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Abstract
We present a new algorithm which, given a bidiagonal decomposition of a totally non-
negative matrix, computes all its eigenvalues to high relative accuracy in floating point
arithmetic in O(n3) time. It also computes exactly the Jordan blocks corresponding
to zero eigenvalues in up to O(n4) time.

Mathematics Subject Classification 65F15 · 15A18

1 Introduction

A matrix is totally nonnegative (TN) if all of its minors are nonnegative [2,8,10].
All n eigenvalues of an n × n TN matrix are real and nonnegative and we present a
new algorithms that computes all of them, including the zero ones, to high relative
accuracy in floating point arithmetic. Namely, the eigenvalues, λi , and their computed
counterparts, λ̂i , i = 1, 2, . . . , n, satisfy

|λi − λ̂i | ≤ O(ε)λi ,

where ε is the machine precision. The above inequality implies that the positive eigen-
values are computed with correct sign and most significant digits and the zero ones
are computed exactly. Additionally, the Jordan blocks corresponding to eigenvalue 0
(which we call zero Jordan blocks) are computed exactly.

The class of TNmatrices includesmany famous notoriously ill conditionedmatrices
such as Pascal, Hilbert, certain Cauchy and Vandermonde matrices, etc. Conventional
eigenvalue algorithms (e.g., LAPACK [1]) can fail to compute the tiny eigenvalues of
ill conditioned matrices with any relative accuracy at all. This is due to a phenomenon
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known as subtractive cancellation—the loss of correct significant digits during sub-
traction.

The first step in our pursuit of accurate eigenvalues is to acknowledge that the
matrix entries are a poor choice of parameters to represent a TNmatrix in floating point
arithmetic. Indeed, even tiny relative perturbations in the matrix entries (caused by
merely storing the matrix in the computer) can cause enormous relative perturbations
in the tiny eigenvalues and can completely destroy the zero ones.

For example, an ε perturbation in the (2,2) entry of the following 2 × 2 TN matrix
changes the smallest eigenvalue from 0 to about ε/2 then to about ε:

[
1 1
1 1

]
−→

[
1 1
1 1 + ε

]
−→

[
1 1
1 1 + 2ε

]
.

Since every TNmatrix can be decomposed as a product of nonnegative bidiagonals
[3,6,9,15], we follow the ideas in the nonsingular case [12] and choose such a bidiag-
onal decomposition as the representation of the TN matrix. This choice is motivated
by the fact that the entries of a bidiagonal decomposition of a TN matrix determine
all eigenvalues to high relative accuracy and determine the sizes of the zero Jordan
blocks exactly (see Sect. 12).

Breaking things down further, every bidiagonal matrix is a product of what we call
elementary bidiagonal matrices (EBMs). The EBMs differ from the identity matrix in
three entries only—one offdiagonal and its two immediately adjacent diagonal neigh-
bors. A TN matrix is thus, in turn, also a product of EBMs (Sects. 2 and 3). Following
the ideas of Cryer [3], multiplication by an EBM is the only type of transformation
one needs in order to reduce the TN eigenvalue problem to the bidiagonal singular
value problem (Sect. 8). The latter is then solved to high relative accuracy by using
the result of Demmel and Kahan [5].

Finally, the sizes of the zero Jordan blocks are inferred from the ranks of the powers
of the TN matrix (Sects. 9 and 10). This requires that we compute the bidiagonal
decomposition of a product of TN matrices, which is easily achieved by multiplying
one of the TN matrices by all the EBMs that comprise the other (Sect. 6).

The eigenvalue computation takes O(n3) time. The cost of computing the zero
Jordan blocks is O(n3z), where z is the size of the second largest Jordan block. The
overall cost is thus bounded by O(n4) (Sect. 11).

The TN matrices are the closure of the set of nonsingular TNmatrices. Algorithms
for computing all eigenvalues of nonsingular TN matrices to high relative accuracy
were presented in [12], thus the focus and contribution of this paper is on the singular
case. We make no assumption of singularity—our technique works regardless. As
much as we do follow the general framework of our earlier approach [12], there are
several important theoretical and algorithmic novelties. First, the notion of a bidiagonal
decomposition of a singular TN matrix is well defined and established via the process
of Neville elimination (Sect. 3). For singular TN matrices, in the process of Neville
elimination, we may occasionally be faced with the need to eliminate a nonzero entry
with a zero one—a task commonly considered impossible and requiring pivoting—
yet we show how to do just that. Second, the resulting lack of uniqueness in this
process is well understood and shown to have no impact on our ability to compute

123



Accurate eigenvalues and exact zero Jordan blocks of… 695

the eigenvalues accurately (Sect. 3.1). Third, we generalize the method of [12] and
show that given the bidiagonal decomposition of a TN matrix, one can compute the
bidiagonal decomposition of the product of that TN matrix and an EBM without
performing any subtractions even when some of the factors or the EBM are singular
(Sects. 4 and 5). The process is entirely subtraction free, thus subtractive cancellation
is avoided and the relative accuracy is preserved. Finally, in what we believe to be the
first example of a Jordan block being computed accurately in floating point arithmetic
for a matrix of any type, we reveal exactly the zero Jordan structure of the TN matrix.
With this we solve completely and to high relative accuracy the eigenvalue problem
for the class of irreducible TN matrices, since their nonzero eigenvalues are distinct
[7] and only the zero eigenvalues can have nontrivial Jordan blocks.

