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Abstract
We consider the use of complete radiation boundary conditions for the solution of
the Helmholtz equation in waveguides. A general analysis of well-posedness, con-
vergence, and finite element approximation is given. In addition, methods for the
optimization of the boundary condition parameters are considered. The theoretical
results are illustrated by some simple numerical experiments.
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1 Introduction

In this paper, we shall study time-harmonic wave propagation problems in unbounded
waveguides. Waveguides are an important technology with a variety of applications
in acoustics, optical communications and so on. Many applications of waveguides
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are found to be posed in large, effectively unbounded, domains. A challenge for the
numerical solution of wave propagation problems posed in large domains is the con-
struction and application of domain truncation techniques with high accuracy. The
boundary conditions imposed on the artificial boundaries resulting from domain trun-
cation, so-called absorbing boundary conditions (ABCs), should have the following
properties

– the artificial boundary produces as little reflection as we wish and so the solution
on the truncated domain can bemade arbitrarily close to the solution on the original
unbounded domain,

– the artificial boundary conditions are easy to implement in the discretized problems
using, e.g., finite elements method (FEM) or finite difference method (FDM),

– the numerical methods incorporated with the artificial boundary conditions are
stable and robust.

Many ABCs satisfying the properties listed above have been developed, for exam-
ple, nonlocal boundary conditions based on Dirichlet-to-Neumann (DtN) mappings
[3,13,19], high-order local boundary conditions [24,26,27,31], and perfectly matched
layers (PMLs) [2,29]. We note that the design of efficient ABCs is also important
for scattering problems in exterior domains, which we will consider in a subsequent
paper. For general reviews of this subject, see [4,9,15,25,35].

This paper is devoted to developing local high-order absorbing boundary conditions
for time-harmonic wave propagation problems in waveguides motivated by complete
radiation boundary conditions (CRBCs) for wave propagation problems in the time-
domain [17,18]. For time-domain calculations, CRBCs exploit the auxiliary function
formulation proposed in [17], which leads to a more efficient and natural implemen-
tation of high order radiation conditions than those proposed by Higdon [20,21] and
by Givoli and Neta [11]. In addition, it is shown in [17] how optimal parameters can
be chosen based on the simulation time, T , the separation, b, of sources and inhomo-
geneities from the artificial boundary, and the error tolerance, τ . The parameterizations
are quite efficient, with the total number of auxiliary functions, P , obeying

P ∝ ln

(
1

τ

)
· ln

(
cT

b

)
, (1.1)

with a positive constant c.
Thenewmethod thatwe shall investigate not only fulfills the necessary requirements

for ABCs but also has certain advantages. First of all, compared with methods based
on DtN mappings [3,13,19], CRBCs do not need the knowledge of eigenfunctions of
the transverse Laplace operator on the cross-section of waveguides and the number of
propagating modes, though easily-obtained partial information on the distribution of
the eigenvalues can be used to improve efficiency.

In addition, as CRBCs are local, the sparsity of the system matrix is retained. In
contrast with earlier local boundary condition sequences or PML, CRBCs are con-
structed to treat evanescent modes as well as propagating modes. Thus they can be
placed quite close to wave sources or scatterers without compromising accuracy. This
fact will be illustrated in the numerical examples later. Here we note that to handle
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Complete radiation boundary conditions for the Helmholtz… 919

evanescent modes the PML width needs to be inversely proportional to the smallest
decay rate of evanscent modes so that it can be arbitrarily wide, whereas in such a
case we can use suitably chosen nodes, e.g., Newman nodes, and guarantee accuracy
independent of how small the smallest decay rate is.

Via the introduction of auxiliary variables, CRBCs, as well as some of the other
methods mentioned above, avoid the higher order derivatives involved in product
boundary operators of Higdon. Hence, these boundary conditions are compatible with
FEM. The literature [10,12,16,31] shows many computational results of these ABCs
for wave propagation problems in time- and frequency- domains incorporated with
FEM. However, the analysis for finite element problems, e.g., well-posedness and
quasi-optimal convergence, has not been available in any case. In the present paper, we
will provide an improved analysis for the finite element application to time-harmonic
wave propagation problems with CRBCs in waveguides. In general, the unique solv-
ability and quasi-optimal convergence of finite element approximations to solutions
of indefinite problems satisfying a Gårding type inequality and the regularity of the
adjoint problem is obtained by an argument of Schatz [33]. Schatz’s argument requires
that the regularity of the continuous variational problem be established and that the
mesh size h be small enough. That is, 0 < h < h0, where h0 depends on the regularity
constant of the elliptic problem. In CRBC applications, it turns out that the regularity
constant may increase polynomially as P grows (a PML application has the similar
result that the stability constant depends on the width of the layer polynomially [5]),
which means that for large P a smaller mesh h may be required to retain the unique
solvability and quasi-optimal convergence. As the error due to the approximate bound-
ary condition typically converges exponentially with increasing order, this possible
restriction on the mesh is not likely to be important. We note that in our numerical
simulations no dependence on P of the mesh size for the solvability of the discretized
problem or the quasi-optimality of the finite element approximations was observed.

This paper is organized as follows. In Sect. 2 we study analytic solutions of a time-
harmonic waveguide model. We define the CRBCs for wave propagation problems in
the frequency-domain in Sect. 3. Section 4 is devoted to reformulation of the model
problem to a variational form and in Sect. 5 existence and uniqueness of solutions
to the Helmholtz equation satisfying CRBCs is established. Section 6 includes the
convergence analysis of the continuous problem and parameter optimization is dis-
cussed in Sect. 7. We analyze the stability and regularity of the variational problem in
Sect. 8 and discuss the finite element analysis in Sect. 9. Finally, in Sect. 10 numerical
examples that confirm the theories are presented. Note that we cannot directly use
the time-domain analysis in the frequency domain, as in the time domain we use the
finite simulation time, T , in an essential way. As a result the parameter optimization
problem considered here is different and, in fact, more difficult.

2 Fourier series of solutions to the Helmholtz equation in waveguides

We consider a time-harmonic waveguide problem

Δu + k2u = 0 in Ω∞ (2.1)
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Fig. 1 Geometry of the
semi-infinite waveguide Ω∞ in
R
2, Γ̃T = Γ̃N ∪ Γ̃S

on a semi-infinite waveguide Ω∞ = {(x, y) ∈ R×R
d−1 : x > 0, y ∈ Θ}, d = 2 or

3. Here Θ is a bounded subset of Rd−1 with a smooth boundary. (For the numerical
experiments we will specialize to R

2 with Θ = (0,W ). See Fig. 1). Here k is a
positive wavenumber. For definiteness we assume the lateral waveguide boundary is
sound-hard, i.e., the normal flux is equal to zero,

∂u

∂ν
= 0 on Γ̃T ≡ (0,∞) × ∂Θ, (2.2)

where ν is the outward unit normal vector on Γ̃T . In addition, we assume that wave
sources come from the west boundaryΓW ofΩ∞ located at x = 0 and so it determines
the boundary data on ΓW ,

u = f on ΓW . (2.3)

Thismodels the practically important casewheremore complicated physics, geometry,
or distributed sources are located in the region x < 0.

