce−cM‖η‖L2(D)‖θ‖L2(D), for all η, θ ∈ L2(D).

Here c and C are positive constants independent of M and k. This addresses (b).
Step (c) consists in approximating (−Δt j )(e

y j I − Δt j )
−1 using finite elements. In

this aim, we associate to a subdivision of ΩM (t j ) the finite element spaceVM
h (t j ) and

the restriction ak,Mh (·, ·) of ak,M (·, ·) to VM
h (t j ) ×V

M
h (t j ). As already mentioned, the

subdivisions of ΩM (t j ) are constructed to coincide on D. Denoting by Vh(D) the set
of finite element functions restricted to D and vanishing on ∂D, our approximation to
the solution of (5) is the function uh ∈ Vh(D) satisfying

ak,Mh (uh, θ) =
∫

D
f θ dx, for all θ ∈ Vh(D). (16)

Lemma 7.2 guarantees the Vh(D)-coercivity of the bilinear form ak,Mh (·, ·). Conse-
quently, uh is well defined again from the Lax–Milgram theory. Moreover, given, for
every t j , a sequence of quasi-uniform subdivisions ofΩM (t j ), we show (Theorem 7.5)
that for v in ˜Hβ(D) with β ∈ (s, 3/2) and for θh ∈ Vh(D),

|ak,M (vh, θh) − ak,Mh (vh, θh)| ≤ C(1 + ln(h−1))hβ−s‖v‖
˜Hβ (D)‖θh‖˜Hs (D).

Here C is a constant independent of M, k and h, and vh ∈ Vh(D) denotes the Scott–
Zhang interpolation or the L2 projection of v depending on whether β ∈ (1, 3/2) or
β ∈ (s, 1].

Strang’s Lemma implies that the error between u and uh in the ˜Hs(D)-norm is
bounded by the error of the best approximation in ˜Hs(D) and the sum of the consis-
tency errors from the above three steps (see Theorem 7.7).

The outline of the paper is as follows. Section 2 introduces notations of Sobolev
spaces followed by Sect. 3 introducing the dotted spaces associated with elliptic oper-
ators. The alternative integral representation of the bilinear form is given in Sect. 4.
Based on this integral representation, we discuss the discretization of the bilinear form
and the associated consistency error in three steps (Sects. 5–7). The energy error esti-
mate for the discrete problem is given in Sect. 7. A discussion on the implementation
aspects of the method together with results of numerical experiments illustrating the
convergence of the method are provided in Sect. 8. We left to “Appendix” the proof
of technical result regarding the stability and approximability of the Scott–Zhang
interpolant in nonstandard norms.

2 Notations and preliminaries

2.1 Notation

We use the notation D ⊂ R
d to denote the polygonal domain with Lipschitz boundary

in problem (5) and ω ⊂ R
d to denote a generic bounded Lipschitz domain. For a

function η: ω → R, we denote by η̃ its extension by zero outside ω. We do not specify
the domain ω in the notation η̃ as it will be always clear from the context.
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Numerical approximation of the integral fractional Laplacian 241

2.2 Scalar products

We denote by (·, ·)ω the L2(ω)-scalar product and by ‖ · ‖L2(ω) := (·, ·)1/2ω the asso-
ciated norm. The L2(Rd)-scalar product is denoted (·, ·)Rd . To simplify the notation,
we write in short (·, ·) := (·, ·)Rd and ‖ · ‖ := ‖ · ‖L2(Rd ).

2.3 Sobolev spaces

For r > 0, the Sobolev space of order r on R
d , Hr (Rd), is defined to be the set of

functions θ ∈ L2(Rd) such that

‖θ‖Hr (Rd ) :=
(∫

Rd
(1 + |ζ |2)r/2|F(θ)(ζ )|2 dζ

)1/2

< ∞. (17)

In the case of bounded Lipschitz domains, Hr (ω) with r ∈ (0, 1), stands for the
Sobolev space of order r on ω. It is equipped with the Sobolev–Slobodeckij norm, i.e.

‖θ‖Hr (ω) := (‖θ‖2L2(ω)
+ |θ |2Hr (ω)

)1/2
, (18)

where

|θ |2Hr (ω) :=
∫

ω

∫

ω

(θ(x) − θ(y))2

|x − y|d+2r dx dy.

When r ∈ (1, 2) instead, the norm in Hr (ω) is given by

‖θ‖2Hr (ω) := ‖θ‖2H1(ω)
+

∫

ω

∫

ω

|∇θ(x) − ∇θ(y)|2
|x − y|d+2(r−1)

dx dy,

where ‖w‖H1(ω) := (‖w‖2
L2(ω)

+‖|∇w|‖2
L2(ω)

)1/2. In addition, H1
0 (ω) denotes the set

of functions in H1(ω) vanishing at ∂ω, the boundary of ω. Its dual space is denoted
H−1(ω). We note that when we replace ω with R

d and r ∈ [0, 2), the norms using
the double integral above are equivalent with those in (17) (see e.g. [35,37]).

2.4 The spaces ˜Hr(D)

For r ∈ (0, 2), the set of functions in D whose extension by zero are in Hs(Rd) is
denoted ˜Hr (D). The norm of ˜Hr (D) is given by ‖·̃‖Hr (Rd ). Note that for r ∈ (0, 1),
(10) implies that for φ in the Schwartz space S,

((−Δ)rφ, φ) = |cd,r |
∫

Rd

∫

Rd

(φ(x) − φ(y))2

|x − y|d+2r dx dy. (19)
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Thus, we prefer to use

‖φ‖
˜Hr (D) :=

(

|cd,r |
∫

Rd

∫

Rd

(˜φ(x) − ˜φ(y))2

|x − y|d+2r dx dy

)1/2

(20)

as equivalent norm on ˜Hr (D) for r ∈ (0, 1). This is justified upon invoking a variant
of the Peetre–Tartar compactness argument on ˜Hr (D) ⊂ Hr (D).

2.5 Coercivity

Since C∞
0 (D) is dense in ˜Hs(D) for s ∈ (0, 1) [28], (11) and a density argument

imply that for η, θ ∈ ˜Hs(D), we have

a(η, θ) = cd,s

2

∫

Rd

∫

Rd

(̃η(x) − η̃(y))(˜θ(x) −˜θ(y))

|x − y|d+2s dy dx .

In turn, from the definition (20) of the ˜Hs(D) norm, we directly deduce the coercivity
of a(·, ·) on ˜Hs(D)

a(η, η) = ‖η‖2
˜Hs (D)

, ∀η ∈ ˜Hs(D). (21)

2.6 Dirichlet forms

We define the Dirichlet form on H1(ω) × H1(ω) to be

dω(η, φ) :=
∫

ω

∇η · ∇φ dx .

On H1(Rd) × H1(Rd) we write

d(η, φ) := dRd (η, φ) :=
∫

Rd
∇η · ∇φ dx .

3 Scales of interpolation spaces

We now introduce another set of functions instrumental in the analysis of the finite
element method described in Sects. 6 and 7. In this section ω stands for a bounded
domain of Rd .

Given f ∈ L2(ω), we define θ ∈ H1
0 (ω) to be the unique solution to

(θ, φ)ω + dω(θ, φ) = ( f , φ)ω, for all φ ∈ H1
0 (ω) (22)
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Numerical approximation of the integral fractional Laplacian 243

and define Tω: L2(ω) → H1
0 (ω) by

Tω f = θ. (23)

As discussed in [32], this defines a densely defined unbounded operator on L2(ω),
namely Lω f := T−1

ω f for f in

D(Lω) :=
{

Tωφ: φ ∈ L2(ω)
}

.

The operator Lω is self-adjoint and positive so its fractional powers define a Hilbert
scale of interpolation spaces, namely, for r ≥ 0,

Ḣr (ω) := D(Lr/2
ω )

with D(Lr
ω) denoting the domain of Lr

ω. These are Hilbert spaces with norms

‖w‖Ḣr (ω) := ‖Lr/2
ω w‖L2(ω).

The space Ḣ1(ω) coincides with H1
0 (ω) while Ḣ0(ω) with L2(ω), in both cases with

equal norms. Hence for r ∈ [0, 1], we have

Ḣr (ω) = (L2(ω), H1
0 (ω))r ,2,

where (L2(ω), H1
0 (ω))r ,2 denotes the interpolation spaces defined using the real

method.
Another characterization of these spaces stems from Corollary 4.10 in [14], which

states that for r ∈ [0, 1], the spaces ˜Hr (ω) are interpolation spaces. Since ˜H1(ω) =
H1
0 (ω) and ˜H0(ω) = L2(ω), ˜Hs(ω) coincides with Ḣr (ω). In particular, we have

C−1‖θ‖Ḣr (ω) ≤ ‖θ‖
˜Hr (ω) ≤ C‖θ‖Ḣr (ω), (24)

for a constant C only depending on ω.
The intermediate spaces can also be characterized by expansions in the L2(ω)

orthonormal system of eigenvectors {ψi } for Tω, i.e.,

Ḣr (ω) =
{

φ ∈ L2(ω):
∞
∑

i=1

λri |(φ,ψi )ω|2 < ∞
}

.

Here λi = μ−1
i where μi is the eigenvalue of Tω associated with ψi . In this case, we

find that

‖φ‖2
Ḣr (ω)

= ‖Lr/2
ω φ‖2L2(ω)

=
∞
∑

i=1

λri |(φ,ψi )ω|2
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and for r ∈ (0, 1), (see e.g., [13])

‖φ‖2
Ḣr (ω)

= 2 sin πr

π

∫ ∞

0
t−2r Kω(φ, t)

dt

t
.

Here

Kω(φ, t) := inf
w∈H1

0 (ω)

(

‖φ − w‖2L2(ω)
+ t2‖w‖2H1(ω)

)

.

Note that if ω′ ⊂ ω then since the extension of a function φ in H1
0 (ω′) by zero is in

H1
0 (ω), the K-functional identity implies that for all r ∈ [0, 1],

‖˜φ‖Ḣr (ω) ≤ ‖φ‖Ḣr (ω′), (25)

where ˜φ denotes the extension by zero of φ outside ω′.
The operator Tω extends naturally to F ∈ H−1(ω) by setting TωF = u where

u ∈ H1
0 (ω) is the solution of (22) with ( f , φ)ω replaced by 〈F, φ〉. Here 〈·, ·〉 denotes

the functional-function pairing. Identifying f ∈ L2(ω) with the functional 〈F, φ〉 :=
( f , φ)ω, we define the intermediate spaces for r ∈ (−1, 0) by

Ḣr (ω) := (H−1(ω), L2(ω))1+r ,2

and set Ḣ−1 := H−1(ω). Since Tω maps H−1(ω) isomorphically onto Ḣ1(ω) and
L2(ω) isomorphically onto Ḣ2(ω), Tω maps Ḣ−r (ω) isometrically onto Ḣ2−r (ω) for
r ∈ [0, 1].