The paper is organized as follows. We introduce the main building block of a TN
matrix—the EBM in Sect. 2 and review bidiagonal decompositions of TN matrices in
Sect. 3. The two main building blocks of our algorithms–multiplication by an EBM
on the right and the left are covered in Sects. 4 and 5. We show how to compute the
product of TNmatrices and how to swap a zero rowor a zero columnwith the following
or the previous one in Sects. 6 and 7, respectively. Cryer’s algorithm for reducing a
TN matrix to tridiagonal form is in Sect. 8. The process for computing the rank of a
TN matrix is in Sect. 9 and its zero Jordan structure in Sect. 10. We discuss the cost,
perturbation theory, and accuracy of our algorithm in Sects. 11 and 12. We present
numerical experiments in Sect. 13 and conclude with open problems in Sect. 14.

2 Elementary bidiagonal matrices

The main building block of a bidiagonal decomposition of a TN matrix is the elemen-
tary bidiagonal matrix (EBM)

Ji (x, y, z) ≡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
. . .

y
x z

. . .

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (1)

which differs from the identity only in the entries x ≥ 0, y ≥ 0, and z ≥ 0 in positions
(i, i −1), (i −1, i −1), and (i, i), respectively. For reasons that will become apparent
in Sect. 4, we also require that z > 0 if i < n.
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We also extensively utilize the EBM

Ei (b, c) ≡ Ji (b, c, 1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
. . .

c
b 1

. . .

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2)

where b ≥ 0 and c ∈ {0, 1}.
Allowing for c = 0 in Ei (b, c) is critical for the theoretical construction of the

bidigonal decomposition of singular TN matrices using the process of Neville elimi-
nation, which we review in the next section.

For the rest of this section we focus on how the EBMs Ei function when one needs
to eliminate a single nonzero (and thus positive) entry ai j in a TN matrix using the
previous row.

⎡
⎢⎢⎢⎢⎢⎢⎣

a11
. . .

ai−1, j · · · ai−1,k · · ·
ai j · · · aik

...

⎤
⎥⎥⎥⎥⎥⎥⎦

,

If the entry immediately above, ai−1, j , is positive, we subtract, in a typical fashion,
x = ai j/ai−1, j times row i − 1 from row i to obtain a matrix A′ where a′

i j = 0. The
resulting decomposition is A = Ei (x, 1) · A′.

If ai−1, j = 0, then we obviously can’t eliminate the nonzero ai j with a nonsingular
EBM, but we can do so with a singular one. We observe first that ai−1, j = 0 coupled
withai j > 0 implies that the entire (i−1)st rowof A is zero (if someai−1,k > 0, k > j ,
the 2× 2 minor consisting of rows i − 1 and i and columns j and k would be negative
contradicting the total nonnegativity of A).

Thus we can swap rows i − 1 and i with the decomposition A = Ei (1, 0) · A′. For
example,

⎡
⎣ 0 0 0
1 1 1
0 3 4

⎤
⎦ =

⎡
⎣0 0 0
1 1 0
0 0 1

⎤
⎦

⎡
⎣ 1 1 1
0 0 0
0 3 4

⎤
⎦ . (3)

Note that we do not want to use the obvious swap matrix

⎡
⎣0 1 0
1 0 0
0 0 1

⎤
⎦
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for elimination since its leading principal 2 × 2 minor is −1 and thus this matrix is
not TN.

Additionally, we can use the matrix Ei (1, 0) to swap only the ai j entry to position
(i − 1, j) keeping the rest of the matrix intact. For example,

⎡
⎣0 0 0
1 1 1
0 3 4

⎤
⎦ =

⎡
⎣0 0 0
1 1 0
0 0 1

⎤
⎦

⎡
⎣ 1 0 0
0 1 1
0 3 4

⎤
⎦

︸ ︷︷ ︸
B

. (4)

This swap of a single entry does not necessarily preserve the TN structure of the
resulting matrix B, but it does so in all situations we care about in Sects. 4 and 5for
the banded TN matrices we encounter there.

We conclude this section with two important properties of EBMs, which we will
need later on:

Ei (b, c)E j (e, g) = E j (e, g)Ei (b, c), if |i − j | > 1, (5)

(Ei (b, 1))
−1 = Ei (− b, 1). (6)

3 Bidiagonal decompositions of TNmatrices

Every TN matrix can be decomposed as a product of nonnegative bidiagonals using
the classical approach ofNeville elimination. This bidiagonal decomposition is unique
for nonsingular TN matrices [9], but not necessarily so for singular ones. The lack
of uniqueness causes no issues since any decomposition of a TN matrix as a product
of nonnegative bidiagonals serves equally well as a starting point for our eigenvalue
algorithm. We discuss this at the end of the section.

A bidiagonal decomposition of a TN matrix is obtained using Neville elimination
as follows.

We use adjacent rows and columns to eliminate a matrix to diagonal form.We elim-
inate the first column using row operations, then the first row using column operations,
and so on until we obtain a diagonal matrix

D = diag(d1, d2, . . . , dn). (7)

Say, we’ve reached position (i, j), i > j , below the diagonal (so we are using row
operations for elimination).

– If the i th rowof A is zero,wemove onwithout doing anything and use Ei (0, 1) = I
for our decomposition. We write A = Ei (0, 1) · A′.

– Otherwise, if the (i − 1)st row is 0, we swap rows i − 1 and i and write A =
Ei (1, 0) · A′.

– Finally, if both rows i − 1 and i are nonzero, let l and k be the smallest indices,
such that ai−1,l �= 0 and aik �= 0. We must have l ≤ k or the minor
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det

([
ai−1,k ai−1,l

aik ail

])
= − aikai−1,l < 0,

which would contradict the fact that A is TN.

