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Abstract
This paper is concerned with the approximation of tensors using tree-based tensor
formats, which are tensor networks whose graphs are dimension partition trees. We
consider Hilbert tensor spaces of multivariate functions defined on a product set
equipped with a probability measure. This includes the case of multidimensional
arrays corresponding to finite product sets. We propose and analyse an algorithm
for the construction of an approximation using only point evaluations of a multivariate
function, or evaluations of some entries of a multidimensional array. The algorithm is
a variant of higher-order singular value decomposition which constructs a hierarchy of
subspaces associatedwith the different nodes of the tree and a corresponding hierarchy
of interpolation operators. Optimal subspaces are estimated using empirical principal
component analysis of interpolations of partial random evaluations of the function.
The algorithm is able to provide an approximation in any tree-based format with either
a prescribed rank or a prescribed relative error, with a number of evaluations of the
order of the storage complexity of the approximation format. Under some assumptions
on the estimation of principal components, we prove that the algorithm provides either
a quasi-optimal approximation with a given rank, or an approximation satisfying the
prescribed relative error, up to constants depending on the tree and the properties of
interpolation operators. The analysis takes into account the discretization errors for
the approximation of infinite-dimensional tensors. For a tensor with finite and known
rank in a tree-based format, the algorithm is able to recover the tensor in a stable way
using a number of evaluations equal to the storage complexity of the representation of
the tensor in this format. Several numerical examples illustrate themain results and the
behavior of the algorithm for the approximation of high-dimensional functions using
hierarchical Tucker or tensor train tensor formats, and the approximation of univariate
functions using tensorization.
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744 A. Nouy

1 Introduction

The approximation of high-dimensional functions is one of the most challenging tasks
in computational science. Such high-dimensional problems arise in many domains of
physics, chemistry, biology or finance, where the functions are the solutions of high-
dimensional partial differential equations (PDEs). Such problems also typically arise
in statistics or machine learning, for the estimation of high-dimensional probabil-
ity density functions, or the approximation of the relation between a certain random
variable and some predictive variables, the typical task of supervised learning. The
approximation of high-dimensional functions is also required in optimization or uncer-
tainty quantification problems, where the functions represent the response of a system
(or model) in terms of some parameters. These problems require many evaluations
of the functions and are usually intractable when one evaluation requires a specific
experimental set-up or one run of a complex numerical code.

The approximation of high-dimensional functions from a limited number of infor-
mation on the functions requires exploiting low-dimensional structures of functions.
This usually call for nonlinear approximation tools [10,43]. A prominent approach
consists of exploiting the sparsity of functions relatively to a basis, a frame, or a more
general dictionary of functions [4,6,44]. Another approach consists of exploiting low-
rank structures of multivariate functions, interpreted as elements of tensor spaces,
which is related to notions of sparsity in (uncountably infinite) dictionaries of sep-
arable functions. For a multivariate function v(x1, . . . , xd) defined on a product set
X1 × · · · × Xd , which is here identified with a tensor of order d, a natural notion of
rank is the canonical rank, which is the minimal integer r such that

v(x1, . . . , xd) =
r∑

k=1

v1k (x1) . . . vdk (xd)

for some univariate functions vν
k defined on Xν . For d = 2, this corresponds to the

unique notion of rank, which coincides with the matrix rank when the variables take
values in finite index sets and v is identified with a matrix. A function with low
canonical rank r has a number of parameters which scales only linearly with r and
d. However, it turns out that this format has several drawbacks when d > 2 (see,
e.g., [9,22]), which makes it unsuitable for approximation. Then, other notions of rank
have been introduced. For a subset of dimensions α in {1, . . . , d}, the α-rank of a
function v is the minimal integer rankα(v) such that

v(x1, . . . , xd) =
rankα(v)∑

k=1

vα
k (xα)vαc

k (xαc )

for some functions vα
k and vαc

k of complementary groups of variables xα = (xν)ν∈α ∈
Xα and xαc = (xν)ν∈αc ∈ Xαc , with αc the complementary subset of α in {1, . . . , d}.
Approximation formats can then be defined by imposing α-ranks for a collection of
subsets α. More precisely, if A is a collection of subsets in {1, . . . , d}, we define an
approximation format

123
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T A
r = {v : rankα(v) ≤ rα, α ∈ A} =

⋂

α∈A

T {α}
rα ,

where r = (rα)α∈A is a tuple of integers. When A is a tree-structured collection of
subsets (a subset of a dimension partition tree), T A

r is a tree-based tensor format whose
elements admit a hierarchical and data-sparse representation. Tree-based tensor for-
mats are tree tensor networks, i.e. tensor networks with tree-structured graphs [36].
They include the hierarchical Tucker (HT) format [21] and the tensor-train (TT) for-
mat [38]. Tree-based formats havemany favorable properties thatmake them favorable
for numerical use.As an intersection of subsets of tensorswith boundedα-rank,α ∈ A,
these formats inherit most of the nice properties of the low-rank approximation format
for order-two tensors. In particular, under suitable assumptions on tensor norms, best
approximation problems in the set T A

r are well-posed [13,16]. Also, the α-rank of a
tensor can be computed through singular value decomposition, and the notion of singu-
lar value decomposition can be extended (in different ways) to these formats [8,17,37].
Another interesting property, which is not exploited in the present paper, is the fact
that the set T A

r is a differentiable manifold [14,15,23,45], which has interesting con-
sequences in optimization or model order reduction of dynamical systems in tensor
spaces [30]. There are only a few results available on the approximation properties of
tree-based formats [42]. However, it has been observed in many domains of applica-
tions that tree-based formats have a high approximation power (or expressive power).
Hierarchical tensor formats have been recently identified with deep neural networks
with a particular architecture [7].

The reader is referred to the monograph [20] and surveys [1,18,27,28,34,35] for an
introduction to tensor numerical methods and an overview of recent developments in
the field.

This paper is concerned with the problem of computing an approximation of a
function u(x1, . . . , xd) using point evaluations of this function, where evaluations can
be selected adaptively. This includes problemswhere the function represents the output
of a black-box numerical code, a system or a physical experiment for a given value of
the input variables (x1, . . . , xd). This also includes the solution of high-dimensional
PDEs with a probabilistic interpretation, where Monte-Carlo methods can be used to
obtain point evaluations of their solutions. This excludes problems where evaluations
of the functions comeas anunstructured data set.Amultivariate functionu(x1, . . . , xd)
is here considered as an element of a Hilbert tensor spaceH1⊗· · ·⊗Hd of real-valued
functions defined on a product setX1×· · ·×Xd equipped with a probability measure.
This includes the case of multidimensional arrays when the variables xν take values
in finite sets Xν . In this case, a point evaluation corresponds to the evaluation of an
entry of the tensor.

Several algorithms have been proposed for the construction of approximations in
tree-based formats using point evaluations of functions or entries of tensors. Let us
mention algorithms that use adaptive and structured evaluations of tensors [2,39] and
statistical learning approaches that use unstructured (random) evaluations of func-
tions [5,11,12,19]. Let us also mention the recent work [31] for the approximation in
Tucker format, with an approach similar to the one proposed in the present paper.
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746 A. Nouy

In the present paper, we propose and analyse a new algorithm which is based on a
particular extension of the singular value decomposition for the tree-based format T A

r
which allows us to construct an approximation using only evaluations of a function
(or entries of a tensor). The proposed algorithm constructs a hierarchy of subspaces
Uα of functions of groups of variables xα , for all α ∈ A, and associated interpolation
operators IUα which are oblique projections onto Uα . For the construction of Uα for
a particular node α ∈ A, we interpret the function u as a random variable u(·, xαc )

depending on a set of random variables xαc with values in the space of functions
of the variables xα . Then Uα is obtained by estimating the principal components of
this function-valued random variable using random samples u(·, xkαc ). In practice, we
estimate the principal components from interpolations IVαu(·, xkαc ) of these samples
on a subspace Vα which is a certain approximation space when α is a leaf of the tree, or
the tensor product of subspaces {Uβ}β∈S(α) associated with the sons S(α) of the node
α when α is not a leaf of the tree. This construction only requires evaluations of u on
a product set of points which is the product of an interpolation grid in Xα (unisolvent
for the space Vα), and a random set of points in Xαc . It is a sequential construction
going from the leaves to the root of the tree.

The proposed algorithm can be interpreted as an extension of principal com-
ponent analysis for tree-based tensors which provides a statistical estimation of
low-dimensional subspaces of functions of groups of variables for the representation
of a multivariate function. It is able to provide an approximation u� in any tree-based
format T A

r with either a prescribed rank r or a prescribed relative error (by adapting
the rank r ). For a given r , it has the remarkable property that it is able to provide an
approximation in T A

r with a number of evaluations equal to the storage complexity of
the resulting approximation. Under some assumptions on the estimation of principal
components, we prove that the algorithm, up to some discretization error ρ, provides
with high probability a quasi-optimal approximation with a prescribed rank, i.e.

‖u − u�‖ ≤ c min
v∈T A

r

‖u − v‖ + ρ,

where the constant c depends on the set A and the properties of orthogonal projections
and interpolation operators associated with principal subspaces. Also, under some
assumptions on the estimation of principal components and discretization error, we
prove that the algorithmwith prescribed tolerance ε is able to provide an approximation
u� such that

‖u − u�‖ ≤ c̃ε‖u‖

holds with high probability, where the constant c̃ depends on the set A and the prop-
erties of projections and interpolation operators. Sharp inequalities are obtained by
considering the properties of projection and interpolation operators when restricted
to minimal subspaces of tensors. The analysis takes into account the discretization
errors for the approximation of infinite-dimensional tensors. For a tensor with finite
and known rank in a tree-based format, and when there is no discretization error, the
algorithm is able to recover the tensor in a stable way using a number of evaluations

123



Higher-order PCA for the approximation in tree-based tensor… 747

equal to the storage complexity of the representation of the tensor in this format. This
algorithm may have important applications in the manipulation of big data, by pro-
viding a way to reconstruct a multidimensional array from a limited number of entries
(tensor completion).

The outline of the paper is as follows. In Sect. 2, we introduce some definitions and
properties of projections in Hilbert spaces, with a particular attention onHilbert spaces
of functions and projections based on point evaluations. In Sect. 3, we recall basic def-
initions on tensors and Hilbert tensor spaces of functions defined on measured product
sets. Then we introduce some definitions and properties of operators on tensor spaces,
with partial point evaluation functionals as a particular case. Finally, we introduce def-
initions and properties of projections on tensor spaces, with a particular attention on
orthogonal projection and interpolation. In Sect. 4, we introduce tree-based low-rank
formats in a general setting including classical HT and TT formats. In Sect. 5, we
first introduce the notion of principal component analysis for multivariate functions
and then propose an extension of principal component analysis to tree-based tensor
format. This is based on a new variant of higher-order singular value decomposition of
tensors in tree-based format. In Sect. 6, we present and analyse a modified version of
the algorithm presented in Sect. 5 which only requires point evaluations of functions,
and which is based on empirical principal component analyses and interpolations. In
Sect. 7, the behavior of the proposed algorithm is illustrated and analysed in several
numerical experiments.

2 Projections

For two vector spaces V and W equipped with norms ‖ · ‖V and ‖ · ‖W respectively,
we denote by L(V ,W ) the space of linear operators from V to W . We denote by
L(V ,W ) the space of linear and continuous operators from V to W , with bounded
operator norm ‖A‖V→W = max‖v‖V =1 ‖Av‖W . We denote by V ∗ = L(V ,R) the
algebraic dual of V and by V ′ = L(V ,R) the topological dual of V , and we let
‖ · ‖V→R = ‖ · ‖V ′ . We denote by 〈·, ·〉 the duality pairing between a space and its
dual. We let L(V ) := L(V , V ) and L(V ) := L(V , V ), and we replace the notation
‖ · ‖V→V by ‖ · ‖V , where the latter notation also stands for the norm on V .

2.1 Projections

Let V be a Hilbert space and U be a finite-dimensional subspace of V . An operator
P is a projection onto a subspace U if Im(P) = U and Pu = u for all u ∈ U .

The orthogonal projection PU onto U is a linear and continuous operator which
associates to v ∈ V the unique solution PUv ∈ U of

‖v − PUv‖V = min
u∈U ‖v − u‖V ,

or equivalently (u, PUv−v) = 0, ∀u ∈ U .The orthogonal projection PU has operator
norm ‖PU‖V = 1.
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748 A. Nouy

Let W be a finite-dimensional subspace of V ∗ such that

dim(W ) = dim(U ), and (1a)

{u ∈ U : 〈w, u〉 = 0 for all w ∈ W } = {0}, (1b)

where the latter condition is equivalent to U ∩ ⊥W = {0}, with ⊥W the annihilator
of W in V (see [33, Definition 1.10.4]). Under the above assumptions, we have that
for any v ∈ V , there exists a unique u ∈ U such that 〈w, u − v〉 = 0 for all w ∈ W .1

This allows to define the projection PW
U onto U along W which is the linear operator

on V which associates to v ∈ V the unique solution PW
U v ∈ U of

〈w, PW
U v − v〉 = 0, ∀w ∈ W .

