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Abstract

This paper is concerned with the approximation of tensors using tree-based tensor
formats, which are tensor networks whose graphs are dimension partition trees. We
consider Hilbert tensor spaces of multivariate functions defined on a product set
equipped with a probability measure. This includes the case of multidimensional
arrays corresponding to finite product sets. We propose and analyse an algorithm
for the construction of an approximation using only point evaluations of a multivariate
function, or evaluations of some entries of a multidimensional array. The algorithm is
a variant of higher-order singular value decomposition which constructs a hierarchy of
subspaces associated with the different nodes of the tree and a corresponding hierarchy
of interpolation operators. Optimal subspaces are estimated using empirical principal
component analysis of interpolations of partial random evaluations of the function.
The algorithm is able to provide an approximation in any tree-based format with either
a prescribed rank or a prescribed relative error, with a number of evaluations of the
order of the storage complexity of the approximation format. Under some assumptions
on the estimation of principal components, we prove that the algorithm provides either
a quasi-optimal approximation with a given rank, or an approximation satisfying the
prescribed relative error, up to constants depending on the tree and the properties of
interpolation operators. The analysis takes into account the discretization errors for
the approximation of infinite-dimensional tensors. For a tensor with finite and known
rank in a tree-based format, the algorithm is able to recover the tensor in a stable way
using a number of evaluations equal to the storage complexity of the representation of
the tensor in this format. Several numerical examples illustrate the main results and the
behavior of the algorithm for the approximation of high-dimensional functions using
hierarchical Tucker or tensor train tensor formats, and the approximation of univariate
functions using tensorization.
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1 Introduction

The approximation of high-dimensional functions is one of the most challenging tasks
in computational science. Such high-dimensional problems arise in many domains of
physics, chemistry, biology or finance, where the functions are the solutions of high-
dimensional partial differential equations (PDEs). Such problems also typically arise
in statistics or machine learning, for the estimation of high-dimensional probabil-
ity density functions, or the approximation of the relation between a certain random
variable and some predictive variables, the typical task of supervised learning. The
approximation of high-dimensional functions is also required in optimization or uncer-
tainty quantification problems, where the functions represent the response of a system
(or model) in terms of some parameters. These problems require many evaluations
of the functions and are usually intractable when one evaluation requires a specific
experimental set-up or one run of a complex numerical code.

The approximation of high-dimensional functions from a limited number of infor-
mation on the functions requires exploiting low-dimensional structures of functions.
This usually call for nonlinear approximation tools [10,43]. A prominent approach
consists of exploiting the sparsity of functions relatively to a basis, a frame, or a more
general dictionary of functions [4,6,44]. Another approach consists of exploiting low-
rank structures of multivariate functions, interpreted as elements of tensor spaces,
which is related to notions of sparsity in (uncountably infinite) dictionaries of sep-
arable functions. For a multivariate function v(x, ..., xg) defined on a product set
X x --- x Xy, which is here identified with a tensor of order d, a natural notion of
rank is the canonical rank, which is the minimal integer » such that

v(xy,...,xq) = Z v,l(xl) ... v,‘f(xd)
k=1

for some univariate functions v,‘g defined on A&,,. For d = 2, this corresponds to the
unique notion of rank, which coincides with the matrix rank when the variables take
values in finite index sets and v is identified with a matrix. A function with low
canonical rank r has a number of parameters which scales only linearly with r and
d. However, it turns out that this format has several drawbacks when d > 2 (see,
e.g., [9,22]), which makes it unsuitable for approximation. Then, other notions of rank
have been introduced. For a subset of dimensions « in {1, ..., d}, the a-rank of a
function v is the minimal integer rank, (v) such that

rank,, (v)

v(xy, ..., xq) = Z v,‘f(xa)v,fc(xac)

k=1

for some functions v{ and v,‘:l' of complementary groups of variables x, = (x,)veq €
Xy and xge = (X)) peqc € Xge, with o€ the complementary subset of o in {1, ..., d}.
Approximation formats can then be defined by imposing «-ranks for a collection of
subsets «. More precisely, if A is a collection of subsets in {1, ..., d}, we define an
approximation format
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T4 = {v :ranky (v) < 1y, € A} = ﬂ 7;({1&}’

aeA

where r = (rq)qeca is a tuple of integers. When A is a tree-structured collection of
subsets (a subset of a dimension partition tree), ’Z;A is a tree-based tensor format whose
elements admit a hierarchical and data-sparse representation. Tree-based tensor for-
mats are tree tensor networks, i.e. tensor networks with tree-structured graphs [36].
They include the hierarchical Tucker (HT) format [21] and the tensor-train (TT) for-
mat [38]. Tree-based formats have many favorable properties that make them favorable
for numerical use. As an intersection of subsets of tensors with bounded a-rank, o € A,
these formats inherit most of the nice properties of the low-rank approximation format
for order-two tensors. In particular, under suitable assumptions on tensor norms, best
approximation problems in the set TrA are well-posed [13,16]. Also, the a-rank of a
tensor can be computed through singular value decomposition, and the notion of singu-
lar value decomposition can be extended (in different ways) to these formats [8,17,37].
Another interesting property, which is not exploited in the present paper, is the fact
that the set ’Z;A is a differentiable manifold [14,15,23,45], which has interesting con-
sequences in optimization or model order reduction of dynamical systems in tensor
spaces [30]. There are only a few results available on the approximation properties of
tree-based formats [42]. However, it has been observed in many domains of applica-
tions that tree-based formats have a high approximation power (or expressive power).
Hierarchical tensor formats have been recently identified with deep neural networks
with a particular architecture [7].

The reader is referred to the monograph [20] and surveys [1,18,27,28,34,35] for an
introduction to tensor numerical methods and an overview of recent developments in
the field.

This paper is concerned with the problem of computing an approximation of a
function u(x1, . .., x4) using point evaluations of this function, where evaluations can
be selected adaptively. This includes problems where the function represents the output
of a black-box numerical code, a system or a physical experiment for a given value of
the input variables (x1, ..., x4). This also includes the solution of high-dimensional
PDEs with a probabilistic interpretation, where Monte-Carlo methods can be used to
obtain point evaluations of their solutions. This excludes problems where evaluations
of the functions come as an unstructured data set. A multivariate function u (xy, . .., xg)
is here considered as an element of a Hilbert tensor space H| ® - - - ® H of real-valued
functions defined on a product set X} x - - - X Xz equipped with a probability measure.
This includes the case of multidimensional arrays when the variables x,, take values
in finite sets X,. In this case, a point evaluation corresponds to the evaluation of an
entry of the tensor.

Several algorithms have been proposed for the construction of approximations in
tree-based formats using point evaluations of functions or entries of tensors. Let us
mention algorithms that use adaptive and structured evaluations of tensors [2,39] and
statistical learning approaches that use unstructured (random) evaluations of func-
tions [5,11,12,19]. Let us also mention the recent work [31] for the approximation in
Tucker format, with an approach similar to the one proposed in the present paper.
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746 A. Nouy

In the present paper, we propose and analyse a new algorithm which is based on a
particular extension of the singular value decomposition for the tree-based format ’Z;A
which allows us to construct an approximation using only evaluations of a function
(or entries of a tensor). The proposed algorithm constructs a hierarchy of subspaces
U, of functions of groups of variables x,, for all @ € A, and associated interpolation
operators Iy, which are oblique projections onto Uy . For the construction of U, for
a particular node o € A, we interpret the function u as a random variable u (-, xqc)
depending on a set of random variables x,c with values in the space of functions
of the variables x,. Then U, is obtained by estimating the principal components of
this function-valued random variable using random samples u(-, x(];(.). In practice, we
estimate the principal components from interpolations Iy, u(, sz") of these samples
on a subspace V,, which is a certain approximation space when « is a leaf of the tree, or
the tensor product of subspaces {Ug}ges(«) associated with the sons S(«) of the node
a when « is not a leaf of the tree. This construction only requires evaluations of # on
a product set of points which is the product of an interpolation grid in X, (unisolvent
for the space V,), and a random set of points in Xjc. It is a sequential construction
going from the leaves to the root of the tree.

The proposed algorithm can be interpreted as an extension of principal com-
ponent analysis for tree-based tensors which provides a statistical estimation of
low-dimensional subspaces of functions of groups of variables for the representation
of a multivariate function. It is able to provide an approximation #* in any tree-based
format TrA with either a prescribed rank r or a prescribed relative error (by adapting
the rank r). For a given r, it has the remarkable property that it is able to provide an
approximation in 7, with a number of evaluations equal to the storage complexity of
the resulting approximation. Under some assumptions on the estimation of principal
components, we prove that the algorithm, up to some discretization error p, provides
with high probability a quasi-optimal approximation with a prescribed rank, i.e.

lu — || < ¢ min |lu—v|+p,
veTA

where the constant ¢ depends on the set A and the properties of orthogonal projections
and interpolation operators associated with principal subspaces. Also, under some
assumptions on the estimation of principal components and discretization error, we
prove that the algorithm with prescribed tolerance € is able to provide an approximation
u* such that

lu —u*|l < Cellull

holds with high probability, where the constant ¢ depends on the set A and the prop-
erties of projections and interpolation operators. Sharp inequalities are obtained by
considering the properties of projection and interpolation operators when restricted
to minimal subspaces of tensors. The analysis takes into account the discretization
errors for the approximation of infinite-dimensional tensors. For a tensor with finite
and known rank in a tree-based format, and when there is no discretization error, the
algorithm is able to recover the tensor in a stable way using a number of evaluations
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equal to the storage complexity of the representation of the tensor in this format. This
algorithm may have important applications in the manipulation of big data, by pro-
viding a way to reconstruct a multidimensional array from a limited number of entries
(tensor completion).

The outline of the paper is as follows. In Sect. 2, we introduce some definitions and
properties of projections in Hilbert spaces, with a particular attention on Hilbert spaces
of functions and projections based on point evaluations. In Sect. 3, we recall basic def-
initions on tensors and Hilbert tensor spaces of functions defined on measured product
sets. Then we introduce some definitions and properties of operators on tensor spaces,
with partial point evaluation functionals as a particular case. Finally, we introduce def-
initions and properties of projections on tensor spaces, with a particular attention on
orthogonal projection and interpolation. In Sect. 4, we introduce tree-based low-rank
formats in a general setting including classical HT and TT formats. In Sect. 5, we
first introduce the notion of principal component analysis for multivariate functions
and then propose an extension of principal component analysis to tree-based tensor
format. This is based on a new variant of higher-order singular value decomposition of
tensors in tree-based format. In Sect. 6, we present and analyse a modified version of
the algorithm presented in Sect. 5 which only requires point evaluations of functions,
and which is based on empirical principal component analyses and interpolations. In
Sect. 7, the behavior of the proposed algorithm is illustrated and analysed in several
numerical experiments.