Solutions of the Helmholtz equation (2.1) can be expressed in a Fourier series in
terms of the eigenfunctions of the negative transverse Laplace operator

ΔyYn + λ2nYn = 0 in Θ,

∂Yn
∂ν

= 0 on ∂Θ,
(2.4)

where λ2n and Yn are the nth eigenpair. We denote μ2
n = k2 − λ2n . By choosing

normalized eigenfunctions, we have an orthonormal basis consisting of eigenfunctions
Yn . Moreover, as

lim
n→∞ μ2

n = −∞, (2.5)

there are only finitely many μ2
n > 0, infinitely many μ2

n < 0 and there may be
cutoff modes μ2

n = 0. We also note that the asymptotic behavior of the eigenvalues is
well-known (e.g. [6, Ch. VI, Thm. 20–21]): for some constant A

μ2
n ∼ −An

2
d−1 . (2.6)

Now, under the time-harmonic assumption e−iωt with angular frequency ω, for each
μn , we only take solutions that propagate to the right or are bounded for x > 0,

zn(x) = eiμn x .
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This represents a propagating mode for μ2
n > 0 with μn > 0 and an evanescent mode

for μ2
n < 0 with μ̃n := 	(μn) > 0. In some cases, there is a mode, a so-called cutoff

mode, associated with μn = 0, for which special care needs to be taken. For ease of
exposition we now assume that there exists N ≥ 0 such that μN = 0, μ2

n > 0 for all
n < N and μ2

n < 0 for all n > N . However, we will make clear when the absence of
such a mode yields substantial improvements in the error and stability estimates. Note
that extensions to the case of multiple cutoff modes could similarly be obtained.

Thus, a general solution to theHelmholtz equation satisfying the outgoing radiation
condition is represented by the Fourier series

u(x, y) =
∞∑
n=0

Ane
iμn xYn(y)

=
N∑

n=0

Ane
iμn xYn(y) +

∞∑
n=N+1

Ane
−μ̃n xYn(y),

(2.7)

which is a superposition of finitely many propagatingmodes (including a cutoff mode)
and infinitely many evanescent modes. Here the Fourier coefficient An is determined
by the sources from ΓW ,

An =
∫

Θ

u(0, y)Yn(y) dy.

The constant C throughout the paper is a generic constant and may be different
at different places, but it does not depend on functions. Where the dependence of
constants on the parameters of the approximate radiation condition are important we
will indicate the dependence via a subscript, Ca . We remark that the construction and
analysis can easily be extended to problems with variable coefficients depending only
on the transverse coordinates, y, including the important case of layered materials.
Also, the theory can be established for a case where the domain Ω∞ includes any
bounded smooth cavity with any inhomogeniety in x < 0, and the analysis for this
case can be found in [23].

3 Complete radiation boundary conditions

Complete radiation boundary conditions were introduced in [17,18] to provide a
rapidly convergent local boundary condition sequence for time-domain calculations.
Fundamental differences between the time-domain and frequency-domain cases are:

i. In the frequency domain only a discrete set of modes exists, while in the time
domain we must consider the continuum of modes present as k varies along an
entire inversion contour;

ii. In the time domainwe are only concerned about accuracy up to the simulation time,
T , which allows for the continuation of k in the complex plane. In the frequency
domain this would be akin to solving a limiting absorption approximation to the
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Fig. 2 Geometry of the
truncated computational domain
Ωb , ΓT = ΓN ∪ ΓS

Helmholtz system, and thus the size of the imaginary part would be tied to the
accuracy.

Directly, the conditions proposed in the time domain can be simply translated to the
frequency domain by the replacement c−1 ∂

∂t → −ik, where c is the wave speed.
However, both the analysis and parameter optimization differ.

We truncate the unbounded strip Ω∞ to a bounded region Ωb = (0, b) × Θ ,
whose east boundary ΓE is located at x = b (see Fig. 2). The problem in the finite
computational domain Ωb is

Δu + k2u = 0 in Ωb, (3.1)

∂u

∂ν
= 0 in ΓT = (0, b) × ∂Θ, (3.2)

u = f on ΓW . (3.3)

To close the problem, we need to supplement it with the CRBC on the east boundary
ΓE . The boundary condition is defined by the following recursive formulas satisfied by
auxiliary variables φ j , that also satisfy the Helmholtz equation (3.1) with the sound-
hard boundary condition (3.2) on ΓT :

φ0 = u,(
∂

∂x
+ a j

)
φ j =

(
− ∂

∂x
+ a j

)
φ j+1,

(3.4)

for j = 0, 1, 2, . . ., where a j are parameters to be chosen for reducing reflection from
the artificial boundary. As motivation we note that the recursion terminates if u is a
superposition of modes annihilated by one of the operators ( ∂

∂x +a j ). The parameters
a j are chosen as follows:

a j =
{−ikc j for j = 0, . . . , n p − 1,

σ j−n p for j = n p, . . . , n p + ne
(3.5)

with

0 < c j ≤ 1 for j = 0, . . . , n p − 1, and 0 < σ j for j = n p, . . . , n p + ne. (3.6)
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In practice, the parameters we take satisfy

μN−1 ≤ kc j ≤ k and μ̃N+1 ≤ σ j ≤ Mσ , (3.7)

where μN−1 represents the smallest axial frequency of propagating modes and μ̃N+1
is the smallest decay rate of evanescent modes. Also, Mσ is an upper bound for the
decay rates σ j of evanescent modes that the CRBC can damp effectively and it can be
chosen so that e−Mσ b is less than an error tolerance of numerical simulations. These
bounds and selection of parameters in practice will be discussed in more detail in
Sect. 7. We could choose repeated parameters a j , however from now on we assume
that a j are all distinct since the parameters in the optimal selection are all different.
These recursions are terminated by

φn p+ne+1 = 0 on ΓE . (3.8)

Here (n p, ne) is called the order of CRBCs and let P = n p + ne. If a j is selected
to be purely imaginary so that kc j = μn > 0, then the recursion exactly eliminates
the corresponding propagating mode, and if a j is chosen to be real so that σ j equals
the decay rate μ̃n of an evanescent mode, then it does not produce reflection of the
corresponding evanescent mode.

Remark 3.1 As suggested for time-domain problems in [17], we may also use param-
eters a j of the form

a j = σ j − ikc j (3.9)

for j = 0, . . . , P with the conditions (3.6). In this case, although the recursions
do not annihilate any mode exactly, they damp reflection of propagating modes and
evanescent modes simultaneously. In this paper, however, we only investigate CRBCs
employing a j as given in (3.5), which are generally more effective for frequency-
domain problems.