For W = RVU , where RV : V → V ′ is the Riesz map, the projection PW
U coincides

with the orthogonal projection PU . A non orthogonal projection is called an oblique
projection. IfW ⊂ V ′, then PW

U is a projection from V ontoU parallel to Ker(PW
U ) =

Z⊥, where Z = R−1
V W . If W ⊂ Ũ ′, with Ũ a closed subspace of V , then PW

U |Ũ is a
projection from Ũ onto U parallel to Ker(PW

U ) ∩ Ũ = Z⊥ ∩ Ũ , where Z = R−1
Ũ

W ,

with RŨ the Riesz map from Ũ to Ũ ′.

Proposition 1 Let Ũ be a closed subspace of V and assume thatU ⊂ Ũ andW ⊂ Ũ ′.2
Then PW

U is a continuous operator from Ũ to V .

Proof Let us equip W with the norm ‖w‖W = ‖w‖Ũ ′ = max
v∈Ũ 〈w, v〉/‖v‖V , such

that for all v ∈ Ũ , 〈w, v〉 ≤ ‖w‖W‖v‖V . Let

α = min
0 �=u∈U max

0 �=w∈W
〈w, u〉

‖u‖V ‖w‖W .

Assumption (1b) implies that α > 0. Then for all v ∈ Ũ , we have

‖PW
U v‖V ≤ α−1 max

0 �=w∈W
〈w, PW

U v〉
‖w‖W = α−1 max

0 �=w∈W
〈w, v〉
‖w‖W ≤ α−1‖v‖V ,

which ends the proof. ��
Proposition 2 Let P and P̃ be projections onto subspaces U and Ũ respectively and
assume U ⊂ Ũ . Then

P̃ P = P.

1 Uniqueness comes from (1b) while existence comes from (1a) and (1b).
2 Note that V ′ ⊂ Ũ ′ and we may have W �⊂ V ′.
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Moreover, if P and P̃ are projections along W and W̃ respectively, with W ⊂ W̃ ,
then

P̃ P = P P̃ = P.

Proof For all v ∈ V , Pv ∈ U ⊂ Ũ , and therefore P̃ Pv = Pv, which proves the first
statement. For the second statement, by definition of the projection P , we have that
〈φ, P P̃v− P̃v〉 = 0 for all φ ∈ W . SinceW ⊂ W̃ and by definition of P̃ , this implies
that 〈φ, P P̃v − v〉 = 0 for all φ ∈ W . By definition of Pv and since P P̃v ∈ U , this
implies P P̃v = Pv = P̃ Pv. ��
Proposition 3 Let U and Ũ be two closed subspaces of V , with U of finite dimension.
Let PU be the orthogonal projection onto U and let PW

U be the projection onto U
along W ⊂ Ũ ′. For all v ∈ Ũ ,

‖PW
U v − PUv‖V ≤ ‖PW

U − PU‖Ũ→V ‖v − PUv‖V ,

with

‖PW
U − PU‖Ũ→V = ‖PW

U ‖
(id−PU )Ũ→V ≤ ‖PW

U ‖Ũ→V .

Also, for all v ∈ Ũ ,

‖v − PW
U v‖2V ≤ (1 + ‖PW

U − PU‖2
Ũ→V

)‖v − PUv‖2V .

Proof For v ∈ Ũ , ‖PW
U v − PUv‖V = ‖PW

U (v − PUv)‖V = ‖(PW
U − PU )(v −

PUv)‖V ≤ ‖PW
U − PU‖

(id−PU )Ũ→V ‖v − PUv‖V , with ‖PW
U − PU‖

(id−PU )Ũ→V =
‖PW

U − PU‖Ũ→V = ‖PW
U ‖

(id−PU )Ũ→V . This proves the first statement. The second

statement directly follows from ‖v − PW
U v‖2V = ‖v − PUv‖2V + ‖PUv − PW

U v‖2V . ��

2.2 Projection of functions using point evaluations

Let V be aHilbert space of functions defined on a set X . For x ∈ X , the point evaluation
functional δx ∈ V ∗ is defined by 〈δx , v〉 = v(x).

2.2.1 Interpolation

LetU be a n-dimensional subspace of V and letΓ = {xk}nk=1 be a set of n interpolation
points in X . The set of interpolation pointsΓ is assumed to be unisolvent forU , i.e. for
any (ak)nk=1 ∈ R

n , there exists a unique u ∈ U such that u(xk) = ak for all 1 ≤ k ≤ n.
The interpolation operator IU associated with Γ is a linear operator from V toU such
that for v ∈ V , IUv is the unique element of U such that

〈δx , IUv − v〉 = IUv(x) − v(x) = 0 ∀x ∈ Γ .
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750 A. Nouy

The interpolationoperator IU is an obliqueprojection PW
U ontoU alongW = span{δx :

x ∈ Γ }. Note that the condition that Γ is unisolvent for U is equivalent to the condi-
tion (1b) on U and W , which ensures that IU is well defined. From Proposition 2, we
deduce the following property.

Proposition 4 Let U and Ũ be two subspaces associated with sets of interpolation
points Γ and Γ̃ respectively. If U ⊂ Ũ and Γ ⊂ Γ̃ , then

IU IŨ = IŨ IU = IU .

Magic points. For a given basis {ϕi }ni=1 ofU , a set of interpolation pointsΓ = {xk}nk=1,
called magic points, can be determined with a greedy algorithm proposed in [32,
Remark 2]. The procedure for selecting the set Γ in a subset Γ� in X is as follows.
We first determine a point x1 ∈ Γ� and an index i1 such that

|ϕi1(x1)| = max
x∈Γ�

max
1≤i≤n

|ϕi (x)|.

Then for k ≥ 1, we define ψ
(k)
i (x) = ϕi (x) − ∑k

m=1
∑k

p=1 ϕim (x)a(k)
m,pϕi (x p), with

the matrix (a(k)
m,p)1≤m,p≤k being the inverse of the matrix (ϕim (x p))1≤p≤k,1≤m≤k , such

that ψ
(k)
im

(x) = 0 for all 1 ≤ m ≤ k and x ∈ X , and ψ
(k)
i (x p) = 0 for all 1 ≤ p ≤ k

and 1 ≤ i ≤ n. Then, we determine the point xk+1 ∈ Γ� and an index ik+1 such that

|ψ(k)
ik+1

(xk+1)| = max
x∈Γ�

max
1≤i≤n

|ψ(k)
i (x)|.

2.2.2 Discrete least-squares projection

Let U be a n-dimensional subspace of V and let Γ = {xk}mk=1 be a set of m points
in X , m ≥ n, such that ‖v‖Γ = (

∑
x∈Γ v(x)2)1/2 defines a norm on U . The discrete

least-squares projection QU is the linear operator from V to U such that for v ∈ V ,
QUv is the unique element in U which minimizes ‖v − u‖2Γ over all u ∈ U , or
equivalently

(u, v − QUv)Γ =
∑

x∈Γ

u(x)〈δx , v − QUv〉 = 0 ∀u ∈ U ,

where (·, ·)Γ is the inner product associated with the norm ‖ · ‖Γ on U . The dis-
crete least-squares projection QU is an oblique projection onto U along W =
{∑x∈Γ u(x)δx : u ∈ U }. If #Γ = dim(U ) and Γ is unisolvent for U , then QU

coincides with the interpolation operator IU .

Proposition 5 Let U and Ũ be two finite-dimensional subspaces such that U ⊂ Ũ .
Let QU be the discrete least-squares projection onto U associated with a set of points
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Γ in X, and let QŨ be the discrete least-squares projection onto Ũ associated with a

set of points Γ̃ in X. If either Γ = Γ̃ or Γ ⊂ Γ̃ and Γ̃ is unisolvent for Ũ , then

QU QŨ = QŨ QU = QU .

Proof QU is the projection onto U along W = {∑x∈Γ u(x)δx : u ∈ U }, and QŨ is
the projection onto Ũ along W̃ = {∑x∈Γ̃ ũ(x)δx : ũ ∈ Ũ }. If we prove that W ⊂ W̃ ,
then the result follows from Proposition 2. Let w = ∑

x∈Γ u(x)δx ∈ W , with u ∈ U .
If Γ = Γ̃ , then since u ∈ Ũ , we clearly have w ∈ W̃ . If Γ ⊂ Γ̃ and Γ̃ is unisolvent
for Ũ , there exists a function ũ ∈ Ũ such that ũ(x) = u(x) for all x ∈ Γ and ũ(x) = 0
for all x ∈ Γ̃ \Γ . Therefore, w = ∑

x∈Γ̃ ũ(x)δx is an element of W̃ , which ends the
proof. ��

3 Tensors

Let Hν be Hilbert spaces of real-valued functions defined on sets Xν equipped with
probability measures μν , 1 ≤ ν ≤ d. We denote by ‖ · ‖Hν

the norm on Hν and by
(·, ·)Hν

the associated inner product. LetX = X1 ×· · ·×Xd and μ = μ1 ⊗· · ·⊗μd .
The tensor product of d functions vν ∈ Hν , 1 ≤ ν ≤ d, denoted v1 ⊗ · · · ⊗ vd , is a
multivariate function defined onX such that (v1⊗· · ·⊗vd)(x) = v1(x1) . . . vd(xd) for
x = (x1, . . . , xd) ∈ X . Such a function is called an elementary tensor. The algebraic
tensor spaceH1 ⊗a . . . ⊗a Hd is defined as the linear span of all elementary tensors,
which is a pre-Hilbert space when equipped with the canonical inner product (·, ·)
defined for elementary tensors by

(v1 ⊗ · · · ⊗ vd , w1 ⊗ · · · wd) = (v1, w1)H1 . . . (vd , wd)Hd ,

and then extended by linearity to the whole algebraic tensor space. We denote by
‖ · ‖ the norm associated with inner product (·, ·). A Hilbert tensor space H =
H1 ⊗a . . . ⊗a Hd

‖·‖
is then obtained by the completion of the algebraic tensor space,

which we simply denote

H = H1 ⊗ · · · ⊗ Hd =
d⊗

ν=1

Hν.

Example 1 Consider finite sets Xν and Hν = R
Xν equipped with the norm ‖v‖2Hν

=
∑

xν∈Xν
μν({xν})|v(xν)|2. Then,H is the spaceofmultidimensional arraysRX1⊗· · ·⊗

R
Xd and ‖v‖2 = ∑

x∈X μ({x})|v(x)|2, where μ({x1, . . . , xd}) = ∏d
ν=1 μν({xν}).

Example 2 ConsiderXν = R,μν a finite measure onR, andHν = L2
μν

(Xν) equipped
with the natural norm ‖v‖2Hν

= ∫ |v(xν)|2μν(dxν). ThenH is identified with L2
μ(X ),

where μ = μ1 ⊗ · · · ⊗ μd , and ‖v‖2 = ∫ |v(x)|2μ(dx).
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752 A. Nouy

Example 3 Consider for Hν a reproducing kernel Hilbert space (RKHS) with repro-
ducing kernel kν : Xν × Xν → R. Then H is a RKHS with reproducing kernel
k(x, x ′) = k1(x1, x ′

1) . . . kd(xd , x ′
d).

For a non-empty subset α in {1, . . . , d} := D, we let Xα be the set×ν∈α Xν equipped
with the product measure μα = ⊗

ν∈α μν . We denote byHα = ⊗
ν∈α Hν the Hilbert

tensor space of functions defined on Xα , equipped with the canonical norm ‖ · ‖Hα

such that

‖
⊗

ν∈α

vν‖Hα
=

∏

ν∈α

‖vν‖Hν

for vν ∈ Hν , 1 ≤ ν ≤ d. We have HD = H and we use the convention H∅ = R.
Matricisations and α-ranks. Let α ⊂ D, with α /∈ {∅, D}, and let αc = D\α be its
complement in D. For x ∈ X , we denote by xα the subset of variables (xν)ν∈α . A
tensor v ∈ H can be identified with an order-two tensor

Mα(v) ∈ Hα ⊗ Hαc ,

where Mα is the matricisation operator associated with α, which defines a linear
isometry between H andHα ⊗ Hαc . We use the conventions M∅(v) = MD(v) = v

and H∅ ⊗ HD = HD ⊗ H∅ = H.
The α-rank of a tensor v ∈ H, denoted rankα(v), is defined as the rank of the

order-two tensor Mα(v), which is uniquely defined as the minimal integer such that

Mα(v) =
rankα(v)∑

k=1

vα
k ⊗ vαc

k , or equivalently v(x) =
rankα(v)∑

k=1

vα
k (xα)vαc

k (xαc ), (2)

for some functions vα
k ∈ Hα and vαc

k ∈ Hαc of complementary subsets of variables
xα and xαc respectively. By convention, we have rank∅(v) = rankD(v) = 1. From
now on, when there is no ambiguity, Mα(v) and Hα ⊗ Hαc will be identified with v

and H respectively.
Minimal subspaces. The minimal subspace Umin

α (v) of v is defined as the smallest
closed subspace inHα such that

v ∈ Umin
α (v) ⊗ Hαc ,

and we have rankα(v) = dim(Umin
α (v)) (see [13]). If v admits the representation (2),

then Umin
α (v) is the closure of span{vα

k }rankα(v)
k=1 . For any partition S(α) of α, we have

Umin
α (v) ⊂

⊗

β∈S(α)

Umin
β (v).
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We have Umin
D (v) = Rv and for any partition S(D) of D,

v ∈
⊗

β∈S(D)

Umin
β (v).