2 Projections

For two vector spaces V and W equipped with norms || - ||y and || - ||w respectively,
we denote by L(V, W) the space of linear operators from V to W. We denote by
L(V, W) the space of linear and continuous operators from V to W, with bounded
operator norm ||A|ly—w = max|,=1 [[Av|lw. We denote by V* = L(V,R) the
algebraic dual of V and by V' = L(V,R) the topological dual of V, and we let

I - llvor = |l - v We denote by (-, -) the duality pairing between a space and its
dual. We let L(V) := L(V, V) and L(V) := L(V, V), and we replace the notation
I - llv>v by |l - |lv, where the latter notation also stands for the norm on V.

2.1 Projections
Let V be a Hilbert space and U be a finite-dimensional subspace of V. An operator
P is a projection onto a subspace U if In(P) = U and Pu =uforallu € U.

The orthogonal projection Py onto U is a linear and continuous operator which
associates to v € V the unique solution Pyv € U of

lv—Pyvlly =min v —ully,
uel

orequivalently (u, Pyv—v) = 0, Yu € U. The orthogonal projection Py has operator
norm | Pylly = 1.
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748 A. Nouy

Let W be a finite-dimensional subspace of V* such that

dim(W) = dim(U), and (1a)
{fueU:(w,u)=0 forallw e W} =/{0}, (1b)

where the latter condition is equivalent to U N Lw = {0}, with - W the annihilator
of Win V (see [33, Definition 1.10.4]). Under the above assumptions, we have that
for any v € V, there exists a unique u € U such that (w,u — v) =0 forall w € W.!
This allows to define the projection ng onto U along W which is the linear operator
on V which associates to v € V the unique solution ng veUof

(w,PL‘;Vv—v)=O, Yw e W.

For W = Ry U, where Ry : V — V' is the Riesz map, the projection Pl‘;V coincides
with the orthogonal projection Py. A non orthogonal projection is called an obliqgue
projection. If W C V', then P[‘}V is a projection from V onto U parallel to K er(Pl‘}V ) =

71, where Z = R‘jlW. If W c U’, with U a closed subspace of V, then P[‘;V|U isa
projection from U onto U parallel to Ker(PgV) NU =Z1NU, where Z = lejl w,

with R; the Riesz map from UtoU'.

Proposition 1 Let U be a closed subspace of V and assume that U C UandW c U’ 2
Then Pl‘;V is a continuous operator from U to V.

Proof Let us equip W with the norm ||w|lw = ||w| 5 = max g5 (w, v)/[v]lv, such
that for all v € U, (w, v) < [[w|lw|v]ly. Let
(w, u)

o= min max ——.
0£ucl 0£weW |ully |wllw

Assumption (1b) implies that & > 0. Then for all v € U, we have

. (w, Pv) i (w, v)

max = <a vy,
ogweW  [lwllw

max <
0weW |lwllw

w —
Py vlly <o

which ends the proof. O

Proposition 2 Let P and P be projections onto subspaces U and U respectively and
assume U C U. Then

PP =P.

1 Uniqueness comes from (1b) while existence comes from (1a) and (1b).
2 Note that V/ C U’ and we may have W ¢ V.
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Moreover, if P and P are projections along W and W respectively, with W C W,
then

PP =PP =P.

Proof Forallve V,Pve U C U , and therefore PPv= Pv, which proves the first
statement. For the second statement, by definition of the projection P, we have that
(¢, PPv— Pv) =0forall¢) € W.Since W C W and by definition of P, this implies
that (¢, PPv —v) = Oforall ¢ € W. By definition of Pv and since PPv e U, this
implies PPv = Pv=PPu. O

Proposition 3 Ler U and U be two closed subspaces of V, with U of finite dimension.
Let Py be the orthogonal projection onto U and let Pl‘;v be the projection onto U

along W C U'. Forallv € U,
1P v — Pyvlly < 1P} — Pullg_ylv—Puvly,
with
1Py = Pullg_y = 1P lia—pyyo—y <P llg_y-
Also, forallv € U,

lv—PYolly < L+ 1IPY — Pull:_ )llv— Pyvlly.

i)l

Proof For v € U, |P)v — Pyvlly = 1P} (v — Pyv)lv = I(P) — Py)(v —
Pyv)lly < I1PY = Pull—pyyi—v v = Puvllv, with [P = Pyl jy_pyoy =
I P[?/ —Pullg_y =1 ng ”(id—PU)[/—>V' This proves the first statement. The second
statement directly follows from ||v — PJVUH%/ =|v— PUUH%, + || Pyv — PJVUH%,. O

2.2 Projection of functions using point evaluations

Let V be a Hilbert space of functions defined onaset X. For x € X, the point evaluation
functional §, € V* is defined by (8, v) = v(x).

2.2.1 Interpolation

Let U be an-dimensional subspace of V and let I" = {x¥ }i—, beasetof n interpolation
points in X. The set of interpolation points /" is assumed to be unisolvent for U, i.e. for
any (ay);_, € R", there exists aunique u € U such that u(x¥) = ax forall 1 <k < n.
The interpolation operator Iy associated with I” is a linear operator from V to U such
that for v € V, Iyv is the unique element of U such that

(6x, Iyv —v) = Iyv(x) —v(x) =0 Vxel.
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750 A. Nouy

The interpolation operator /7 is an oblique projection P(v]V onto U along W = span{d; :
x € I'}. Note that the condition that I” is unisolvent for U is equivalent to the condi-
tion (1b) on U and W, which ensures that Iy is well defined. From Proposition 2, we
deduce the following property.

Proposition 4 Let U and U be two subspaces associated with sets of interpolation
points I' and I' respectively. If U C U and I' C T, then

Iyly =Igly = Iy.

Magic points. For a given basis {¢; }?_, of U, a set of interpolation points I" = (xk Yee1
called magic points, can be determined with a greedy algorithm proposed in [32,
Remark 2]. The procedure for selecting the set " in a subset I, in X is as follows.
We first determine a point x! e I', and an index i; such that

1
lgiy (x7)| = max max [g; (x)|.
xel, 1<i<n

Then for k > 1, we define 1 (x) = @i (x) — Y _y Y5 @i, (¥)agy i (xP). with

that 1/fi(rf)(x) =O0foralll <m <kandx € X, and wi(k)(xp) =0foralll <p <k

k+1

and 1 < i < n. Then, we determine the point x € I, and an index ij4 such that

() o k1Y (k)
Wi OO0 = g oo, Wi 1

2.2.2 Discrete least-squares projection

Let U be a n-dimensional subspace of V and let I" = {xk}km=1 be a set of m points
in X, m > n, such that ||v||r = (err v(x)z)l/2 defines a norm on U. The discrete
least-squares projection Qy is the linear operator from V to U such that forv € V,
Quv is the unique element in U which minimizes |v — u||%— over all u € U, or
equivalently

(v = Quv)r =Y u@){dx.v—Quv)=0 Yuel,

xel”

where (-, ) is the inner product associated with the norm || - | on U. The dis-
crete least-squares projection Qp is an oblique projection onto U along W =
{erru(x)ch cu € UL If #I" = dim(U) and I is unisolvent for U, then Qp
coincides with the interpolation operator ;.

Proposition 5 Ler U and U be two finite-dimensional subspaces such that U C U.
Let Qu be the discrete least-squares projection onto U associated with a set of points
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I'in X, and let Q be the discrete least-squares projection onto U associated with a
set of points I' in X. If either I’ = I" or I’ C I" and I is unisolvent for U, then

QuQy =0yQu = 0Qu.

Proof Qy is the projection onto U along W = ()", . u(x)8, : u € U}, and Qg is
the projection onto U along W= (D iefi(x)8y 1t € U}. If we prove that W C W,
then the result follows from Proposition 2. Let w = Y . p u(x)8x € W, withu € U.
If ' = I, then since u € U, we clearly have w € W.If I’ C I" and I is unisolvent
for U, there exists a function it € U such that ii(x) = u(x) forallx € I"and ii(x) = 0
forallx € I \I". Therefore, w = ZX eF i (x)dy is an element of W, which ends the
proof. O

3 Tensors

Let H, be Hilbert spaces of real-valued functions defined on sets X, equipped with
probability measures p,, 1 < v < d. We denote by || - |7, the norm on H, and by
(-, -)n, the associated inner product. Let X = & x - x Xyand p = 1 ® - - - @ uq.
The tensor product of d functions v¥ € H,, 1 < v < d, denoted Ve ® vd, isa
multivariate function defined on X such that (v! ®- - -®@v9)(x) = v!(x}) ... v4(xy) for
x = (x1,...,xg) € X. Such a function is called an elementary tensor. The algebraic
tensor space H| ®, - .. ®, Hy is defined as the linear span of all elementary tensors,
which is a pre-Hilbert space when equipped with the canonical inner product (-, -)
defined for elementary tensors by

We - evw e - w) =0 w0 why,,

and then extended by linearity to the whole algebraic tensor space. We denote by
|| - || the norm associated with inner product (-, -). A Hilbert tensor space H =

Hi Qg ... ®a Ha I is then obtained by the completion of the algebraic tensor space,
which we simply denote

d
H=Hi® - ®Has=QH.
v=1

Example 1 Consider finite sets X, and H, = R equipped with the norm ||v||%_lv =
va ex, v(fxuDlvlxy) |2. Then, H is the space of multidimensional arrays RY®...®
RY and [u]]? = ¥, cp (Do) 2, where e(fxi, ... xa)) = [T o (o).

Example 2 Consider X}, = R, u, a finite measure on R, and H, = Liu (X)) equipped
with the natural norm || U”%—lv = f |v(xv)|2uv (dx,). Then ‘H is identified with LIZL(X),
where /1 = ju1 @ -+~ ® g, and [|[v]|* = [ Jo(x)|*p(d).
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752 A. Nouy

Example 3 Consider for H, a reproducing kernel Hilbert space (RKHS) with repro-
ducing kernel k, : X, x &, — R. Then H is a RKHS with reproducing kernel
k(x,x") = ki(x1, x]) ... ka(xq, x})).