For numerical implementation of these boundary conditions, we need to eliminate
the derivative of the auxiliary variables with respect to the normal direction from the
recursive formulas (3.4). To do this, we apply the operator ∂/∂x to the Eq. (3.4) for
the ( j − 1)th and j th recursion, which yields

∂2

∂x2
φ j−1 + ∂2

∂x2
φ j = a j−1

∂

∂x
φ j − a j−1

∂

∂x
φ j−1, (3.10)

and
∂2

∂x2
φ j + ∂2

∂x2
φ j+1 = a j

∂

∂x
φ j+1 − a j

∂

∂x
φ j . (3.11)
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Here we eliminate ∂φ j−1/∂x from (3.10) and ∂φ j+1/∂x from (3.11) by using (3.4)
for the ( j − 1)th and j th recursion, respectively, which shows that

∂2

∂x2
φ j−1 + ∂2

∂x2
φ j = a j−1

∂

∂x
φ j − a j−1

(
− ∂

∂x
φ j + a j−1φ j − a j−1φ j−1

)

= 2a j−1
∂

∂x
φ j − a2j−1φ j + a2j−1φ j−1,

(3.12)
and

∂2

∂x2
φ j + ∂2

∂x2
φ j+1 = a j

(
− ∂

∂x
φ j + a jφ j+1 − a jφ j

)
− a j

∂

∂x
φ j

= −2a j
∂

∂x
φ j + a2jφ j+1 − a2jφ j . (3.13)

Now, multiplying (3.12) by 1/a j−1 and (3.13) by 1/a j and subsequently adding them
together produces

L j, j−1
∂2

∂x2
φ j−1 + L j, j

∂2

∂x2
φ j + L j, j+1

∂2

∂x2
φ j+1

+ Mj, j−1φ j−1 + Mj, jφ j + Mj, j+1φ j+1 = 0,
(3.14)

where

L j, j−1 = 1

a j−1
, L j, j = 1

a j−1
+ 1

a j
, L j, j+1 = 1

a j
,

Mj, j−1 = −a j−1, Mj, j = a j−1 + a j , Mj, j+1 = −a j . (3.15)

To find the connection between the solution u(= φ0) and the auxiliary variables on
ΓE , as in the above derivation, we have

∂2

∂x2
φ0 + ∂2

∂x2
φ1 = a0

∂

∂x
φ1 − a0

∂

∂x
φ0

= a0

(
− ∂

∂x
φ0 + a0φ1 − a0φ0

)
− a0

∂

∂x
φ0

= −2a0
∂

∂x
φ0 + a20φ1 − a20φ0.

Therefore,

− 2
∂

∂x
φ0 = 1

a0

(
∂2

∂x2
φ0 + ∂2

∂x2
φ1

)
+ a0φ0 − a0φ1. (3.16)

To obtain our final system, with

L0,0 = 1

a0
and M0,0 = a0,
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we define L andM by the (P+1)×(P+1) symmetric (but not Hermitian) tridiagonal
matrices whose non-zero elements Li, j and Mi, j are given as above, respectively. We
can write the boundary condition in matrix form

−
(
2
∂u

∂x

)
e0 = L

∂2

∂x2
Φ + MΦ,

where e j is the standard (P + 1) × 1 basis vector whose non-zero element is one at
the j th component and Φ = (φ0, . . . , φP )t with φ0 = u on ΓE .

Finally, the Helmholtz equation removes all x-derivatives in the equation,

−
(
2
∂u

∂x

)
e0 = −LΔyΦ + (−k2L + M)Φ.

Thus the model problem completed by the CRBCs on ΓE is to find functions u defined
in Ωb and Φ = (φ0, . . . , φP )t defined on ΓE with u = φ0 on ΓE such that

Δu + k2u = 0 in Ωb, (3.17)

∂u

∂ν
= 0 on ΓT , (3.18)

u = f on ΓW , (3.19)

∂u

∂x
e0 = −1

2
(−LΔyΦ + (−k2L + M)Φ) on ΓE (3.20)

with
∂Φ

∂ν
= 0 on ∂ΓE . (3.21)

Remark 3.2 A similar algebraic computation for time-domain problems, in which the
contribution of evanescent modes is not negligible, can be found in [16]. For time-
domain problems the process of removing the ∂/∂x operators required a seam function
to transit from the recursions for propagating modes to those for evanescent modes,
which is not needed in the recursions for frequency-domain problems as time deriva-
tives are not involved and there is no difference between recursions for propagating
modes and those for evanescent modes.

4 Variational reformulation

In this section, we reformulate the problem (3.17)–(3.21) to a variational form for a
given order (n p, ne) ofCRBCswith n p+ne = P .Webegin by defining the appropriate
Sobolev spaces,

H̃1(Ωb) = {ξ ∈ H1(Ωb) : ξ |ΓE ∈ H1(ΓE )},
H̃1
0 (Ωb) = {ξ ∈ H̃1(Ωb) : ξ = 0 on ΓW }.
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In the sequel, we will use the notations (·, ·)Ωb and (·, ·)ΓE for the L2-inner product
on Ωb and ΓE , respectively,

For the space of auxiliary variables, we first introduce the symmetric positive defi-
nite matrices L andM, which are obtained by replacing a j with |a j | in L and M , and
define

‖Φ‖2L := (LΦ,Φ)ΓE =
P∑
j=0

1

|a j | ‖φ j + φ j+1‖2L2(ΓE )
,

‖Φ‖2M := (MΦ,Φ)ΓE =
P∑
j=0

|a j |‖φ j − φ j+1‖2L2(ΓE )

and for � = 1, 2

‖Φ‖2L,� :=
P∑
j=0

1

|a j | ‖φ j + φ j+1‖2H�(ΓE )
, ‖Φ‖2M,� :=

P∑
j=0

|a j |‖φ j − φ j+1‖2H�(ΓE )

for Φ = (φ0, . . . , φP )t ∈ (L2(ΓE ))P+1 with φP+1 = 0. We define the Sobolev space
VΓE = (H1(ΓE ))P+1 with the norm

‖Φ‖2VΓE
= ‖Φ‖2L,1 + ‖Φ‖2M,

which is equivalent to the standard product norm of (H1(ΓE ))P+1 but the constants
involved in the equivalence may depend on P . Furthermore, we introduce fractional
Sobolev spaces Hs(ΓE ) for −1 ≤ s ≤ 2 characterized by the norm

‖u‖2Hs (ΓE ) =
∞∑
n=0

(λ2n + 1)s |un|2

for u = ∑∞
n=0 unYn .

Remark 4.1 Wenote that Hs(ΓE ) for 3/2 ≤ s ≤ 2 in this paper is different fromausual
fractional Sobolev space. In this case, Hs(ΓE ) is the space of functions which are in a
usual fractional Sobolev space obtained by real interpolation [H1(ΓE ), H2(ΓE )]s−1
and whose normal derivatives vanish on ∂ΓE . However Hs(ΓE ) for −1 ≤ s < 3/2 is
a usual fractional Sobolev space

Hs(ΓE ) =
⎧⎨
⎩

[(H1(ΓE ))∗, L2(ΓE )]s+1, −1 ≤ s ≤ 0,
[L2(ΓE ), H1(ΓE )]s, 0 ≤ s ≤ 1,
[H1(ΓE ), H2(ΓE )]s−1, 1 ≤ s < 3/2

with (H1(ΓE ))∗ the dual space of H1(ΓE ).
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If we use the same notations ‖ · ‖L and ‖ · ‖M for vectors in C
P+1, the norm in

VΓE can be written as

‖Φ‖2VΓE
=

∞∑
n=0

(λ2n + 1)‖Φn‖2L + ‖Φn‖2M

for functions Φ in VΓE with Fourier series Φ = ∑∞
n=0 ΦnYn .

The solution space V is defined by

V := {(u, Φ) ∈ H̃1(Ωb) × VΓE : u = φ0 on ΓE for Φ = (φ0, . . . , φP )t },

which is equipped with the Sobolev norm

‖(u, Φ)‖2V = ‖u‖2H1(Ωb)
+ ‖Φ‖2VΓE

.