3.1 Operators on tensor spaces

Let consider the Hilbert tensor space H = ⊗d
ν=1Hν equipped with the canonical

norm ‖ ·‖. For linear operators fromH toH, we also denote by ‖ ·‖ the operator norm
‖ · ‖H→H = ‖ · ‖H.

We denote by id the identity operator on H. For a non-empty subset α ⊂ D, we
denote by idα the identity operator on Hα . For Aα in L(Hα), we define the linear
operator Aα ⊗ idαc such that for vα ∈ Hα and vαc ∈ Hαc ,

(Aα ⊗ idαc )(vα ⊗ vαc
) = (Aαvα) ⊗ vαc

,

and we extend this definition by linearity to the whole algebraic tensor space Hα ⊗a

Hαc . For a finite dimensional tensor space H, this completely characterizes a linear
operator on H. For an infinite dimensional tensor space H, if Aα ∈ L(Uα,Hα), with
Uα ⊂ Hα , then Aα ⊗ idαc can be extended by continuity to Uα ⊗ H.

We denote by Aα , using calligraphic font style, the linear operator in L(H) asso-
ciated with an operator Aα in L(Hα), defined by Aα = M−1

α (Aα ⊗ idαc )Mα, and
simply denoted

Aα = Aα ⊗ idαc

when there is no ambiguity. If Aα ∈ L(Hα), then Aα ∈ L(H) and the two operators
have the same operator norm ‖Aα‖ = ‖Aα‖Hα

. Also, we have the following more
general result.

Proposition 6 If Aα ∈ L(Uα,Hα), with Uα ⊂ Hα , then Aα ∈ L(Uα ⊗ Hαc ,H) and
the two operators have the same operator norm

‖Aα‖Uα⊗Hαc→H = ‖Aα‖Uα→Hα
.

Corollary 1 For a tensor v ∈ H and an operator Aα ∈ L(Umin
α (v),Hα),

‖Aαv‖ ≤ ‖Aα‖Umin
α (v)→Hα

‖v‖.

Let S = {α1, . . . , αK } be a collection of disjoint subsets of D and let Aα ∈ L(Hα)

be linear operators, α ∈ S. Then we can define a linear operator Aα1 ⊗ · · · ⊗ AαK :=⊗
α∈S Aα on Hα1 ⊗a . . . ⊗a HαK such that

(
⊗

α∈S
Aα

) (
⊗

α∈S
vα

)
=

⊗

α∈S
(Aαvα)
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for vα ∈ Hα , α ∈ S. The operator
⊗

α∈S Aα can be identified with an operator

A =
∏

α∈S
Aα,

defined on the algebraic tensor space H1 ⊗a . . . ⊗a Hd . The definition of A is inde-
pendent of the ordering of the elements of S. If the operators Aα are continuous, then
A defines a continuous operator from H to H and since ‖ · ‖ is a uniform crossnorm
(see [20, Proposition 4.127]), the operator A has for operator norm

‖A‖ =
∏

α∈S
‖Aα‖ =

∏

α∈S
‖Aα‖Hα

.

Also, we have the following more general result.

Proposition 7 Let S be a collection of disjoint subsets of D and let β ⊂ D such that
β ∪ (∪α∈Sα) = D. Let Uα be a subspace of Hα and Aα ∈ L(Uα,Hα), for α ∈ S.
ThenA = ∏

α∈S Aα is a continuous operator from U := (
⊗

α∈S Uα)⊗Hβ toH such
that

‖A‖U→H =
∏

α∈S
‖Aα‖Uα⊗Hαc→H =

∏

α∈S
‖Aα‖Uα→Hα

.

Corollary 2 Let S be a collection of disjoint subsets of D. For a tensor v ∈ H and
operators Aα , α ∈ S, such that Aα ∈ L(Umin

α (v),Hα), the operator A = ∏
α∈S Aα

is such that

‖Av‖ ≤ ‖v‖
∏

α∈S
‖Aα‖Umin

α (v)→Hα
.

3.2 Partial evaluations of tensors

Let α be a non-empty subset of D. For a linear form ψα ∈ H∗
α , ψα ⊗ idαc is a linear

operator fromHα⊗aHαc toHαc such that (ψα⊗idαc)(vα⊗vαc
) = ψα(vα)vαc

. Ifψα ∈
H′

α , the definition of ψα ⊗ idαc can be extended by continuity toH. Then ψα ⊗ idαc

is a continuous operator from H to Hαc with operator norm ‖ψα ⊗ idαc‖H→Hαc
=

‖ψα‖H′
α
. Also, we have the following result.

Proposition 8 If ψα ∈ U ′
α , with Uα a subspace of Hα , then ψα ⊗ idαc ∈ L(Uα ⊗

Hαc ,Hαc ) and

‖ψα ⊗ idαc‖Uα⊗Hαc→Hαc
= ‖ψα‖U ′

α
.

Corollary 3 For a tensor v ∈ H and ψα ∈ Umin
α (v)′, we have

‖(ψα ⊗ idαc )v‖ ≤ ‖ψα‖(Umin
α (v))′‖v‖.
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For a point xα ∈ Xα , we denote by δxα ∈ H∗
α the point evaluation functional at

xα , defined by 〈δxα , v
α〉 = vα(xα) for vα ∈ Hα . Then δxα ⊗ idαc defines a partial

evaluation functional, which is a linear operator from H toHαc such that

(δxα ⊗ idαc )(vα ⊗ vαc
) = vα(xα)vαc

.

From Corollary 3, we deduce that for a given tensor v ∈ H, if δxα ∈ Umin
α (v)′, then

the definition of δxα ⊗ idαc can be extended by continuity to Umin
α (v) ⊗ Hαc and the

partial evaluation

v(xα, ·) = (δxα ⊗ idαc )v

is an element of Hαc such that

‖v(xα, ·)‖Hαc
= ‖(δxα ⊗ idαc )v‖ ≤ ‖δxα‖Umin

α (v)′ ‖v‖.

3.3 Projection of tensors

Letα be a non-empty and strict subset of D and letUα be a finite-dimensional subspace
of Hα . If Pα is a projection from Hα onto Uα , then Pα ⊗ idαc is a projection from
Hα ⊗ Hαc onto Uα ⊗ Hαc .

Proposition 9 Let v ∈ H and α, β ⊂ D. Let Pβ be a projection fromHβ to a subspace
Uβ and letPβ be the corresponding projection onto Uβ ⊗Hβc . If β ⊂ α or β ⊂ D\α,
we have

rankα(Pβv) ≤ rankα(v).

Proof A tensor v admits a representation v = ∑rankα(v)
k=1 vα

k ⊗wαc

k . Ifβ ⊂ α, thenPβ =
(Pβ ⊗ idα\β) ⊗ idD\α and Pβv = ∑rankα(v)

k=1 ((Pβ ⊗ idα\β)vα
k ) ⊗ wαc

k . If β ⊂ D\α,
thenPβ = idα⊗(Pβ ⊗idD\{α∪β}) andPβv = ∑rankα(v)

k=1 vα
k ⊗((Pβ ⊗idD\{α∪β})wαc

k ).

The result follows from the definition of the α-rank. ��
If PUα is the orthogonal projection from Hα onto Uα , then PUα ⊗ idαc coincides

with the orthogonal projection PUα⊗Hαc
from Hα ⊗ Hαc onto Uα ⊗ Hαc , and is

identified with the orthogonal projection PUα = PUα ⊗ idαc in L(H). If PWα

Uα
is the

oblique projection onto Uα along Wα ⊂ H∗
α , then P

Wα

Uα
:= PWα

Uα
⊗ idαc is the oblique

projection fromHα ⊗Hαc onto Uα ⊗Hαc along Wα ⊗H′
αc . If Wα ⊂ H′

α , then PWα

Uα

and PWα

Uα
are continuous operators with equal norms ‖PWα

Uα
‖ = ‖PWα

Uα
‖Hα

.

Proposition 10 Let Uα be a finite-dimensional subspace of Hα and let PWα

Uα
be the

projection onto Uα along Wα . For a tensor v ∈ H such that Wα ⊂ Umin
α (v)′, PWα

Uα
v

is an element of Uα ⊗ Hαc such that

‖PWα

Uα
v‖ ≤ ‖PWα

Uα
‖Umin

α (v)→Hα
‖v‖,
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and

‖PWα

Uα
v − PUα v‖ ≤ ‖PWα

Uα
− PUα‖Umin

α (v)→Hα
‖v‖,

with

‖PWα

Uα
− PUα‖Umin

α (v)→Hα
= ‖PWα

Uα
‖(idα−PUα )Umin

α (v)→Hα
≤ ‖PWα

Uα
‖Umin

α (v)→Hα
.

Also,

‖v − PWα

Uα
v‖2 ≤ (1 + ‖PWα

Uα
− PUα‖2Umin

α (v)→Hα
)‖v − PUα v‖2.

Proof We have v ∈ Umin
α (v) ⊗ Hαc . Noting that ‖PWα

Uα
‖Umin

α (v)⊗Hαc→H =
‖PWα

Uα
‖Umin

α (v)→Hα
and ‖PWα

Uα
− PUα‖Umin

α (v)⊗Hαc→H = ‖PWα

Uα
− PUα‖Umin

α (v)→Hα
,

the results directly follow from Proposition 3. ��

Now, let α be a non-empty subset of D and let S(α) be a partition of α. Let P
Wβ

Uβ

be oblique projections onto subspaces Uβ of Hβ along Wβ ⊂ H∗
β , β ∈ S(α). Then

⊗
β∈S(α) P

Wβ

Uβ
:= P

WS(α)

US(α)
is the oblique projection from HS(α) = ⊗

β∈S(α) Hβ onto
⊗

β∈S(α) Uβ := US(α) along
⊗

β∈S(α) Wβ := WS(α), and PWS(α)

US(α)
= P

WS(α)

US(α)
⊗ idαc

is the oblique projection from Hα ⊗ Hαc to US(α) ⊗ Hαc along WS(α) ⊗ H′
αc . From

Proposition 2, we directly obtain the following result.

Proposition 11 If Uα ⊂ ⊗
β∈S(α) Uβ and Wα ⊂ ⊗

β∈S(α) Wβ , then

PWα

Uα

⎛

⎝
∏

β∈S(α)

PWβ

Uβ

⎞

⎠ =
⎛

⎝
∏

β∈S(α)

PWβ

Uβ

⎞

⎠PWα

Uα
= PWα

Uα
.

4 Tree-based tensor formats

Let T ⊂ 2D\∅ be a dimension partition tree over D, with root D. The elements of
T are called the nodes of the tree. Every node α ∈ T with #α ≥ 2 has a set of sons
S(α) which form a partition of α, i.e.

⋃
β∈S(α) β = α. A node α ∈ T with #α = 1 is

such that S(α) = ∅ and is called a leaf of the tree. The set of leaves of T is denoted
L(T ) (see an example on Fig. 1). For α ∈ T , we denote by level(α) the level of
α in T , such that level(D) = 0 and level(β) = level(α) + 1 if β ∈ S(α). We let
L = depth(T ) = maxα∈T level(α) be the depth of T , which is the maximum level of
the nodes in T , and T
 = {α ∈ T : level(α) = 
} be the subset of nodes with level

, 0 ≤ 
 ≤ L . We let t
 = ⋃

α∈T

α. We have t
+1 ⊂ t
 and t
\t
+1 ⊂ L(T ) (see

example on Fig. 2).
We introduce a subset of active nodes A ⊂ T \{D} such that T \A ⊂ {D} ∪ L(T ),

which means that the set of non active nodes in T \{D} is a subset of the leaves (see
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Fig. 1 A dimension partition
tree T over D = {1, 2, 3, 4, 5, 6}
and its leaves (blue nodes) (color
figure online)

{1, 2, 3, 4, 5, 6}

{1, 2, 3}

{1}

{2, 3}

{2} {3}

{4, 5, 6}

{4} {5} {6}

{1}

{2} {3}

{4} {5} {6}

T0 (level 0)

T1 (level 1)

T2 (level 2)

T3 (level 3)

Fig. 2 A dimension partition tree T over D = {1, . . . , 6} with depth L = 3 and the corresponding subsets
T
, 0 ≤ 
 ≤ L . Here t3 = {2, 3} and t2 = t1 = t0 = D (color figure online)

Fig. 3 A dimension partition
tree T over D = {1, 2, 3, 4, 5, 6}
and an admissible subset of
active nodes A (red nodes)
(color figure online)

{1, 2, 3, 4, 5, 6}

{1, 2, 3}

{1}

{2, 3}

{2} {3}

{4, 5, 6}

{4} {5} {6}

Fig. 3). A set A is admissible if for any α ∈ A, the parent node of α is in A∪ {D}. We
let L(A) = A ∩L(T ), A
 = A ∩ T
 for 1 ≤ 
 ≤ L , and a
 = ∪α∈A


α. We define the
A-rank of a tensor v ∈ H as the tuple rankA(v) = {rankα(v)}α∈A.