– If l < k, we move on without doing anything and write A = Ei (0, 1) · A′.
– Otherwise (if l = k), we eliminate the entry aik using row i −1 with multiplier
bi j = ai−1,k

aik
to create a zero in position (i, k). We write A = Ei (bi j , 1) · A′.

This process results in a decomposition

A = En(bn1, cn1) · · · En(bn,n−1, cn,n−1) · D · ET
n (bn−1,n, cn−1,n) · · · ET

n (b1n, c1n).

(8)

Using the commutativity relationships (5) we can combine the EBMs into bidiagonal
factors

L(i) = En−i+1(bn−i+1,1, cn−i+1,1) · · · En(bni , cni )

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
. . .

cn−i+1,1
bn−i+1,1 cn−i+2,2

bn−i+2,2
. . .

. . .
. . .

bn−1,i−1 cni
bni 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (9)

and repeat the samewith the upper bidiagonal factors to formupper bidiagonalmatrices
U (i). Note that the diagonal entries of every bidiagonal factor are zeros or ones with
the exception of the bottom right corner entry, which must equal 1.

We obtain a bidiagonal decomposition

A = L(1)L(2) · · · L(n−1)DU (n−1)U (n−2) · · ·U (1). (10)

In contrast with the nonsingular case, in the above decomposition, the diagonal factor
D can have zero entries on the diagonal and each factor L(i) can have a zero on the
diagonal immediately above any nontrivial offdiagonal entry. Similarly, U (i) can also
have a zero on the diagonal immediately to the left of any nontrivial offdiagonal entry.

We represent the bidiagonal decomposition (10) of A as a set of two n × n square
arrays containing the nontrivial entries bi j , ci j , and di as

BD(A) = [B,C]

with the additional convention that bii = di , i = 1, 2, . . . , n, are the diagonal entries
of D [as in (7)] and that the diagonal entries of the array C are unused. Despite being
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unused, we set the diagonal entries of C to 1 in our examples, since all nontrivial
entries of C are ones for nonsingular TN matrices and it is thus convenient in practice
to pass C as a matrix of all ones to our algorithm in such cases.

For example, the bidiagonal decomposition resulting from the Neville elimination
of the following singular TN matrix

A =
⎡
⎣ 1 0 2
0 0 0
3 0 10

⎤
⎦

=
⎡
⎣1

0
1 1

⎤
⎦

⎡
⎣ 1 0 2
3 0 10
0 0 0

⎤
⎦

=
⎡
⎣1

0
1 1

⎤
⎦

⎡
⎣1
3 1

0 1

⎤
⎦

⎡
⎣ 1 0 2
0 0 4
0 0 0

⎤
⎦

=
⎡
⎣1

0
1 1

⎤
⎦

⎡
⎣1
3 1

0 1

⎤
⎦

⎡
⎣ 1 2 0
0 4 0
0 0 0

⎤
⎦

⎡
⎣1

0 1
1

⎤
⎦

=
⎡
⎣1

0
1 1

⎤
⎦

⎡
⎣1
3 1

0 1

⎤
⎦

⎡
⎣1

4
0

⎤
⎦

⎡
⎣1 2

1 0
1

⎤
⎦

⎡
⎣1

0 1
1

⎤
⎦

is encoded as BD(A) = [B,C], where

B =
⎧⎨
⎩
1 2 1
3 4 0
1 0 0

⎫⎬
⎭ , C =

⎧⎨
⎩
1 1 0
1 1 1
0 1 1

⎫⎬
⎭ .

Finally, we note the obvious fact that

BD(AT ) = [BT ,CT ]. (11)

In all our further considerations, we assume that BD(A) is given as an input and
is the representation of the TN matrix A. The matrix entries of A, while easily (and
accurately) obtainable from BD(A), will not be needed or referenced.

3.1 Other bidiagonal decompositions

If a TN matrix is represented as a different product of nonnegative bidiagonals, we
can first compute the decomposition (10) from that (other) decomposition using the
method of Sect. 6. This computation is subtraction-free and thus any representation of
a TN matrix as a product of nonnegative bidiagonals is an equally good starting point
for our algorithm.
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4 Multiplication by an EBM on the right

All computations in this paper utilize only one operation: multiplication by an EBM.
These multiplications can occur on the left or on the right of the matrix and in this
section we consider the latter. [Multiplication by the transpose of an EBM is the same
type of operation because of (11).]

In what follows, we describe how to compute BD(A · Ji (x, y, z)) given BD(A)

and x, y, z without performing any subtractions.
We start with

AJi (x, y, z) = L(1)L(2)L(3) . . . L(n−1)DU (n−1) . . .U (2)U (1) · Ji (x, y, z). (12)

We consecutively chase the “bulge” Ji (x, y, z) to the left of the decomposition (12),
preserving the structure of the bidiagonal factors:

AJi = L(1) · · · L(i−2)L(i−1)L(i) · · · L(n−2)L(n−1)DU (n−1) · · ·U (3)U (2)U (1) Ji (13)

= L(1) · · · L(i−2)L(i−1)L(i) . . . L(n−2)L(n−1)DU (n−1) · · ·U (3)U (2) J (1)
i U (1)

(14)

= L(1) · · · L(i−2)L(i−1)L(i) · · · L(n−2)L(n−1)DU (n−1) · · ·U (3) J (2)
i U (2)U (1)

= . . .