Functionals in H−1(ω) can also be characterized in terms of the eigenfunctions of
Tω, indeed, H−1(ω) is the set of linear functionals F for which the sum

∞
∑

i=1

λ−1
i |〈F, ψi 〉|2

is finite. Moreover,

‖F‖H−1(ω) = sup
θ∈H1

0 (ω)

〈F, θ〉
‖θ‖H1(ω)

=
( ∞
∑

i=1

λ−1
i |〈F, ψi 〉|2

)1/2

for all F ∈ H−1(ω). This implies that for r ∈ [− 1, 0],

Ḣr (ω) =
{

F ∈ Ḣ−1:
∞
∑

i=1

λri |〈F, ψi 〉|2 < ∞
}
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Numerical approximation of the integral fractional Laplacian 245

and

‖F‖Ḣr (ω) =
( ∞
∑

i=1

λri |〈F, ψi 〉|2
)1/2

.

Remark 3.1 (Norm equivalence for Lipschitz domains) For r ∈ (1, 3/2), it is known
that ˜Hr (ω) = Hr (ω)∩ H1

0 (ω). On the other hand, we note that when ∂ω is Lipschitz,
−Δ is an isomorphism from Hr (ω)∩H1

0 (ω) to Ḣr−2(ω); see Theorem 0.5(b) of [31].
We apply this regularity result into Proposition 4.1 of [8] to obtain Hr (ω)∩ H1

0 (ω) =
Ḣr (ω). So the norms of ˜Hr (ω) and Ḣr (ω) are equivalent for r ∈ [0, 3/2) and the
equivalence constant may depend on ω. In what follows, we use ˜Hr (D) to describe
the smoothness of functions defined on D. When functions defined on a larger domain
(see Sects. 6, 7), we will use these interpolation spaces separately so that we can
investigate the dependency of constants.

We end the section with the following lemma:

Lemma 3.1 Let a be in [0, 2] and b be in [0, 1] with a + b ≤ 2. Then for μ ∈ (0,∞),
we have

‖(μI + Tω)−1φ‖Ḣ−b(ω) ≤ μ(a+b)/2−1‖φ‖Ḣa(ω), for all φ ∈ Ḣa(ω).

Proof Let φ be in Ḣa(ω) = D(La/2
ω ). Setting θ := La/2

ω φ ∈ L2(ω), it suffices to
prove that

‖(μI + Tω)−1T a/2
ω θ‖Ḣ−b(ω) ≤ μ(a+b)/2−1‖θ‖L2(ω), for all θ ∈ L2(ω). (26)

The operator Tω and its fractional powers are symmetric in the L2(ω) inner product.
Therefore, we have

‖(μI + Tω)−1T a/2
ω θ‖2

Ḣ−b(ω)
=

∞
∑

i=1

|((μI + Tω)−1T a/2
ω θ, ψi )ω|2λ−b

i

=
∞
∑

i=1

λ−a−b
i

(μ + λ−1
i )2

|(θ, ψi )ω|2.

Inequality (26) follows from Young’s inequality

λ
−(a+b)/2
i μ1−(a+b)/2(μ + λ−1

i ) ≤ 1.

��
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4 An alternative integral representation of the bilinear form

The goal of this section is to derive the integral expression (13) and some of its
properties.

Theorem 4.1 (Equivalent representation) Let s ∈ (0, 1) and 0 ≤ r ≤ s. For η ∈
Hs+r (Rd) and θ ∈ Hs−r (Rd),

((−Δ)(s+r)/2η, (−Δ)(s−r)/2θ) = cs

∫ ∞

0
t2−2s(−Δ(I − t2Δ)−1η, θ)

dt

t
, (27)

where

cs :=
(∫ ∞

0

y1−2s

1 + y2
dy

)−1

= 2 sin(πs)

π
. (28)

Proof Let I (η, θ) denotes the right hand side of (27). Parseval’s theorem implies that

(−Δ(I − t2Δ)−1η, θ) =
∫

Rd

|ζ |2
1 + t2|ζ |2F(η)(ζ )F(θ)(ζ ) dζ. (29)

and so

I (η, θ) = cs

∫ ∞

0
t1−2s

∫

Rd

|ζ |2
1 + t2|ζ |2F(η)(ζ )F(θ)(ζ ) dζ dt . (30)

In order to invoke Fubini’s theorem, we now show that

cs

∫

Rd

∫ ∞

0
t1−2s |ζ |2

1 + t2|ζ |2 |F(η)(ζ )| |F(θ)(ζ )| dζ dt < ∞.

Indeed, the change of variable y = t |ζ | and the definition (28) of cs implies that the
above integral is equal to

cs

∫

Rd
|F(η)(ζ )||F(θ)(ζ )|

∫ ∞

0
t1−2s |ζ |2

1 + t2|ζ |2 dt dζ

=
∫

Rd
|ζ |2s |F(η)(ζ )| |F(θ)(ζ )| dζ,

which is finite for η ∈ Hr (Rd) and θ ∈ Hs−r (Rd). We now apply Fubini’s theorem
and the same change of variable y = t |ζ | in (30) to arrive at

I (η, θ) =
∫

Rd
|ζ |2sF(η)(ζ )F(θ)(ζ ) dζ = ((−Δ)(s+r)/2η, (−Δ)(s−r)/2θ).

This completes the proof. ��
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Theorem 4.1 above implies that for η, θ in ˜Hs(D),

a(η, θ) = cs

∫ ∞

0
t−2s(w(̃η, t), θ)D

dt

t
, (31)

where for ψ ∈ L2(Rd)

w(t) := w(ψ, t) := −t2Δ(I − t2Δ)−1ψ.

Examining the Fourier transform of w(ψ, t), we realize that w(t) := w(ψ, t) :=
ψ + v(ψ, t) where v(t) := v(ψ, t) ∈ H1(Rd) solves

(v(t), φ) + t2d(v(t), φ) = −(ψ, φ), for all φ ∈ H1(Rd). (32)

The integral in (31) is the basis of a numerical method for (5). The following
lemma, instrumental in our analyze, provides an alternative characterization for the
inner product appearing on the right hand side of (31).

Lemma 4.2 Let η be in L2(Rd). Then,

(w(η, t), η) = inf
θ∈H1(Rd )

{‖η − θ‖2 + t2d(θ, θ)} =: K (η, t). (33)

Proof Let η be in L2(Rd). We start by observing that for any positive t and ζ ∈ R
d ,

φ̂(ζ ) := F(η)(ζ )

1 + t2|ζ |2

solves the minimization problem

inf
z∈C

{

|F(η)(ζ ) − z|2 + t2|ζ |2|z|2
}

and so

inf
z∈C{|F(η)(ζ ) − z|2 + t2|ζ |2|z|2} = t2|ζ |2

1 + t2|ζ |2 |F(η)(ζ )|2. (34)

We denote φ to be the inverse Fourier transform of φ̂. Note that φ is in H1(Rd)

[actually, φ is in H2(Rd)].
Applying the Fourier transform, we find that

K (η, t) = inf
θ∈H1(Rd )

∫

Rd
(|F(η)(ζ ) − F(θ)(ζ )|2 + t2|ζ |2|F(θ)(ζ )|2) dζ. (35)
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Now, φ is the pointwise minimizer of the integrand in (35) and since φ ∈ H1(Rd), it
is also the minimizer of (33). In addition, (34), (35) and (29) imply that

K (η, t) =
∫

Rd

t2|ζ |2
1 + t2|ζ |2 |F(η)(ζ )|2 dζ = (w(η, t), η).

This completes the proof of the lemma. ��
Remark 4.1 (Relation with the vanishing Dirichlet boundary condition case) The
above lemma implies that for η ∈ ˜Hs(D),

a(η, η) = cs

∫ ∞

0
t−2s K (̃η, t)

dt

t
.

It is observed in the Appendix of [13] that for any bounded domain ω, and η ∈
(L2(ω), H1

0 (ω))s,2, the real interpolation space between L2(ω) and H1
0 (ω), we have

‖η‖2
(L2(ω),H1

0 (ω))s,2
= cs

∫ ∞

0
t−2s K 0

ω(η, t)
dt

t

where

K 0
ω(η, t) := inf

θ∈H1
0 (ω)

{

‖η − θ‖2L2(ω)
+ t2dω(θ, θ)

}

. (36)

Let {ψ0
i } ⊂ H1

0 (ω) denote the L2(ω)-orthonormal basis of eigenfunctions satisfy-
ing

dω(ψ0
i , θ) = λi (ψ

0
i , θ)ω, for all θ ∈ H1

0 (ω).

As the proof in Lemma 4.2 but using the expansion in the above eigenfunctions, it is
not hard to see that

(wω(η, t), η)ω = K 0
ω(η, t) (37)

with wω(η, t) = η + v and v ∈ H1
0 (ω) solving

(v, θ)ω + t2dω(v, θ) = −(u, θ)ω, for all θ ∈ H1
0 (ω).

This means that if η ∈ L2(ω), K (̃η, t) ≤ K 0
ω(η, t) and hence

(w(̃η, t), η)ω ≤ (wω(η, t), η)ω.

5 Exponentially convergent sinc quadrature

In this section, we analyze a sinc quadrature scheme applied to the integral (31). Notice
that the analysis provided in [6] does not strictly apply in the present context.
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5.1 The quadrature scheme

We first use the change of variable t−2 = ey so that (31) becomes

a(η, θ) = cs
2

∫ ∞

−∞
esy(w(̃η, t(y)), θ)D dy.

Given a quadrature spacing k > 0 and two positive integers N− and N+, set y j := jk
so that

t j = e−y j /2 = e− jk/2 (38)

and define the approximation of a(η, θ) by

ak(η, θ) := csk

2

N+
∑

j=−N−
esy j (w(̃η, t j ), θ)D. (39)

5.2 Consistency bound

The convergence of the sinc quadrature depends on the properties of the integrand

g(y; η, θ) := esy(w(̃η, t(y)), θ)D = esy
(

−Δ(ey I − Δ)−1η̃,˜θ
)

. (40)

More precisely, the following conditions are required:

(a) g(·; η, θ) is an analytic function in the band

B = B(d) := {z = y + iw ∈ C: |w| < d} ,

where d is a fixed constant in (0, π).
(b) There exists a constant C independent of y ∈ R such that

∫ d

−d
|g(y + iw; η, θ)| dw ≤ C;

(c) N (B) :=
∫ ∞

−∞
(|g(y + id; η, θ)| + |g(y − id; η, θ)|) dy < ∞.