We note that since V is closed in H1(Ωb) × (H1(ΓE ))P+1, it is a Hilbert space. For
regularity estimates, more regular spaces V2

ΓE
and V2 are required, where V2

ΓE
is the

set (H2(ΓE ))P+1 with the norm

‖Φ‖2
V2

ΓE

:= ‖Φ‖2L,2 + ‖Φ‖2M,1 =
∞∑
n=0

(λ2n + 1)2‖Φn‖2L + (λ2n + 1)‖Φ‖2M

(which is also equivalent to the standard product norm in (H2(ΓE ))P+1) and V2 is a
subspace of V consisting of (u, Φ) satisfying

‖(u, Φ)‖2
V2 := ‖u‖2H2(Ωb)

+ ‖Φ‖2
V2

ΓE

< ∞.

Finally, we introduce the test spaceV0, the set of functions (ξ, Ψ ) ∈ H̃1
0 (Ωb)×VΓE

such that ξ = ψ0 on ΓE for Ψ = (ψ0, . . . , ψP )t . Now, we take a test function
(ξ, Ψ ) ∈ V0, multiply (3.17) by 2ξ and (3.20) by 2Ψ , and integrate them by parts,
which transforms the problem (3.17)–(3.21) to the variational problem of finding
(u, Φ) ∈ V with u = f on ΓW such that

A((u, Φ), (ξ, Ψ )) = 0 (4.1)

for all (ξ, Ψ ) ∈ V0, where

A((u, Φ), (ξ, Ψ )) = 2(∇u,∇ξ)Ωb − 2k2(u, ξ)Ωb + J (Φ,Ψ ), (4.2)

and

J (Φ,Ψ ) = (L∇yΦ,∇yΨ )ΓE + ((−k2L + M)Φ,Ψ )ΓE
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928 T. Hagstrom, S. Kim

is the sesquilinear form defined on VΓE × VΓE . Also, we define

Ã((u, Φ), (ξ, Ψ )) = 2(∇u,∇ξ)Ωb + 2(u, ξ)Ωb + J̃ (Φ,Ψ )

and

J̃ (Φ,Ψ ) = (L∇yΦ,∇yΨ )ΓE + (LΦ,Ψ )ΓE + (M̄Φ,Ψ )ΓE ,

where M̄ is the (P + 1) × (P + 1) tridiagonal symmetric matrix whose components
are the complex conjugate of those of M .

Lemma 4.2 For Φ,Ψ in (L2(ΓE ))P+1, it holds that

|(LΦ,Ψ )ΓE | ≤ ‖Φ‖L‖Ψ ‖L,

|(MΦ,Ψ )ΓE | ≤ ‖Φ‖M‖Ψ ‖M,

|(M̄Φ,Ψ )ΓE | ≤ ‖Φ‖M‖Ψ ‖M.

Proof Noting the symmetry of the matrix L , application of the Cauchy–Schwarz
inequality shows that

|(LΦ,Ψ )ΓE | =
∣∣∣∣∣∣

P∑
j=0

1

a j
(φ j + φ j+1, ψ j + ψ j+1)ΓE

∣∣∣∣∣∣ ≤ ‖Φ‖L‖Ψ ‖L (4.3)

The other cases are proved similarly. ��
The boundedness of J and J̃ is easily obtained from Lemma 4.2.

Lemma 4.3 For Φ,Ψ ∈ VΓE , it holds that

|J (Φ,Ψ )| ≤ C‖Φ‖VΓE
‖Ψ ‖VΓE

,

| J̃ (Φ,Ψ )| ≤ C‖Φ‖VΓE
‖Ψ ‖VΓE

with a positive constant C depending only on k.

The following boundedness and coercivity of the sesquilinear form Ã(·, ·)will play
an important role for the existence of solutions in the next section.

Lemma 4.4 It holds that

| Ã((u, Φ), (ξ, Ψ ))| ≤ C‖(u, Φ)‖V‖(ξ, Ψ )‖V
and

| Ã((u, Φ), (u, Φ))| ≥ C‖(u, Φ)‖2V
for all (u, Φ), (ξ, Ψ ) ∈ V.
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Proof The boundedness of Ã(·, ·) is an immediate consequence of Lemma 4.3 and the
Cauchy–Schwarz inequality. For the coercivity,wefirst examine the real and imaginary
parts of Ã((u, Φ), (u, Φ)),

�( Ã((u, Φ), (u, Φ)))

= 2‖u‖2H1(Ωb)
+

n p+ne∑
j=n p

(
1

a j
‖∇y(φ j + φ j+1)‖2L2(ΓE )

+ 1

a j
‖φ j + φ j+1‖2L2(ΓE )

+ a j‖φ j − φ j+1‖2L2(ΓE )

)
(4.4)

and
	( Ã((u, Φ), (u, Φ)))

=
n p−1∑
j=0

(
1

|a j | ‖∇y(φ j + φ j+1)‖2L2(ΓE )

+ 1

|a j | ‖φ j + φ j+1‖2L2(ΓE )
+ |a j |‖φ j − φ j+1‖2L2(ΓE )

)
,

(4.5)

and we obtain that

| Ã((u, Φ), (u, Φ))| ≥ C(�( Ã((u, Φ), (u, Φ))) + 	( Ã((u, Φ), (u, Φ))))

= C(‖u‖2H1(Ωb)
+ ‖Φ‖2VΓE

),

which completes the proof. ��
We close this section with a lemma about a property of the norms ‖ ·‖L and ‖ ·‖M,

which will be used for the stability analysis of cutoff modes.

Lemma 4.5 Let a j be the parameters defined by (3.5) satisfying (3.7). It holds that

‖Φ‖L ≤ Ca(P + 1)‖Φ‖M
for Φ ∈ C

P+1, where Ca is a constant depending on max0≤ j≤P {1/|a j |}.
Proof Noting that

P∑
�=0

|φ� + φ�+1|2 ≤ C(P + 1)2
P∑

�=0

|φ� − φ�+1|2

for Φ = (φ0, . . . , φP )t ∈ C
P+1 with φP+1 = 0 (see e.g., [34]), it can be proved that

‖Φ‖2L =
P∑

�=0

1

|a�| |φ� + φ�+1|2 ≤ Ca

P∑
�=0

|φ� + φ�+1|2
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≤ Ca(P + 1)2
P∑

�=0

|φ� − φ�+1|2 ≤ C2
a (P + 1)2‖Φ‖2M.

��

5 Existence and uniqueness of solutions to the Helmholtz equation
with the CRBCs

This section is devoted to establishing the existence and uniqueness of solutions to
the problem (3.17)–(3.21). For establishing the uniqueness of solutions, assume that
f = 0 on ΓW and let the solution u be represented by the Fourier series

u(x, y) = (AN + BN x)YN (y) +
∑
n �=N

(Ane
iμn x + Bne

−iμn x )Yn(y). (5.1)

The boundary condition on ΓW implies

An = 0 for n = N , (5.2)

An + Bn = 0 for n �= N . (5.3)

Let C0
n and D0

n be the Fourier coefficients of the trace of u and ∂u/∂x on ΓE ,
respectively,

C0
n =

{
Bnb for n = N ,

Aneiμnb + Bne−iμnb for n �= N ,

D0
n =

{
Bn for n = N ,

iμn(Aneiμnb − Bne−iμnb) for n �= N .

(5.4)

The auxiliary variable φ j on ΓE has the Fourier expansion

φ j (y) =
∞∑
n=0

C j
nYn(y).