= L(1) · · · L(i−2)L(i−1)L(i) · · · L(n−2)L(n−1)DJ (n−1)
i U (n−1) · · ·U (2)U (1) (15)

= L(1) · · · L(i−2)L(i−1)L(i) · · · L(n−2)L(n−1)E (n)
i DU (n−1) · · ·U (2)U (1) (16)

= L(1) · · · L(i−2)L(i−1)L(i) · · · L(n−3)L(n−2)E (n+1)
i+1 L(n−1)DU (n−1) · · ·U (2)U (1)

= L(1) · · · L(i−2)L(i−1)L(i) · · · L(n−3)E (n+2)
i+2 L(n−2)L(n−1)DU (n−1) · · ·U (2)U (1)

= . . .

= L(1) · · · L(i−2)L(i−1)E (2n−i)
n L(i+1) · · ·L(n−2)L(n−1)DU (n−1) · · ·U (2)U (1)

(17)

= L(1) · · · L(i−2)L(i−1)L(i) · · ·L(n−2)L(n−1)DU (n−1) · · ·U (2)U (1). (18)

The factors that are transformed at each step of the above transformations are under-
lined. The matrices J (k)

m and E (k)
i equal Jm(xk, yk, zk) and Ei (xk, yk), respectively,

for some xk, yk, and zk . The matrices L(k),D, and U (k), k = 1, 2, . . . , n − 1, are
unit lower bidiagonal, diagonal, and unit upper diagonal, respectively, with the same
pattern as L(k), D, and U (k).

We now explain how to obtain (14) from (13) and so on until we obtain (18).
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4.1 Passing through the upper bidiagonal factors

We start with the transformations (13)–(15). At each step we are given matrices

U =

⎡
⎢⎢⎢⎢⎢⎣

d1 u1
d2 u2

. . .
. . .

dn−1 un−1
dn

⎤
⎥⎥⎥⎥⎥⎦

, u j ≥ 0, d j ∈ {0, 1}, j = 1, 2, . . . , n − 1; dn = 1,

and Ji (x, y, z), x ≥ 0, y ≥ 0, z ≥ 0 with z > 0 if i < n. We need to compute
matrices

U =

⎡
⎢⎢⎢⎢⎢⎣

d ′
1 u′

1
d ′
2 u′

2
. . .

. . .

d ′
n−1 u′

n−1
d ′
n

⎤
⎥⎥⎥⎥⎥⎦

, u′
j ≥ 0, d ′

n ∈ {0, 1}, j = 1, 2, . . . , n − 1, d ′
n = 1,

and Ji (x ′, y′, z′) such that Ji (x ′, y′, z′) · U = U · Ji (x, y, z), x ′ ≥ 0, y′ ≥ 0, z′ ≥ 0,
and z′ > 0 if i < n. Namely,

⎡
⎢⎢⎢⎢⎢⎢⎣

. . .
. . .

d ′
i−2 u′

i−2
d ′
i−1y

′ y′u′
i−1

d ′
i−1x

′ d ′
i z

′ + x ′u′
i−1 u′

i z
′

. . .

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

. . .
. . .

di−2 ui−2y
di−1y + xui−1 ui−1z

di x di z ui
. . .

⎤
⎥⎥⎥⎥⎥⎥⎦

.

(19)

Comparing entries we get automatically u′
i−2 = ui−2y. For the rest of the entries we

need to consider several cases as we, essentially, perform implicit Neville elimination
on the matrix on the right of (19) to eliminate the entry di x .

– If di−1y + xui−1 �= 0, then

d ′
i−1 = 1

y′ = di−1y + xui−1

u′
i−1 = ui−1z/y

′

x ′ = di x
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We have d ′
i z

′ = di z − x ′u′
i−1 = di z − di xui−1z

di−1y+xui−1
= di−1di yz

y′ .

– If di−1di yz �= 0, then d ′
i = 1 and z′ = di−1di yz

y′ .
– If di−1di yz = 0, then d ′

i = 0, z′ = 1.

– If di−1y + xui−1 = 0, then

– If di x = 0, then u′
i−1 = ui−1z, x ′ = 0, and

• if u′
i−1 �= 0, then d ′

i−1 = 0 and y′ = 1;
• otherwise, d ′

i−1 = 1 and y′ = 0.
– If di x �= 0, then we must have ui−1z = 0 (since U · Ji (x, y, z) is TN).1 Thus
d ′
i−1 = 1, y′ = 0, u′

i−1 = 0, and x ′ = di x .

In either case

– if di = 1, then d ′
i = 1, z′ = z;

– otherwise (if di = 0), then d ′
i = 0, z′ = 1.

Since the bottom right entry dn of each bidiagonal factorU must equal 1, if i = n and
the above procedure results in d ′

n = 0, z′ = 1, we write instead d ′
n = 1, z′ = 0. We

can do this for i = n, since in this case the entries d ′
n and z′ participate only in the

(n, n) entry, d ′
nz

′ + x ′u′
n−1, on the left hand side of (19), and do so as a product.

Finally, u′
i = ui/z′. This is the reason we need to have z strictly positive for i < n.

For i = n we allow z = 0 since then the operation u′
i = ui/z′ won’t have to be

performed (the indices in the u’s only go to n − 1). Clearly, for i < n, z > 0 implies
z′ > 0.

The rest of the entries remain unchanged: d ′
j = d j for j /∈ {i − 1, i} and u′

j = u j

for j /∈ {i − 2, i − 1, i}.

4.2 Passing through the diagonal factor

Next, we turn our attention to the transformation (15)–(16).

– If ydi−1 > 0,

D · Ji (x, y, z) =

⎡
⎢⎢⎢⎢⎢⎢⎣

. . .

1
ydi−1
xdi zdi

. . .