In that case, there holds (see Theorem 2.20 of [36])

∣

∣

∣

∣

∫ ∞

−∞
g(y; η, θ) dy − k

∞
∑

j=−∞
g(k j; η, θ)

∣

∣

∣

∣

≤ N (B)

e2πd/k − 1
. (41)

In our context, this leads to the following estimates for the sinc quadrature error.
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Theorem 5.1 (Sinc quadrature) Suppose θ ∈ ˜Hs(D) and η ∈ ˜H δ(D) with δ ∈ (s, 2−
s]. Let a(·, ·) and ak(·, ·) be defined by (5) and (39), respectively. Then we have

|a(η, θ) − ak(η, θ)| ≤ 2c(d)

δ − s

(

2

e2πd/k − 1
+ e(s−δ)N+k/2

)

‖η‖
˜H δ(D)‖θ‖

˜Hs (D)

+ c(d)

s

(

2

e2πd/k − 1
+ e−sN−k

)

‖η‖L2(D)‖θ‖L2(D), (42)

where c(d) := 1√
(1+cos d)/2

.

Proof We start by showing that the conditions (a), (b) and (c) hold. For (a), we note
that g(·; η, θ) in analytic on B if and only if the operator mapping z �→ (ez I − Δ)−1

is analytic on B. To see the latter, we fix z0 ∈ B and set p0 := ez0 . Clearly, p0 I − Δ

is invertible from L2(Rd) to L2(Rd). Let M0 := ‖(p0 I − Δ)−1‖L2(Rd )→L2(Rd ). For
p ∈ C, we write

pI − Δ = (p − p0)I + (p0 I − Δ) = (p0 I − Δ)
(

(p − p0)(p0 I − Δ)−1 + I
)

,

so that the Neumann series representation

(pI − Δ)−1 =
⎛

⎝

∞
∑

j=0

(−1) j (p − p0)
j (p0 I − Δ)− j

⎞

⎠ (p0 I − Δ)−1

is uniformly convergent provided ‖(p − p0)(p0 I − Δ)−1‖L2(Rd )→L2(Rd ) < 1 or

|p − p0| < 1/M0.

Hence (pI − Δ)−1 is analytic in an open neighborhood of p0 = ez0 for all p0 ∈ B
and (a) follows.

To prove (b) and (c), we first bound g(z; η, θ) for z in the band B. Assume η ∈
˜Hβ(D) and θ ∈ ˜Hs(D) with β > s. For z ∈ B, we use the Fourier transform and
estimate |g| as follows

|g(z; η, θ)| =
∣

∣

∣

∣

esz
∫

Rd

|ζ |2
ez + |ζ |2F (̃η)F(˜θ) dζ

∣

∣

∣

∣

≤ c(d)esRez
∫

Rd

|ζ |2
eRez + |ζ |2 |F (̃η)||F(˜θ)| dζ,

where c(d) = 1√
(1+cosd)/2

and upon noting that

|ez + |ζ |2| ≥ c(Imz)−1(eRez + |ζ |2) ≥ c(d)−1(eRez + |ζ |2).
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If Rez < 0, we deduce that

|g(z; η, θ)| ≤ c(d)esRez‖η‖L2(D)‖θ‖L2(D). (43)

Instead, when Rez ≥ 0, we write

|g(z; η, θ)|
≤ c(d)e(s−δ)Rez/2

∫

Rd

(|ζ |2)1−(δ+s)/2(eRez)(δ+s)/2

eRez + |ζ |2 |ζ |δ+s |F (̃η)||F(˜θ)| dζ.

Whence, Young’s inequality guarantees that

|g(z; η, θ)| ≤ c(d)e(s−δ)Rez/2‖η‖
˜H δ(D)‖θ‖

˜Hs (D). (44)

Gathering the above two estimates (43) and (44) gives

∫ d

−d
|g(y + iw; η, θ)| dw ≤ 2dc(d)

{ ‖η‖L2(D)‖θ‖L2(D), y < 0,

‖η‖
˜H δ(D)‖θ‖

˜Hs (D), y ≥ 0,
(45)

and N (B) in (41) satisfies

N (B) ≤ c(d)

(

4

δ − s
‖η‖

˜H δ(D)‖θ‖
˜Hs (D) + 2

s
‖η‖L2(D)‖θ‖L2(D)

)

. (46)

Estimates (45) and (46) prove (b) and (c) respectively.
Having established (a), (b), and (c), we can use the sinc quadrature estimate (41).

In addition, from (43) and (44) we also deduce that

k
−∞
∑

j≤−N−−1

|g(k j; η, θ)| ≤ c(d)

s
e−sN−k‖η‖L2(D)‖θ‖L2(D) and

k
∞
∑

j≥N++1

|g(k j; η, θ)| ≤ 2c(d)

δ − s
e(s−δ)N+k/2‖η‖

˜H δ(D)‖θ‖
˜Hs (D). (47)

Combining (41) with (46) and (47) shows (42) and completes the proof. ��
Remark 5.1 (Choice of N− and N+) Balancing the three exponentials in (42) leads to
the following choice

2πd/k ≈ (δ − s)N+k/2 ≈ sN−k.

Hence, for given the quadrature spacing k > 0, we set

N+ :=
⌈

4πd
k2(δ − s)

⌉

and N− :=
⌈

2πd
sk2

⌉

. (48)
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With this choice, (42) becomes

|a(η, θ) − ak(η, θ)| ≤ γ (k)‖η‖
˜H δ(D)‖θ‖

˜Hs (D) (49)

where

γ (k) := C

(

1

δ − s
,
1

s
,d

)

e−2πd/k . (50)

6 Truncated domain approximations

To develop further approximation to problem (5) based on the sinc quadrature approx-
imation (39), we replace (32) with problems on bounded domains.

6.1 Approximation on bounded domains

Let Ω be a convex bounded domain containing D and the origin. Without loss of
generality, we assume that the diameter of Ω is 1. This auxiliary domain is used to
generate suitable truncation domains to approximate the solution of (32).We introduce
a domain parameter M > 0 and define the dilated domains

ΩM (t) :=
{ {y = (1 + t(1 + M))x : x ∈ Ω} , t ≥ 1,

{y = (2 + M)x : x ∈ Ω} , t < 1.
(51)

The approximation of ak(·, ·) in (39) reads

ak,M (η, θ) := csk

2

N+
∑

j=−N−
eβ y j (wM (̃η, t j ), θ)D, (52)

with t j := t(y j ) = e−y j /2, according to (38), and

wM (t) := wM (̃η, t) = η̃|ΩM (t) + vM (̃η, t), (53)

where vM (t) := vM (̃η, t) solves

(vM (t), φ)ΩM (t) + t2dΩM (t)(v
M (t), φ) = −(η, φ)D, for all φ ∈ H1

0 (ΩM (t));
(54)

compare with (32). The domains ΩM (t j ) are constructed for the truncation error to
be exponentially decreasing as a function of M . This is the subject of next section.
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Fig. 1 Illustration of the
different domains in R

2. The
domain of interest D is a
L-shaped domain, Ω ⊂ ΩM (t)
are interior of discs, and BM (t)
is the filled portion of ΩM (t)

BM (t)

D

Ω

ΩM (t)

6.2 Consistency

The main result of this section provides an estimate for ak − ak,M . It relies on decay
properties of v(̃η, t) satisfying (32). In fact, Lemma 2.1 of [2] guarantees the existence
of universal constants c and C such that

t‖∇v(̃η, t)‖L2(BM (t)) + ‖v(̃η, t)‖L2(BM (t)) ≤ Ce−max(1,t)cM/t‖η‖L2(D), (55)

provided η ∈ L2(D) and v(t) := v(̃η, t) is given in (32). Here

BM (t) :=
{

x ∈ ΩM (t): dist(x, ∂ΩM (t)) < t
}

so that the minimal distance between points in D ⊂ Ω and BM (t) is greater than
M max(1, t). An illustration of the different domains is provided in Fig. 1.

Lemma 6.1 (Truncation error) Let η ∈ L2(D), e(t) := v(η̃, t) − vM (η̃, t) and c be
the constant appearing in (55). There is a positive constant C not depending on M
and t satisfying

‖e(t)‖L2(ΩM (t)) ≤ Ce−max(1,t)cM/t‖η‖L2(D). (56)

Proof In this proof C denotes a generic constant only depending on Ω . Note that e(t)
satisfies the relations

(e(t), φ) + t2dΩM (t)(e(t), φ) = 0, ∀φ ∈ H1
0 (ΩM (t)),

e(t) = v(t), on ∂ΩM (t).
(57)

Let χ(t) ≥ 0 be a bounded cut off function satisfying χ(t) = 1 on ∂ΩM (t)
and χ(t) = 0 on ΩM (t)\BM (t). Without loss of generality, we may assume that
‖∇χ(t)‖L∞(Rd ) ≤ C/t . This implies
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‖χ(t)v(t)‖L2(BM (t)) + t‖∇(χ(t)v(t))‖L2(BM (t))

≤ C
(‖v(t)‖L2(BM (t)) + t‖∇v(t)‖L2(BM (t))

)

≤ Ce−max(1,t)cM/t‖η‖L2(D).

Here we use the decay estimate (55) for last inequality above. Now, setting e(t) :=
χ(t)v(t) + ζ(t), we find that ζ(t) ∈ H1

0 (ΩM (t)) satisfies

(ζ(t), φ)ΩM (t) + t2dΩM (t)(ζ(t), φ) = −(χ(t)v(t), φ)ΩM (t) − t2dΩM (t)(χ(t)v(t), φ)

for all φ ∈ H1
0 (ΩM (t)). Taking φ = ζ(t), we deduce that

‖ζ(t)‖2L2(ΩM (t)) + t2‖∇ζ(t)‖2L2(ΩM (t))

≤ ‖χ(t)v(t)‖2L2(BM (t)) + t2‖∇(χ(t)v(t))‖2L2(BM (t))

≤ Ce−2max(1,t)cM/t‖η‖2L2(D)
.

Thus, combining the estimates for ζ(t) and χ(t)v(t) completes the proof. ��

Lemma 6.1 above is instrumental to derive exponentially decaying consistency error
as M → ∞. Indeed, we have the following theorem.