Now we consider a tensor v ∈ H with rankA(v) = (rα)α∈A. We let rD =
rankD(v) = 1. For all α ∈ A∪{D}, we denote by {vα

kα
}rαkα=1 a basis of theminimal sub-

spaceUmin
α (v) ⊂ Hα , and we let vD

1 = v. For α ∈ A∪ {D} such that ∅ �= S(α) ⊂ A,
since Umin

α (v) ⊂ ⊗
β∈S(α) U

min
β (v), the tensor vα

kα
admits a representation
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vα
kα

(xα) =
∑

1≤kβ≤rβ
β∈S(α)

Cα
kα,(kβ)β∈S(α)

∏

β∈S(α)

v
β
kβ

(xβ),

with a tensor of coefficients Cα ∈ R
rα××β∈S(α) rβ . For α ∈ A ∪ {D} such that

∅ �= S(α) �⊂ A, we have Umin
α (v) ⊂ (

⊗
β∈S(α)∩A U

min
β (v)) ⊗ (

⊗
β∈S(α)\A Hβ),

and therefore the tensor vα
kα

admits a representation

vα
kα

(xα) =
∑

1≤kβ≤rβ
β∈S(α)∩A

Cα
kα,(kβ )β∈S(α)∩A

((xβ)β∈S(α)\A)
∏

β∈S(α)∩A

v
β
kβ

(xβ),

with Cα ∈ R
rα××β∈S(α)∩A rβ ⊗ (

⊗
β∈S(α)\A Hβ). Finally, a tensor v such that

rankA(v) = (rα)α∈A admits a representation

v =
∑

1≤kα≤rα
α∈A∪{D}

∏

α∈(A∪{D})\L(A)

Cα
kα,(kβ )β∈S(α)∩A

((xβ)β∈S(α)\A)
∏

α∈L(A)

vα
kα

(xα) (3)

For a tuple r = (rα)α∈A, we define the subset T A
r (H) of tensors in H with A-rank

bounded by r ,

T A
r (H) = {v ∈ H : rankα(v) ≤ rα, α ∈ A} =

⋂

α∈A

T {α}
rα (H).

Remark 1 A tensor v ∈ T A
r (H) admits a representation as a composition of functions.

For α ∈ A, let vα(xα) = (vα
1 , . . . , vα

rα ) ∈ R
rα . If ∅ �= S(α) ⊂ A, the tensor Cα can

be identified with a multilinear function f α :×β∈S(α) R
rβ → R

rα , and vα(xα) admits
the representation

vα(xα) = f α((vβ(xβ))β∈S(α)).

For α ∈ A ∪ {D} such that ∅ �= S(α) �⊂ A, the tensor Cα((xβ)β∈S(α)\A) can be
identified with a multilinear function f α(·, (xβ)β∈S(α)\A) : ×β∈S(α)∩A R

rβ → R
rα ,

and vα(xα) admits the representation

vα(xα) = f α((vβ(xβ))β∈S(α)∩A, (xβ)β∈S(α)\A),

where the f α is linear in the arguments associated with active nodes β ∈ S(α) ∩ A.
As an example, for the case of Fig. 3, the tensor v admits the representation

v(x) = f 1,2,3,4,5,6( f 1,2,3(x1, f 1,2(x2, v
3(x3))), f 4,5,6(x4, x5, v

6(x6))).

Proposition 12 Let V = V1⊗· · ·⊗Vd ⊂ H, with Vν a subspace ofHν with dimension
dim(Vν) = nν ,1 ≤ ν ≤ d. The storage complexity of a tensor inT A

r (H)∩V = T A
r (V )

is
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Fig. 4 Tucker format.
Dimension partition tree T over
D = {1, . . . , 5} and subset of
active nodes A (red nodes)
(color figure online)

{1, 2, 3, 4, 5}

{1} {2} {3} {4} {5}

storage(T A
r (V )) =

∑

α∈(A∪{D})\L(A)

rα
∏

β∈S(α)∩A

rβ
∏

β∈S(α)\A
nβ +

∑

α∈L(A)

rαnα.

Example 4 (Tucker format) The Tucker format corresponds to a trivial tree T =
{{1, . . . , d}, {1}, . . . , {d}} with depth L = 1, and A = T \{D} (see Fig. 4). A ten-
sor v with A-rank bounded by (r1, . . . , rd) admits a representation of the form

v(x) =
r1∑

k1=1

. . .

rd∑

kd=1

Ck1,...,kdv
1
k1(x1) . . . vdkd (xd), (4)

where C ∈ R
r1×···×rd , and vν

kν
∈ Hν , 1 ≤ ν ≤ d, or equivalently

v(x) = f 1,...,d(v1(x1), . . . , v
d(xd)).

Example 5 (Degenerate Tucker format) A degenerate Tucker format corresponds to a
trivial tree T = {{1, . . . , d}, {1}, . . . , {d}}with depth L = 1, and an active set of nodes
A strictly included in T \{D}. Up to a permutation of dimensions, this corresponds to
A = {{1}, . . . , {p}}, with p < d. A tensor v with A-rank bounded by (r1, . . . , rp)
admits a representation of the form

v(x) =
r1∑

k1=1

. . .

rp∑

kp=1

Ck1,...,kp (xp+1, . . . , xd)v
1
k1(x1) . . . v

p
kp

(xp), (5)

where C ∈ R
r1×···×rp ⊗ H{p+1,...,d}, and vν

kν
∈ Hν , 1 ≤ ν ≤ p, or equivalently

v(x) = f 1,...,d(v1(x1), . . . , v
p(xp), xp+1, . . . , xd).

Example 6 (Tensor train format) The tensor train (TT) format corresponds to a lin-
ear tree T = {{1}, {2}, . . . , {d}, {1, 2}, . . . , {1, . . . , d}} and A = {{1}, {1, 2}, . . . ,
{1, . . . , d−1}} (see Fig. 5). Here, A is a strict subset of T \{D}. The nodes {2}, . . . , {d}
in T are not active.3 A tensor v with A-rank bounded by (r1, . . . , rd−1) admits a rep-

3 Note that since rank{d}(v) = rank{1,...,d−1}(v), adding the node {d} in the set of active nodes A would
yield an equivalent tensor format.
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Fig. 5 Tensor train format.
Dimension partition tree T over
D = {1, . . . , 5} and active nodes
A (red nodes) (color figure
online)

{1, 2, 3, 4, 5}

{1, 2, 3, 4}

{1, 2, 3}

{1, 2}

{1} {2}

{3}

{4}

{5}

resentation of the form

v(x) =
r1∑

k1=1

. . .

rd−1∑

kd−1=1

v1k1(x1)C
2
k1,k2(x2) . . .Cd−1

kd−2,kd−1
(xd−1)C

d
kd−1,1(xd),

where v1 ∈ R
r1 ⊗ H1, Cν ∈ R

rν−1×rν ⊗ Hν for 2 ≤ ν ≤ d, with the convention
rd = 1. Here L = d − 1, and for 1 ≤ 
 ≤ L , T
 = {{1, . . . , d − 
}, {d − 
 + 1}},
t
 = {1, . . . , d − 
 + 1}, A
 = {{1, . . . , d − 
}} and a
 = {1, . . . , d − 
}. The tensor
v admits the equivalent representation

v(x) = f 1,...,d
(
f 1,...,d−1

(
. . . f 1,2(v1(x1), x2) . . . , xd−1

)
, xd

)
.

Example 7 (Tensor train Tucker format) The tensor train Tucker (TTT) format corre-
sponds to a linear tree T = {{1}, . . . , {d}, {1, 2}, . . . , {1, . . . , d}} and A = T \{D}
(see Fig. 6). A tensor v having a A-rank bounded by (r1, . . . , rd , s2, . . . , sd−1) admits
a representation of the form (4) with a tensor C ∈ R

r1×···×rd such that

Ck1,...,kd =
s2∑

i2=1

. . .

sd−1∑

id−1=1

C2
k1,k2,i2C

3
i2,k3,i3 . . .Cd−1

id−2,kd−1,id−1
Cd
id−1,kd ,1,

where C2 ∈ R
r1×r2×s2 and Ck ∈ R

sk−1×rk×sk for 3 ≤ k ≤ d, with the convention
sd = 1. Here L = d − 1, T
 = A
 = {{1, . . . , d − 
}, {d − 
 + 1}} and t
 = a
 =
{1, . . . , d − 
 + 1} for 1 ≤ 
 ≤ L . The tensor v admits the equivalent representation

v(x) = f 1,...,d
(
f 1,...,d−1

(
. . . f 1,2(v1(x1), v

2(x2)) . . . , vd−1(xd−1)
)

, vd(xd)
)

.
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Fig. 6 Tensor train Tucker
format. Dimension partition tree
T over D = {1, . . . , 5} and
active nodes A (red nodes)
(color figure online)

{1, 2, 3, 4, 5}

{1, 2, 3, 4}

{1, 2, 3}

{1, 2}

{1} {2}

{3}

{4}

{5}

5 Principal component analysis for tree-based tensor format

5.1 Principal component analysis of multivariate functions

Here we introduce the notion of principal component analysis for multivariate func-
tions. We consider a given non-empty and strict subset α of D. Any tensor in H is
identified (through the linear isometryMα) with its α-matricisation inHα ⊗ Hαc . A
tensor u with α-rank rankα(u) ∈ N ∪ {+∞} admits a singular value decomposition
(see [20, Section 4.4.3])

u =
rankα(u)∑

k=1

σα
k u

α
k ⊗ uαc

k , (6)

where {uα
k }rankα(u)

k=1 and {uαc

k }rankα(u)
k=1 are orthonormal vectors in Hα and Hαc respec-

tively, and where the σα
k are the α-singular values of u which are supposed to be

arranged by decreasing values. The minimal subspace Umin
α (u) of u is given by

Umin
α (u) = span{uα

k }rankα(u)
k=1

‖·‖Hα

.

For rα < rankα(u), the truncated singular value decomposition

urα =
rα∑

k=1

σα
k u

α
k ⊗ uαc

k ,

is such that

‖u − urα‖2 = min
rankα(v)≤rα

‖u − v‖2 =
rankα(u)∑

k=rα+1

(σα
k )2.
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The functions {uα
k }rαk=1 are the rα principal components of u associated with dimen-

sions α, hereafter called α-principal components. The corresponding subspace U �
α =

span{uα
k }rαk=1, which is a subspace of Umin

α (u), is hereafter called a α-principal sub-
space of dimension rα . Denoting PU �

α
= PU �

α
⊗ idαc the orthogonal projection from

H to U �
α ⊗ Hαc , we have urα = PU �

α
u,4 and

‖u − PU �
α
u‖ = min

rankα(v)≤rα
‖u − v‖ = min

dim(Uα)=rα
‖u − PUαu‖. (7)

Remark 2 The optimization problem (7) over subspaces of dimension rα inHα admits
a unique solution U �

α if and only if σα
rα+1 > σα

rα .

5.2 Principal component analysis for tree-based tensor format

Here, we propose and analyse an algorithm for the construction of an approximation
u� of a function u in tree-based format T A

r (H). It is based on the construction of a
hierarchy of subspaces Uα , α ∈ A, from principal component analyses of approxi-
mations of u in low-dimensional spaces in Hα . This is a variant of the leaves-to-root
higher-order singular value decomposition method proposed in [17] (see also [20,
Section 11.4.2.3]).

For each leaf node α ∈ L(T ), we introduce a finite-dimensional approximation
space Vα ⊂ Hα with dimension dim(Vα) = nα , and we let V = ⊗

α∈L(T ) Vα ⊂ H.
For each non active node α ∈ L(T )\A, we let Uα = Vα . The algorithm then goes
through all active nodes of the tree, going from the leaves to the root. For each α ∈ A,
we let

uα = PVαu,

where for α /∈ L(T ), Vα is defined by

Vα =
⊗

β∈S(α)

Uβ,

where theUβ , β ∈ S(α), have been determined at a previous step. Then we determine
the rα-dimensional α-principal subspace Uα of uα , which is solution of

‖uα − PUαuα‖ = min
rankα(v)≤rα

‖uα − v‖. (8)

Finally, we define

u� = PVDu, (9)

where PVD is the orthogonal projection fromH onto VD = ⊗
β∈S(D) Uβ.