⎤
⎥⎥⎥⎥⎥⎥⎦

= Ei (x
′, y′) · diag(d1, d2, . . . , di−2, di−1y, di z, di+1, . . . , dn),

where x ′ = xdi/(ydi−1), y′ = 1.

1 This is a situation where we need to “move” only the entry di x to row i − 1 as in example (4). We can’t
swap the entire zero row i − 1 with row i since a nonzero entry ui would destroy the tridiagonal structure
of the product U · Ji (x, y, z) on the right hand side of (19). Thus we move just the entry di x one row up,
leaving everything else in its place.
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– Otherwise (if ydi−1 = 0), then there are two possibilities:

– If xdi > 0, then

D · Ji (x, y, z) = Ei (x
′, y′) · diag(d1, d2, . . . , di−2, 1, di z, di+1, . . . , dn),

where x ′ = xdi , y′ = 0.
– Otherwise (i.e., if xdi = 0),

D · Ji (x, y, z) = diag(d1, d2, . . . , di−2, 0, di z, di+1, . . . , dn)

and the procedure terminates (i.e., x ′ = 0, y′ = 1, so that Ei (x ′, y′) = I ).

Either way, we have factored out an Ei (x ′, y′), where x ′ ≥ 0 and y′ ∈ {0, 1}.

4.3 Passing through the lower bidiagonal factors

The final stage are the transformations (16)–(18), where we start with the matrix Ei

from the previous step. Each transformation is Ei+1(x ′, y′)·L = L ·Ei (x, y). Namely,

⎡
⎢⎢⎢⎢⎢⎢⎣

. . .

d ′
i−1
y′b′

i y′d ′
i

x ′b′
i x ′d ′

i + b′
i+1 d ′

i+1
. . .

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

. . .

di−1y
bi y + di x di
bi+1x bi+1 di+1

. . .

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Comparing entries, we get d ′
i−1 = di−1y and

– If bi+1x = 0, then b′
i = bi y + di x and we are done (Ei+1(x ′, y′) = I ).

– Otherwise, we have the following two possibilities:

– If bi y + di x �= 0, then we set y′ = 1 and obtain

b′
i = bi y + di x

x ′ = bi+1x
b′
i

d ′
i = di

b′
i+1 = bi+1 − x ′d ′

i = bibi+1y/b
′
i .

– Otherwise (i.e., bi y + di x = 0), since bi+1x �= 0, we must have di = 0 and
thus we factor an Ei+1(x, 0) from L · J (x, y, 1) as follows:
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L · J (x, y, 1) =

⎡
⎢⎢⎢⎢⎢⎢⎣

. . .

di−1y
0 0

bi+1x bi+1 di+1
. . .

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

. . .

1
0
x 1

. . .

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

. . .

di−1y
bi+1 0

bi+1 di+1
. . .

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Thus y′ = 0, x ′ = x, b′
i = bi+1, and d ′

i+1 = di+1. Once again, just as in
(4), we used the (singular) matrix Ei (x, 0) to “eliminate” the entry bi+1x in
position (i + 1, i − 1).

4.4 Scaling a row or a column by a scalar d

Being able to multiply by an EBM Ji (x, y, z) directly allows us to easily scale a TN
matrix by any diagonal factor. To scale a single column, say the i th, by a scalar d ≥ 0,
we form the product with Ji+1(0, d, 1) if i < n or with Jn(0, 1, d) if i = n. This
distinction is needed because of the requirement that z > 0 if i < n in the definition
(1) of Ji .

In particular, we can set any column to 0 by picking d = 0. This is of particular
importance in our eigenvalue algorithm, where we have to set a column to 0 whenever
we encounter a zero row and vice versa.

To scale a row,weworkon the transposeof amatrix and its correspondingbidiagonal
decomposition (11).

5 Multiplication by an EBM on the left

Since we already know how to scale rows and columns, it suffices to show how to
multiply by the EBM Ei (b, c) on the left (since Ji (x, y, z) is a product of an Ei (b, c)
and a diagonal factor).

Let A be TN with bidiagonal decomposition

A = L(1)L(2) · · · L(m−1)DU (n−1)U (n−2) · · ·U (1).

In what followswe show how to computeBD(Ei (b1, d1)·A) given b1, d1, andBD(A)

without performing any subtractions.
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The relations (5) imply that Ei (b1, d1) commutes with L(1), L(2), . . . , L(n−i−1),
thus

Ei (b1, d1) · A
= L(1)L(2) · · · L(n−i−1)Ei (b1, d1)L

(n−i) · · · L(n−1)DU (n−1)U (n−2) · · ·U (1).

The goal is thus to obtain two new bidiagonal matrices L(n−i) and L(n−i+1) with the
same structure as L(n−i) and L(n−i+1) such that

L(n−i)L(n−i+1) = Ei (b1, d1)L
(n−i)L(n−i+1). (20)

We only demonstrate the case i = 2 since the cases i > 2 are completely analogous.
Let

L(n−2) =

⎡
⎢⎢⎢⎢⎢⎣

1
0 d2
b2 d3

. . .
. . .

bn−1 dn

⎤
⎥⎥⎥⎥⎥⎦

, L(n−1) =

⎡
⎢⎢⎢⎢⎢⎣

e1
c1 e2

c2 e3
. . .

. . .

cn−1 en

⎤
⎥⎥⎥⎥⎥⎦

and

L(n−2) =

⎡
⎢⎢⎢⎢⎢⎣

1
0 d ′

2
b′
2 d ′

3
. . .

. . .

b′
n−1 d ′

n

⎤
⎥⎥⎥⎥⎥⎦

, L(n−1) =

⎡
⎢⎢⎢⎢⎢⎣

e′
1
c′
1 e′

2
c′
2 e′

3
. . .