Theorem 6.2 (Truncation error) Let c be the constant appearing in (55) and assume
M > 2(s + 1)/c. Then, there is a positive constant C not depending on M nor k
satisfying

|ak(η, θ) − ak,M (η, θ)| ≤ Ce−cM‖η‖L2(D)‖θ‖L2(D), for all η, θ ∈ L2(D). (58)

Proof In this proof C denotes a generic constant only depending on Ω . Let η, θ be in
L2(D). It suffices to bound

E :=
∣

∣

∣

∣

∣

∣

csk

2

N+
∑

j=−N−
esy j (w(t j ) − wM (t j ), θ)D

∣

∣

∣

∣

∣

∣

≤ C

⎛

⎝k
−1
∑

j=−N−
esy j |(v(t j ) − vM (t j ), θ)D| + k

N+
∑

j=0

esy j |(v(t j ) − vM (t j ), θ)D|
⎞

⎠

=: E1 + E2

with v(t) = v(̃η, t) defined by (32) and vM (t) = vM (̃η, t) defined by (54). We
estimate E1 and E2 separately, starting with E1.
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From the definition t j = e−y j /2, we deduce that when j < 0, t j > 1 so that (56)
gives

E1 ≤ Cke−cM
−1
∑

j=−N−
esy j ‖η‖L2(D)‖θ‖L2(D)

≤ Ce−cM ke−sk

1 − e−sk
‖η‖L2(D)‖θ‖L2(D) ≤ Ce−cM‖η‖L2(D)‖θ‖L2(D).

Similarly, for j ≥ 0, i.e. t j < 1, using (56) again, we have

E2 ≤ Ck
N+
∑

j=0

esy j e−cM/t j ‖η‖L2(D)‖θ‖L2(D)

≤ Ck
N+
∑

j=0

esy j e−cM(1+y j /2)‖η‖L2(D)‖θ‖L2(D)

= Cke−cM
N+
∑

j=0

e(s−cM/2)y j ‖η‖L2(D)‖θ‖L2(D)

≤ Ce−cM k

1 − exp(k(s − cM/2))
‖η‖L2(D)‖θ‖L2(D)

≤ Ce−cM

cM/2 − s
‖η‖L2(D)‖θ‖L2(D) ≤ Ce−cM‖η‖L2(D)‖θ‖L2(D),

where we have also used the property cM/2 − s > 1 guaranteed by the assumption
M > 2(s + 1)/c. ��

6.3 Uniform norm equivalence on convex domains

Since the domains ΩM (t) are convex, we know that the norms in Ḣr (ΩM (t)) are
equivalent to those in Hr (ΩM (t))∩ H1

0 (ΩM (t)) for r ∈ [1, 2], see e.g. [8]. However,
as we mentioned in Remark 3.1, the equivalence constants depend a-priori on ΩM (t)
and therefore on M and t . We show in this section that they can be bounded uniformly
independently of both parameters.

To simplify the notation introduced in Sect. 3.We shall denote TΩM (t) by Tt , LΩM (t)

by Lt and Ḣ s(ΩM (t)) by Ḣ s . We recall that ΩM (t) is a dilatation of the convex and
bounded domainΩ containing the origin, see (51).We then have the following lemma.

Lemma 6.3 (Ellipitic regularity on convex domains) Let f ∈ L2(ΩM (t)). Then θ :=
Tt f is in H2(ΩM (t)) ∩ H1

0 (ΩM (t)) and satisfies

‖θ‖H2(ΩM (t)) ≤ C‖ f ‖L2(ΩM (t)), (59)
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where C is a constant independent of t and M.

Proof It is well known that the convexity ofΩ and hence that ofΩM (t) implies that the
unique solution θ of (22) with ω replaced by ΩM (t) is in H2(ΩM (t))∩ H1

0 (ΩM (t)).
Therefore, the crucial point is to show that the constant in (59) does not depend on
M or t . To see this, the H2 elliptic regularity on convex domains implies that for
θ̂ ∈ H1

0 (Ω) with Δθ̂ ∈ L2(Ω) then θ̂ ∈ H2(Ω) and there is a constant C only
depending on Ω such that

|θ̂ |H2(Ω) ≤ C‖Δθ̂‖L2(Ω). (60)

Here | · |H2(Ω) denotes the H2(Ω) seminorm. Let γ be such that ΩM (t) = {γ x, x ∈
Ω} [see (51)] and θ̂ (x̂) = θ(γ x̂) for x̂ ∈ Ω . Once scaled back to ΩM (t), estimate
(60) gives

|θ |H2(ΩM (t)) ≤ C‖Δθ‖L2(ΩM (t)) = C‖ f − θ‖L2(ΩM (t)). (61)

Now (22) immediately implies that ‖θ‖H1(ΩM (t))) ≤ ‖ f ‖L2(ΩM (t)) and (59) follows
by the triangle inequality and obvious manipulations. ��
Remark 6.1 (Intermediate spaces) Lemma 6.3 implies that D(Lt ) = Ḣ2 =
H2(ΩM (t))∩ H1

0 (ΩM (t)) with norm equivalence constants independent of M and t .

As D(L1/2
t ) = Ḣ1 = H1

0 (ΩM (t)), for s ∈ [1, 2]

Ḣ s = (H1
0 (ΩM (t)), H2(ΩM (t)) ∩ H1

0 (ΩM (t)))s−1,2= Hs(ΩM (t)) ∩ H1
0 (ΩM (t))

with norm equivalence constants independent of M and t .

Lemma 6.4 (Norm equivalence) For β ∈ [1, 3/2), let θ be in Ḣβ and ˜θ denote its
extension by zero outside of ΩM (t). Then˜θ is in Hβ(Rd) and

‖θ‖Ḣβ ≤ C‖˜θ‖Hβ(Rd )

with C not depending on t or M.

Proof Given θ ∈ H1(ΩM (t)), we denote Rθ to be the elliptic projection of θ into
H1
0 (ΩM (t)), i.e., Rθ ∈ H1

0 (ΩM (t)) is the solution of

(Rθ, φ)ΩM (t) + dΩM (t)(Rθ, φ)

= (θ, φ)ΩM (t) + dΩM (t)(θ, φ), for all φ ∈ H1
0 (ΩM (t)).

It immediately follows that

‖Rθ‖Ḣ1 = ‖Rθ‖H1(ΩM (t)) ≤ ‖θ‖H1(ΩM (t)).
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Also, if θ ∈ H2(ΩM (t)), Lemma 6.3 (see also Remark 6.1) implies

‖Rθ‖Ḣ2 ≤ C‖Rθ‖H2(ΩM (t)) ≤ C‖θ‖H2(ΩM (t))

with C not depending on t or M . Hence, it follows by interpolation that

‖Rθ‖Ḣβ ≤ Cβ‖θ‖(H1(ΩM (t)),H2(ΩM (t)))β−1,2
. (62)

Now when θ ∈ Ḣβ ⊂ H1(ΩM (t)), Rθ = θ so that in view of (62), it remains to
show that

‖θ‖(H1(ΩM (t)),H2(ΩM (t)))β−1,2
≤ C‖θ̃‖Hβ(Rd ),

for a constant C independent of M and t . To see this, note that ˜θ is in H1(Rd) and
the extension of ∇θ by zero is in Hβ−1(Rd) for β < 3/2. We refer to Theorem
1.4.4.4 of [28] for a proof when d = 1 and the techniques used in Lemma 4.33 of
[22] for the extension to the higher dimensional spaces. This implies that˜θ belongs to
Hβ(Rd). Moreover, the restriction operator is simultaneously bounded from H j (Rd)

to H j (ΩM (t)) for j = 1, 2. Hence, by interpolation again, we have that

‖θ‖(H1(ΩM (t)),H2(ΩM (t)))β−1,2
≤ ‖˜θ‖Hβ(Rd ).

This completes the proof of the lemma. ��

7 Finite element approximation

In this section, we turn our attention to the finite element approximation of each
subproblems (54) in ak,M (·, ·). Throughout this section, we omit when no confusion
is possible the subscript j in t j , i.e. we consider a generic t keeping in mind that
the subsequent statements only hold for t = t j with j = −N−, . . . , N+. We also
make the additional unrestrictive assumption that Ω used to define ΩM (t) [see (51)]
is polygonal. In turn, so are all the dilated domains ΩM (t).

7.1 Finite element approximation of ak,M(·, ·)

For any polygonal domainω, let {Th(ω)}h>0 be a sequence of conforming subdivisions
ofωmade of simplices ofmaximal size diameter h ≤ 1.We use the notation T M

h (t) :=
Th(ΩM (t)) for t = t j , j = −N−, . . . , N+, given by (38). We assume that the
subdivisions on D are shape-regular and quasi-uniform. This means that there exist
universal constants σ, ρ > 0 such that

sup
h>0

max
T∈Th(D)

(

diam(T )

r(T )

)

≤ σ, (63)
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sup
h>0

(

maxT∈Th(D) diam(T )

minT∈Th(D) diam(T )

)

≤ ρ, (64)

where diam(T ) stands for the diameter of T and r(T ) for the radius of the largest ball
contained in T . We also assume that these conditions hold as well for T M

h (t j ) with
constants σ, ρ not depending on j . We finally require that all the subdivisions match
on D, i.e.

Th(D) ⊂ T M
h (t j ) (65)

for each j . We discuss in Sect. 8 how to generate subdivisions meeting these require-
ments.

DefineVh(ω) ⊂ H1
0 (ω) to be the spaceof continuouspiecewise linearfinite element

functions associatedwith Th(ω)withω = D orΩM (t). Also, we use the short notation
V

M
h (t) := Vh(Ω

M (t)).
We are now in position to define the fully discrete/implementable problem. For ηh

and θh in Vh(D), the finite element approximation of ak,M (·, ·) given by (52) is

ak,Mh (ηh, θh) := csk

2

N+
∑

j=−N−
esy j (wM

h (̃ηh, t j ), θh)D (66)

with

wM
h (̃ηh, t) := η̃h |ΩM (t) + vM

h (t) (67)

and where vM
h (t) ∈ V

M
h (t) solves

(vM
h (t), φh)ΩM (t) + t2dΩM (t)(v

M
h (t), φh) = −(̃ηh, φh)ΩM (t), ∀φh ∈ V

M
h (t). (68)

Remark 7.1 [Assumption (65)] Two critical properties follow from (65). On the one
hand, our analysis below relies on the fact that the extension by zero ṽh of vh ∈
Vh(D) belongs to all VM

h (t). This property greatly simplifies the computation of
(wM

h (̃ηh, t j ), θh)D in (66).