Now we note that the vector Cn = (C0
n , . . . ,C

P
n )t consisting of the nth Fourier

coefficients of the auxiliary variables satisfies

− 2D0
ne0 = (−μ2

nL + M)Cn . (5.5)

Indeed, since Yn is an eigenfunction associated with the eigenvalue λ2n , the nth Fourier
mode of the right hand side of (3.20) is

−1

2
(λ2nLCn + (−k2L + M)Cn)Yn = −1

2
(−μ2

n L + M)CnYn,
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while that of the left hand side is D0
ne0Yn . Applying the inner product (·, ·)CP+1 in

C
P+1 of (5.5) against Cn leads to

−2D0
nC̄

0
n = −μ2

n(LCn,Cn)CP+1 + (MCn,Cn)CP+1

=
P∑
j=0

[−μ2
n

a j
|C j

n + C j+1
n |2 + a j |C j

n − C j+1
n |2

]
,

(5.6)

where C̄ j
n is the complex conjugate of C j

n and CP+1
n = 0. Owing to (5.3) and (5.4),

the left hand side of (5.6) is given by

4μn	(An B̄ne
2iμnb) − 2μn(|An|2 − |Bn|2)i= −4μn|An|2	(e2iμnb) (5.7)

for n < N (propagating modes, μn > 0),

2μ̃n(|An|2e−2μ̃nb−|Bn|2e2μ̃nb)+4μ̃n	(An B̄n)i= 2μ̃n|An|2(e−2μ̃nb − e2μ̃nb) (5.8)

for n > N (evanescent modes, μ2
n < 0) and

− 2b|BN |2 (5.9)

for n = N (cutoff mode, μn = 0).
Now, we are ready to prove the uniqueness of solutions.

Lemma 5.1 Suppose that the parameters a j are given by (3.5) and k is a positive
wavenumber. Then solutions to the problem (3.17)–(3.21) are unique.

Proof For n < N (μ2
n > 0), by (5.6) and (5.7)

−4μn|An|2	(e2iμnb) =
n p−1∑
j=0

[ −μ2
n

−ikc j
|C j

n + C j+1
n |2 − ikc j |C j

n − C j+1
n |2

]

+
n p+ne∑
j=n p

[−μ2
n

σ j
|C j

n + C j+1
n |2 + σ j |C j

n − C j+1
n |2

]
. (5.10)

Comparing the imaginary parts of both sides, we see that

C j
n = 0 for j = 0, . . . , n p and n = 0, . . . , N − 1. (5.11)

In addition, since C0
n = C1

n = 0, it follows from the zeroth row of (5.5) that D0
n = 0,

which yields that An = Bn = 0 for n = 0, . . . , N − 1 by solving the Eq. (5.4). Then,
(5.5) becomes

(−μ2
n L + M)Cn = 0. (5.12)
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Since the superdiagonal entries of−μ2
n L+M below the (n p−1)th row are non-zero,

−μ2
n

a j
− a j = −μ2

n

σ j
− σ j < 0

for j = n p, . . . , n p + ne, applying forward substitution to (5.12) from the n pth row

by using C j
n = 0 for j = 0, . . . , n p gives C

j
n = 0 for j = n p + 1, . . . , n p + ne.

For n > N (μ2
n < 0), (5.10) with (5.8) used instead of (5.7) leads to

2μ̃n|An|2(e−2μ̃nb − e2μ̃nb) =
n p−1∑
j=0

[ −μ2
n

−ikc j
|C j

n + C j+1
n |2 − ikc j |C j

n − C j+1
n |2

]

+
n p+ne∑
j=n p

[−μ2
n

σ j
|C j

n + C j+1
n |2 + σ j |C j

n − C j+1
n |2

]
.

Since the real part of the left hand side is non-positive while that of the right hand side
is non-negative, they need to be zero, which implies that An = Bn = 0 and C j

n = 0
for j = n p, . . . , n p + ne. We observe that An = Bn = 0 implies D0

n = 0, and so
again from (5.5) obtain the linear equation (5.12) as above. In this case, since the
subdiagonal entries of −μ2

n L + M above the (n p + 1)th row are non-zero,

−μ2
n

a j
− a j = −μ2

n

−ikc j
+ ikc j �= 0

for j = 0, . . . , n p − 1, we solve (5.12) by backward substitution from the n pth row

by using C j
n = 0 for j = n p, . . . , n p + ne and then we can see that C j

n = 0 for
j = 0, . . . , n p − 1.
For n = N (μ2

n = 0), (5.6) becomes

−2b|BN |2 =
n p−1∑
j=0

−ikc j |C j
n − C j+1

n |2 +
n p+ne∑
j=n p

σ j |C j
n − C j+1

n |2.

By comparing the real and imaginary parts of both sides, it can be easily shown that
C j
n = 0 for all j = 0, . . . , P . In addition, due to C0

N = BNb and (5.2), we have
AN = BN = 0.

Finally, the fact that An = Bn = 0 and C j
n = 0 for all n ≥ 0 and j = 0, . . . , P

results in u = 0 in Ωb and φ j = 0 on ΓE for j = 0, . . . , P , which completes the
proof of the uniqueness of solutions. ��

Theorem 5.2 The problem (3.17)–(3.21) has a unique solution (u, Φ) ∈ V.
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Proof By invoking Lemma 4.3, we can show boundedness of A(·, ·), i.e., there exists
a positive constant C1 such that

|A((u, Φ), (ξ, Ψ ))| ≤ C1‖(u, Φ)‖V‖(ξ, Ψ )‖V .

Furthermore, Lemma 4.3 and Lemma 4.4 show that there exist positive constants C2
and C3 such that

A((u, Φ), (u, Φ)) = Ã((u, Φ), (u, Φ)) − 2(k2 + 1)‖u‖2L2(Ωb)

− (k2 + 1)(LΦ,Φ)ΓE + ((M − M̄)Φ,Φ)ΓE

≥ C2‖(u, Φ)‖2V − C3
(‖u‖2L2(Ωb)

+ ‖Φ‖2L + ‖Φ‖2M
) (5.13)

for all (u, Φ), (ξ, Ψ ) ∈ V0. Since V0 is compactly embedded in L2(Ωb) ×
(L2(ΓE ))P+1, the existence of solutions is a consequence of the Fredholm alternative
theorem and the uniqueness of solutions given in Lemma 5.1. ��

In the proof, it is not established how the stability constant depends on the number
of parameters, P + 1. This will be studied in more detail in Sect. 8.

Remark 5.3 Let V∗
0 be the dual space of V0 with the norm

‖G‖V∗
0

= sup
0 �=(ξ,Ψ )∈V0

|G(ξ, Ψ )|
‖(ξ, Ψ )‖V

for G ∈ V∗
0. The same argument used in the proof of Theorem 5.2 can show that the

problem A((u, Φ), (ξ, Ψ )) = G(ξ, Ψ ) for all (ξ, Ψ ) ∈ V0 admits a unique solution
in V0.