4 For allm ≥ rα , we havePU�
α
um = ∑m

k=1 σα
k (PU�

α
uα
k )⊗uαc

k = ∑rα
k=1 σα

k u
α
k ⊗uαc

k = urα . Then using
the continuity of PU�

α
and taking the limit with m, we obtain PU�

α
u = urα .
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5.3 Analysis of the algorithm

Lemma 1 For α ∈ L(A), Uα ⊂ Vα . For α ∈ A\L(A),

Uα ⊂
⊗

β∈S(α)

Uβ.

Proof For α ∈ A, we have Uα ⊂ Umin
α (uα). If α ∈ L(A), we have Umin

α (uα) ⊂ Vα

since uα = PVαu. If α ∈ A\L(A), we have Umin
α (uα) ⊂ ⊗

β∈S(α) U
min
β (uα), and

Umin
β (uα) ⊂ Uβ since uα = ∏

β∈S(α) PUβu. ��
Proposition 13 The approximation u� is an element of T A

r (H) ∩ V = T A
r (V ).

Proof Since u� = PVDu, we have u
� ∈ ⊗

α∈S(D) Uα . Then using Lemma 1, we prove
by recursion that u� ∈ ⊗

α∈L(T ) Vα = V . Also, for any β ∈ A, Lemma 1 implies that

u� ∈ Uβ ⊗ Hβc . Therefore, Umin
β (u�) ⊂ Uβ , and rankβ(u�) ≤ dim(Uβ) = rβ . This

proves that u� ∈ T A
r (H). ��

For any level 
, 1 ≤ 
 ≤ L , let PT

= ∏

α∈T

PUα be the orthogonal projection

fromH onto UT

⊗ Htc


, with UT

= ⊗

α∈T

Uα, and let

u
 = PT

u
+1,

with the convention uL+1 = u.

Lemma 2 For all 1 ≤ 
 < 
′ ≤ L, we have

PT
′PT

= PT


= PT

PT
′ .

Proof For 1 ≤ 
 < L , we deduce from Lemma 1 that

UT

=

⊗

α∈T


Uα ⊂
⎛

⎝
⊗

β∈T
+1

Uβ

⎞

⎠ ⊗

⎛

⎜⎜⎝
⊗

α∈T

S(α)=∅

Uα

⎞

⎟⎟⎠ ⊂ UT
+1 ⊗ Ht
\t
+1 ,

and then UT

⊗ Htc


⊂ UT
+1 ⊗ Htc
+1
. Therefore, for 1 ≤ 
 < 
′ ≤ L , we have

UT

⊗ Htc


⊂ UT
′ ⊗ Htc

′ , and the result follows from Proposition 2. ��

From Lemma 2, we have that

u
 = PT

u
+1 = PT


. . .PTL u = PT

u,

for 1 ≤ 
 ≤ L , and

u� = PT1u = u1.

We now state the two main results about the proposed algorithm.
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764 A. Nouy

Theorem 1 For a given r, the approximation u� ∈ T A
r (H) ∩ V satisfies

‖u − u�‖2 ≤ #A min
v∈T A

r (H)
‖u − v‖2 +

∑

α∈L(T )

‖u − PVαu‖2.

Proof We first note that for all 1 ≤ 
 < 
′ ≤ L , u
 −u
+1 is orthogonal to u
′ −u
′+1.
Indeed, using Lemma 2, we obtain that

(u
 − u
+1, u
′ − u
′+1) = (u
 − u
+1,PT
′ u

′+1 − PT
′+1

u
′+1)

= (PT
′ (u

 − u
+1),PT
′+1

(PT
′ u

′+1 − u
′+1))

= (PT
′+1
PT
′ (u


 − u
+1),PT
′ u

′+1 − u
′+1)

= (PT
′ (u

 − u
+1), (PT
′ − id)u
′+1) = 0.

Then, we have

‖u − u�‖2 =
L∑


=1

‖u
+1 − u
‖2 =
L∑


=1

‖u
+1 − PT

u
+1‖2

≤
L∑


=1

∑

α∈T


‖u
+1 − PUαu

+1‖2.

From Lemma 2, we know that u
+1 = PT
+1u, where we use the convention PTL+1 =
id. For α ∈ L(T
), since PUα and PT
+1 commute, ‖u
+1 − PUαu


+1‖ = ‖PT
+1u −
PUαPT
+1u‖ = ‖PT
+1(u −PUαu)‖ ≤ ‖u −PUαu‖. Therefore, for α ∈ L(T
)\L(A),
we have ‖u
+1 − PUαu


+1‖ ≤ ‖u − PVαu‖, and for α ∈ L(A
), we have ‖u
+1 −
PUαu


+1‖2 ≤ ‖u −PVαu‖2 + ‖PVαu −PUαu‖2 = ‖u −PVαu‖2 + ‖uα −PUαuα‖2.
For α ∈ A
\L(A), we have

u
+1 = PT
+1u =
∏

δ∈T
+1\S(α)

PUδ

∏

β∈S(α)

PUβu =
∏

δ∈T
+1\S(α)

PUδuα,

so that

‖u
+1 − PUαu

+1‖ = ‖

∏

δ∈T
+1\S(α)

PUδ (uα − PUαuα)‖ ≤ ‖uα − PUαuα‖.

Gathering the above results, we obtain

‖u − u�‖2 ≤
∑

α∈A

‖uα − PUαuα‖2 +
∑

α∈L(T )

‖u − PVαu‖2. (10)
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For α ∈ A, we let U �
α be the subspace inHα such that

‖u − PU �
α
u‖ = min

rankα(v)≤rα
‖u − v‖ ≤ min

rankA(v)≤r
‖u − v‖.

For α ∈ L(A), we have uα = PVαu. From Proposition 9, we know that
rankα(PVαPU �

α
u) ≤ rankα(PU �

α
u) ≤ rα . The optimality of Uα then implies that

‖uα − PUαuα‖ ≤ ‖PVαu − PVαPU �
α
u‖ ≤ ‖u − PU �

α
u‖.

Nowconsiderα /∈ A\L(A).Weknow that rankα(
∏

β∈S(α) PUβPU �
α
u) ≤ rankα(PU �

α
u)

≤ rα from Proposition 9. The optimality of Uα then implies that

‖uα − PUαuα‖ ≤ ‖uα −
∏

β∈S(α)

PUβPU �
α
u‖ = ‖

∏

β∈S(α)

PUβ (u − PU �
α
u)‖

≤ ‖u − PU �
α
u‖.

Finally, we obtain

∑

α∈A

‖uα − PUαuα‖2 ≤
∑

α∈A

min
rankα(v)≤rα

‖u − v‖2 ≤ #A min
rankA(v)

‖u − v‖2,

which ends the proof. ��

Theorem 2 For any ε ≥ 0, if for all α ∈ A, the rank rα is chosen such that

‖uα − PUαuα‖ ≤ ε√
#A

‖uα‖,

the approximation u� satisfies

‖u − u�‖2 ≤
∑

α∈L(T )

‖u − PVαu‖2 + ε2‖u‖2.

Proof Starting from (10), we obtain

‖u − u�‖2 ≤
∑

α∈L(T )

‖u − PVαu‖2 +
∑

α∈A

ε2

#A
‖uα‖2,

and the result follows from ‖uα‖ = ‖∏
β∈S(α) PUαu‖ ≤ ‖u‖ if α /∈ A\L(A), and

‖uα‖ = ‖PVαu‖ ≤ ‖u‖ if α ∈ L(A). ��
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6 Empirical principal component analysis for tree-based tensor
format

6.1 Empirical principal component analysis of multivariate functions

Here we present the empirical principal component analysis for the statistical estima-
tion of α-principal subspaces of a multivariate function (see Sect. 5.1). We consider
thatH = L2

μ(X ) or thatH is a separable reproducing kernel Hilbert space compactly
embedded in L2

μ(X ), equipped with the natural norm in L2
μ(X ). Let (Xα, Xαc ) be the

random vector with values in Xα × Xαc with probability law μα ⊗ μαc . The tensor
u can be identified with a random variable defined on Xαc with values in Hα which
associates to xαc ∈ Xαc the function u(·, xαc ) = (idα ⊗ δxαc )u, this random variable
being an element of the Bochner space L2

μαc
(Xαc ;Hα). Then problem (7) is equivalent

to find a rα-dimensional subspace inHα solution of

min
dim(Uα)=rα

E

(
‖u(·, Xαc ) − PUαu(·, Xαc )‖2Hα

)
. (11)

Given a set {xkαc }mα

k=1 ofmα samples of Xαc , the α-principal subspace can be estimated
by an empirical α-principal subspace Ûα solution of

‖u − PÛα
u‖α,mα = min

dim(Uα)=rα
‖u − PUαu‖α,mα , (12)

where

‖u − PUαu‖2α,mα
= 1

mα

mα∑

k=1

‖u(·, xkαc ) − PUαu(·, xkαc )‖2Hα
.

The problem is equivalent to finding the rα left principal components of {u(·, xkαc )}mα

k=1,
which is identified with an order-two tensor inHα ⊗R

mα . We note that the number of
samplesmα must be such thatmα ≥ rα in order to estimate rα principal components. In
the case of i.i.d. samples, the semi-norm ‖·‖α,mα onH is the natural statistical estima-
tion of theBochner norm ‖·‖α in L2

μαc
(Xαc ;Hα), defined by ‖v‖2α = E(‖v(Xαc )‖Hα

).
This norm ‖ · ‖α coincides with the norm ‖ · ‖ on H when H is equipped with the
L2

μ(X )-norm.5

For some results on the comparison between ‖u−PÛα
u‖ and the best approximation

error ‖u−PU �
α
u‖, see [3,24,25,41]. Under suitable assumptions on u (e.g., u uniformly

bounded), for any η > 0 and ε > 0, there exists a mα sufficiently large (depending on
η, ε, rα and u) such that

‖u − PÛα
u‖2 ≤ ‖u − PU �

α
u‖2 + ε2

5 Note that whenH is equippedwith a norm stronger than the norm in L2μ(X ), then ‖·‖α does not coincides
with the norm ‖ · ‖ onH, so that the subspaces solutions of (7) and (11) will be different in general.
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holds with probability higher than 1 − η. Then, for any τ > 0, there exists a mα

sufficiently large (depending on η, τ, rα and u) such that

‖u − PÛα
u‖2 ≤ (1 + τ 2)‖u − PU �

α
u‖2

holds with probability higher than 1 − η.

6.2 Empirical principal component analysis for tree-based format

Now we propose a modification of the algorithm proposed in Sect. 5.2 using only
evaluations of the functionu at some selected points inX . It is basedon the construction
of a hierarchy of subspaces {Uα}α∈A, from empirical principal component analysis,
and a corresponding hierarchy of commuting interpolation operators associated with
nested sets of points.

For each leaf node α ∈ L(T ), we introduce a finite-dimensional approximation
space Vα ⊂ Hα with dimension dim(Vα) = nα , we introduce a set ΓVα of points
in Xα which is unisolvent for Vα , we denote by IVα the corresponding interpolation
operator from Hα to Vα , and we let IVα = IVα ⊗ idαc be the corresponding oblique
projection from H to Vα ⊗ Hαc . We let V = ⊗

α∈L(T ) Vα ⊂ H. For each non active
α ∈ L(T )\A, we let Uα = Vα and ΓUα = ΓVα .

The algorithm then goes through all active nodes of the tree, going from the leaves
to the root.

For each active node α ∈ A, we let

uα = IVαu

where for α /∈ L(A), the space Vα is defined by

Vα =
⊗

β∈S(α)

Uβ,

where the Uβ , β ∈ S(α), have been determined at a previous step. For α /∈ L(A),
IVα = IVα ⊗ idαc , where IVα is the interpolation operator onto Vα = ⊗

β∈S(α) Uβ

associated with the product grid ΓVα = ×β∈S(α) ΓUβ , where each ΓVβ have been
determined at a previous step. Then we determine a rα-dimensional empirical α-
principal subspace Uα of uα , which is solution of

‖uα − PUαuα‖α,mα = min
rankα(v)≤rα

‖uα − v‖α,mα , (13)

where

‖uα − v‖2α,mα
= 1

mα

mα∑

k=1

‖uα(·, xkαc ) − v(·, xkαc )‖2Hα
,
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and where {xkαc }mα

k=1 are mα random samples of Xαc , with mα ≥ rα . The problem
is equivalent to finding the rα left principal components of {uα(·, xkαc )}mα

k=1, which is
identified with an order two tensor in Vα ⊗ R

mα . The number of evaluations of the
function u for computingUα is mα × dim(Vα). We let {ϕα

k }rαk=1 be the set of principal
components, such that Uα = span{ϕα

k }rαk=1. We then construct a set of points ΓUα

which is unisolvent for Uα , and such that

ΓUα ⊂ ΓVα . (14)

For the practical construction of the set ΓUα , we use the procedure described in
Sect. 2.2.1. We denote by IUα the interpolation operator from Hα onto Uα associ-
ated with the grid ΓUα , and we let IUα = IUα ⊗ idαc be the corresponding projection
fromH onto Uα ⊗ Hαc .