. . .

c′
n−1 e′

n

⎤
⎥⎥⎥⎥⎥⎦

.

Then

E2(b1, d1) · L(n−2) =

⎡
⎢⎢⎢⎢⎢⎣

d1
b1 d2

b2 d3
. . .

. . .

bn−1 dn

⎤
⎥⎥⎥⎥⎥⎦
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and (20) becomes

⎡
⎢⎢⎢⎢⎢⎣

e′
1

d ′
2c

′
1 d ′

2e
′
2

b′
2c

′
1 b′

2e
′
2 + d ′

3c
′
2 d ′

3e
′
3

. . .
. . .

. . .

b′
n−1c

′
n−2 b′

n−1e
′
n−1 + d ′

nc
′
n−1 d ′

ne
′
n

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

d1e1
b1e1 + c1d2 d2e2

b2c1 b2e2 + d3c2 d3e3
. . .

. . .
. . .

bn−1cn−2 bn−1en−1 + dncn−1 dnen

⎤
⎥⎥⎥⎥⎥⎦

. (21)

We compare entries on both sides of (21) to obtain (since b′
1 = 0, d ′

1 = 1)

e′
i = ei di

d ′
i

b′
i = bi ci−1

c′
i−1

, (22)

d ′
i+1c

′
i = bi ei − b′

i e
′
i + di+1ci

for i = 1, 2, . . .We eliminate the subtraction in (22) by introducing auxiliary variables
gi ≡ bi ei − b′

i e
′
i . Then g1 = e1b1 − b′

1e
′
1 = e1b1 and

gi = bi ei − b′
i e

′
i

= bi ei − bi ci−1eidi
c′
i−1d

′
i

= bi ei
c′
i−1d

′
i

(
c′
i−1d

′
i − ci−1di

)

= bi ei
c′
i−1d

′
i

(
bi−1ei−1 − b′

i−1c
′
i−1

)

= bi ei gi−1

c′
i−1d

′
i

.

Therefore we set d ′
1 = 1 and iterate for i = 1, 2, . . .

– If i = 1 or d ′
i c

′
i−1 �= 0,

gi =
{ bi ei gi−1

c′
i−1d

′
i

, if i > 1

b1e1, otherwise

b′
i =

{ bi ci−1
c′
i−1

, if i > 1

0, otherwise
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e′
i = eidi

d ′
i

d ′
i+1c

′
i = di+1ci + gi . (23)

We resolve the last equation, (23), after the next case since we end up with the
same one there as well.

– If d ′
i c

′
i−1 = 0, then

– if d ′
i = 1 we set b′

i = 0, e′
i = eidi

– if d ′
i = 0 we set b′

i = 1, e′
i = 0.

Either way, gi = bi ei − b′
i e

′
i = bi ei and d ′

i+1c
′
i = di+1ci + gi .

In both cases above, we end up having to resolve the equation d ′
i+1c

′
i = di+1ci + gi

for d ′
i+1 and c′

i .
Since d ′

i+1 ∈ {0, 1}, if di+1ci+gi �= 0,wemust have d ′
i+1 = 1 and c′

i = di+1ci+gi .
If di+1ci + gi = 0 and bi+1ci �= 0, we must have c′

i �= 0 (since b′
i+1c

′
i = bi+1ci ),

whichmeans di+1 = 0 andwe can pick c′
i to be an arbitrary positive number. Choosing

c′
i = bi+1ci would imply b′

i+1 = 1 in the following step, which means that we,
essentially, eliminate the entry bi+1ci > 0 in position (i + 2, i) in (21) using a
trasformation of type (4).

Finally, if di+1ci+gi = 0 and bi+1ci = 0, we choose d ′
i+1 = 1, c′

i = 0. This choice
is in line with our goal of having ones on the diagonal and zeros on the subdiagonal
of the L factors in BD(A) in the eigenvalue computation.

6 Product of TNmatrices

Since a TN matrix is a product of EBMs, (8), we can compute the bidiagonal decom-
position of a product of two TN matrices A and B by starting with BD(A) and using
the methods of Sects. 4 and 5 to accumulate all the EBM factors of BD(B).

This approach also allows us to recover the decomposition (10) of a TN matrix
A represented as any product of nonnegative bidiagonals. Since every nonnegative
bidiagonal is a products of EBMs, we can start with the identity matrix (which is TN)
and consecutively multiply by all EBMs that comprise A.

As we mentioned previously, this is the reason why all representations of a TN
matrix as products of nonnegative bidiagonals are numerically equivalent.

The ability to compute the bidiagonal decomposition of a product of TN matrices
will also be needed in the computation of the zero Jordan blocks in Sect. 10 below,
where we will need the bidiagonal decompositions of the powers of the TN matrix.

7 Swapping a zero row or columnwith the following or the previous
one

The ability to swap zero rows or zero columns with the following or the previous ones
will be needed in the eigenvalue computation in Sect. 8 and the computation of the
rank of a TN matrix in Sect. 9.
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We can swap a zero column, i , in a TN matrix with the following column, i + 1,
by forming the product A · Ei+1(1, 0) and then setting the (i + 1)st column to 0. In
other words, we add column i + 1 to (zero times) the zero column i , then set column
i + 1 to zero, as for example in the following 3 × 3 TN matrix for i = 2:

⎡
⎣1 0 1
1 0 2
1 0 3

⎤
⎦

⎡
⎣1

0
1 1

⎤
⎦

⎡
⎣1

1
0

⎤
⎦ =

⎡
⎣1 1 0
1 2 0
1 3 0

⎤
⎦ .