We can find a formula for the approximate solution u andφ j satisfying theCRBCon
ΓE in terms of a prescribed condition f ∈ H1/2(ΓW ). To this end, let f ∈ H1/2(ΓW )

be a boundary datum, which has a Fourier series

f (y) =
∞∑
n=0

fnYn(y),

and introduce

Qn
j,m =

⎧⎪⎨
⎪⎩

m∏
�= j

a� + iμn

a� − iμn
for m ≥ j,

1 for m < j,

(5.14)

for n �= N . Now, φ j in the recursions (3.4) are represented by a Fourier series similar
to (5.1),

φ j (x, y) = (A j
N + B j

N x)YN (y) +
∑
n �=N

(A j
ne

iμn x + B j
n e

−iμn x )Yn(y)

with A0
n = An and B0

n = Bn .
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Non-cutoff modes, n �= N : By (3.4) it is easily shown that

(a j − iμn)A
j+1
n = (a j + iμn)A

j
n,

(a j + iμn)B
j+1
n = (a j − iμn)B

j
n

(5.15)

for all j . If a j + iμn �= 0 for all 0 ≤ j ≤ P , then it holds that

A j
n = Qn

0, j−1An and B j
n = 1

Qn
0, j−1

Bn for 0 ≤ j ≤ P.

The coefficients An and Bn of the approximate solution u in (5.1) are determined by
the system of linear equations

An + Bn = fn,

eiμnbQn
0,P An + (eiμnbQn

0,P )−1Bn = 0,

from which one can easily see that

An = fn
1 − (eiμnbQn

0,P )2
and Bn = −(eiμnbQn

0,P )2 fn

1 − (eiμnbQn
0,P )2

. (5.16)

If a j + iμn = 0 for some j , then a similar computation shows that A j
n = Qn

0, j−1An

and B j
n = 0 for all j and hence (5.16) is still valid.

Cutoff modes, n = N : By the recursive relations (3.4), we observe

B j
N = B j+1

N , B j
N + a j A

j
N = −B j+1

N + a j A
j+1
N , (5.17)

which implies

B j
N = BN and A j

N = AN + 2
j−1∑
�=0

1

a�

BN

for j = 1, . . . , P . From the boundary condition A0
N = fN and the terminal condition

AP
N + BP

N b = 0, (5.18)

we find

AN = fN and BN = − fN

b + 2
∑P

j=0 a
−1
j

. (5.19)

The formula (5.19) reveals the convergence of cutoff modes provided
∑P

j=0 a
−1
j →

∞.
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We note that better results if a cutoff mode is known to be present could be obtained
by changing the termination condition (3.8) to

∂

∂x
φP+1 = 0, (5.20)

since cutoff modes do not have any variation along the axis of the waveguide. In fact,
the CRBC terminated by (5.20) yields coefficients An and Bn of approximate solutions
such that

An = fn
1 + (eiμnbQn

0,P )2
and Bn = −(eiμnbQn

0,P )2 fn

1 + (eiμnbQn
0,P )2

,

which converge to the exact coefficients at the same rate as those of (5.16) by the
Dirichlet condition, but AN = fN and BN = 0, which coincide with those of the
exact solution. However this would change the form of the boundary system and
require further analysis. Thus we do not consider it here but refer readers to [23].

Alternatively, we can guarantee rapid convergence independent of the distribution
of eigenvalues byusingNewmannodeswhich converge to 0 geometrically, for example
Newman’s nodes a j = −ike j/

√
P for propagating modes and/or their analogous form

in the evanescent regime [7,22]. Even though it turns out that with such a choice our
bounds on the stability constants degenerate with e

√
P , our experiments, presented in

Sect. 10, indicate the discretized problem keeps a convergence rate expected in the
continuous level with increasing P as long as the problem is discretized with small
mesh size compensating the degenerating stability constants.

6 Convergence of approximate solutions satisfying CRBCs

In this section, we show convergence of approximate solutions satisfying CRBCs. As
we have seen above, the error of the cutoff mode is estimated in terms of

SP = |b + 2
P∑
j=0

a−1
j |−1,

which approaches zero as the order P increases. For non-cutoff modes the error is
controlled by the following factor

∣∣∣−eiμnb(Qn
0,P )2

∣∣∣ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

n p−1∏
j=0

∣∣∣∣a j + iμn

a j − iμn

∣∣∣∣
2

for 0 ≤ n ≤ N − 1,

e−μ̃nb
n p+ne∏
j=n p

∣∣∣∣a j − μ̃n

a j + μ̃n

∣∣∣∣
2

for N + 1 ≤ n.
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Since limn→∞ |Qn
0,P | = 1, the error does not decay exponentially as a function of

P . However, since the factor eiμnb decays exponentially for large n, we can bound
the error almost by an exponential function of P (except for the cutoff mode) in the
sense of the following theorem. The optimal choice of parameters would depend on
a knowledge of the axial frequencies μn , μ̃n . Later on we will advocate a simpler
approach based only on the knowledge of intervals containing the axial frequencies.
We then introduce the min–max problems determining the reflection coefficients for
each n �= N ,

ρp = min
a0,...,anp−1∈iR−

max
μN−1≤η≤k

n p−1∏
j=0

∣∣∣∣a j + iη

a j − iη

∣∣∣∣
2

, (6.1)

ρe = min
anp ,...,anp+ne∈R+

max
μ̃N+1≤η̃≤Mσ

e−η̃b
n p+ne∏
j=n p

∣∣∣∣a j − η̃

a j + η̃

∣∣∣∣
2

. (6.2)

Here we recall that Mσ is determined by e−Mσ b less than an error tolerance. It is
shown in [30] that the reflection coefficients can be reduced at an exponential rate
with respect to the number of parameters used,

ρp ≤ e−Cnp/ ln(k/μN−1),

ρe ≤ e−μ̃N+1be−Cne/ ln(Mσ /μ̃N+1).
(6.3)

by selecting parameterswhich satisfy (6.1)–(6.2). These are easy to compute in practice
using the Remez algorithm, and in the case of (6.1) they are known analytically (see
[7]).

Theorem 6.1 Suppose that f is in H1/2(ΓW ), uex is the exact radiating solution to the
problem (2.1)–(2.3) and u is the solution to the problem (3.17)–(3.21). Then it holds
that

‖u − uex‖H1(Ωb)
≤ Cρ(Mσ , n p, ne)‖ f ‖H1/2(ΓW ), (6.4)

where

ρ(Mσ , n p, ne) = max{SP , e−Cnp/ ln(k/μN−1), e−μ̃N+1be−Cne/ ln(Mσ /μ̃N+1), e−Mσ b}.

Remark 6.2 Wehavenot attempted to sharply estimate thedependenceof the inequality
(6.4) on the wave number k, or on the k-dependence of inequalities (8.3), (8.4), (9.3),
or (9.4). From the arguments given we can only derive bounds which grow very
rapidly with k. Numerical experiments with k as large as 100 show that the actual
k-dependence of the stability and error constants is in fact quite mild.

Remark 6.3 Note that the term SP is absent if no cutoff modes exist. Then we have
that with node choices satisfying (6.1)–(6.2) and an error tolerance τ
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P ∝ ln

(
1

τ

)
· ln

(
ln

(
1

τ

))
(6.5)

suffices.

To prove Theorem 6.1, we start by studying the regularity of solutions satisfying
the exact radiation condition given by the Dirichlet-to-Neumann map on the artificial
boundary ΓE . For 0 ≤ s ≤ 2, let T : Hs(ΓE ) → Hs−1(ΓE ) be the Dirichlet-to-
Neumann map defined by

T v =
∞∑
n=0

iμnvnYn

for v = ∑∞
n=0 vnYn in Hs(ΓE ). We consider the problem with the exact boundary

condition associated with the Dirichlet-to-Neumann map T : For gin ∈ Hs(Ωb) and
gbd ∈ Hs+1/2(ΓE ) with −1 ≤ s ≤ 0,

Δu + k2u = gin in Ωb,

u = 0 on ΓW ,
∂u

∂ν
= 0 on ΓT ,

∂u

∂x
− Tu = gbd on ΓE . (6.6)

As in [3], it can be shown that the regularity of solutions satisfying the exact boundary
condition holds by transforming the problem to one without the Dirichlet condition
on ΓW via the odd reflection with respect to ΓW .