Finally, we compute

u� = IVDu, (15)

where IVD = ⊗
β∈S(D) IUβ is the interpolation operator from H onto VD =⊗

β∈S(D) Uβ, associated with the product grid ΓVD =×β∈S(D) ΓUβ .

6.3 Analysis of the algorithm

Let us first prove that the algorithm produces an approximation u� in the desired tensor
format.

Lemma 3 For α ∈ L(T )\A, Uα = Vα . For α ∈ L(A), Uα ⊂ Vα . For α ∈ A\L(A),

Uα ⊂
⊗

β∈S(α)

Uβ.

Proof For α ∈ A, we have Uα ⊂ Umin
α (uα). If α ∈ L(A), we have Umin

α (uα) ⊂ Vα

since uα = IVαu. If α ∈ A\L(A), we have Umin
α (uα) ⊂ ⊗

β∈S(α) U
min
β (uα), and

Umin
β (uα) ⊂ Uβ since uα = ∏

β∈S(α) IUβu. ��
Proposition 14 The algorithm produces an approximation

u� ∈ T A
r (H) ∩ V = T A

r (V ).

Proof Since u� = IVDu, we have u
� ∈ VD = ⊗

α∈S(D) Uα . Then using Lemma 3, we
prove by recursion that u� ∈ ⊗

α∈L(T ) Vα = V . Also, for anyα ∈ A, Lemma3 implies
that u� ∈ Uα ⊗ Hαc . Therefore, Umin

α (u�) ⊂ Uα , and rankα(u�) ≤ dim(Uα) = rα .
This proves that u� ∈ T A

r (H). ��
For all α ∈ T , the operator IVα = IVα ⊗ idαc is a projection fromH onto Vα ⊗Hαc

along W �
α ⊗ H∗

αc , with W �
α = span{δx : x ∈ ΓVα }. For all α ∈ T \{D}, the operator

IUα = IUα ⊗ idαc is an oblique projection fromH onto Uα ⊗Hαc along Wα ⊗H∗
αc ,
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with Wα = span{δx : x ∈ ΓUα }. From the property (14) of the grids, we deduce the
following result.

Lemma 4 For α ∈ L(T )\A, Wα = W �
α . For α ∈ L(A), Wα ⊂ W �

α . For α ∈ A\L(A),

Wα ⊂ WS(α) =
⊗

β∈S(α)

Wβ.

Remark 3 Note that interpolation operators IUα , α ∈ A, could be replaced by oblique
projections PWα

Uα
onto Uα along subspaces Wα in H∗

α , with subspaces Wα satisfying
for α /∈ L(T ), Wα ⊂ ⊗

β∈S(α) Wβ . Under this condition, all results of this section
remain valid.

For any level 
, 1 ≤ 
 ≤ L , let

IT

=

∏

α∈T


IUα = IUT

⊗ idtc
 ,

where IUT

= ⊗

α∈T

IUα is the interpolation operator from Ht
 to UT


= ⊗
α∈T


Uα

associated with the tensor product grid Γ T
 =×α∈T

Γ α, and let

u
 = IT

u
+1,

with the convention uL+1 = u. We then prove that operators IT

, 1 ≤ 
 ≤ L , are

commuting oblique projections.

Lemma 5 For all 1 ≤ 
 ≤ L, the operator IT

is an oblique projection from H to

U
 := UT

⊗Htc


alongW
 := WT

⊗H∗

tc

. For all 1 ≤ 
 < 
′ ≤ L, we have U
 ⊂ U
′

and W
 ⊂ W
′ , and therefore

IT

IT
′ = IT


= IT
′IT

.

Proof For 1 ≤ 
 < L , we have

U
 =
( ⊗

α∈T
\L(T )

Uα

)
⊗

( ⊗

α∈T
∩L(T )

Uα

)
⊗ Htc


and U
+1 =
( ⊗

β∈T
+1

Uβ

)
⊗ Htc
+1

.

From Lemma 3, we know that
⊗

α∈T
\L(T ) Uα is a subspace of
⊗

β∈T
+1
Uβ ⊂ Ht
+1 .

Therefore, we obtain U
 ⊂ U
+1. In the same way, using Lemma 4, we obtain that
W
 ⊂ W
+1. We then deduce IT


IT
+1 = IT
+1IT

= IT


from Proposition 2, which
ends the proof. ��
Lemma 6 The approximation u� satisfies

‖u − u�‖2 ≤ (1 + δ(L − 1))
L∑


=1

‖u
+1 − u
‖2,
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where δ = max
 δT

and

δT

= ‖IUT


− PUT

‖Umin

T

(u
+1)→Ht


,

with t
 = ∪α∈T

α. If u ∈ V , then

δT

≤ δA


:= ‖IUA

− PUA


‖Umin
A


(u
+1)→Ha

,

with a
 = ∪α∈A

α.

Proof Since u − u� = ∑L

=1(u


+1 − u
), we have

‖u − u�‖2 =
L∑


=1

‖u
+1 − u
‖2 + 2
∑


′<


(u
+1 − u
, u
′+1 − u
′
).

For 
′ < 
, since PT

(u
′+1 − u
′

) = u
′+1 − u
′
, we have

(u
+1 − u
, u
′+1 − u
′
) = (u
+1 − u
,PT


(u
′+1 − u
′
))

= (PT

(u
+1 − u
), u
′+1 − u
′

)

= (PT

u
+1 − IT


u
+1, u
′+1 − u
′
)

= ((PT

− IT


)(u
+1 − u
), u
′+1 − u
′
)

≤ ‖(PT

− IT


)(u
+1 − u
)‖‖u
′+1 − u
′ ‖,

where we have used the fact that PT

IT


= IT

and (PT


− IT

)u
 = 0. Since

PT

−IT


= (PUT

−IUT


)⊗idtc
 andu

+1−u
 = u
+1−IT


u
+1 ⊂ Umin
T


(u
+1)⊗Htc

,

we obtain from Proposition 10 that

|(u
+1 − u
, u
′+1 − u
′
)| ≤ δT


‖u
+1 − u
‖‖u
′+1 − u
′ ‖,

for 
′ < 
. We deduce that

‖u − u�‖2 ≤
L∑


,
′=1

B
,
′ ‖u
+1 − u
‖‖u
′+1 − u
′ ‖ ≤ ρ(B)

L∑


=1

‖u
+1 − u
‖2,

where the matrix B ∈ R
L×L is such that B
,
 = 1 and B
,
′ = δTmax{
,
′} if 
 �= 
′.

Using the theorem of Gerschgorin, we have that

ρ(B) ≤ 1 + max



∑


′ �=


B
,
′ = 1 + max



(
(
 − 1)δT


+
∑


′>


δT
′

)
≤ 1 + δ(L − 1),

with δ = max
 δT

.

123



Higher-order PCA for the approximation in tree-based tensor… 771

Finally, when u ∈ V , we have Umin
α (u
+1) ⊂ Umin

α (u) ⊂ Vα for all α ∈ L(T ).

Therefore, IVα v = PVα v for all v ∈ Umin
α (u
+1) and α ∈ L(T ), and

δT

= ‖IUA


⊗ IVT
\A

− PUA


⊗ PVT
\A

‖Umin

T

(u
+1)→Ht


= ‖(IUA

− PUA


) ⊗ PVT
\A

‖Umin

T

(u
+1)→Ht


= ‖IUA

− PUA


‖Umin
A


(u
+1)→Ha

‖PVT
\A


‖Umin
T
\A


(u
+1)→Ht
\a

≤ ‖IUA


− PUA

‖Umin

A

(u
+1)→Ha


= δA

.

��
Lemma 7 For 1 ≤ 
 ≤ L,

‖u
+1 − u
‖2 ≤(1 + δ2T

)
( ∑

α∈A


Λ2
T
+1\S(α)(1 + aα)‖uα − PUαuα‖2

+
∑

α∈T
∩L(T )

Λ2
T
+1

(1 + 2aαδ2α)‖u − PVαu‖2
)
,

where for S ⊂ T ,

ΛS =
∏

α∈S
Λα(Uα), Λα(Uα) = ‖IUα‖Umin

α (u)→Hα
,

aα = 1α∈L(A)1δα �=0, (16)

and

δα = ‖IVα − PVα‖Umin
α (u)→Hα

(17)

for α ∈ L(T ). Moreover, if u ∈ V , then δα = 0 for all α ∈ L(T ), and aα = 0 for all
α ∈ T .

Proof For all 1 ≤ 
 ≤ L , we have

‖u
+1 − u
‖2 = ‖u
+1 − IT

u
+1‖2 = ‖u
+1 − PT


u
+1‖2 + ‖IT

u
+1 − PT


u
+1‖2
= ‖u
+1 − PT


u
+1‖2 + ‖(IT

− PT


)(u
+1 − PT

u
+1)‖2

≤ (1 + δ2T

)‖u
+1 − PT


u
+1‖2 ≤ (1 + δ2T

)

∑

α∈T


‖u
+1 − PUαu

+1‖2.

For α ∈ T
\L(T ) = A
\L(T ),

u
+1 = IT
+1u =
∏

δ∈T
+1\S(α)

IUδ

∏

β∈S(α)

IUβu =
∏

δ∈T
+1\S(α)

IUδuα,
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and since PUα and
∏

δ∈T
+1\S(α) IUδ commute, we have

‖u
+1 − PUαu

+1‖ = ‖

∏

δ∈T
+1\S(α)

IUδ (uα − PUαuα)‖ ≤ ΛT
+1\S(α)‖uα − PUαuα‖.

Now for α ∈ T
 ∩ L(T ), we have that PUα and IT
+1 commute, and therefore

‖u
+1 − PUαu

+1‖ = ‖IT
+1(u − PUαu)‖ ≤ ΛT
+1‖u − PUαu‖.

If α ∈ T
\A
, we have Uα = Vα . If α ∈ A
 ∩ L(T ), we have

‖u − PUαu‖2 = ‖u − PUαPVαu‖2 = ‖u − PVαu‖2 + ‖(id − PUα )PVαu‖2,

so that if δα = ‖IVα − PVα‖Umin
α (u)→Hα

= 0, we have PVαu = IVαu = uα and

‖u − PUαu‖2 ≤ ‖u − PVαu‖2 + ‖(id − PUα )uα‖2, (18)

and if δα �= 0, we have

‖u − PUαu‖2 ≤ ‖u − PVαu‖2 + 2‖(id − PUα )(PVα − IVα )u‖2 + 2‖(id − PUα )IVαu‖2
= ‖u − PVαu‖2 + 2‖(id − PUα )(PVα − IVα )(u − PVαu)‖2

+ 2‖(id − PUα )uα‖2
≤ (1 + 2δ2α)‖u − PVαu‖2 + 2‖uα − PUαuα‖2, (19)

where we have used Proposition 10. We conclude from (18) and (19) that if α ∈
A
 ∩ L(T ),

‖u − PUαu‖2 ≤ (1 + 2aαδ2α)‖u − PVαu‖2 + (1 + aα)‖uα − PUαuα‖2.

Gathering the above results, we obtain

‖u
+1 − u
‖2 ≤
(
1 + δ2T


) ( ∑

α∈A
\L(T )

Λ2
T
+1\S(α)‖uα − PUαuα‖2

+
∑

α∈A
∩L(T )

(1 + aα)Λ2
T
+1

‖uα − PUαuα‖2

+
∑

α∈A
∩L(T )

(1 + 2aαδ2α)Λ2
T
+1

‖u − PVαu‖2 +
∑

α∈T
\A


Λ2
T
+1

‖u − PVαu‖2
)
,

which ends the proof. ��
We now state the two main results about the proposed algorithm.
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Theorem 3 Assume that for all α ∈ A, the subspace Uα is such that

‖uα − PUαuα‖2 ≤ (1 + τ 2) min
rankα(v)≤rα

‖uα − v‖2 (20)

holds with probability higher than 1 − η, for some τ ≥ 1. Then the approximation
u� ∈ T A

r (H) ∩ V is such that

‖u − u�‖2 ≤ (1 + τ 2)C2 min
v∈T A

r (H)
‖u − v‖2 +

∑

α∈L(T )

D2
α‖u − PVαu‖2 (21)

holds with probability higher than 1 − #Aη, where C is defined by

C2 = (1 + δ(L − 1))
L∑


=1

(1 + δ2T

)Λ2

T
+1

∑

α∈A


(1 + aα)λ2α, (22)

with

λα = 1α/∈L(A) + 1α∈L(A)‖IVα‖Umin
α (u)→Hα

(23)

and aα and δα defined by (16) and (17) respectively, and where Dα is defined by

D2
α = (1 + δ(L − 1))(1 + δ2T


)Λ2
T
+1

(1 + 2aαδ2α) (24)

for α ∈ L(T ) ∩ T
.