The finite element approximation of the problem (4) is to find uh ∈ Vh(D) so that

ak,Mh (uh, θh) = ( f , θh)D for all θh ∈ Vh(D). (69)

Analogous to Lemma 4.2, we have the following representation usingK-functional.
The proof of the lemma is similar to that of Lemma 4.2 and is omitted.

Lemma 7.1 (K-functional formulation on the discrete space) For ηh ∈ Vh(D), there
holds

(wM
h (̃ηh, t), ηh)D = (wM

h (̃ηh, t), η̃h)ΩM (t) = Kh (̃ηh, t),
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where

Kh (̃ηh, t) := min
ϕh∈VM

h (t)

(

‖η̃h − ϕh‖2L2(ΩM (t)) + t2dΩM (t)(ϕh, ϕh)
)

.

We emphasize that for vh ∈ V
M
h (t), its extension by zero η̃h belongs to H1(Rd)

and therefore

Kh(ṽh, t) ≥ K (ṽh, t). (70)

This property is critical in the proof of next theorem, which ensures the Vh(D)-
ellipticity of the discrete bilinear form ak,Mh . Before describing this next result, we
recall that according to (49)

|a(ηh, θh) − ak(ηh, θh)| ≤ γ (k)‖ηh‖˜H δ(D)‖θh‖˜Hs (D)

with δ between s and min(2− s, 3/2) (sinceVh(D) ⊂ ˜H3/2−ε(D) for any ε > 0) and
γ (k) ∼ Ce−2πd/k . Also, we note that from the quasi-uniform (63) and shape-regular
(64) assumptions, there exists a constant cI only depending on σ and ρ such that for
r− ≤ r+ < 3/2, there holds

‖vh‖
˜Hr+ (D)

≤ cI h
r−−r+‖vh‖

˜Hr− (D)
, ∀vh ∈ V

M
h (t). (71)

Theorem 7.2 (Vh(D)-ellipticity) Let δ in Theorem 5.1 between s andmin(2−s, 3/2),
k be the quadrature spacing and cI be the inverse constant in (71).We assume that the
quadrature parameters N− and N+ are chosen according to (48). Let γ (k) be given
by (50) and assume that k is chosen sufficiently small so that

cIγ (k)hs−δ < 1.

Then, there is a constant c independent of h, k and M such that

ak,Mh (ηh, ηh) ≥ c‖ηh‖2
˜Hs (D)

, for all ηh ∈ Vh(D).

Proof Letηh ∈ V
M
h (t) so that η̃h ∈ H1(Rd).Weuse the equivalence relations provided

by Lemmas 4.2 and 7.1 together with the monotonicity property (70) to write

ak,Mh (ηh, ηh)= csk

2

N+
∑

j=−N−
esy j Kh (̃ηh, t j )≥ csk

2

N+
∑

j=−N−
esy j K (̃ηh, t j )=ak(ηh, ηh).

The quadrature consistency bound (49) supplemented by an inverse inequality (71)
yields
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ak,Mh (ηh, ηh) ≥ a(ηh, ηh) − γ (k)‖ηh‖˜H δ(D)‖ηh‖˜Hs (D)

≥ a(ηh, ηh) − cIγ (k)hs−δ‖ηh‖2
˜Hs (D)

.

The desired result follows from assumption cIγ (k)hs−δ < 1 and the coercivity of
a(·, ·), see (21). ��

7.2 Approximations onÄM(t)

The fully discrete scheme (69) requires approximations by the finite element methods
on domains ΩM (t). Standard finite element argumentations would lead to estimates
with constants depending on ΩM (t) and therefore M and t . In this section, we exhibit
results where this is not the case due to the particular definition (51) of ΩM (t).

We can use interpolation to develop approximation results for functions in the inter-
mediate spaces with constants independent ofM and t . The Scott–Zhang interpolation
construction [43] gives rise to an approximation operator π sz

h : H1
0 (ΩM (t)) → V

M
h (t)

satisfying

‖η − π sz
h η‖H1(ΩM (t)) ≤ C‖η‖H1(ΩM (t)),

for all η ∈ H1
0 (ΩM (t)) = Ḣ1 and

‖η − π sz
h η‖H1(ΩM (t)) ≤ Ch‖η‖H2(ΩM (t)),

for all η ∈ H2(ΩM (t)) ∩ H1
0 (ΩM (t)) = Ḣ2. The Scott–Zhang argument is local so

the constants appearing above depend on the shape regularity of the triangulations but
not on t or M . Interpolating the above inequalities shows that for all r ∈ [0, 1]

inf
χ∈VM

h (t)
‖η − χ‖H1(ΩM (t)) ≤ Chr‖η‖Ḣ1+r , for all η ∈ Ḣ1+r (72)

with C not depending on t or M .
Let Tt,h denote the finite element approximation to Tt given by (23), i.e., for F ∈

Ḣ−1, Tt,h F := wh with wh ∈ V
M
h (t) being the unique solution of

(wh, φ)ΩM (t) + dΩM (t)(wh, φ) = 〈F, φ〉, for all φ ∈ V
M
h (t).

The approximation result (72) and standard finite element analysis techniques implies
that for any r ∈ [0, 1],

‖Tt F − Tt,h F‖L2(ΩM (t)) ≤ Ch1+r‖Tt F‖Ḣ1+r ≤ Ch1+r‖F‖Ḣ−1+r , (73)

where the last inequality follows from interpolation since ‖Tt F‖H1(ΩM (t)) ≤
‖F‖H−1(ΩM (t)) and (59) hold.

123



Numerical approximation of the integral fractional Laplacian 261

For f ∈ L2(ΩM (t)), we define the operator

St f := η ∈ H1
0 (ΩM (t)) (74)

satisfying,

dΩM (t)(η, φ) = ( f , φ)ΩM (t), for all φ ∈ H1
0 (ΩM (t))

and let St,h f ∈ V
M
h (t) denote its finite element approximation; compare with Tt and

Th,t . Although the Poincaré constant depends on the diameter of ΩM (t), we still have
the following lemma.

Lemma 7.3 There is a constant C independent of h, t , or M satisfying

‖St f − St,h f ‖L2(ΩM (t)) ≤ Ch2‖ f ‖L2(ΩM (t)).

Proof For f ∈ L2(ΩM (t)), set eh := (St − St,h) f . The elliptic regularity estimate
(61) on convex domain and Cea’s Lemma imply

|eh |H1(ΩM (t)) = inf
χh∈VM

h (t)
|St f − χh |H1(ΩM (t)) ≤ Ch|St f |H2(ΩM (t))

≤ Ch‖ΔSt f ‖L2(ΩM (t)) = Ch‖ f ‖L2(ΩM (t)),

whereC is a constant independent of h, t andM . Galerkin orthogonality and the above
estimate give

‖eh‖2L2(ΩM (t)) = dΩM (t)(eh, Steh) = dΩM (t)(eh, (St − St,h)eh)

≤ |eh |H1(ΩM (t))|(St − St,h)eh |H1(ΩM (t))

≤ Ch|eh |H1(ΩM (t))‖eh‖L2(ΩM (t)).

Combining the above two inequalities and obvious manipulations completes the proof
of the lemma. ��

We shall also need norm equivalency on discrete scales. Let (VM
h (t), ‖ ·‖L2(ΩM (t)))

and (VM
h (t), ‖ · ‖H1(ΩM (t))) denote V

M
h (t) normed with the norms in L2(ΩM (t)) and

H1(ΩM (t)), respectively. We define ‖ · ‖Ḣr
h (ΩM (t)), or simply ‖ · ‖Ḣr

h
, to be the norm

in the interpolation space

((

V
M
h (t), ‖ · ‖L2(ΩM (t))

)

,
(

V
M
h (t), ‖ · ‖H1(ΩM (t))

))

r ,2.

For r ∈ [0, 1], as the natural injection is a bounded map (with bound 1) fromV
M
h (t)

into L2(ΩM (t)) and H1
0 (ΩM (t)), respectively, ‖vh‖Ḣr ≤ ‖vh‖Ḣr

h
, for all vh ∈ V

M
h (t).

For the other direction, one needs a projector into V
M
h (t) which is simultaneously

bounded on L2(ΩM (t)) and H1
0 (ΩM (t)). In the case of a globally quasi uniform
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mesh, it was shown by Bramble and Xu [12] that the L2(ΩM (t)) projector πh satisfies
this property. Their argument is local, utilizing the inverse inequality (71) and hence
leads to constants depending on those appearing in (63) and (64) but not t , h, or M .
Interpolating these results gives, for r ∈ [0, 1],

c‖vh‖Ḣr
h

≤ ‖vh‖Ḣr ≤ ‖vh‖Ḣr
h
, for all vh ∈ V

M
h (t), (75)

where c is a constant independent of h, M and t . The spaces for negative r are defined
by duality and the stability of the L2(ΩM (t))-projection πh yields

c‖vh‖Ḣ−r ≤ ‖vh‖Ḣ−r
h

≤ ‖vh‖Ḣ−r . for all vh ∈ V
M
h (t). (76)

We finally note that a discrete version of Lemma 3.1 holds. Its proof is essentially
the same and is omitted for brevity.

Lemma 7.4 Let a be in [0, 2] and b be in [0, 1] with a + b ≤ 2. Then for any μ ∈
(0,∞),

‖(μI + Tt,h)
−1ηh‖Ḣ−b

h
≤ μ(a+b)/2−1‖ηh‖Ḣa

h
, for all ηh ∈ V

M
h (t).

7.3 Consistency

The next step is to estimate the consistency error between ak,M (·, ·) and ak,Mh (·, ·) on
Vh(D). Its decay depends on a parameter β ∈ (s, 3/2), which will be related later to
the regularity of the solution u to (4).

Theorem 7.5 (Finite element consistency) Let β ∈ (s, 3/2). We assume that the
quadrature parameters N− and N+ are chosen according to (48). There exists a
constant C independent of h, k and M satisfying

|ak,M (ηh, θh) − ak,Mh (ηh, θh)|
≤ C(1 + ln(h−1))hβ−s‖ηh‖˜Hβ(D)‖θh‖˜Hs (D)

(77)

for all ηh, θh ∈ Vh(D).