For a non-empty subset @ in {1, ..., d} := D, we let &}, be the set X, X, equipped
with the product measure j1o = &), ¢, iv. We denote by Hy = ), o, Ho the Hilbert
tensor space of functions defined on A&, equipped with the canonical norm | - ||,

such that

1@ v i, = Tl I,

veo veo

for v¥ € H,, 1 <v <d. We have Hp = H and we use the convention Hy = R.
Matricisations and a-ranks. Let « C D, with a ¢ {#, D}, and let «“ = D\« be its
complement in D. For x € X, we denote by x, the subset of variables (x)),eq. A
tensor v € H can be identified with an order-two tensor

Ma(v) € Ho ® Hge,

where M, is the matricisation operator associated with «, which defines a linear
isometry between H and Hy, ® Hye. We use the conventions Mg(v) = Mp(v) = v
and Hy @ Hp = Hp ® Hy = H.

The a-rank of a tensor v € H, denoted rank, (v), is defined as the rank of the
order-two tensor M, (v), which is uniquely defined as the minimal integer such that

ranky (v) . ranky (v)
M) = Z vy ® v,‘z‘(, or equivalently v(x) = Z vy (xa)v,‘fc (xg¢), (2)
k=1 k=1

for some functions v;} € H, and v,‘z‘c € Hye of complementary subsets of variables
Xxq and x,c respectively. By convention, we have ranky(v) = rankp(v) = 1. From
now on, when there is no ambiguity, M, (v) and Hy ® Hye will be identified with v
and H respectively.

Minimal subspaces. The minimal subspace U™ (v) of v is defined as the smallest
closed subspace in H, such that

v e UMM (1) @ Hye,

and we have rank, (v) = dim(Ut;"i” (v)) (see [13]). If v admits the representation (2),

then U (v) is the closure of span{v }giﬂl(“(v). For any partition S(a) of o, we have

Uyt c Q) U (w).
BeS(a)
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We have Ugi’z(v) = Rv and for any partition S(D) of D,

ve Q) UFw).

BeS(D)
3.1 Operators on tensor spaces

Let consider the Hilbert tensor space H = ®‘5: 1 Hy equipped with the canonical
norm || - ||. For linear operators from H to H, we also denote by || - || the operator norm
I s = 11 - 3.

We denote by id the identity operator on H. For a non-empty subset « C D, we
denote by id, the identity operator on H,. For Ay in L(Hy), we define the linear
operator Ay ® idye such that for v* € H, and v € Hee,

(Ag ® idge) (1 @ ™) = (Agv®) ® v,

and we extend this definition by linearity to the whole algebraic tensor space Hy Q4
Hye. For a finite dimensional tensor space 7, this completely characterizes a linear
operator on . For an infinite dimensional tensor space H, if A, € L(Uy, Hy), with
Uy C Hy, then Ay ® idye can be extended by continuity to Uy, ® H.

We denote by Ay, using calligraphic font style, the linear operator in L() asso-
ciated with an operator A, in L(H,), defined by A, = M;l (Ag ® idyc) My, and
simply denoted

Aa - Aa ® ida"
when there is no ambiguity. If A, € L(Hy), then A, € L(H) and the two operators

have the same operator norm || Ay || = ||Aq |7, . Also, we have the following more
general result.

Proposition 6 If A, € L(Uy, Hy), with Uy C Hy, then Ay € L(Uy @ Heye, H) and
the two operators have the same operator norm

I Aa vy @H,e—>H = 1 Aalluy—H, -
Corollary 1 For a tensor v € 'H and an operator A, € L',(Ug”” (v), Hy),
1A < | Al gpin )34, 101
Let S = {«y, ..., ak} be acollection of disjoint subsets of D and let A, € L(Hy)

be linear operators, « € S. Then we can define a linear operator Ay, ® - -+ ® Ay =
Ryes Ac 0n Hyy 4 ... ®q Hay such that

(@ AC,) (@ v”‘) = @) (Aav®)

aeS aEeS aEeS
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754 A. Nouy

for v* € He, a € S. The operator (X, ¢ Ao can be identified with an operator

A=]] A

aes

defined on the algebraic tensor space H| ®q ... ®, Hg. The definition of A is inde-
pendent of the ordering of the elements of S. If the operators A, are continuous, then
A defines a continuous operator from H to H and since | - || is a uniform crossnorm
(see [20, Proposition 4.127]), the operator A has for operator norm

1A= [T 14all = ] ] 1 Aall, -
aeS aeS
Also, we have the following more general result.

Proposition 7 Let S be a collection of disjoint subsets of D and let B C D such that
B U (Ugesa) = D. Let Uy be a subspace of Hy and Ay € L(Uy, Hy), for a € S.
Then A = ]—[aes Ay is a continuous operator fromU = (®aes Uy) @ Hg to H such
that

Il = [ [ Mallvgerue—n = [ ] 1Aallv, -,

aesS aesS

Corollary 2 Let S be a collection of disjoint subsets of D. For a tensor v € 'H and
operators Ay, a € S, such that Ay € LUY"" (v), Hy), the operator A = [],c5 Aa
is such that

1Avl < ol TT 1Aallgpine) -, -

aeS

3.2 Partial evaluations of tensors

Let « be a non-empty subset of D. For a linear form ¥, € H}, Yo ® idye is a linear
operator from Hy ®, H e to Hye such that (wa®idac)(v“®v°‘() = Yy W) If Yo €
H,,, the definition of ¥, ® idye can be extended by continuity to H. Then Vy ® idye
is a continuous operator from H to Heye with operator norm ||y ® idye |H—H,c =
Va7, - Also, we have the following result.

Proposition 8 [f Y, € U,, with Uy a subspace of He, then ¥y @ idye € L(Uy ®
H(x" . Ha") and

Ve ® idac | Uy@H e —Hoe = I1Valluy-
Corollary 3 For a tensor v € H and ¥, € Uu'l”"" (v)’, we have

(W ® ida)v]l < ¥l pinguyy 101-
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For a point x, € X, we denote by &y, € H the point evaluation functional at
Xg, defined by (8x,, v¥) = v¥(xy) for v* € Hy. Then 8y, ® idye defines a partial
evaluation functional, which is a linear operator from H to Hye such that

By, ® idye) (V" ® V™) = v (xa)V™".

From Corollary 3, we deduce that for a given tensor v € H, if 8y, € Ué"i” (v)’, then
the definition of §,, ® idye can be extended by continuity to U}"" (v) ® Hye and the
partial evaluation

V(xg, ") = (8)6[, ® idye)v
is an element of Hc such that

v (Xas I Hpe = 10Bx, @ idae)V]l < |6 lyminuy V1I-

3.3 Projection of tensors

Let« be a non-empty and strict subset of D and let U,, be a finite-dimensional subspace
of H,. If P, is a projection from H, onto Uy, then Py ® idyc is a projection from
Hy ® Hye onto Uy @ Hee.

Proposition9 Letv € Handa, B C D. Let Pg be a projection from Hg to a subspace
Ug and let Pg be the corresponding projection onto Ug @ Hge. If B C aw or B C D\ax,
we have

ranky (Pgv) < ranky (v).

Proof A tensor v admits a representation v = f;ﬂl("‘(v) vy ®w,‘§c. If B C a,thenPg =

(Ps ® idg\p) ® idp\g and Pgv = Y (Pp @ idep)vf) @ wi. If B C D\a,

ranky

then Pp = idy ® (Ps®id py\(aup)) and Ppv = 31 v @ (Pg®id p\jaup)wi).
The result follows from the definition of the «-rank. O

If Py, is the orthogonal projection from Hy onto Uy, then Py, ® idye coincides
with the orthogonal projection Py,g,. from Hy ® Hye onto Uy ® Hye, and is
identified with the orthogonal projection Py, = Py, ® idye in L(H). If PI‘JZ “ is the
oblique projection onto U, along W, C H}, then PI‘Z “ = PUWu “ ® idye is the oblique
projection from Hy ® Hee onto Uy ® Hye along Wy @ H... If Wy, C H,,, then P[‘;Z o

and PZZ “ are continuous operators with equal norms ||PZ,‘; A= PUW(, |, -

Proposition 10 Let U, be a finite-dimensional subspace of Hy and let P(Z “ be the

Wo

projection onto Uy along Wy. For a tensor v € H such that Wy C UM (v)/, Pyiv

is an element of Uy @ Hge such that
W, W,
”PU:U” < || PUaO’ ||ngin(v)_>Ha ||U||,
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and
W, W,
”,PU;U - 'PUO,UH < ”PUO:X _ Pch”U&’””(v)eHa llvll,
with

W, W, W,
1Py, = Pugllupiney—r, = 1Py, Nidy—puuginw—Ha = 1Py, Tuginw)—H,-
Also,

We W
v = Pyevl® < (4 1PGS = Pulmingy v = Pugvll®.

Proof We have v € Ug”"(v) ® Hye. Noting that ||P(Xa|lU&"i"(v)®Haf~>H =

Wy Wy Wy
1Py, Nymin vy, and Py« — Pugllyminwyetre -1 = 1Py,” — Pullyminwy—w,»
the results directly follow from Proposition 3. O

Now, let & be a non-empty subset of D and let S(«) be a partition of «. Let Pl‘;; ?
be oblique projections onto subspaces Ug of Hg along Wy C H;;, B € S(«). Then

W/S . WS(O() . . . . o
024 BeS(a) PUﬂ = PUS(a) is the oblique projection from Hg) = & pes() Hp onto

. . Ws(e) Ws@) o -
®,B€S(a) Ug := Us(q) along ®/3€S(a) Wg := Wg(q), and PUS(Q) = PUS(ot) ® idye

is the oblique projection from Hy ® Hye t0 Us(a) ® Hee along Ws(q) ® H, .. From
Proposition 2, we directly obtain the following result.

Proposition 11 If Uy C @ pes(a) Up and Wo C Qgesia) Wp, then

o We ) _ Wp o« _ pWa
PUa 1_[ 7)Uﬁ = H PU;; 7)Ua = PUO,'
BeS(a) BeS(a)

4 Tree-based tensor formats

Let 7 C 2P\@ be a dimension partition tree over D, with root D. The elements of
T are called the nodes of the tree. Every node o € T with #o > 2 has a set of sons
S (o) which form a partition of «, i.e. Uﬂes(a) B =a.Anode @ € T with#ux = 11is
such that S(«) = ¥ and is called a leaf of the tree. The set of leaves of T is denoted
L(T) (see an example on Fig. 1). For « € T, we denote by level(«) the level of
o in T, such that level(D) = 0 and level(8) = level(a) + 1 if B € S(x). We let
L = depth(T) = maxyer level(a) be the depth of 7', which is the maximum level of
the nodes in T, and Ty = {« € T : level(«) = £} be the subset of nodes with level
,0<¢ <L Weletty = a. We have 1y C t; and t\ty4; C L(T) (see
example on Fig. 2).