Proof For α ∈ A, let Ûα be a subspace such that

‖uα − PÛα
uα‖ = min

rankα(v)≤rα
‖uα − v‖,

and let U �
α ⊂ Umin

α (u) be a subspace such that

‖u − PU �
α
u‖ = min

rankα(v)≤rα
‖u − v‖ ≤ min

v∈T A
r (H)

‖u − v‖.

For α ∈ L(A), we have uα = IVαu. We know that rankα(IVαPU �
α
u) ≤ rα from

Proposition 9. By the optimality of Ûα , we obtain

‖uα − PÛα
uα‖ ≤ ‖uα − IVαPU �

α
u‖ ≤ ‖IVα‖Umin

α (u)→Hα
‖u − PU �

α
u‖.

Nowconsiderα ∈ A\L(A).We know that rankα(
∏

β∈S(α) IUβPU �
α
u) ≤ rankα(PU �

α
u)

≤ rα from Proposition 9. By the optimality of Ûα , we obtain

‖uα − PÛα
uα‖ ≤ ‖uα −

∏

β∈S(α)

IUβPU �
α
u‖ = ‖

∏

β∈S(α)

IUβ (u − PU �
α
u)‖
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≤ ΛS(α)‖u − PU �
α
u‖.

Then, using Lemma 7 and assumption (20), we obtain

‖u
+1 − u
‖2 ≤(1 + δ2T

)Λ2

T
+1

( ∑

α∈A


(1 + aα)λ2α(1 + τ 2) min
rankα(v)≤rα

‖u − v‖2

+
∑

α∈T
∩L(T )

(1 + 2aαδ2α)‖u − PVαu‖2
)
.

Then, using Lemma 6, we obtain (21). ��
Remark 4 Assume u ∈ V (no discretization). Then δα = 0 and ‖IVα‖Umin

α (u)→Hα
= 1

for all α ∈ L(T ), aα = 0 and λα = 1 for all α ∈ T , ΛT

= ΛA


and δT

= δA


for all

. Also, the constant C defined by (22) is such that

C2 = (1 + δ(L − 1))
L∑


=1

(1 + δ2A

)Λ2

A
+1
#A
. (25)

Moreover, ifUα = Umin
α (u) for all α, then ΛT


= ΛA

= 1 and δT


= δA

= 0 for all


, which implies

C2 = #A. (26)

Theorem 4 Let ε, ε̃ ≥ 0. Assume that for all α ∈ A, the subspace Uα is such that

‖uα − PUαuα‖ ≤ ε‖uα‖ (27)

holds with probability higher than 1 − η, and further assume that the subspaces Vα ,
α ∈ L(T ), are such that

‖u − PVαu‖ ≤ ε̃‖u‖. (28)

Then the approximation u� is such that

‖u − u�‖2 ≤ (C2ε2 + D2ε̃2)‖u‖2

holds with probability higher than 1 − #Aη, where C is defined by (22) and where
D2 = ∑

α∈L(T ) D
2
α , with Dα defined by (24), is such that

D2 = (1 + δ(L − 1))
L∑


=1

(1 + δ2T

)Λ2

T
+1

∑

α∈T
∩L(T )

(1 + 2aαδ2α). (29)
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Proof We first note that for α ∈ A\L(A), we have ‖uα‖ ≤ ΛS(α)‖u‖. Also, for
α ∈ L(T ), we have ‖uα‖ ≤ λα‖u‖, with λα defined in (23). Using Lemma 7 and
assumptions (27) and (28), we then obtain

‖u
+1 − u
‖2 ≤ (1 + δ2T

)Λ2

T
+1

⎛

⎝
∑

α∈A


(1 + aα)λ2αε2‖u‖2

+
∑

α∈T
∩L(T )

(1 + 2aαδ2α)ε̃2‖u‖2
⎞

⎠ .

Finally, we obtain the desired result by using Lemma 6. ��
Example 8 For the Tucker format described in Example 4, the constants C and D are
given by

C2 = (1 + δ2T1)
∑

α∈L(T )

(1 + 1δα �=0)‖IVα‖2Umin
α (u)→Hα

,

D2 = (1 + δ2T1)
∑

α∈L(T )

(1 + 2δ2α),

with

δT1 =
∥∥∥∥∥∥

⊗

α∈L(T )

IUα −
⊗

α∈L(T )

PUα

∥∥∥∥∥∥
Umin
D (u)→H

=
∥∥∥∥∥∥

⊗

α∈L(T )

IUαu −
⊗

α∈L(T )

PUαu

∥∥∥∥∥∥
/‖u‖.

If u ∈ V , then

C = (1 + δ2T1)
1/2

√
d.

Example 9 For the tensor train format described in Example 6, the constant C and D
are given by

C2 = (1 + δ(d − 2))

(
d−2∑


=1

(
1 + δ2T


)
Λ2{1,...,d−
−1}‖IVd−


‖2
Umin
d−
(u)→Hd−


+
(
1 + δ2Td−1

) (
1 + 1δ1 �=0

) ‖IV1‖2Umin
1 (u)→H1

)
,

D2 = (1 + δ(d − 2))

(
d−2∑


=1

(1 + δ2T

)Λ2{1,...,d−
−1}‖IVd−


‖2
Umin
d−
(u)→Hd−


+
(
1 + δ2Td−1

)
(2 + 2δ21)

)
,
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with

δT

= ‖IU{1,...,d−
} ⊗ IV{d−
+1} − PU{1,...,d−
} ⊗ PV{d−
+1}‖Umin{1,...,d−
+1}(u
+1)→H{1,...,d−
+1} .

If u ∈ V , then

C2 = (1 + δ(d − 2))

(
d−2∑


=1

(1 + δ2T

)Λ2{1,...,d−
−1} + (1 + δ2Td−1

)

)
.

Example 10 For the tensor train Tucker format described in Example 7, the constant
C and D are given by

C2 = (1 + δ(d − 2))

×
( d−2∑


=1

(
1 + δ2T


)
Λ2{1,...,d−
−1}Λ2{d−
}

(
1 + (1 + 1δd−
+1 �=0)‖IV{d−
+1} ‖Umin{d−
+1}→H{d−
+1}

)

+
(
1 + δ2Td−1

) ( (
1 + 1δ1 �=0

) ‖IV1‖2Umin
1 (u)→H1

+ (1 + 1δ2 �=0)‖IV2‖2Umin
2 (u)→H2

))
,

D2 = (1 + δ(d − 2))
( d−2∑


=1

(
1 + δ2T


)
Λ2{1,...,d−
−1}Λ2{d−
}(2 + 2δ2d−
+1)

+
(
1 + δ2Td−1

)
(1 + 2δ21)(1 + 2δ22)

)
.

If u ∈ V , then

C2 = (1 + δ(d − 2))

(
d−2∑


=1

2(1 + δ2T

)Λ2{1,...,d−
−1}Λ2{d−
} + (1 + δ2Td−1

)

)
.

6.4 Complexity

Here we analyse the complexity of the algorithm in terms of the number of evaluations
of the function. Evaluations of the function u are required (i) for the computation of the
subspaces {Uα}α∈A through empirical principal component analysis of the Vα-valued
functions uα(·, Xαc ), with Vα a given approximation space if α ∈ L(A) or Vα =⊗

β∈S(α) Uβ if α ∈ A\L(A), and (ii) for the computation of the final interpolation
IVDu.

We then obtain the following result about the number of evaluations of the function
required by the algorithm

Proposition 15 The total number of evaluations of u required by the algorithm for
computing an approximation u� in the tensor format T A

r (V ) is
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M(A, r ,m, n) =
∑

α∈L(A)

mαnα +
∑

α∈A\L(A)

mα

∏

β∈S(α)∩A

rβ
∏

β∈S(α)\A
nβ

+
∏

β∈S(D)∩A

rβ
∏

β∈S(D)\A
nβ.

where n = (nα)α∈L(T ), with nα = dim(Vα), and m = (mα)α∈A, with mα the number
of samples of the Zα-valued random variable uα(·, Xαc ) used for computing Uα .

Proof For α ∈ A, the function uα is an interpolation of u in Zα = Vα if α ∈ L(A),

or in Zα = ⊗
β∈S(α) Uβ =

(⊗
β∈S(α)∩A Uβ

)
⊗

(⊗
β∈S(α)\A Vβ

)
if α /∈ L(A).

Therefore, computing uα(·, xkαc ) for one realization xkαc of Xαc requires dim(Vα) = nα

evaluations of u if α ∈ L(A) or dim(
⊗

β∈S(α) Uβ) = ∏
β∈S(α)∩A rβ

∏
β∈S(α)\A nβ

if α /∈ L(A). Finally, the computation of the interpolation IT1u = IS(D)u requires
dim(

⊗
α∈S(D) Uα) = ∏

β∈S(D)∩A rβ
∏

β∈S(D)\A nβ evaluations of u. ��
For computing a rα-dimensional subspace Uα , the number of samples mα of

uα(·, Xαc ) has to be at least rα .

Corollary 4 If the number of samples mα = rα for all α ∈ A, then the number of
evaluations of the function required by the algorithm is

M(A, r , r , n) = storage(T A
r (V )).

The above result states that for a prescribed rank r = (rα)α∈A, the algorithm is able
to construct an approximation of u using a number os samples equal to the storage
complexity of the tensor format T A

r (V ).
When using the algorithm with a prescribed tolerance ε, the rank rα is not fixed

a priori but defined as the minimal integer such that the condition (27) is satisfied.
Since samples of uα(·, Xαc ) belongs to the subspaceUmin

α (uα) ⊂ Zα with dimension
rankα(uα) ≤ dim(Zα), the selected rank rα is at most dim(Zα). Therefore, by taking
mα = dim(Zα) for all α ∈ A, if we assume that the set of mα samples of u(·, Xαc )

contains rankα(uα) linearly independent functions in Zα , then the algorithm is able
to produce an approximation with arbitrary small tolerance ε.

Corollary 5 If the number of samples mα = dim(Zα) for all α ∈ A, then

M(A, r ,m, n) =
∑

α∈L(A)

n2α +
∑

α∈A\L(A)

∏

β∈S(α)∩A

r2β
∏

β∈S(α)\A
n2β

+
∏

β∈S(D)∩A

rβ
∏

β∈S(D)\A
nβ.

Remark 5 For numerical experiments, when working with prescribed tolerance, we
will use mα = dim(Zα) for al α ∈ A.
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7 Numerical examples

In all examples, we consider functions u in the tensor space L2
μ(X ), with X ⊂ R

d ,
equipped with the natural norm ‖ · ‖ (see Example 2).6 For an approximation u�

provided by the algorithm, we estimate the relative error ε(u�) = ‖u − u�‖/‖u‖
using Monte-Carlo integration. We denote by M the total number of evaluations of
the function u required by the algorithm to provide an approximation u�, and by S
the storage complexity of the approximation u�. Since the algorithm uses random
evaluations of the function u (for the estimation of principal components), we run the
algorithm several times and indicate confidence intervals of level 90% for ε(u�), and
also for M , S and approximation ranks when these quantities are random.

For the approximation with a prescribed A-rank, we usemα = γ rα samples for the
estimation of principal subspacesUα , α ∈ A. If γ = 1, then M = S (see corollary 4).

For the approximation with a prescribed tolerance ε, we use mα = dim(Zα) for all
α ∈ A (see corollary 5 for the estimation of M).

In all examples except the last one, we use polynomial approximation spaces
Vν = Pp(Xν) over Xν ⊂ R, ν ∈ D, with the same polynomial degree p in all dimen-
sions. For each ν ∈ D, we use an orthonormal polynomial basis of Vν = Pp(Xν)

(Hermite polynomials for a Gaussian measure, Legendre polynomials for a uniform
measure,…), and associated interpolation grids Γ �

ν selected in a set of 1000 ran-
dom points (drawn from the measure μν) by using the greedy algorithm described in
Sect. 2.2.1.

7.1 Henon–Heiles potential

WeconsiderX = R
d equippedwith the standardGaussianmeasureμ and themodified

Henon–Heiles potential [29]

u(x1, . . . , xd) = 1

2

d∑

i=1

x2i + σ∗
d−1∑

i=1

(
xi x

2
i+1 − x3i

)
+ σ 2∗

16

d−1∑

i=1

(
x2i + x2i+1

)2
,

with σ� = 0.2.We consider approximation in the tensor train format T A
r (V ) described

in Example 6. The function is such that rankα(u) = 3 for all α ∈ A. We use a
polynomial degree p = 4, so that there is no discretization error, i.e. u ∈ V .