Proof In this proof, C denotes a generic constant independent of h, M , k and t .
Fix ηh ∈ Vh(D) and denote by η̃h its extension by zero outside D. We first observe

that for θh ∈ Vh(D) and θ̃h its extension by zero outside D, we have

(wM (̃ηh, t j ), θh)D = (πhw
M (̃ηh, t j ),˜θh)ΩM (t), (78)

where πh denotes the L2 projection onto Vh(Ω
M (t)). Using the above identity and

recalling that t j = e−y j /2, we obtain
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ak,M (ηh, θh) − ak,Mh (ηh, θh)

= cs
2
k
∑

t j≤ 1
2

esy j (πhw
M (̃ηh, t j ) − wM

h (̃ηh, t j ),˜θh)ΩM (t)

︸ ︷︷ ︸

=:E1

+ cs
2
k
∑

t j>
1
2

esy j (πhw
M (̃ηh, t j ) − wM

h (̃ηh, t j ),˜θh)ΩM (t)

︸ ︷︷ ︸

=:E2

.

We bound the two terms separately and start with the latter.
1 In view of the definitions (53) of wM (t) and (67) of wM

h (t), we have

πhw
M (̃ηh, t) − wM

h (̃ηh, t) = πhv
M (̃ηh, t) − vM

h (̃ηh, t). (79)

We recall that Tt = TΩM (t) and St are defined by (23) and (74) respectively. Using
these operators and the relations satisfied by vM (t) and vM

h (t) [see (54) and (68)], we
arrive at

πhw
M (̃ηh, t) − wM

h (̃ηh, t) =
[

St,h(St,h + t2 I )−1 − πh St (St + t2 I )−1
]

η̃h

= t2(Sh,t + t−2 I )−1πh(St,h − St )(St + t2 I )−1η̃h .

(80)

Thus,

‖πhw
M (̃ηh, t) − wM

h (̃ηh, t)‖L2(ΩM (t))

≤ t2‖(St,h + t2 I )−1πh(St,h − St )(St + t2 I )−1‖ ‖η̃h‖L2(ΩM (t))

≤ t2‖(St,h + t2 I )−1πh‖ ‖St,h − St‖ ‖(St + t2 I )−1‖ ‖η̃h‖L2(ΩM (t)).

Here we have used ‖ · ‖ to denote the operator norm of operators from L2(ΩM (t)) to
L2(ΩM (t)). Combining

‖(St,h + t2 I )−1πh‖ ≤ t−2, ‖(St + t2 I )−1‖ ≤ t−2

and Lemma 7.3 gives

‖πhw
M (̃ηh, t) − wM

h (̃ηh, t)‖ ≤ Ct−2h2‖η̃h‖L2(ΩM (t)).

Whence,
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|E2| ≤ Ch2k
∑

t j>
1
2

e(s+1) jk‖η̃h‖L2(ΩM (t))‖˜θh‖L2(ΩM (t))

≤ Ch2‖ηh‖L2(D)‖θh‖L2(D)

⎛

⎝k
∑

jk<2 ln 2

e(s+1) jk

⎞

⎠ ≤ Ch2‖ηh‖L2(D)‖θh‖L2(D).

2 We now focus on E1 which requires a finer analysis using intermediate spaces.
Also, we argue differently for β ∈ (1, 3/2) and for β ∈ (s, 1]. In either case, we
define

ε := min{1 − s, 1/ ln(1/h)}

and note that

ε−1 ≤ c(1 + ln(1/h)) and h−ε ≤ c (81)

with c depending on s but not h.
When β ∈ (1, 3/2), we invoke (79) again to deduce

|E1| ≤ k
∑

t j≤ 1
2

esy j ‖πhv
M (̃ηh, t j ) − vM

h (̃ηh, t j )‖Ḣ−s
h

‖˜θh‖Ḣ s
h
. (82)

We set μ(t) := t−2 − 1 and compute

πhv
M (̃ηh, t) − vM

h (̃ηh, t) = t−2
[

(I + μ(t)Tt,h)
−1Tt,h − πhTt (I + μ(t)Tt )

−1
]

η̃h

= (tμ(t))−2(μ(t)−1 I + Tt,h)
−1πh(Tt,h − Tt )(μ(t)−1 I + Tt )

−1η̃h,

(83)

which is now estimated in three parts. Lemma 3.1 guarantees that

‖(μ(t)−1 I + Tt )
−1‖Ḣβ→Ḣβ−2 ≤ 1,

where we recall that Ḣ s stands for Ḣ s(ΩM (t)). For the second part, the error estimate
(73) with 1 + r = β reads

‖Tt,h − Tt‖Ḣβ−2→L2(ΩM (t)) ≤ Chβ.

We estimate the last term of the product in the right hand side of (83) by

‖(μ(t)−1 + Tt,h)
−1πh‖L2(ΩM (t))→Ḣ−s

h

≤ C‖(μ(t)−1 + Tt,h)
−1‖Ḣ s+ε

h →Ḣ−s
h

‖πh‖L2(ΩM (t))→Ḣ s+ε
h

.
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Thus, Lemma 7.4, the inverse estimate and (81) yield

‖(μ(t)−1 + Tt,h)
−1πh‖L2(ΩM (t))→Ḣ−s

h
≤ Ch−s−ε t (2s+ε−2) ≤ Ch−s t (2s+ε−2).

Note that for t ∈ (0, 1/2], 0 < t2 ≤ μ(t)−1 ≤ 4
3 t

2 ≤ 1
3 so that

(tμ(t))−2 ≤ 16t2

9
.

Combining the above estimates with (83) gives

‖πhv
M (̃ηh, t) − vM

h (̃ηh, t)‖Ḣ−s
h

≤ Ct2s+εhβ−s‖η̃h‖Ḣβ , (84)

Since t j = e−y j /2,

esy j t2s+ε
j = e−εy j /2.

Estimates (82), (84) and (75) then yield

|E1| ≤ Chβ−sk
∑

ky j≥2 ln 2

e−εy j /2‖η̃h‖Ḣβ ‖˜θh‖Ḣ s

≤ Chβ−sε−1‖η̃h‖Ḣβ ‖˜θh‖Ḣ s .

(85)

3 We bound the norms on ΩM (t) by norms on D using (25) with r = s and
Lemma 6.4 to arrive at

|E1| ≤ Chβ−sε−1‖η̃h‖Hβ(Rd )‖θh‖Ḣ s (D).

Applying the norm equivalence (24) gives

|E1| ≤ Chβ−sε−1‖ηh‖˜Hβ(D)‖θh‖˜Hs (D). (86)

4 When β ∈ (s, 1], we bound (83) using different norms. In fact, we have

‖(μ(t)−1 I + Tt )
−1‖Ḣβ→Ḣ−1 ≤ tβ−1, ‖Tt,h − Tt‖Ḣ−1→L2(ΩM (t)) ≤ Ch,

and by Lemma 7.4,

‖(μ(t)−1 + Tt,h)
−1πh‖L2(ΩM (t))→Ḣ−s

h

≤ ‖(μ(t)−1 + Tt,h)
−1πh‖Ḣ1−β+s+ε→Ḣ−s

h
‖πh‖L2(ΩM (t))→Ḣ1−β+s+ε

≤ Ch−1+β−s t (2s+ε−β−1).
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These estimates lead (84) and hence (85) as well when β ∈ (s, 1]. The remainder of
the proof is the same as in the case β ∈ (1, 3/2) except that the norm equivalence (24)
is invoked in place of Lemma 6.4.

5 The proof of the theorem is complete upon combining the estimates for E1 and
E2. ��

7.4 Error estimates

Now that the consistency error between a(·, ·) and ak,Mh (·, ·) is obtained, we can apply
Strang’s lemma to deduce the convergence of the approximation uh towards u in the
energy norm. To achieve this, we need a result regarding the stability and approxima-
bility of the Scott–Zhang interpolant π sz

h [43] in the fractional spaces ˜Hβ(D).
This is the subject of the next lemma. Its proof is somewhat technical and given in

“Appendix A”.

Lemma 7.6 (Scott–Zhang interpolant) Let β ∈ (1, 3/2). Then, there is a constant C
independent of h such that

‖π sz
h v‖

˜Hβ(D) ≤ C‖v‖
˜Hβ (D) (87)

and for s ∈ [0, 1],

‖π sz
h v − v‖

˜Hs (D) ≤ Chβ−s‖v‖
˜Hβ(D), (88)

for all v ∈ ˜Hβ(D).

We note that the above lemma holds for β ∈ (0, 1) and s ∈ (0, β) provided that
π sz
h is replaced by πh , the L2 projection onto Vh(D); see e.g. Lemma 5.1 of [9]. In

order to consider both case simultaneously in the following proof, we set �h = πh

when β ∈ [0, 1] and �h = π sz
h when β ∈ (1, 3/2).

Theorem 7.7 Assume that the solution u of (5) belongs to ˜Hβ(D) for β ∈ (s, 3/2).
Let δ := min(2 − s, β) be as in Theorem 5.1, k be the quadrature spacing and cI be
the inverse constant in (71). We assume that the quadrature parameters N− and N+
are chosen according to (48). Let γ (k) be given by (50) and assume that k is chosen
sufficiently small so that

cIγ (k)hs−δ < 1.

Moreover, let uh ∈ Vh(D) be the solution of (69). Then there is a constant C inde-
pendent of h, M and k satisfying

‖u − uh‖˜Hs (D) ≤ C(γ (k) + e−cM + (1 + ln (h−1))hβ−s)‖u‖
˜Hβ(D). (89)
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Proof In our context, the first Strang lemma (see e.g. Theorem 4.1.1 in [15]) reads

‖u − uh‖˜Hs (D) ≤ C inf
vh∈Vh(D)

(

‖u − vh‖˜Hs (D) + sup
wh∈Vh(D)

|(a − ak,Mh )(vh, wh)|
‖wh‖˜Hs (D)

)

,

whereC is a constant independent of h, k and M . From the consistency estimates (49),
(58) and (77), we deduce that

‖u − uh‖˜Hs (D) ≤ C‖u − �hu‖
˜Hs (D)

+ C(γ (k) + e−cM + (1 + ln (h−1))hβ−s)‖�hu‖
˜Hβ(D)

The desired estimate follows from the approximability and stability of �h . ��

8 Numerical implementation and results

In this section, we present detailed numerical implementation to solve the following
model problems.