We introduce a subset of active nodes A C T\{D} such that T\A C {D}U L(T),
which means that the set of non active nodes in T\{D} is a subset of the leaves (see

aeTy
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Fig.1 A dimension partition {17 2,3,4,5, 6}
tree T over D = {1, 2, 3,4,5, 6}
and its leaves (blue nodes) (color
figure online)

2y {3}
To (level 0)
Ty (level 1)
T> (level 2)
{1} {4+ {5y {6}
Ts (level 3)
{2 {3}
Fig.2 A dimension partition tree 7 over D = {1, ..., 6} with depth L = 3 and the corresponding subsets

Ty, 0 <€ < L.Herets = {2,3}and 1 = t] =ty = D (color figure online)

Fig.3 A dimension partition {17 2,3,4,5, 6}
tree T over D ={1,2,3,4,5, 6}
and an admissible subset of
active nodes A (red nodes)
(color figure online)

{2y {3}

Fig. 3). A set A is admissible if for any o € A, the parent node of & isin A U {D}. We
let LIA)=ANL(T),Ag =ANTeforl <€ < L,and ay = Ugea,a. We define the
A-rank of a tensor v € H as the tuple rank 4 (v) = {ranky (v)}gea-

Now we consider a tensor v € H with rankg(v) = (rg)gea. We let rp =
rankp(v) = 1. Foralla € AU{D}, we denote by {v,‘;‘a }Z‘;Zl a basis of the minimal sub-
space U&'””(v) C Hy, and we let le =v.Fora € AU{D}suchthat@ # S(x) C A,
since U&”i” W cCc® pes@ U lg”i”(v), the tensor v,‘z‘a admits a representation
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B
v/?a(x“): Z C]?as(kﬂ)ﬂES(a) l_[ vkﬂ(xﬁ)’

1<kp=<rg BeS(x)
BeS(a)

with a tensor of coefficients C¥ e R™***ges’ For o € A U {D} such that

@ # S@) ¢ A, we have U (v) C (Qpes@na Up" ) ® (Rgesna Hp)»
and therefore the tensor v,‘fa admits a representation

B
v, (Xa) = Z Chty (kg pesiarn (XB) Bes@\A) H Vs (XB)

lfkﬁfrﬂ BeS()NA
BeS(a)NA

with C¥ e R/@*Xpes@na’ g (®B6S(a)\A ‘Hp). Finally, a tensor v such that
rank 4 (v) = (ry)aeca admits a representation

v= ) [T Ctmpeson @pesans) [] v a) 3
1<kq<rq ac(AU{D})\L(A) ael(A)
aeAU{D}

For a tuple r = (ry)oca, we define the subset 7;A (H) of tensors in ‘H with A-rank
bounded by r,

ZA(H) ={veH ranky(v) <ry,a € A} = ﬂ 7;({;1}(71)_

acA
Remark 1 A tensorv € ’J;A (H) admits a representation as a composition of functions.
Fora € A, let v*(xy) = (vf, ..., ve) € R If @) # S(a) C A, the tensor C* can

be identified with a multilinear function f* : Xgeg(q) R"? — R, and v* (xq) admits
the representation

v (xa) = 40P (xp)) pes)-
For « € AU {D} such that § # S(a) ¢ A, the tensor C*((xg)ges@)\a) can be

identified with a multilinear function (-, (xg)ges@)\a) @ Xges@na R? — R'e,
and v*(xy) admits the representation

v (xa) = AP (xp)) pesina, (Xp)pesina),

where the f is linear in the arguments associated with active nodes 8 € S(«) N A.
As an example, for the case of Fig. 3, the tensor v admits the representation

v(x) = fIEII0 230, 12 (e, v (), 70 x5, 00 ().
Proposition 12 LetV = Vi ®---® V; C H, with V,, a subspace of H.,, with dimension

dim(V,) = n,, 1 <v <d. Thestorage complexityofatensorin’Z;A (H)NV = ’];A(V)
is
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Fig.4 Tucker format. {1 2.3.4 5}
Dimension partition tree 7" over T

D=A{l,..., 5} and subset of
active nodes A (red nodes)
(color figure online)

{1} {2} {3} {4} {5}
storage(TrA(V)) = Z T l_[ rg l_[ ng+ Z Talg-
a€(AUDD\L(A)  BeS(@NA  BeS()\A aeL(A)

Example 4 (Tucker format) The Tucker format corresponds to a trivial tree 7 =
{{1,...,d}, {1},...,{d}} withdepth L = 1, and A = T\{D} (see Fig. 4). A ten-

sor v with A-rank bounded by (ry, ..., ry) admits a representation of the form
r rd
V) =YY Chy gV, (1) -V (), 4
k=1 kg=1

where C € R and v € H,, 1 < v =<d, or equivalently

v(x) = i d@lo), . v ().

Example 5 (Degenerate Tucker format) A degenerate Tucker format corresponds to a
trivialtree T = {{1,...,d}, {1}, ..., {d}} withdepth L = 1, and an active set of nodes
A strictly included in 7\ {D}. Up to a permutation of dimensions, this corresponds to
A = {{1},...,{p}}, with p < d. A tensor v with A-rank bounded by (r1,...,rp)
admits a representation of the form

1 I'p
V) = Y e D Copoky (ot s XU (1) 0] (), )

k=1 kp=1

v(x) = fhd@ix, ..., vP(xp), Xpst, ..o, Xa).

Example 6 (Tensor train format) The tensor train (TT) format corresponds to a lin-
ear tree T = {{1},{2},...,{d},{1,2},....{1,...,d}} and A = {{1},{1,2},...,
{1,...,d—1}} (seeFig.5). Here, A is a strict subset of 7\{D}. The nodes {2}, ..., {d}
in T are not active.? A tensor v with A-rank bounded by (r1, ..., rq—1) admits a rep-

3 Note that since rank 4} (v) = rankj
yield an equivalent tensor format.

d—1)(v), adding the node {d} in the set of active nodes A would
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Fig.5 Tensor train format. {1,2,3,4,5}
Dimension partition tree 7" over
D=A{l,..., 5} and active nodes
A (red nodes) (color figure
online)

i {2}

resentation of the form

rd—1

v(x) = Z D0 vl GDCR g () Gl i )CE, | (xa),

ki=1 kg—1=1

where v! € R @ Hy, C¥ € R-1*" @ H, for 2 < v < d, with the convention
rq =1.Here L=d —1,andforl < ¢ <L, T, ={{1,...,d —¢£},{d — €+ 1}},
te=A{l,....,d —C+1}, Ay ={{1,...,d —¢}}and ap = {1, ..., d — £}. The tensor
v admits the equivalent representation

v(x) = flod (fl """ =1 <~'.fl’z(vl(xl),m)~~,de1),xa').

Example 7 (Tensor train Tucker format) The tensor train Tucker (TTT) format corre-
sponds to a linear tree T = {{1},...,{d},{1,2},...,{1,...,d}} and A = T\{D}
(see Fig. 6). A tensor v having a A-rank bounded by (ry, ..., 74, 52, ..., Sq—1) admits
a representation of the form (4) with a tensor C € R™ ">’ guch that

Sd—1

d—1 d
----- Z Z Ckl ka, lzclz k3,i3 Cld 2.kd—1,id— ICid—l,kdal’

ir=1 ig—1=1

where C2 € R1X12%52 gpnd Ck € R%—1>X7%Sk for 3 < k < d, with the convention
s¢g =1.Here L=d -1, T, =A;,={{1,...,d —4¢},{d—C+ 1}}and t; = a; =
{1,...,d —€+ 1} for 1 < £ < L. The tensor v admits the equivalent representation

o) = fled (a2 . @) v e ) o))

@ Springer



Higher-order PCA for the approximation in tree-based tensor... 761

Fig.6 Tensor train Tucker {1,2,3,4,5}
format. Dimension partition tree
ToverD=A{1,..., 5} and
active nodes A (red nodes)
(color figure online)

i {2}

5 Principal component analysis for tree-based tensor format
5.1 Principal component analysis of multivariate functions

Here we introduce the notion of principal component analysis for multivariate func-
tions. We consider a given non-empty and strict subset & of D. Any tensor in H is
identified (through the linear isometry M) with its a-matricisation in Hy ® Hee. A
tensor u with a-rank ranky (1) € N U {+o00} admits a singular value decomposition
(see [20, Section 4.4.3])

ranky (¢)

u= Z ofuy @ u‘,fc, 6)
k=1

where {ug}f:nll(" @ and {uzr}f‘ill(“ @) are orthonormal vectors in He and Hee respec-

tively, and where the o are the a-singular values of u which are supposed to be
arranged by decreasing values. The minimal subspace U”" (u) of u is given by

. E———— |
UM () = spanfud )"

For ry < ranky (u), the truncated singular value decomposition
Ta
c
ur, = Y ofuf ®uf’,
k=1

is such that

ranky (1)

2 . 2 2

e = = min_ = vl* = > o
ranky (V) <ry kg +1
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The functions {u%}lr;’: | are the r, principal components of u associated with dimen-
sions «, hereafter called a-principal components. The corresponding subspace U} =
span{uz}?‘: 1» Which is a subspace of UJ"" (u), is hereafter called a a-principal sub-

space of dimension ry. Denoting Py; = Pyz ® idye the orthogonal projection from
Hto Uy ® Hge, we have u,, = PU‘;M,4 and

lu—Pyzull= min |u—v||l= min |u—"Py,ul. 7
ranky (V) <rg dim(Uy)=ry

Remark 2 The optimization problem (7) over subspaces of dimension r,, in H,, admits
a unique solution Uy if and only if 0% | > o .

5.2 Principal component analysis for tree-based tensor format

Here, we propose and analyse an algorithm for the construction of an approximation
u* of a function u in tree-based format 7;A (H). It is based on the construction of a
hierarchy of subspaces Uy, @ € A, from principal component analyses of approxi-
mations of u# in low-dimensional spaces in H,. This is a variant of the leaves-to-root
higher-order singular value decomposition method proposed in [17] (see also [20,
Section 11.4.2.3]).

For each leaf node o € L(T), we introduce a finite-dimensional approximation
space V, C Hy with dimension dim(Vy) = ny, and we let V = ®aeL(T) Vo C H.
For each non active node o € L(T)\A, we let Uy, = V,. The algorithm then goes
through all active nodes of the tree, going from the leaves to the root. For each o € A,
we let

ug = Py,u,

o

where for o ¢ L(T), V, is defined by

Vo= X Up.