In Table 1, we observe that the algorithm with a prescribed rank r = (3, . . . , 3) is
able to recover the function at very high precision with high probability with a number
of samples equal to the storage complexity of the approximation (when γ = 1),
with no deterioration when the dimension d increases from 5 to 100. The accuracy is
slightly improved when γ = 100 but with a much higher number of evaluations of
the function.

6 For the last example, X is a finite product set equipped with the uniform measure and L2μ(X ) then
corresponds to the space of multidimensional arrays equipped with the canonical norm.
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Table 1 Henon–Heiles potential

γ = 1

d 5 10 20 50 100

ε(u�) × 1014 [1.0; 234.2] [1.5; 67.5] [2.5; 79.9] [6.6; 62.8] [15.7; 175.1]
S = M 165 390 840 2190 4440

γ = 100

ε(u�) × 1014 [0.1; 0.4] [0.2; 0.4] [0.3; 0.4] [0.4; 0.7] [0.6; 0.8]
S 165 390 840 2190 4440

M 1515 3765 8265 21,765 44,265

Approximation with prescribed rank r = (3, . . . , 3) and γ = 1 and γ = 100, for different values of d

7.2 Sine of a sum

We consider X = [−1, 1]d equipped with the uniform measure and the function

u(x1, . . . , xd) = sin(x1 + · · · + xd).

We consider approximation in the tensor train Tucker format T A
r (V ) described in

Example 7. The function is such that rankα(u) = 2 for allα ∈ A. InTable 2,weobserve
the behavior of the algorithm with a prescribed rank r = (2, . . . , 2) for different
polynomial degrees p and different values of d. We observe a linear dependence of
the complexity with respect to d.

In Table 3, we observe the behavior of the algorithm with prescribed tolerance
ε = 10−12 and fixed polynomial degree p = 17, for different values of d. For this
value of ε, the algorithm always provides an approximation with rank (2, . . . , 2) with
a fixed number of evaluations which is about ten times the storage complexity.

7.3 Sum of bivariate functions

We consider X = [−1, 1]d equipped with the uniform measure and the function

u(x1, . . . , xd) = g(x1, x2) + g(x3, x4) + · · · + g(xd−1, xd) (30)

where g is a bivariate function, and d = 10. We consider approximation in the ten-
sor train Tucker format T A

r (V ) described in Example 7. The function is such that
rank{ν}(u) = rank(g) + 1 for all ν ∈ D, and rank{1,...,ν}(u) = 2 if ν is even, or
rank{1,...,ν}(u) = rank(g) + 1 if ν is odd. Here, we use the algorithm we a prescribed
tolerance ε.

We first consider the function g(y, z) = ∑3
j=0 y

j z j whose rank is 4 and we use
polynomial spaces of degree p = 5, so that there is no discretization error. We observe
in Table 4 the behavior of the algorithm for decreasing values of ε. For ε = 10−4,
the algorithm always provides the solution at almost machine precision, with an exact
recovery of the rank of the function u. We observe that increasing γ (i.e. the number
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Table 4 Sum of bivariate functions (30) with g(y, z) = ∑3
j=0 y

j z j

ε ε(u�) M S

γ = 1

10−1 [1.4 × 10−1; 2.8 × 10−1] [444, 521] [160, 192]
10−2 [0.8 × 10−1; 1.5 × 10−1] [918, 1034] [345, 373]
10−3 [1.7 × 10−15; 2.6 × 10−2] [1916, 2088] [530, 560]
10−4 [1.6 × 10−15; 7.8 × 10−15] 2088 560

γ = 10

10−1 [1.7 × 10−1; 2.0 × 10−1] [5364, 5484] [202, 212]
10−2 [0.9 × 10−2; 1.1 × 10−2] [16,132, 16,412] [486, 500]
10−3 [2.1 × 10−15; 2.7 × 10−15] 20,736 560

10−4 [1.7 × 10−15; 2.7 × 10−15] 20,736 560

Approximation with prescribed ε, degree p = 5, and different γ . Confidence intervals for relative error
ε(u�), storage complexity S and number of evaluations M

Table 5 Sum of bivariate functions (30) with g(y, z) = exp− 1
8 (y−z)2

ε ε(u�) M S

10−1 [3.8 × 10−2; 5.3 × 10−2] [1219, 1222] [119, 131]
10−2 [1.8 × 10−2; 3.8 × 10−2] [1282, 1294] [252, 256]
10−3 [1.2 × 10−4; 2.0 × 10−3] [1813, 1876] [507, 519]
10−4 [1.2 × 10−4; 1.6 × 10−4] [1876, 1876] [519, 519]
10−5 [1.6 × 10−5; 6.9 × 10−5] [3275, 4063] [821, 935]
10−6 [1.8 × 10−6; 7.1 × 10−6] [4135, 4410] [975, 995]
10−7 [3.1 × 10−8; 2.5 × 10−6] [4685, 4960] [1015, 1035]
10−8 [2.7 × 10−8; 1.3 × 10−7] [5048, 6120] [1056, 1164]
10−9 [1.2 × 10−8; 4.8 × 10−8] [9671, 11,595] [1476, 1578]
10−10 [1.9 × 10−10; 1.5 × 10−8] [11,647, 13,117] [1603, 1659]
Approximation with prescribed ε, degree p = 10, γ = 1. Confidence intervals for relative error ε(u�),
storage complexity S and number of evaluations M

of evaluations for the estimation of principal components) allows us to obtain a more
accurate approximation for a given prescribed tolerance but with a significant increase
in the number of evaluations.

We now consider the function g(y, z) = exp− 1
8 (y−z)2 with infinite rank.We observe

in Tables 5 and 6 the behavior of the algorithm for decreasing values of ε, and for
a fixed polynomial degree p = 10 in Table 5, and an adaptive polynomial degree
p(ε) = log10(ε

−1) in Table 6. We observe that the relative error of the obtained
approximation is below the prescribed tolerancewith high probability. Also,we clearly
see the interest of adapting the discretization to the desired precision, which yields a
lower complexity for small or moderate ε.
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Table 6 Sum of bivariate functions (30) with g(y, z) = exp− 1
8 (y−z)2

ε ε(u�) M S

10−1 [1.4 × 10−1; 3.3 × 10−1] [52, 70] [32, 42]
10−2 [2.9 × 10−2; 4.2 × 10−2] [162, 184] [88, 100]
10−3 [3.2 × 10−3; 1.1 × 10−2] [598, 778] [258, 292]
10−4 [1.7 × 10−4; 2.5 × 10−4] [916, 916] [339, 339]
10−5 [5.7 × 10−5; 1.5 × 10−4] [2056, 2759] [562, 622]
10−6 [1.1 × 10−6; 3.5 × 10−5] [3190, 3465] [758, 778]
10−7 [6.9 × 10−8; 2.1 × 10−7] [4390, 4390] [885, 885]
10−8 [3.2 × 10−8; 1.2 × 10−7] [4560, 5319] [935, 998]
10−9 [8.3 × 10−9; 4.1 × 10−8] [9415, 11,385] [1396, 1509]
10−10 [1.6 × 10−10; 1.7 × 10−8] [11,647, 12,382] [1603, 1631]
Approximation with prescribed ε, degree p(ε) = log10(ε

−1), γ = 1. Confidence intervals for relative
error ε(u�), storage complexity S and number of evaluations M

7.4 Borehole function

We here consider the function

f (Y1, . . . ,Y8) = 2πY3(Y4 − Y6)

(Y2 − log(Y1))

(
1 + 2Y7Y3

(Y2−log(Y1))Y 2
1 Y8

+ Y3
Y5

)

whichmodels thewater flow through a borehole as a function of 8 independent random
variables Y1 ∼ N (0.1, 0.0161812), Y2 ∼ N (7.71, 1.0056), Y3 ∼ U(63070, 115600),
Y4 ∼ U(990, 1110), Y5 ∼ U(63.1, 116), Y6 ∼ U(700, 820), Y7 ∼ U(1120, 1680),
Y8 ∼ U(9855, 12045). We then consider the function

u(x1, . . . , xd) = f (g1(x1), . . . , g8(x8)),

where gν are functions such that Yν = gν(Xν), with Xν ∼ N (0, 1) for ν ∈ {1, 2},
and Xν ∼ U(−1, 1) for ν ∈ {3, . . . , 8}. Function u is then defined on X = R

2 ×
[−1, 1]6.Weuse polynomial approximation spacesVν = Pp(Xν), ν ∈ D.We consider
approximation in the tensor train Tucker format T A

r (V ) described in Example 7.
InTable 7,weobserve the behavior of the algorithmwith prescribed ranks (r , . . . , r)

andfixeddegree p = 10.Weobserve a very fast convergenceof the approximationwith
the rank. Increasing γ (i.e. the number of evaluations for the estimation of principal
components) allows us to improve the accuracy for a given rank but it we look at the
error as a function of the complexity M , γ = 1 is much better than γ = 100.

In Table 8, we observe the behavior of the algorithm for decreasing values of ε,
and for an adaptive polynomial degree p(ε) = log10(ε

−1). We observe that for all
ε, the relative error of the obtained approximation is below ε with high probability.
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Table 7 Borehole function

r S γ = 1 γ = 100
ε(u�) ε(u�)

1 88 [2.4 × 10−2; 2.7 × 10−2] [2.3 × 10−2; 2.4 × 10−2]
2 308 [1.4 × 10−3; 1.4 × 10−2] [4.1 × 10−4; 5.0 × 10−4]
3 660 [1.8 × 10−5; 4.9 × 10−5] [9.9 × 10−6; 2.3 × 10−5]
4 1144 [2.9 × 10−6; 3.5 × 10−6] [8.8 × 10−7; 1.9 × 10−6]
5 1760 [5.2 × 10−7; 6.1 × 10−7] [1.8 × 10−7; 7.4 × 10−7]
6 2508 [9.0 × 10−8; 1.3 × 10−7] [1.9 × 10−8; 5.2 × 10−8]
7 3388 [5.7 × 10−8; 9.2 × 10−8] [5.1 × 10−9; 1.1 × 10−8]
8 4400 [1.6 × 10−9; 5.1 × 10−9] [4.3 × 10−10; 2.0 × 10−9]
9 5544 [1.5 × 10−9; 2.4 × 10−9] [3.1 × 10−10; 8.6 × 10−10]
10 6820 [5.5 × 10−11; 1.1 × 10−10] [4.3 × 10−11; 7.6 × 10−11]
Approximation in tensor train Tucker format with prescribed rank (r , . . . , r), fixed degree p = 10. Relative
error ε(u�) and storage complexity S for different values of r and γ

We note that the required number of evaluations M is about 2 to 4 times the storage
complexity.

7.5 Tensorization of a univariate function

We consider the approximation of the univariate function f : [0, 1] → R using ten-
sorization of functions [26,40].Wedenote by fN the piecewise constant approximation
of f on a uniform partition 0 = t0 ≤ t1 ≤ · · · ≤ tN = 1 with N = 2d elements, such
that fN (ih) = f (ih) for 0 ≤ i ≤ N and h = N−1 = 2−d . We denote by v ∈ R

N the
vector with components v(i) = f (ih), 0 ≤ i ≤ N − 1. The vector v ∈ R

2d can be
identified with an order-d tensor u ∈ H = R

2 ⊗ · · · ⊗ R
2 such that

u(i1, . . . , id) = v(i), i =
d∑

k=1

ik2
d−k,

where (i1, . . . , id) ∈ {0, 1}d = X is the binary representation of the integer i ∈
{0, . . . , 2d −1}. The setX is equipped with the uniformmeasureμ. Then we consider
approximation of the tensor u in tensor train format. The algorithm evaluates the tensor
u at some selected entries (i1, . . . , id), which corresponds to evaluating the function
f at some particular points ti .
In this finite-dimensional setting, we consider V = H. In all examples, we consider

d = 40, and N = 2d ≈ 1012. This corresponds to a storage complexity of one terabyte
for the standard representation of fN as a vector v of size N .

We observe in Tables 9 and 10 the behavior of the algorithm with prescribed toler-
ance ε applied to the functions f (t) = t2 and f (t) = t1/2 respectively. We indicate
relative errors in 
2 and 
∞ norms between the tensor u and the approximation u�.
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Let us recall that for f (t) = tα , the approximation error ‖ f − fN‖L∞ = O(N−β) =
O(2−dβ) with β = min{1, α}, which is an exponential convergence with respect to d.
For the function f (t) = t2, we observe that the relative error in 
2 norm is below the
prescribed tolerance with high probability. For the function f (t) = t1/2, the probabil-
ity of obtaining a relative error in 
2 norm below the prescribed tolerance decreases
with ε but the ratio between the true relative error and the prescribed tolerance remains
relatively small (below 100). We note that for f (t) = t2, the approximation ranks are
bounded by 3, which is the effective rank of fN . For f (t) = t1/2, the approximation
ranks slowly increase with ε−1.

In both cases, we observe a very good behavior of the algorithm, which requires a
number of evaluations which scales as log(ε−1).
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