Both multiplications are handled as in Sect. 4.
We can swap a zero row, i , with the previous one by forming Ei (1, 0) · A as in the

following example:

⎡
⎣0
1 1

1

⎤
⎦

⎡
⎣ 1 1 1
0 0 0
1 2 3

⎤
⎦ =

⎡
⎣0 0 0
1 1 1
1 2 3

⎤
⎦ .

8 Cryer’s method

In [3] Cryer described an algorithm which reduces a TN matrix A to a symmetric
tridiagonal matrix T with the same eigenvalues. It works by creating zeros in A below
the first subdiagonal and above the first superdiagonal starting with the first column
then proceeding with the first row and so on as follows.

If the entry ai j > 0 (say below the diagonal) is to be zeroed out, then there are two
possibilities:

1. If ai−1, j > 0, we subtract an appropriate multiple of row i−1 from row i to create
a zero in position (i, j). We complete the similarity by adding the same multiple
of column i to column i − 1. This does not affect the zeros created earlier in this
process and preserves the TN structure of A.

2. If ai−1, j = 0, this means that the entire (i − 1)st row of A is zero (since ai j > 0).
Column i − 1 can thus be set to zero without changing the eigenvalues. We then
swap the (i − 1)st row and the (i − 1)st column with the i th ones, respectively.

We continue this process until we are left with a tridiagonal matrix.
In the language of BD(A) this algorithm works as follows. We need to eliminate

all EBMs in (8) that do not belong to L(n−1), D, or U (n−1). Here “eliminate” means
turn all those EBMs into identity matrices.

We start on the leftmost EBM in (8), then the rightmost, and alternate until we are
left with just L(n−1), D, and U (n−1).

We explain how this process works to eliminate the first factor, En(bn1, cn1), in (8)
with the rest of the process being analogous.

We have, A = En(bn1, cn1) · A′, where BD(A′) is obtained from BD(A) by setting
bn1 = 0, cn1 = 1.
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1. If cn1 = 1, we form the similarity

En(− bn1, 1) · A · (En(− bn1, 1))
−1 = En(− bn1, 1) · En(bn1, 1) · A′ · En(bn1, 1)

= A′ · En(bn1, 1).

The decomposition BD(A′ · En(bn1, 1)) is computed using the method of Sect. 4.
2. If cn1 = 0, this means that row n − 1 of A is 0. We proceed by setting column

n − 1 to zero using the method of Sect. 4.4 which, despite not being a similarity,
does not change the eigenvalues of A. We then swap rows n − 1 and n as well as
columns n − 1 and n as in Sect. 7.

The critical observation here is that in both situations the bidiagonal decomposition of
the newly obtained matrix is such that bn1 = 0, cn1 = 1, i.e., the factor En(bn1, cn1)
has been eliminated—it now equals the identity matrix. This is obvious in the case
cn1 = 1. When cn1 = 0, swapping rows n − 1 and n is achieved by forming the
product

J Tn (0, 1, 0) · A = J Tn (0, 1, 0) · En(bn1, 0) · A′ = J Tn (1, bn1, 0) · A′.

We already have bn1 = 0, cn1 = 1 in BD(A′), thus computing BD(J Tn (1, bn1, 0) · A′)
as the transpose of BD((A′)T · Jn(1, bn1, 0)) using the method of Sect. 4 does not
affect the values of bn1 and cn1.

At the end of this procedurewe are left the bidiagonal decomposition of a tridiagonal
matrix T with the same eigenvalues as A:

T = L(n−1)DU (n−1). (24)

Replacing the offdiagonal entries ti,i+1 and ti+1,i of T by
√
ti,i+1ti+1,i does not change

its eigenvalues, butmakes it symmetric. Thematrix T is also nonnegative definite since
all of its minors and, in particular, the principal ones are nonnegative. Its Cholesky
factor is readily available from (24).

Wecompute the eigenvalues ofT as the squares of the singular values of itsCholesky
factor to high relative accuracy using the result of Demmel and Kahan [5].

9 The rank of a TNmatrix

The rank of a TN matrix A can be recovered exactly from BD(A) by first reducing A
to upper bidiagonal form as follows.

We consider the decomposition (8) and start eliminating the EBMs corresponding to
the first column in B, En(bn1, cn1), . . . , E2(b21, c21) (in that order). By “eliminating,”
again, we mean turning these factors into identity matrices. The process does not
change the rank of A.

If the current leftmost factor, say, Ei (bi1, ci1) is such that ci1 = 1, then this factor
is nonsingular and replacing it with the identity matrix by setting bi1 = 0 does not
change the rank of A.
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If, in that factor, ci1 = 0, then the (i − 1)st row of A is zero and we swap it with
row i as in Sect. 7. The rank of A is unaffected, but again the factor Ei (bi1, ci1) is
eliminated (for the same reason explained in Sect. 8.)

We then turn our attention to the first row of B. We eliminate only the last n − 2
rightmost factors ET

3 (b13, c13), . . . , ET
n (b1n, c1n), starting with the last one in the

same fashion as we did for the first column of B. We leave ET
2 (b12, c12) intact

since attempting to eliminate it when c12 = 0 could result in some of the factors
En(bn1, cn1), . . . , E2(b21, c21) already eliminated in the previous step reappearing in
the bidiagonal decomposition.

We proceed with the second row and column, etc., until we are left with an upper
bidiagonal matrix, E , with bidiagonal decomposition E = D ·U (n−1). Computing its
rank is now a trivial matter.