BeS(a)

where the Ug, B € S(a), have been determined at a previous step. Then we determine
the r,-dimensional «-principal subspace Uy of uy, which is solution of

lug — Pyl = min  |lug — vl (®)
ranky (V) <ry
Finally, we define
u* = Pyyu, 9

where Py, is the orthogonal projection from H onto Vp = @ gcs(p) Up-

4 For al! m‘z ro, wehave Pysuy = Z']f":l f’/ft(PU; u‘;) @?ugc = Z;"‘zl a,f‘u% ®ugc = Uy, . Then using
the continuity of PUO‘; and taking the limit with m, we obtain PU(; U= Upg,.
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5.3 Analysis of the algorithm

Lemma1 Fora € L(A), Uy, C Vy. Fora € A\L(A),

Uy, C ® Ug.

BeS(a)

Proof For o € A, we have U, C U(;"i” (ug). If @ € L(A), we have U(;""”'(ua) C Vq
since uy, = Py,u. If « € A\L(A), we have U"" (uy) C ®,B€S(a) Ug“”(ua), and

Ug’”n (ua) C Uﬂ SinCC Uy = H/SES((J{) PUﬁu. O
Proposition 13 The approximation u* is an element ofTrA H)NV = ’TrA(V).

Proof Since u* = Py,u, we have u* € ®aeS(D) Uy. Then using Lemma 1, we prove
by recursion that u* € &), 2y Va = V. Also, forany g € A, Lemma I implies that

u* € Ug ® Hge. Therefore, U/’S"i” (u*) C Ug, and rankg(u*) < dim(Ug) = rg. This
proves that u* € 7,2 (H). ]

For any level £, 1 < £ < L, let Py, = Haen Py, be the orthogonal projection
from H onto Uy, ® He, with Uz, = @yer, Ua, and let

ut = ’PTeuH],

L+1

with the convention u =u.

Lemma?2 Foralll < < ' < L, we have
Pr, Pr, = Pr, = Pr,Pr,

Proof For 1 < ¢ < L, we deduce from Lemma 1 that

Un=QUsc| Q Us|®| Q Uu|cUr, ®Hip

aeTy BeTiy1 aely
S(a)=0

and then Ur, ® H,g cUr,® Hff+1‘ Therefore, for 1 < £ < £ < L, we have
Ur, ® H,{c cUr, ® thf" and the result follows from Proposition 2. O

From Lemma 2, we have that
ut = Prut™ = Pr, ... Pru=Pru,
forl <¢ < L,and
w =Pru=u'
We now state the two main results about the proposed algorithm.
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Theorem 1 For a given r, the approximation u* € T, (H) NV satisfies

e =t <#A min fu—vl®+ Y0 fu = Pyul.
veZAH) ael(T)

Proof We first note that forall 1 < ¢ < ¢/ < L,u* —u’*!is orthogonal to ut —ut+,
Indeed, using Lemma 2, we obtain that

(ue _ 1/“, ut — ul’+1) _ (uz _ u“’l, PTZ,MZ/H _ ’PTZ’+1M€/+1)
_ (PTW (ue _ u”l), PT[/+1(PT4/L‘€/+1 _ ue’+1))
— (PTz/+1PTe/ (1/ _ uZH), ’PT,{/MZ/-H _ ue’-i-l)
= (Pr, u’ —u"*Y), (Pr, —id)u**1) =0

Then, we have

2 {+1 2 £+1 £+12
e — u| ZIW —u' an — Pru't|

=1

< Z Sl = Pyt R,

=1 aeTy

From Lemma 2, we know that u*™! = Pr,, u, where we use the convention Pr, ,, =

id. For o € L(Ty), since Py, and Pr,,, commute, I Puau“l | = Pr, u

Pu, Pryull = Pryp (w — Pyl < lu — Py, ull. Therefore, for @ € L(Tp)\L(A),

we have [|u‘*! — Py u*!|| < |u — Py,ul, and for & € L(A), we have [lut+! —

PP < Nlu—Pyull® + [ Pr,u = Pyull® = lu—Py,ull® + llug — Py, el
For o € A¢\L(A), we have

Wt =P, u = l_[ Pus 1_[ Pyyu = l_[ Pusuq,

deTp1\S(a) BeS(a) 8eTp1\S()

so that

£+1 +1
=Py utM=1 [T Pusa — Puyua)ll < llua — Pu,tall.
8eTy1\S(@)

Gathering the above results, we obtain

lu = w1 < ) lua = Pu,ual® + Y llu = Py,ull®. (10)

a€A aelL(T)

@ Springer



Higher-order PCA for the approximation in tree-based tensor... 765

For o € A, we let U} be the subspace in H,, such that

lu—Pysull= min |u—-v[|< min |u—uv|.
ranky (V) <ry rank 4 (v)<r
For « € L(A), we have uy, = "Py,u. From Proposition 9, we know that

ranky (Py, Pysu) < ranky (Pyzu) < ry. The optimality of Uy then implies that
lue — Puytall < IPy,u — Py, Pusull < llu — Pysull.

Now considera ¢ A\L(A). We know thatrank, (]_[ﬂes(a) PuyPyzu) < ranky (Pyzu)
< ry from Proposition 9. The optimality of U, then implies that

lue = Puguall < lta — [] PuyPugull =1 T Pus@—Pyzwll
BeS(a) BeS(a)
< llu = Pygul.

Finally, we obtain

> e — Puyual* <Y min lu—v|> <#A min fu—v|?
ranky (V) <rq rank 4 (v)
acA acA

which ends the proof. O

Theorem 2 Forany € > 0, if for all @ € A, the rank ry, is chosen such that

lue — Pu,

€
gl = ——=lluall,
o YA o

the approximation u* satisfies

2 2 2 2
e —u*l> < Y u—Pyul® + € lul®.
aelL(T)

Proof Starting from (10), we obtain

2
€
u—ur? < u— Py ul? — g3,
I I~ < E I Ve lt |l +E #A” all

ael(T) a€A
and the result follows from |juy || = || ]_[ﬂes(a) Pu,ull < |lul if « ¢ A\L(A), and
lugll = Py ull < llull if e € L(A). o
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6 Empirical principal component analysis for tree-based tensor
format

6.1 Empirical principal component analysis of multivariate functions

Here we present the empirical principal component analysis for the statistical estima-
tion of «-principal subspaces of a multivariate function (see Sect. 5.1). We consider
that H = Li (&) or that H is a separable reproducing kernel Hilbert space compactly
embedded in Li()( ), equipped with the natural norm in Li (X).Let (X4, Xyc) be the
random vector with values in &y x X, with probability law gy ® pqc. The tensor
u can be identified with a random variable defined on X with values in H, which
associates to xqc € Xye the function u(-, x4c) = (idy ® 0y, )u, this random variable
being an element of the Bochner space L2 (Xyc; Hg). Then problem (7) is equivalent

Pac
to find a r,-dimensional subspace in H,, solution of

min_ B (JluC, Xoo) = Pu,uC, Xl ) - (11)
dim(Uy)=ry o

Given a set {xéc }kmi] of m samples of X, the a-principal subspace can be estimated
by an empirical a-principal subspace U, solution of

u—"Ps u = min u— Py u , 12
” Uy ”a,ma dim(Ug)=re ” Uy ”a,ma ( )

where

my

1
2 _ k k 2
lu — Pu,ully,m, = e E (s xge) = Pu,ule, xq0) 17y, -
k=1

The problem is equivalent to finding the r,, left principal components of {u(-, x{;c ) }k’”gl ,
which is identified with an order-two tensor in H, ® R™«. We note that the number of
samples m, must be such that m, > r, in order to estimate r,, principal components. In
the case of i.i.d. samples, the semi-norm || - ||¢,m, on H is the natural statistical estima-
tion of the Bochner norm || - || in L/Zxac' (Xye; Hy),defined by ||v ||§ =E(lv(Xao)lln,)-
This norm || - || coincides with the norm || - || on H when H is equipped with the
L? (X)-norm.”

For some results on the comparison between ||u — P u|| and the best approximation
error |[u—"Pyzull, see[3,24,25,41]. Under suitable assumptions on « (e.g., u uniformly
bounded), for any n > 0 and € > 0, there exists a m,, sufficiently large (depending on

n, €, rq and u) such that

2 2, 2
lu—Pg,ul” < llu—"Pyzul”+e

5 Note that when H is equipped with a norm stronger than the norm in L2 (X), then || - || does not coincides
with the norm || - || on H, so that the subspaces solutions of (7) and (11) will be different in general.
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holds with probability higher than 1 — 5. Then, for any r > 0, there exists a m,
sufficiently large (depending on 7, 7, rq and u) such that

lu —Pg ull®* < (1 + t5)|u — Pygull®
holds with probability higher than 1 — 7.

6.2 Empirical principal component analysis for tree-based format

Now we propose a modification of the algorithm proposed in Sect. 5.2 using only
evaluations of the function u at some selected points in X'. Itis based on the construction
of a hierarchy of subspaces {Uy}yca, from empirical principal component analysis,
and a corresponding hierarchy of commuting interpolation operators associated with
nested sets of points.

For each leaf node « € L£(T), we introduce a finite-dimensional approximation
space Vy, C 'H, with dimension dim(Vy) = ng, we introduce a set Iy, of points
in &, which is unisolvent for V,, we denote by Iy, the corresponding interpolation
operator from Hy to V,, and we let Zy, = Iy, ® idyc be the corresponding oblique
projection from H to Vo ® Hge. Welet V = @,y Ve C H. For each non active
a e L(T)\A,weletUy =V, and Iy, = Iy,.

The algorithm then goes through all active nodes of the tree, going from the leaves
to the root.

For each active node a € A, we let

uy =2y, u

where for o ¢ L(A), the space Vj, is defined by

Vo= X Up.

BeS(a)

where the Ug, B € S(«), have been determined at a previous step. For o ¢ L(A),
Iy, = Iy, ® idyc, where Iy, is the interpolation operator onto Vo = @gesa) Up
associated with the product grid I'y, = Xges() [vy, Where each I'y, have been
determined at a previous step. Then we determine a r,-dimensional empirical o-

principal subspace U, of u,, which is solution of

lue — Pu,tallam, = min lug — viie,megs (13)
ranky (v)<ry

where
1 &
2 k k2
lua —vlig.m, = . E llue (5 Xgc) = V(s Xge) I3, »
k=1
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and where {ch}zli | are mg random samples of Xyc, with my > 7. The problem
is equivalent to finding the 7, left principal components of {u (-, xgc)};("zl, which is
identified with an order two tensor in V, ® R« The number of evaluations of the
function u for computing Uy, is m, x dim(V,). We let {(p,‘f}?:l be the set of principal
components, such that U, = span{¢,‘z‘}£‘;1. We then construct a set of points I,

which is unisolvent for U, and such that
Iy, CIvy,. (14)

For the practical construction of the set Iy,, we use the procedure described in
Sect. 2.2.1. We denote by [y, the interpolation operator from H, onto U, associ-
ated with the grid Iy, , and we let Iy, = Iy, ® idye be the corresponding projection
from H onto U, ® Hye.