8.1 Model problems

One of the difficulties in developing numerical approximation to (5) is that there are
relatively few examples where analytical solutions are available. One exception is the
case when D is the unit ball inRd . In that case, the solution to the variational problem

a(u, φ) = (1, φ)D, for all φ ∈ ˜Hs(D) (90)

is radial and given by, (see [21])

u(x) = 2−2sΓ (d/2)

Γ (d/2 + s)Γ (1 + s)
(1 − |x |2)s . (91)

It is also possible to compute the right hand side corresponding to the solution
u(x) = 1− |x |2 in the unit ball. The corresponding right hand side can be derived by
first computing the Fourier transform of ũ, i.e.,

F (̃u) = 2J2(|ζ |)/|ζ |2,

where Jn is the Bessel function of the first kind. When 0 < s < 1, we obtain

f (x)=F−1(2|ζ |2s−2 J2(|ζ |))= 22sΓ (d/2 + s)

Γ (d/2)Γ (2 − s)
2F1

(

d/2+s, s − 1, d/2, |x |2
)

,

(92)

where 2F1 is the Gaussian or ordinary hypergeometric function.
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Remark 8.1 (Smoothness) Even though the solution u(x) = 1 − |x |2 is infinitely
differentiable on the unit ball, the right hand side f has limited smoothness. Note
that f is the restriction of (−Δ)s ũ to the unit ball. Now ũ ∈ H3/2−ε(Rd) for ε >

0 but is not in H3/2(Rd). This means that (−Δ)s ũ is only in H3/2−2s−ε(Rd) and
hence f is only in H3/2−2s−ε(Ω). This is in agreement with the singular behavior of
2F1 (d/2 + s, s − 1, d/2, t) at t = 1 (see [39], Section 15.4). In fact,

2F1 (d/2 + s, s − 1, d/2, 1) = Γ (d/2 + s)Γ (1 − 2s)

Γ (d/2 + 1 − s)Γ (−s)
when 0 < s < 1/2,

lim
t→1−

2F1 (d/2 + s, s − 1, d/2, t)

− log(1 − t)
= Γ (d/2)

Γ (−1/2)Γ (1/2)
when s = 1/2,

lim
t→1−

2F1 (d/2 + s, s − 1, d/2, t)

(1 − t)−2s+1 = Γ (d/2)

Γ (−1/2)Γ (1/2)
when 1/2 < s < 1.

This implies that for s ≥ 1/2, the trace on |x | = 1 of f (x) given by (92) fails to
exist (as for generic functions in H3/2−2s(Rd)). This singular behavior affects the
convergence rate of the finite element method when the finite element data vector is
approximated using standard numerical quadrature (e.g. Gaussian quadrature).

8.2 Numerical implementation

Based on the notations in Sect. 6, we set Ω = D to be either the unit disk in R
2 or

D = (−1, 1) in R. Let ΩM (t) be corresponding dilated domains. In one dimensional
case, we consider Th(D) to be a uniform mesh and Vh(D) to be the continuous
piecewise linear finite element space. For the two dimensional case, Th(D) a regular
(in the sense of p. 247 in [15]) subdivision made of quadrilaterals. In this case,Vh(D)

is the set of continuous piecewise bilinear functions.

8.2.1 Non-uniformMeshes forÄM(t)

We extend Th(D) to non-uniform meshes T M
h (t), thereby violating the quasi-uniform

assumption. For t ≤ 1, we use a quasi-uniform mesh on ΩM (t) = ΩM (1) with
the same mesh size h. When t > 1 and D = (−1, 1), we use an exponentially
graded mesh outside of D, i.e. the mesh points are ± eih0 for i = 1, . . . , �M/h� with
h0 = h(ln γ )/M , where γ is the radius of ΩM (t) [see (51)]. Therefore, we maintain
the same number of mesh points for all ΩM (t). When D is a unit disk in R2, we start
with a coarse subdivision of ΩM (t) as in the left of Fig. 2 (the coarse mesh of D in
grey). Note that all vertices of a square have the same radial coordinates. We also point
out that the position of the vertices along the radial direction and outside of D follow
the same exponential distribution as in the one dimensional case. Then we refine each
cell in D by connecting the midpoints between opposite edges. For the cells outside
of D, we consider the same refinement in the polar coordinate system (ln r , θ) with
r > 1 and θ ∈ [0, 2π ]. This guarantees that mesh points on the same radial direction
still follows the exponential distribution after global refinements and the number of
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Fig. 2 Coarse gird (left) and three-times-refined non-uniform grid (right) ofΩM (t)with M = 4 and t = 1.
Grids of D are in grey

mesh points in T M
h (t) is unchanged for all t > 0. The figure on the right of Fig. 2

shows the exponentially graded mesh after three times global refinement.

8.2.2 Matrix aspects

To express the linear system to be solved, we denote by U to be the coefficient vector
of uh and F to be the coefficient vector of the L2 projection of f onto Vh(D). Let
Mh(t) and Ah(t) be the mass and stiffness matrix in V

M
h (t). Denote MD,h to be the

mass matrix in Vh(D). The linear system is given by

sin (πβ)k

π

N+
∑

i=−N−
esyi MD,h(e

yi Mh(ti ) + Ah(ti ))
−1Ah(ti )U = F (93)

with yi = ik and ti = e−yi /2. Here MD,h, U and F are all extended by zeros so that
the dimension of the system is equal to the dimension of VM

h (t).

8.2.3 Preconditioner

Since the linear system is symmetric, we apply theConjugateGradientmethod to solve
the above linear system. Due to the norm equivalence between (L2(D), H1

0 (D))s,2
and ˜Hs(D), the condition number of the systemmatrix is bounded byCh−2s . In order
to reduce the number of iterations in one dimensional space, we use fractional powers
of the discrete Laplacian LD,h as a preconditioner, where LD,h : H1

0 (Ω) → L2(D) is
defined by

dD(LD,hw,φh) = dD(w, φh), for all φh ∈ Vh(D).
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This can be computed by the discrete sine transform similar to the implementa-
tion discussed in [7]. More precisely, the matrix representation of LD,h is given
by (MD,h)

−1AD,h , where AD,h is stiffness matrix in Vh(D). The eigenvalues of
AD,h and MD,h (for the same eigenvectors) are a j := (2 + cos( jπh))/h and
m j := h(4 + 2 cos( jπh))/6 for j = 1, . . . , dim(Vh(D)), respectively. Therefore,
the eigenvalues of Lh are given by λ j,h := a j/m j . We use

B := SΛS

as a preconditioner, where Si j := √
2h sin(i jπh) and Λ is the diagonal matrix whose

diagonal entries are λ−s
j,h/m j . We also note that S−1 = S.

In two dimensional space, we use the multilevel preconditioner advocated in [11].

8.3 Numerical illustration for the non-smooth solution

We first consider the numerical experiments for the model problem (90) and study the
behavior of the L2(D) error.

8.3.1 Influence from the sinc quadrature and domain truncation

When D = (− 1, 1), we approximate the solution on the fixed uniform mesh with
the mesh size h = 1/8192. The domain truncation parameter M is also fixed to
be 20. Thus, h is small enough and M is large enough so that the L2(D)-error is
dominant by the sinc quadrature spacing k. The left part of Fig. 3 shows that the
L2(D)-error quickly converges to the error dominant by the Galerkin approximation
when k approaches zero. Similar results are observed from the right part of Fig. 3 when
the domain truncation parameter M increases. In this case, the mesh size h = 1/8192
and the quadrature step size k = 0.2.

1e-6

1e-5

1e-4

1e-3

1e-2

 0.2  0.25  0.3  0.35  0.4  0.45  0.5  0.55  0.6  0.65  0.7

L2  e
rr

or

k

s=0.3
s=0.5
s=0.7

1e-5

1e-4

1e-3

1e-2

1e-1

 1  2  3  4  5  6  7

L2  e
rr

or

M

s=0.3
s=0.5
s=0.7

Fig. 3 The above figures report the L2(D)-error behavior when D = (−1, 1). The left one shows the
error as a function of the quadrature spacing k for a fixed mesh size (h = 1/8192) and domain truncation
parameter (M = 20). The right plot reports the error as a function of the domain truncation parameter M
with fixed mesh size (h = 1/8192) and quadrature spacing (k = 0.2). The spatial error dominates when k
is small (left) and M is large (right)
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Fig. 4 Approximated solutions of (91) for s = 0.3 (left) and s = 0.7 (right) on the unit disk

Table 1 L2(D)-errors for different values of s versus the number of degree of freedom used for the 2-D
nonsmooth computations

#DOFS s = 0.3 s = 0.5 s = 0.7

345 2.69 × 10−1 – 1.63 × 10−1 – 1.03 × 10−1 –

1361 1.59 × 10−1 0.7575 9.07 × 10−2 0.8426 5.55 × 10−2 0.8918

5409 9.56 × 10−2 0.7323 5.05 × 10−2 0.8438 2.95 × 10−2 0.9091

21,569 5.71 × 10−2 0.7447 2.78 × 10−2 0.8633 1.54 × 10−2 0.9366

86,145 3.38 × 10−2 0.7547 1.51 × 10−2 0.8832 7.91 × 10−3 0.9641

34,4321 1.99 × 10−2 0.7644 8.07 × 10−3 0.9004 3.97 × 10−3 0.9936

#DOFS denotes the dimension of the finite element space VM
h (t)

8.3.2 Error convergence from the finite element approximation

We note that we implement the numerical algorithm for the two dimensional case
using the deal.ii Library [4] and we invert matrices in (93) using the direct solver from
UMFPACK [20]. Figure 4 shows the approximated solutions for s = 0.3 and s = 0.7,
respectively. Table 1 reports errors ‖u − uh‖L2(D) and rates of convergence with s =
0.3, 0.5 and 0.7. Here the quadrature spacing (k = 0.25) and the domain truncation
parameter (M = 4) are fixed so that the finite element discretization dominates the
error.

We note that Theorem 7.1 together with Theorem 5.4 in [29] (see also Proposition
2.7 in [10]) guarantees that when ∂D is of class C∞ and f is in L2(D), the solution
of (5) is in ˜Hs+α−

(D) where

α := min{s, 1/2} (94)

and α− denotes any number strictly smaller that α. This indicates that the expected
rate of convergence in L2(D) norm should be β + α− − s if the solution u is in
˜Hβ(D). Since the solution u is in Hs+1/2−ε(D) (see [1] for a proof), Table 1 matches
the expected rate of convergence min(1, s + 1/2).
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Table 2 L2(D)-errors and rates for s = 0.3, 0.5 and 0.7 for the problem (5) with the right hand side (92)

#DOFS s = 0.3 s = 0.5 s = 0.7

409 6.24 × 10−2 – 9.55 × 10−2 – 1.35 × 10−1 –

1617 2.90 × 10−2 1.10 4.33 × 10−2 1.14 6.27 × 10−2 1.10

6433 1.44 × 10−2 1.01 1.94 × 10−2 1.15 2.81 × 10−2 1.16

25,665 7.21 × 10−3 1.00 8.55 × 10−3 1.19 1.20 × 10−2 1.23

102,529 3.56 × 10−3 1.02 3.67 × 10−3 1.22 4.78 × 10−3 1.32

409,857 1.74 × 10−3 1.04 1.54 × 10−3 1.25 1.73 × 10−3 1.47

#DOFS denotes the number of degree of freedoms of ΩM (t)

8.4 Numerical illustration for the smooth solution

When the solution is smooth, the finite element error (assuming the exact computation
of the stiffness entries, i.e. no consistency error) satisfies

‖u − uh‖L2(D) ≤ ch2−s+α−
,

where α is given by (94). In contrast, because of the inherent consistency error, our
method only guarantees (c.f., Theorem 7.7)

‖u − uh‖L2(D) ≤ ch3/2−s+α−
. (95)

Table 2 reports L2(D)-errors and rates for the problem (5) with the smooth solution
u(x) = 1 − |x |2 and the corresponding right hand side data (92) in the unit disk. To
see the error decay, here we choose the quadrature step size k = 0.2 and the domain
truncation parameter M = 5. The observed decay in the error does not match the
expected rate (95).We think this loss of accuracymay be due either to the deterioration
of the shape regularity constant in generating the subdivisions ofΩM (t) (see Sect. 8.2)
or to the imprecise numerical integration of the singular right hand side in (92).