Lemma 6.4 For gin ∈ Hs(Ωb) and gbd ∈ Hs+1/2(ΓE )with−1 ≤ s ≤ 0, the problem
(6.6) admits a unique solution in Hs+2(Ωb). Moreover, there exists a positive constant
C such that

‖u‖Hs+2(Ωb)
≤ C(‖gin‖Hs (Ωb) + ‖gbd‖Hs+1/2(ΓE )).

Now, the proof of Theorem 6.1 is as follows.

Proof of Theorem 6.1 We first note that the error function z = u − uex satisfies

Δz + k2z = 0 in Ωb,

z = 0 on ΓW ,
∂z

∂ν
= 0 on ΓT ,

∂z

∂x
− T z = gbd on ΓE ,

where gbd has the Fourier series

gbd = ∂u

∂x
− Tu = −1

b + 2
∑P

j=0 a
−1
j

fN YN +
∑
n �=N

2iμneiμnb(Qn
0,P )2

1 − (eiμnbQn
0,P )2

fnYn (6.7)

by using (5.16) and (5.19).
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Let N∗ > N be the largest integer such that μ̃N∗ ≤ Mσ . Since |1 − (eiμnbQn
0,P )2|

is bounded away from zero for all n ≥ 0 and |μn|2 ≤ C(λ2n + 1) for all n �= N , by
(6.3) we obtain

‖gbd‖2H−1/2(ΓE )
≤ C

⎛
⎝ ∑

0≤n≤N−1

e−2Cnp/ ln(k/μN−1)
|μn fn|2

(1 + λ2n)
1/2

+
∑

N+1≤n≤N∗
e−2μ̃nbe−2Cne/ ln(Mσ /μ̃N+1)

|μn fn|2
(1 + λ2n)

1/2

+
∑

N∗+1≤n

e−2Mσ b |μn fn|2
(1 + λ2n)

1/2 + 1

|b + 2
∑P

j=0 a
−1
j |2 | fN |2

⎞
⎠

≤ Cρ(Mσ , n p, ne)
2‖ f ‖2H1/2(ΓW )

.

Finally, Lemma 6.4 completes the proof of (6.4). ��
Remark 6.5 When the parameters a j are chosen such that

a j = −iμ j for j = 0, . . . , N − 1 and a j = μ̃ j+1 for j = N , . . . , P,

the CRBCs behave as the exact boundary conditions for the important P + 1 modes,
which are all propagating modes combined with slowly decaying evanescent modes.
These are the modes which would produce the largest reflections without efficient
absorbing boundary conditions. Since Qn

0,P = 0 for n = 0, . . . , P and n �= N , the
error is estimated as

‖u − uex‖H1(Ωb)
≤ C(SP + e−μ̃P+1b)‖ f ‖H1/2(ΓW ),

where again SP is absent if there are no cutoff modes.

7 Parameter selection

The general error formulas derived in the preceding section can be used to guide the
selection of optimal parameters. Experiments with an automatic parameter selection
algorithm will be reported elsewhere; here we will make selections which, though
suboptimal, show that the number of parameters will be small even for difficult cases.

Optimal parameters for a fixed P , chosen independent of f andminimizing the error
in the Fourier coefficients at x = b, would be those which minimize the maximum
over n �= N of

ρ ≡
∣∣∣−eiμnb(Qn

0,P )2
∣∣∣ =

⎧⎨
⎩
∣∣∣(Qn

0,P )2
∣∣∣ for μ2

n > 0,∣∣∣e−μ̃nb(Qn
0,P )2

∣∣∣ for μ2
n < 0.

(7.1)
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Complete radiation boundary conditions for the Helmholtz… 939

Note that the number of propagating modes is finite, as is the number of evanescent
modes satisfying e−μ̃nb > τ for any error tolerance τ . The remaining evanescent

modes are sufficiently small at the boundary, so the value of
∣∣∣(Qn

0,P )2
∣∣∣ ≤ 1 is unim-

portant. Moreover, the number of important modes increases with increasing k; for
k small it is feasible to directly compute this small number of modes and choose
parameters which are exact on these modes. (For a discussion of conditions using a
different set of auxiliary variables which are exact for propagating modes, see Bendali
and Guillaume [3].)

Here we look at the simpler problem of minimizing ρ over an entire interval rather
than over a discrete set. We introduce the following scalings:

η ≡ μ/k (η̃ ≡ μ̃/k), ã j ≡ a j/k, b = 2πk−1nλ,

where nλ is the number of wavelengths of the normally propagating mode, eikx , on
the interval [0, b]. Now, we explicitly assume that μn �= 0; that is the cutoff mode is
absent. To perform the optimizations we quantify the gap in the spectrum near 0

η2 ≥ c20 and η̃2 ≥ g20 (7.2)

for some constants c0 and g0. In real situations, c0 and g0 would be some constants
approximate to the smallest axial frequency,μN−1, of propagatingmodes and smallest
decay rate, μ̃N+1, of evanescent modes, respectively. We then consider the reflection
coefficients

ρp = max
c0≤η≤1

n p−1∏
j=0

∣∣∣∣ ã j + iη

ã j − iη

∣∣∣∣
2

, (7.3)

ρe = max
η̃≥g0

e−2πnλη̃

n p+ne∏
j=n p

∣∣∣∣ ã j − η̃

ã j + η̃

∣∣∣∣
2

. (7.4)

For fixed values of n p and ne, we can compute optimal parameters using the Remez
algorithm (see, e.g., [30]). For instance, consider the truncated waveguide Ωb defined
with W = 1, b = 0.1. When the wavenumber is k = 100, there are 32 propagating
modes involved in acoustic pressure fields. For n p = 4 and ne = 3, the Remez
algorithmapplied tominimization of themaximal reflection coefficients (7.3) and (7.4)
produces the damping parameters with which the graphs of the reflection coefficients
as a function of n are presented in Fig. 3. It indicates that reflection of all propagating
modes and evanescent modes can be reduced up to 3.9590×10−6 and 5.3492×10−5,
respectively. Here the upper bound for η̃ in the Remez algorithm is determined in a
way that the modes between the vertical green lines damped effectively. Note that
our simple Matlab implementation of the Remez algorithm, which uses a geometrical
sequence as an initial guess, has converged rapidly for all the cases considered here.
The authors will provide it to any interested readers.
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940 T. Hagstrom, S. Kim

Fig. 3 Reflection coefficients of
|ρp | and |ρe| as a function of n
with the optimal parameters
obtained by Remez algorithm

To determine the smallest P for a given tolerance, τ , as a function of c0, g0 and nλ

we simply find the smallest values of n p and ne such that the optimal nodes chosen
by the Remez algorithm lead to ρp ≤ τ , ρe ≤ τ .