Finally, we compute

u* =TIyyu, (15)

where Ty, = Qpgcg(p) luy is the interpolation operator from H onto Vp =
®ﬂeS(D) Ug, associated with the product grid I'v, = Xges(p) [Up-

6.3 Analysis of the algorithm

Let us first prove that the algorithm produces an approximation u* in the desired tensor
format.

Lemma3 Fora € L(T)\A, Uy = V,. Fora € L(A), Uy, C Vy. Fora € A\L(A),

UsC Q) Up.

BeS(a)

Proof For oo € A, we have U, C U&"i”(ua). If o € L(A), we have U&”"”.(ua) Cc Vy
since uy = Zy,u. If « € A\L(A), we have UJ"" (uy) C ®ﬁeS(¢x) Ug“"(ua), and

UR™ () C Up since o = [1gesia Zupt- ’

Proposition 14 The algorithm produces an approximation
w e TAH) NV =TAW).

Proof Since u* = Zy,u, we have u* € Vp = ®a€S(D) Uy. Then using Lemma 3, we
prove by recursion thatu* € @ e, () Vo = V. Also, forany @ € A, Lemma 3 implies
that u* € Uy ® Hye. Therefore, U(;”i"(u*) C Uy, and ranky (u*) < dim(Uy) = rg.
This proves that u* € T,A (H). O

Forall« € T, the operator Zy, = Iy, @ idye is a projection from H onto Vo ® Hc
along Wi @ H}., with W; = span{é; : x € I'y,}. For all @ € T\{D}, the operator

Ty, = Iy, @ idye is an oblique projection from H onto Uy @ Hye along Wy ® He,
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with Wy, = span{éy : x € Iy, }. From the property (14) of the grids, we deduce the
following result.

Lemma4 Fora € L(T)\A, Wy = WJ. Fora € L(A), Wy C W}. Fora € A\L(A),

Wo C Ws@) = ® Wg.
BeS(a)

Remark 3 Note that interpolation operators [y, « € A, could be replaced by oblique

projections PU onto U, along subspaces W, in H}, with subspaces W, satisfying
fora ¢ L(T), Wy C ®ﬁ€ s@) Wp- Under this condition, all results of this section
remain valid.

Foranylevel £,1 <€ < L, let

IT{ = l_[ IUO, = IUTz ®idtz,

aeTy

where Iy;, = @e7, Iu, is the interpolation operator from H;, to Uz, = Qger, Ua
associated with the tensor product grid I't = Xger, I'*, and let

ul = Inu“'l,

with the convention u%t! = u. We then prove that operators Z7,, 1 < £ < L, are

commuting oblique projections.

Lemma5 Forall 1 < £ < L, the operator 1y, is an oblique projection from H to

Up := Ur, ®H’§ along Wy := Wr, @ Hy,. Forall 1 <€ < ' < L, we have Uy C Uy
i (4

and Wy C Wy, and therefore

IT(ITZ/ = IT@ = ITE/ITZ‘

Proof For 1 < ¢ < L, we have

R U)o @ Us)eHsand Ui =( & Up)@Hy,.

aeT\L(T) aeTyNL(T) BeTp

From Lemma 3, we know that Qe 7, £(r) Ua is a subspace of Qger,,, Up C Hiyyy-
Therefore, we obtain Uy C Uy41. In the same way, using Lemma 4, we obtain that
We C Wy 1. We then deduce 77,77, = Z7,,, 21, = 17, from Proposition 2, which
ends the proof. O

Lemma 6 The approximation u* satisfies

L
e —u*|> < A+ 8L —1) D> fu+ —uf,
=1
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where § = maxg dr, and
(STg = ”IUTZ - PUTIZ ”U’TZ';"(MZH)%H%’
with ty = Uger, . If u € 'V, then
O, <84, = ||IUAZ - PUAZ ||leén(u(+l)ﬁ7{ﬂey

with ag = Ugea, o.

Proof Since u — u* = Y b, (u**! — u'), we have

L
/ /
”u_u*”Z: E ”MZ-‘rl _MZ||2+2 E (ul+l_ul’ue+l _uﬁ )
=1 U<t

. / ’ / /
For ¢/ < ¢, since Pr,(u® ! —u®) = u*+1 — u*, we have

(u”l _ ue’ ui/ﬂ _ ul’) _ (ulﬂ _ uZ7 Pr, (u€’+1 _ ue’))
= (Pr, ™ —ub), uf* —ut)
— (PTMHI B ITMH], ue’+1 . ue/)
= ((Pr, = Tr) @™ —u®), u" ' —u")
< P, — ) @ = ub) [l = ),
where we have used the fact that Pr,Zy, = Z7, and (Pr, — Zz,)u® = 0. Since

Pr,~Ir, = (Puy, —lu;, ) ®idy andu* ' —u® = u*'—Tr,ut*! U;"‘Z"”(MHI)@HQ,
we obtain from Proposition 10 that
41 e U+1 4 041 ¢ U+1 4
(™ —u,u" ™ —u )| <0 ™™ —u[flu” T —u |

9

for £/ < £. We deduce that

L L

2 {+1 4 +1 4 {+1 )2

e —w > < > Beollw™ —u It —ul) < p(B) Y luH =),
£,0'=1 =1

where the matrix B € RE*L is such that Bpy =1and By p = ot
Using the theorem of Gerschgorin, we have that

if 0 0

(e.e/

p(B) < 1+m?x£ Bry =1+ max ( (€~ D3y, +;Z5Tk, <1+8(L -1,

with § = maxg d7,.
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Finally, when u € V, we have UJ"" ") C U2 (u) C Vo forall @ € L(T).
Therefore, Iy, v = Py,v forall v € U (') and « € L(T), and

or, = ”IUAe ® IVT(\AK o PUAK ® PVT(,\A(, ”U}”Z"(Mul)—ﬂ'fre
= ”(IUA@ - PUAZ) ® PVTZ\AZ ”U,;’fzi”(ulﬁ-])*)’}-[[e
= ”IUAZ - PUAZ ||U,Tén(u£+l)—>Hae ”PVTZ\AZ ”U;"Zi\'lA[ (MZ-H)_)'HIZ\HZ

=< “IUAK - PUA({ ”UXLZ”(MHI)—)HM = 8Ag~

O
Lemma7 Forl <{¢ <L,
It — w1 <+ b‘%l)( Y AT st (I + ao)llte — Pu,ul?
a€Ay
+ Y A% (0 +2a082) u — ’Pvau||2),
aeTyNL(T)
where for S C T,
As =[] AaWa),  AaUa) = 1y, llgmin 7,
aeS
aq = lyerayls,£0, (16)
and
8« = Illv, — Py, ||U&nin(u)_>7—[a (17)

for o € L(T). Moreover, ifu € V, then §, = 0 for all @ € L(T), and ag = 0 for all
aeT.

Proof Forall 1 < ¢ < L, we have
1 g2 041 12 41 412 e+l 0412
T — w1 = u = TP = 6 = Prat T+ 1T u T = PruttY

= ut = Pru N+ (T, — Pr) @ = Prutth)?

< (83 = Pru™ P < (1 +83) Y ut = Py, a2

aeTy

Fora € T)\L(T) = A\L(T),

u£+l = ITZ+lu = l_[ IU5 1_[ IUﬂl/l = 1_[ IUguaa
3€Tp+1\S(@) BeS(a) 3€To4+1\S()
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and since Py, and [[sc7,, |\ s() Zus commute, we have

=Py =1 [ Zuse — Puyua) |l < Azl — Puytiall.
3€Tp41\S(@)

Now for o € T, N L(T'), we have that Py, and Zr,,, commute, and therefore
e+ = Py u N = 1 Z7,,, @ = Py,wll < Ar,lu = Py,ull.
Ifa € Ty\Ay, we have U, = V. If o € Ay N L(T), we have
lu = Py,ull? = llu = Py, Py,ull® = llu = Py,ull® + | id — Py,)Py,ul’,
so thatif 8o = |[Iy, — Py, ||U¢;"f”(u)—>Ha =0, we have Py,u = Ty, u = uy and
lu =Py, ull® < llu = Pyull® +1lGd — Py, ual, (18)

and if 6, # 0, we have

lu = Pu,ull® < llu — Py,ul® + 2[(id — Py,)(Py, — Iy, )ul* + 2ll(id — Py,)Iv,ull®
= |lu = Pv,ul* +2ll(id — Py,)(Py, — Iy, — Py,
+ 2)/Gid — Py, ua |
< (14282 lu — Py,ull® +2[lua — Py, uall®, (19)

where we have used Proposition 10. We conclude from (18) and (19) that if @ €
Ae N L(T),

lu — Py, ull® < (1+2ag83)lu — Py,ull® + (1 + a)llug — Py, uql*.

Gathering the above results, we obtain

{+1 2 2 2 2
[|ue —u|” =< (1 +8Tg> ( Z ATHI\S(Q)HUQ - ’PUa”a”

acA\L(T)
+ Y (+anAf, llte — Po,ual?
acANL(T)
+ Y (U244}, i PrulP+ Y A% llu— Pvau||2>,
a€ANL(T) aeT\Ag
which ends the proof. O

We now state the two main results about the proposed algorithm.
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Theorem 3 Assume that for all @ € A, the subspace Uy, is such that

lug — Puual> < 1 +7%  min  [ug — v|? (20)
ranky (v)<ry

holds with probability higher than 1 — n, for some t > 1. Then the approximation
u* e ’Z;A (H) NV is such that

le —u*I> < A +7HC* min Ju—v|>+ Y Dillu—Pyul> (1)
veTAH) wel(T)

holds with probability higher than 1 — #An, where C is defined by

L
CT=(1+8(L—1)Y (A+8)47, Y (I +au)rl. (22)
=1 a€Ay
with
ra = Lagra) + Laecca) vy lymin @y, (23)

and ay and 8y defined by (16) and (17) respectively, and where Dy, is defined by

D} = (148(L — 1)1 +87) A7, (1 +2a48]) (24)

fora € L(T)NT,.

Proof Fora € A, let ﬁa be a subspace such that

Uy — Pr ugll= min Uy — VU
lte = P uall = min e =l

and let U} C U™ (u) be a subspace such that

lu —Pysull = min |u—v|| < min |u—v]|.

ranky (V) <rq E

For o € L(A), we have uy = Zy,u. We know that ranky (Zy, Pyzu) < ry from
Proposition 9. By the optimality of U,, we obtain

lue —Pg,uall < llue = Zv, Pugull < 11y, lymin @y, 1 = Pugull.