To illustrate this, we consider the one dimensional problem. Instead of using (92)
to compute the right hand side vector, similar to (7), we compute

( f , φ j ) = a(u, φ j ) = (∂2s−1
L φ j , u′)D + (∂2s−1

L u, φ′
j )D

2 cos(sπ)
(96)

with D = (−1, 1). We note that when s < 1/2, the fractional derivative with the
negative power 2s−1 still makes sense for the local basis function φ j . The right hand
side of (96) can now be computed exactly.

We illustrate the convergence rate for the one dimensional case in Table 3 when the
L2(D)-projection of right hand side is computed from (96). In this case, we compute at
s = 0.3, 0.4, 0.7 as the expression in (96) is not valid for s = 0.5. We also fix k = 0.2
andM = 6. In all cases, we observe the predicted rate of convergence min(3/2, 2−s),
see (95).
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Table 3 L2(D)-errors and rates for s = 0.3, 0.4 and 0.7 for the one dimensional problem when right hand
side of the discrete problem is computed by (96)

h s = 0.3 s = 0.4 s = 0.7

1/16 4.51 × 10−4 3.47 × 10−4 9.27 × 10−4

1/32 1.42 × 10−4 1.58 1.02 × 10−4 1.77 4.16 × 10−4 1.16

1/64 4.25 × 10−5 1.63 3.31 × 10−5 1.62 1.80 × 10−4 1.21

1/128 1.34 × 10−5 1.66 1.14 × 10−5 1.54 7.66 × 10−5 1.23

1/256 4.43 × 10−6 1.59 4.06 × 10−6 1.49 3.21 × 10−5 1.25

1/512 1.50 × 10−6 1.56 1.46 × 10−6 1.48 1.33 × 10−5 1.27

A. Proof of Lemma 7.6

The proof of Lemma 7.6 requires the following auxiliary localization result. We refer
to [26] for a similar result in two dimensional space.

Lemma A.1 For r ∈ (0, 1/2), let v be in Hr (D) and ṽ denote the extension by zero of
u to Rd . There exists a constant C independent of h such that

‖̃v‖2Hr (Rd )
≤ C

(

h−2r‖v‖2L2(D)
+

∑

τ∈Th(D)

|v|2Hr (τ )

)

with a constant C independent of h.

Proof Let ˜Th(D) be any quasi-uniformmesh [(satisfying (63) and (64)] which extends
Th(D) beyond a unit size neighborhood of D. Fix δ > 0 and for τ ∈ Th(D) set

τ̃ = ∪{η∈˜Th(D):dist(η,τ )<δh}η.

Let

Dδ
h =

⋃

τ∈Th(D)

τ̃

and let ˜Th(Dδ
h) denote the set of τ ∈ ˜Th(D) contained in Dδ

h . Finally, for τ ∈
˜Th(Dδ

h)\Th(D), set

τ̃ =
⋃

{η∈˜Th(Dδ
h):dist(η,τ )<δh}

η.
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Fix v ∈ Hr (D). Since ṽ vanishes outside of Dδ
h ,

|̃v|2Hr (Rd )
=

∫

Dδ
h

∫

Dδ
h

(̃v(x) − ṽ(y))2

|x − y|d+2r dx dy

+ 2
∫

D

∫

(Dδ
h)

c

v(y)2

|x − y|d+2r dx dy =: J1 + J2.

The second integral above is bounded by

J2 ≤ 2
∫

D

∫

|x−y|≥δh

v(y)2

|x − y|d+2r dx dy

= 2(δh)−2r
∫

D
v(y)2 dy

∫

|z|≥1
|z|−d−2r dz = Ch−2r‖v‖2L2(D)

.

(97)

Expanding the first integral gives

J1 =
∑

τ∈˜Th(Dδ
h)

∫

τ

∫

τ̃

(v(x) − v(y))2

|x − y|d+2r dx dy

+
∑

τ∈˜Th(Dδ
h)

∫

τ

∫

τ̃ c

(v(x) − v(y))2

|x − y|d+2r dx dy =: J3 + J4.

(98)

Applying the arithmetic-geometric mean inequality gives

J4 ≤ 2
∑

τ∈˜Th(Dδ
h)

∫

τ

∫

τ̃ c

v(x)2 + v(y)2

|x − y|d+2r dx dy. (99)

As in (97),

J5 :=
∑

τ∈˜Th(Dδ
h)

∫

τ

∫

τ̃ c

v(y)2

|x − y|d+2r dx dy ≤ Ch−2r‖v‖2L2(D)
. (100)

Now,

{(τ, τ1): τ ∈ ˜Th(Dδ
h) and τ1 ∈ τ̃ c}

= {

(τ, τ1) ∈ ˜Th(Dδ
h) × ˜Th(Dδ

h): dist(τ, τ1) > δh
}

= {

(τ, τ1): τ1 ∈ ˜Th(Dδ
h) and τ ∈ τ̃ c1

}

.
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Using this and Fubini’s Theorem gives

∑

τ∈˜Th(Dδ
h)

∫

τ

∫

τ̃ c

v(x)2

|x − y|d+2r dx dy

=
∑

τ1∈˜Th(Dδ
h)

∫

τ1

∫

τ̃ c1

v(x)2

|x − y|d+2r dy dx = J5.

Thus J4 ≤ 4J5 and is bounded by the right hand side of (100).
For J3, we clearly have

J3 ≤
∑

τ∈˜Th(Dδ
h)

|v|2Hr (̃τ ).

For any element τ ′ ∈ ˜Th(Dδ
h), let vτ ′ denote ṽ restricted to τ ′ and extended by zero

outside. As r ∈ (0, 1/2), vτ ′ ∈ Hr (Rd) and satisfies

‖vτ ′ ‖Hr (Rd ) ≤ C‖v‖Hr (τ ′).

The constant C above only depends on Lipschitz constants associated with τ ′ (see
[22,28]), which in turn only depend on the constants appearing in (63). We use the
triangle inequality to get

|v|Hr (̃τ ) ≤
∑

τ ′⊂τ̃

|vτ ′ |Hr (̃τ )

and hence a Cauchy–Schwarz inequality implies that

|v|2Hr (̃τ ) ≤ Nτ

∑

τ ′⊂τ̃

|vτ ′ |2Hr (̃τ ) ≤ C
∑

τ ′⊂τ̃

|vτ ′ |2Hr (τ ′)

with Nτ denoting the number of elements in τ̃ . As the mesh is quasi-uniform, Nτ can
be bounded independently of h. In addition, the mesh quasi-uniformity condition also
implies that each τ ′ ∈ Th(D) is contained in a most a fixed number (independent of
h) of τ̃ (with τ ∈ ˜Th(Dδ

h)). Thus,

J3 ≤ C
∑

τ ′∈Th(D)

‖v‖2Hr (τ ′).

Combining the estimates for J2, J3 and J4 completes the proof of the lemma. ��
Proof of Lemma 7.6 In this proof, C denotes a generic constant independent of h and
j defined later. The inequality (4.1) of [43] guarantees that for τ ∈ Th , we have
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‖v − π sz
h v‖Hm (τ ) ≤ C

m
∑

k=0

hk−m‖v − p‖Hk (Sτ ), for m = 0, 1, (101)

for any linear polynomial p and v ∈ H1(Sτ ). Here Sτ denotes the union of τ ′ ∈ Th
with τ ∩ τ ′ �= ∅.

Now, we map τ to the reference element using an affine transformation. The map-
ping takes Sτ to ̂Sτ . Our aim is to take advantage of the averaged Taylor polynomial
constructed in [25], which requires the domain to be star-shaped with respect to a ball
(of uniform diameter). The patch ̂Sτ may not satisfy this property. However, it can
be written as the (overlapping) union of domains ̂Dj with each ̂Dj consisting of the
union of pairs of elements of ̂Sτ sharing a common face. These ̂Dj are star-shaped
with respect to balls of diameter depending on the shape regularity constant of the
subdivision, which is uniform thanks to (63). Hence, the averaged Taylor polynomial
Q j constructed in [25] satisfies (see Theorem 6.1 of [25]), for all v ∈ Hβ(̂S j ),

‖v − Q jv‖H1(̂Dj )
≤ C |v|Hβ(̂Dj )

. (102)

Taking ‖·‖
̂Dj

to be ‖·‖L2(̂Dj )
or ‖·‖H1(̂Dj )

and |·|
̂Dj

= |·|Hβ(̂Dj )
in Theorem7.1 of [25]

implies that (102) holds with ̂Dj replaced by ̂S j . This, (101) and a Bramble-Hilbert
argument implies that for v ∈ Hβ(D) ∩ H1

0 (D),

‖v − π sz
h v‖L2(D) + h‖v − π sz

h v‖H1(D) ≤ Chβ |v|Hβ(D). (103)

Inequality (88) follows from (103) and interpolation.
We cannot use Theorem 7.1 of [25] to derive (87) because of the non-locality of the

norm | · |Hβ(D). Instead, we apply LemmaA.1, (103), and the fact that |π sz
h v|Hβ(τ ) = 0

to obtain, for v ∈ Hβ(D) ∩ H1
0 (D),

|v − π sz
h v|2Hβ(D)

≤ C

(

h2−2β‖∇(v − π sz
h v)‖2L2(D)

+
∑

τ∈Th(D)

|v|2Hr (τ )

)

≤ |v|2Hβ(D)
. (104)

The norms in (87) can be replaced by ‖ · ‖Hβ(D) and hence (87) follows from (103)
and (104). ��
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