10 The zero Jordan blocks

The number of zero Jordan blocks of any matrix A is equal to n − rank(A). For a
TN matrix, we readily compute this number off BD(A) using the method from the
previous section.

If we have more than one zero Jordan block, we form the sequence

rank(A), rank(A2), . . . (25)

by first computing BD(A2),BD(A3), etc., and then the corresponding ranks. The
difference

zi ≡ rank(Ai ) − rank(Ai+1)

equals the number of zero Jordan blocks of size at least i . The largest i for which we
need to compute zi is thus the first one for which zi becomes 1. Once that happens, the
sizes of all zero Jordan blocks are directly determined. Since the computation of the
rank is exact, the sizes of the Jordan blocks are revealed exactly. The maximum power
of A that needs to be computed in the sequence (25) equals the size of the second
largest zero Jordan block.

11 The cost of computing the eigenvalues and the zero Jordan blocks

The introduction of the new variables on the diagonal of the bidiagonal factors in
BD(A) does add a tiny additional arithmetic cost to the algorithms in Sects. 4 and
5 compared to those in [12,13]. A careful examination of the new formulas readily
reveals that the cost of our new eigenvalue algorithm in this paper does not exceed
twice the cost of the eigenvalue algorithm in [12]. Therefore our new algorithm costs
O(n3).

The cost of computing the zero Jordan blocks is O(n3z), where z is the size of the
second largest zero Jordan block. Since the second largest Jordan block can potentially
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Fig. 1 The eigenvalues of a 20 × 20 Vandermonde matrix

be of size O(n) (e.g., n
3 ), we have an upper bound of O(n4). Finding an algorithm to

compute the zero Jordan blocks in O(n3) time remains an open problem.

12 Perturbation theory and accuracy of the algorithms

Following the same arguments as in [12] we can readily state that small relative pertur-
bations in the entries of BD(A) cause small relative perturbations in the eigenvalues
of A. The zero Jordan structure is unaffected by relative perturbations in BD(A) of
any magnitude [7].

Additionally, the error bounds for the eigenvalues, proven in [12], apply directly
to the singular case as well—the only difference here is the possibility for zeros on
the diagonals of the factors L(i) and U (i) of (10), which does not yield any additional
roundoff errors.

In particular, all eigenvalues of a TNmatrix are computed to high relative accuracy.
The zero eigenvalues and their corresponding Jordan blocks are revealed exactly.

13 Numerical experiments

We performed extensive numerical tests to verify the correctness of our eigenvalue
algorithm. We present one illustrative example in Fig. 1 of the (singular) 20 × 20
Vandermonde matrix with nodes

1, 2, 2, 2, 2, 6, 7, 7, 7, 7, 7, 7, 13, 14, 15, 16, 17, 18, 19, 20.
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Since the nodes 2 and 7 are repeated 4 and 6 times, respectively, the rank of the matrix
is 12.We computed the eigenvalues using our new algorithm, a conventional algorithm
(eig in MATLAB [14]), and in 60 decimal digit extended precision arithmetic. As
expected, only the largest eigenvalues are computed accurately by eig and the zero
eigenvalues are lost. In contrast, our new algorithm computed all nonzero eigenvalues
to at least 14 correct decimal digits when compared with those computed in extended
precision. No amount of extra precision will allow us to reliably produce the zero
eigenvalues exactly using conventional algorithms, thus the only reason we know that
our algorithm returned the correct number of zero eigenvalues (8) is because we know
from theory that the rank of thematrix is 12.2 This matrix has no nontrivial zero Jordan
blocks.

We also tested the computation of zero Jordan blocks against known examples and
found the output of our algorithm to be an exact match.

We conclude with a small 4 × 4 example,

A =

⎡
⎢⎢⎣
3 3 2 1
2 2 3 2
1 1 2 3
1 1 2 3

⎤
⎥⎥⎦ , BD(A) =

⎧⎪⎪⎨
⎪⎪⎩

3 1 2
3 0.5

2
3

5
3 1 0.3

0.5 0.3 1.6 1
1 0 0 0

⎫⎪⎪⎬
⎪⎪⎭

,

⎧⎪⎪⎨
⎪⎪⎩

1 1 1 1
1 1 0 1
1 1 1 0
1 1 1 1

⎫⎪⎪⎬
⎪⎪⎭

,

for which we computed BD(A) exactly by hand. The entries 2
3 ,

5
3 , 0.3, and 1.6 of

BD(A) are not exact binary floating point numbers, which means that the TN matrix
represented by the stored binary floating point version of BD(A) has nonzero eigen-
values which are slightly perturbed versions of the nonzero eigenvalues of A (the
zero eigenvalues are unaffected by small relative perturbations in BD(A)). Despite
those perturbations and the further roundoff errors in the eigenvalue computation, the
eigenvalues are computed by our algorithm as

{7.828427124746190, 2.171572875253810, 0, 0},

matching the exact nonzero eigenvalues, 5±2
√
2, to 16 decimal digits. The zero ones

are computed exactly and the zero Jordan block of size 2 is also correctly identified.
MATLAB implementations of the algorithms described here are available online

[11].

14 Open problems

Several open problems remain. The most troubling is the potential O(n4) cost to
reveal the zero Jordan blocks, which we would have ideally liked to be O(n3).
Other open problems include extending the techniques of this paper to the SVD and
other TN-preserving operations as well as finding explicit formulas for the bidiagonal
decompositions of the classical TN matrices Vandermonde, Cauchy, etc., when they
have repeated nodes and are thus singular.

2 The zero eigenvalues are not depicted in the figure since it is log-scale.
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