Now consider@ € A\L(A). We know that rank,, (Hﬁes(a) Ty, Pygu) < rankq (Pyzu)
< ro from Proposition 9. By the optimality of U,. we obtain

e — Pguall < lua — [ ZusPogull =1l ] Zuy —Puzwl
BeS(a) BeS(a)
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< Agllu —Pyzull.

Then, using Lemma 7 and assumption (20), we obtain

+1 €2 2 2 2 2 . 2
Jut ' — a2 <(1 4 83) 43, , (a;: (It aig+eh)  min - fu— v
4

+ Y A+ 2a8D)l - Prul?),
a€TNL(T)

Then, using Lemma 6, we obtain (21). O

Remark4 Assume u € V (no discretization). Then §, = 0 and ||y, ||U&nin(u)_)H0( =1
foralla € L(T),aq, =0and Ay = 1foralla € T, Ay, = Ay, and 87, = 84, for all
£. Also, the constant C defined by (22) is such that

L
CP=(1+8(L—1)) (1483)A43,, #A. (25)
=1

Moreover, if Uy = U™ (u) for all &, then A7, = A4, = 1 and 7, = 84, = 0 for all
£, which implies

C? = #A. (26)
Theorem 4 Let €, € > 0. Assume that for all o € A, the subspace Uy is such that
lue — Pyyuall < €lluqll 27

holds with probability higher than 1 — n, and further assume that the subspaces V,,
a € L(T), are such that

lu — Py ull < €llul. (28)
Then the approximation u* is such that
le —u** < (C*€* + D?&) Jull?
holds with probability higher than 1 — #An, where C is defined by (22) and where

D> =Y ,crir) D3, with Dy defined by (24), is such that

L
D*=(1+8L—-1)> A+87)A7,,, > (1+2a,8). (29
=1 aeTyNL(T)
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Proof We first note that for « € A\L(A), we have |luq|| < As)llull. Also, for
a € L(T), we have |lug|| < Agllull, with A, defined in (23). Using Lemma 7 and
assumptions (27) and (28), we then obtain

= a2 = A o7 A7, | D0+ ul?

Top
a€Ay

+ Y A+ 2a08)E ul?
aeTyNL(T)

Finally, we obtain the desired result by using Lemma 6. O

Example 8 For the Tucker format described in Example 4, the constants C and D are
given by

CP=(1+85) D U+ Lo, 20, [ Fin gy 34,
ael(T)

D= (1+5}) Y (1+262),
ael(T)

with

5T1 = ® IUa_ ® PUot = ® IU"‘M_ ® PUau /Ml

aelL(T) acl(T) ngin(u)HH ael(T) acl(T)
If u € V, then
C=(+63)"*Va.

Example 9 For the tensor train format described in Example 6, the constant C and D
are given by

d-2
2 _ 2 2 2
C?=(1+68d-2) (; (1 + 8TZ) AR o min 24,
2 2
+ (1 + 8]"‘171> (1 + 151#0) ”IV] ||U1'"i”(u)—>7'{1> s
d—2

2 2 2 2
D =(1+46d—-2) <E (1 +5T£)A{1 ,,,,, d—f—l}”IVd*‘f||U§"j}(u)—>Hd,e
=1

+(1+83,,) @+26D).
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with
6, = ||IU(1,..4,¢14) ® IV{J—HU - PU(I a-g ® PVd o+1) ”U”’”‘d ey @D amerny
If u € V, then

d—2
C?=(1+5(d—2) (Z(1+8T5)A{1 d—tony (1487, 1)>'

=1

Example 10 For the tensor train Tucker format described in Example 7, the constant
C and D are given by

C* = (145 -2))
d—2
2\ 42 2
x (Z (1+487,) Afi,.a—e-1yAa—g (1 + A+ Lo, 20) v, m;||U("’,L"HIWHM,H1,)

=1
2 2
+ (187, ) (14 L20) 10 i, + (L L) 1103 i py,))-
d-2
D* = (145 *2))(2 1+6T5 ..... d—t—1y %d—l}(2+28§—l+1)
=1

+ (1+8},,) a+26Ha +252))

If u € V, then
d-2
C’=(1+68d-2) (ZZ(1+5 )A d—t— 1}A{d 13! +(1+8Td 1)>'
=1

6.4 Complexity

Here we analyse the complexity of the algorithm in terms of the number of evaluations
of the function. Evaluations of the function u are required (i) for the computation of the
subspaces {Uy }oca through empirical principal component analysis of the V,-valued
functions uy (-, Xoc), with V,, a given approximation space if « € L(A) or V,
X pes) Us if @ € A\L(A), and (ii) for the computation of the final interpolation
A VpU.

We then obtain the following result about the number of evaluations of the function
required by the algorithm

Proposition 15 The total number of evaluations of u required by the algorithm for
computing an approximation u* in the tensor format TrA(V) is
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M(A,r,m,n) = Z Meny + Z My ]_[ rg H ng

ael(A) acA\L(A) peS@)NA  BeS(@)\A

+nrﬁnn5.

BeS(D)NA  BeS(D)\A

where n = (ng)geL(r), With ng = dim(Vy), and m = (mq)aea, with me the number
of samples of the Zy-valued random variable uqy (-, Xqc) used for computing Uy.

Proof For o € A, the function u, is an interpolation of u in Z, = V, if @ € L(A),

orin Zo = Qpes Up = (®ﬁeS(a)ﬂA Uﬁ) ® (®ﬁeS(a)\A Vﬁ) if a ¢ L(A).
Therefore, computing u, (-, xgc) for one realization xgp of X, requires dim(Vy) = ngy
evaluations of u if & € L(A) or dim(@gcs(e) Up) = [pesna s [1pes@anp
if o ¢ L(A). Finally, the computation of the interpolation Zr,u = Zg(pyu requires
dim(Qyc5p) Ua) = [1gespyna 78 [ 1pes(py\a np evaluations of u. ]

For computing a ry-dimensional subspace U,, the number of samples m, of
Uy (-, X4c) has to be at least ry,.

Corollary 4 If the number of samples my = ry for all « € A, then the number of
evaluations of the function required by the algorithm is

M(A,r,r,n) = storage(T,2(V)).

The above result states that for a prescribed rank r = (ry)qca, the algorithm is able
to construct an approximation of u using a number os samples equal to the storage
complexity of the tensor format T,A V).

When using the algorithm with a prescribed tolerance €, the rank r is not fixed
a priori but defined as the minimal integer such that the condition (27) is satisfied.
Since samples of u, (-, X,c) belongs to the subspace U&”i" (ug) C Zy with dimension
rank, (uy) < dim(Zy), the selected rank r, is at most dim(Z,). Therefore, by taking
mqy = dim(Z,) for all @ € A, if we assume that the set of m, samples of u(-, Xy¢)
contains rank, (1) linearly independent functions in Z,, then the algorithm is able
to produce an approximation with arbitrary small tolerance €.

Corollary 5 If the number of samples my, = dim(Zy,) for all o € A, then

M(A,r,m,n) = Z ni-i— Z 1_[ ré l—[ n%

aeL(A) a€A\L(A) BeS(@)NA  BeS(a)\A

+l_[rﬂl_[nﬁ.

BeS(D)NA  BeS(D)\A

Remark 5 For numerical experiments, when working with prescribed tolerance, we
will use my = dim(Z,) foral o € A.
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7 Numerical examples

In all examples, we consider functions u in the tensor space Li (X), with X ¢ R¢,

equipped with the natural norm || - || (see Example 2).° For an approximation u*
provided by the algorithm, we estimate the relative error e(u*) = |lu — u*||/||ull
using Monte-Carlo integration. We denote by M the total number of evaluations of
the function u required by the algorithm to provide an approximation u*, and by S
the storage complexity of the approximation u*. Since the algorithm uses random
evaluations of the function u (for the estimation of principal components), we run the
algorithm several times and indicate confidence intervals of level 90% for (u*), and
also for M, S and approximation ranks when these quantities are random.

For the approximation with a prescribed A-rank, we use m, = yr, samples for the
estimation of principal subspaces Uy, @ € A.If y = 1, then M = S (see corollary 4).

For the approximation with a prescribed tolerance €, we use my = dim(Z,,) for all
o € A (see corollary 5 for the estimation of M).

In all examples except the last one, we use polynomial approximation spaces
Vi =P, (X)) over &, C R, v € D, with the same polynomial degree p in all dimen-
sions. For each v € D, we use an orthonormal polynomial basis of V,, = P, (X))
(Hermite polynomials for a Gaussian measure, Legendre polynomials for a uniform
measure,...), and associated interpolation grids I') selected in a set of 1000 ran-
dom points (drawn from the measure p,) by using the greedy algorithm described in
Sect. 2.2.1.

7.1 Henon-Heiles potential

We consider X = R¥ equipped with the standard Gaussian measure . and the modified
Henon—Heiles potential [29]

d—1 7 d—1

d
! 2 2 3 g 2, 2\
u(xl,...,xd)zzi_glxi —i—a*Z(x,-xiH—xi)—l-l—z E (xi —l—xH_l) ,

i=1 i=1

with o, = 0.2. We consider approximation in the tensor train format 7, (V') described
in Example 6. The function is such that ranky, () = 3 for all « € A. We use a
polynomial degree p = 4, so that there is no discretization error, i.e. u € V.

In Table 1, we observe that the algorithm with a prescribed rank » = (3, ..., 3) is
able to recover the function at very high precision with high probability with a number
of samples equal to the storage complexity of the approximation (when y = 1),

with no deterioration when the dimension d increases from 5 to 100. The accuracy is
slightly improved when y = 100 but with a much higher number of evaluations of
the function.

6 For the last example, X" is a finite product set equipped with the uniform measure and Lﬁ(X ) then
corresponds to the space of multidimensional arrays equipped with the canonical norm.
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Table 1 Henon-Heiles potential

y=1
d 5 10 20 50 100
e(u*) x 1014 [1.0; 234.2] [1.5;67.5] [2.5;79.9] [6.6; 62.8] [15.7; 175.1]
S=M 165 390 840 2190 4440
y = 100
e(u*) x 1014 [0.1; 0.4] [0.2; 0.4] [0.3; 0.4] [0.4;0.7] [0.6; 0.8]
S 165 390 840 2190 4440
M 1515 3765 8265 21,765 44,265

Approximation with prescribed rank r = (3, ...,3) and y = 1 and y = 100, for different values of d

7.2 Sine of a sum
We consider X = [—1, 1]¢ equipped with the uniform measure and the function
u(xy, ..., xq) =sin(x; + - -+ x4).

We consider approximation in the tensor train Tucker format ZA(V) described in
Example 7. The function is such thatranky (1) = 2 foralla € A.InTable 2, we observe
the behavior of the algorithm with a prescribed rank r = (2,...,2) for different
polynomial degrees p and different values of d. We observe a linear dependence of
the complexity with respect to d.

In Table 3, we observe the behavior of the algorithm with prescribed tolerance
e = 107'2 and fixed polynomial degree p = 17, for different values of d. For this
value of €, the algorithm always provides an approximation with rank (2, ..., 2) with
a fixed number of evaluations which is about ten times the storage complexity.

7.3 Sum of bivariate functions
We consider X = [—1, 1]¢ equipped with the uniform measure and the function

u(xy, ..., xq) = gxy, x2) +g(x3, x4) + -+ + gxg—1, xq) (30

where g is a bivariate function, and d = 10. We consider approximation in the ten-
sor train Tucker format TrA(V) described in Example 7. The function is such that
rankg,)(#) = rank(g) + 1 for all v € D, and ranky, ., (1) = 2 if v is even, or
rank(y, .,y (u) = rank(g) 4 1 if v is odd. Here, we use the algorithm we a prescribed
tolerance €.

We first consider the function g(y, z) = 23:0 y/zJ/ whose rank is 4 and we use
polynomial spaces of degree p = 5, so that there is no discretization error. We observe
in Table 4 the behavior of the algorithm for decreasing values of €. For € = 1074,
the algorithm always provides the solution at almost machine precision, with an exact
recovery of the rank of the function u. We observe that increasing y (i.e. the number
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Table 4 Sum of bivariate functions (30) with g(y, z) = >-3_o y/2/

€ e(u*) M S

y=1
10! [1.4 x 1071;2.8 x 1071 (444, 521] [160, 192]
102 [0.8 x 1071:1.5 x 1071 [918, 1034] [345,373)
1073 [1.7 x 10715;2.6 x 1072] [1916, 2088] [530, 560]
10~4 [1.6 x 10715;7.8 x 10715] 2088 560

y =10
107! [1.7x 1071, 2.0 x 1071] [5364, 5484] [202,212]
1072 [0.9 x 1072; 1.1 x 1072] (16,132, 16,412] [486, 500]
1073 2.1 x 10715;2.7 x 10719] 20,736 560
104 [1.7 x 10715, 2.7 x 10715] 20,736 560

Approximation with prescribed €, degree p = 5, and different y. Confidence intervals for relative error
&(u*), storage complexity S and number of evaluations M

L2
Table 5 Sum of bivariate functions (30) with g(y, z) = exp_g(} 2

€ e(u*) M N

107! [3.8 x 1072;5.3 x 1072] [1219, 1222] [119, 131]
1072 [1.8 x 1072;3.8 x 1072] (1282, 1294] [252, 256]
103 [1.2 x 1074;2.0 x 1073] (1813, 1876] [507,519]
1074 [1.2x 1074, 1.6 x 107%] (1876, 1876] [519,519]
1073 [1.6 x 1073, 6.9 x 1077] (3275, 4063] [821, 935]
107° [1.8 x 1079, 7.1 x 1079] (4135, 4410] [975, 995]
1077 [3.1 x 1078;2.5 x 1079] [4685, 4960] [1015, 1035]
10-8 2.7 x 1078, 1.3 x 1077] [5048, 6120] [1056, 1164]
1079 [1.2x1078,4.8 x 1078] (9671, 11,595] [1476, 1578]
10~10 [1.9x 10710; 1.5 x 1078] [11,647,13,117] [1603, 1659]

Approximation with prescribed €, degree p = 10, ¥ = 1. Confidence intervals for relative error &(u*),
storage complexity S and number of evaluations M

of evaluations for the estimation of principal components) allows us to obtain a more
accurate approximation for a given prescribed tolerance but with a significant increase
in the number of evaluations.

We now consider the function g(y, z) = exp~ $0=2” with infinite rank. We observe
in Tables 5 and 6 the behavior of the algorithm for decreasing values of €, and for
a fixed polynomial degree p = 10 in Table 5, and an adaptive polynomial degree
ple) = loglo(e_l) in Table 6. We observe that the relative error of the obtained
approximation is below the prescribed tolerance with high probability. Also, we clearly
see the interest of adapting the discretization to the desired precision, which yields a
lower complexity for small or moderate €.
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Table 6 Sum of bivariate functions (30) with g(y, z) = exp_%(y_z)2

€ e(u*) M N

107! [1.4x 107133 x 1071 [52,70] [32,42]
1072 29 x 1072, 4.2 x 1072] [162, 184] [88, 100]
103 [32x 1073, 1.1 x 1072] [598, 778] [258,292]
104 [1.7 x 107%;2.5 x 1074] [916,916] [339, 339]
1075 [5.7 x 1072, 1.5 x 107%] [2056, 2759] [562, 622]
10 [1.1 x 107%;3.5 x 1077] [3190, 3465] [758,778]
1077 [6.9 x 1078;2.1 x 1077] [4390, 4390] [885, 885]
10-8 [32x 1078, 1.2 x 1077] [4560, 5319] [935, 998]
1072 [8.3 x 1072, 4.1 x 1078] [9415, 11,385] [1396, 1509]
10-10 [1.6 x 10710: 1.7 x 1078] [11,647,12,382] [1603, 1631]

Approximation with prescribed €, degree p(e) = log 10(671), y = 1. Confidence intervals for relative
error &(u*), storage complexity S and number of evaluations M

7.4 Borehole function
We here consider the function
2nY3(Ys — Ye)

_ 22y 4 n
(Y2 — log(Y1)) (1 + g7 TTs + Y5>

fy, ..., Yg) =

which models the water flow through a borehole as a function of 8 independent random
variables Y| ~ N (0.1, 0.0161812), Y> ~ N (7.71, 1.0056), Y3 ~ U (63070, 115600),
Yy ~ U090, 1110), Y5 ~ U(63.1, 116), Ys ~ U(700, 820), Y7 ~ U (1120, 1680),
Yg ~ U (9855, 12045). We then consider the function

u(xy, ..., xq) = f(g1(x1), ..., gs(xs)),

where g, are functions such that ¥, = g,(X,), with X,, ~ N(0, 1) for v € {1, 2},
and X, ~ U(—1,1) forv € {3,...,8}. Function u is then defined on X = R2 x
[—1, 11°. We use polynomial approximation spaces V,, = PP p(Xy),v € D. We consider
approximation in the tensor train Tucker format 7, (V') described in Example 7.

In Table 7, we observe the behavior of the algorithm with prescribed ranks (7, . .., )
and fixed degree p = 10. We observe a very fast convergence of the approximation with
the rank. Increasing y (i.e. the number of evaluations for the estimation of principal
components) allows us to improve the accuracy for a given rank but it we look at the
error as a function of the complexity M, y = 1 is much better than y = 100.

In Table 8, we observe the behavior of the algorithm for decreasing values of e,
and for an adaptive polynomial degree p(e) = loglo(e’l). We observe that for all
€, the relative error of the obtained approximation is below € with high probability.
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Table 7 Borehole function

r s y=1 y = 100
e(u*) e(u*)

1 88 [24 x 1072;2.7 x 1072] 2.3 x 1072;2.4 x 1072]
2 308 [1.4x1073; 1.4 x 1072] [4.1 x 1074;5.0 x 1074]
3 660 [1.8 x 1075;4.9 x 1077] [9.9 x 1079, 2.3 x 1077]
4 1144 [2.9 x 1079, 3.5 x 107°] [8.8x 1077;1.9 x 1079]
5 1760 [52x1077;6.1 x 1077] [1.8x 1077;7.4 x 1077]
6 2508 [9.0 x 1078; 1.3 x 1077] [1.9 x 1078;5.2 x 1078]
7 3388 [57 x 1078;9.2 x 1078] [5.1 x 1072, 1.1 x 1078]
8 4400 [1.6 x 1072;5.1 x 1079] [43x10710:2.0 x 1079]
9 5544 [1.5x 1072;2.4 x 1079] [3.1 x 10710: 8.6 x 10710}
10 6820 [5.5 x 1071 1.1 x 107107 [43 x 1071 7.6 x 107117
Approximation in tensor train Tucker format with prescribed rank (r, .. ., r), fixed degree p = 10. Relative

error ¢(u*) and storage complexity S for different values of r and y

We note that the required number of evaluations M is about 2 to 4 times the storage
complexity.

7.5 Tensorization of a univariate function

We consider the approximation of the univariate function f : [0, 1] — R using ten-
sorization of functions [26,40]. We denote by fy the piecewise constant approximation
of f on a uniform partition) =t <t <--- <ty =1with N = 2d elements, such
that fy(ih) = f(ih) forO <i < Nandh = N~' =279 We denote by v € RN the
vector with components v(i) = f(ih),0 <i < N — 1. The vector v € R can be
identified with an order-d tensor u € H = R? ® - - - @ R? such that

d
u(in, ... ig) =v@i), i= Zik2d_k,
k=1
where (i1, ...,ig) € {0,1} = X is the binary representation of the integer i €
{0, ...,2¢ —1}. The set X is equipped with the uniform measure 1. Then we consider
approximation of the tensor u in tensor train format. The algorithm evaluates the tensor
u at some selected entries (i1, ..., ig), which corresponds to evaluating the function

f at some particular points ¢;.

In this finite-dimensional setting, we consider V = ‘H. In all examples, we consider
d = 40, and N = 2¢ ~ 10'2. This corresponds to a storage complexity of one terabyte
for the standard representation of fx as a vector v of size N.

We observe in Tables 9 and 10 the behavior of the algorithm with prescribed toler-
ance € applied to the functions f(¢) = > and f(¢) = 1'/? respectively. We indicate
relative errors in €2 and £°° norms between the tensor u and the approximation u*.
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Let us recall that for f(r) = 1%, the approximation error || f — fy|lLe = O(N~F) =
0 (279 with B = min{1, a}, which is an exponential convergence with respect to d.
For the function f(r) = 2, we observe that the relative error in £2 norm is below the
prescribed tolerance with high probability. For the function f(¢) = ¢!/, the probabil-
ity of obtaining a relative error in £> norm below the prescribed tolerance decreases
with € but the ratio between the true relative error and the prescribed tolerance remains
relatively small (below 100). We note that for f(r) = 2, the approximation ranks are
bounded by 3, which is the effective rank of fy. For f(t) = ¢!/2, the approximation
ranks slowly increase with € 7!

In both cases, we observe a very good behavior of the algorithm, which requires a
number of evaluations which scales as log(e_l).
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