Note that these approximations can be directly related to optimal approximation of
the square root function, which was solved by Zolotarev using elliptic functions [30].
The error estimates developed in [7,22] state the error in the Zolotarev approximation
of degree (d − 1, d) on the interval [z0, z1] to be of the order e−π2d/ ln (z1/z0). For
propagating modes this implies

n p ∝ ln

(
1

τ

)
· ln

(
1

c0

)
. (7.5)

For evanescent modes we note that the largest value of η̃ is relevant scales like
n−1

λ ln
( 1

τ

)
. Thus we conclude that

ne ∝ ln

(
1

τ

)
· ln

(
1

nλg0

)
+ ln

(
1

τ

)
· ln ln

(
1

τ

)
. (7.6)

We carried out the optimizations discussed above for the parameters

c0 = {10−2, 10−4}, g0 = {10−2, 10−4}, nλ = {1, 0.1}, τ = {10−3, 10−5}.

The results are shown in Table 1. Based on the Remez algorithm the results are con-
sistent with the estimates (7.5)–(7.6). We emphasize that these results are definitely
suboptimal as they do not take account of the actual modal distributions. Methods
for constructing better parameters may be based, for example, on rational Krylov
algorithms [8,14,28] applied to the finite element discretization of the cross-sectional
Laplace operator.

In practice, then, we recommend the following procedure to select the method
parameters. Given a choice of b, which can be taken as the separation between the
radiation boundary and any sources, scatterers, or inhomogeneities, and an error tol-
erance, τ :
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Table 1 Number of terms
needed to meet the tolerance, τ ,
for select values of c0, g0, and
nλ

c0 g0 nλ τ Popt with (3.5)

10−2 10−2 1 10−3 10

10−2 10−2 1 10−5 16

10−2 10−2 0.1 10−3 12

10−2 10−2 0.1 10−5 18

10−2 10−4 1 10−3 14

10−2 10−4 1 10−5 21

10−2 10−4 0.1 10−3 16

10−2 10−4 0.1 10−5 24

10−4 10−2 1 10−3 14

10−4 10−2 1 10−5 22

10−4 10−2 0.1 10−3 16

10−4 10−2 0.1 10−5 25

10−4 10−4 1 10−3 18

10−4 10−4 1 10−5 28

10−4 10−4 0.1 10−3 20

10−4 10−4 0.1 10−5 31

i. If possible estimate the number of importantmodes; inmany cases this can be done
based on the frequency, k, and the geometry of the cross-section using standard
inequalities on the spectrum of elliptic operators [6]. If this is small enough, for
propagatingmodes, evanescent modes, or both, application of a Lanczos algorithm
[32] will produce them at minimal cost. Then choose the parameters to exactly
absorb these modes.

ii. If the use of exact conditions is deemed inefficient, again for propagating modes,
evanescent modes, or both, use the Lanczos algorithm to compute the eigenvalues
nearest k2 and use that information to define the intervals for input into the Remez
algorithm.

8 Stability and regularity of the variational problem

In this section, we study the stability and regularity of the variational problems

A((u, Φ), (ξ, Ψ )) = ( fs, ξ)ΓE (8.1)

for all (ξ, Ψ ) ∈ V0 with fs ∈ L2(Ωb) supported away from ΓE , and

A((u, Φ), (ξ, Ψ )) = (LΥ ,Ψ )ΓE (8.2)

for all (ξ, Ψ ) ∈ V0 with the source LΥ , Υ ∈ (L2(ΓE ))P+1 being given as auxiliary
variables. The study of the problem (8.1) suffices for verification of the stability and
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942 T. Hagstrom, S. Kim

regularity of solutions to the problem (4.1) since the boundary value problem can be
reduced to the source problem due to a lifting of the boundary condition. Also, these
results will come into play in the finite element analysis.

8.1 Stability and regularity of solutions to Problem (8.1)

We note that the problem (8.1) has a unique solution in V0 by Remark 5.3. The
energy norm estimates for the solution u and the auxiliary variables Φ are given in
the following theorem.

Theorem 8.1 Let a j be the parameters defined by (3.5) satisfying (3.6). Then for any
fs ∈ L2(Ωb) supported away from ΓE , the solution (u, Φ) to the problem (8.1)
satisfies

‖u‖H1(Ωb)
≤ C‖ fs‖L2(Ωb)

and

‖Φ‖VΓE
≤ Ca(P + 1)‖ fs‖L2(Ωb)

.

In addition, the regularity result holds,

‖u‖H2(Ωb)
≤ C‖ fs‖L2(Ωb)

(8.3)

and
‖Φ‖V2

ΓE
≤ Ca(P + 1)‖ fs‖L2(Ωb)

. (8.4)

If cutoff modes are excluded, the constants Ca for the stability and regularity estimates
are independent of a j and the exponents on (P + 1) are halved; that is the constants
in the estimates of Φ become C(P + 1)1/2.

The proof of Theorem 8.1 proceeds based on a sequence of lemmas for solution
formulas of auxiliary variables. In order to study the stability estimate of problem
(8.1), it is required to analyze the auxiliary variables solving the problem

−LΔyΦ + (−k2L + M)Φ = E0e0 in ΓE ,

∂Φ

∂ν
= 0 on ∂ΓE .

(8.5)

The nth Fourier coefficients Φn of Φ satisfy the equation

− μ2
n LΦn + MΦn = En

0 e0. (8.6)

We start by finding the explicit form of the solution Φn with En
j e j for j = 0, . . . , P

on the right hand side of (8.6), recalling the definition (5.14) of Qn
j,m for n �= N .
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Lemma 8.2 Suppose that a j �= −iμn and μn is not a cutoff axial frequency, i.e.,
μn �= 0. Let Φn ∈ C

P+1 be a solution to the linear system (8.6) with En
j e j on the

right hand side. Then φn
� is given by the formula φn

� = sn�, j E
n
j , where

sn�, j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(1 + (Qn
0,�−1)

2)Qn
�, j−1(1 − (Qn

j,P )2)

−4iμn(1 + (Qn
0,P )2)

if � ≤ j,

(1 + (Qn
0, j−1)

2)Qn
j,�−1(1 − (Qn

�,P )2)

−4iμn(1 + (Qn
0,P )2)

if � ≥ j .

(8.7)

Proof We will find the solution Φn in the form

φn
� =

⎧⎪⎪⎨
⎪⎪⎩

Qn
0,�−1 Ãn + 1

Qn
0,�−1

B̃n for � = 0, 1, . . . , j,

Qn
j,�−1C̃n + 1

Qn
j,�−1

D̃n for � = j, j + 1, . . . , P
(8.8)

for 0 < j < P . When j = 0 or P , we assume that φn
� is defined by the upper formula

with � = 0, 1, . . . , P . Here we will verify the formulas for 0 < j < P , as the other
cases can be treated with only small modifications.

By the definition of Qn
j,m one can easily show that the three term recursions

(−μ2
n L�,�−1 + M�,�−1)φ

n
�−1 + (−μ2

nL�,� + M�,�)φ
n
�

+(−μ2
n L�,�+1 + M�,�+1)φ

n
�+1 = 0

hold for � �= 0, j, P . Thus, the four unknowns Ãn , B̃n , C̃n and D̃n are to be determined
by

− 2iμn( Ãn − B̃n) = 0 (8.9)

from the 0th equation,

Qn
0,�−1 Ãn + 1

Qn
0,�−1

B̃n = C̃n + D̃n (8.10)

from the definition of φn
� with � = j ,

(
Qn

0,�−1 Ãn − 1

Qn
0,�−1

B̃n

)
− (C̃n − D̃n) = 1

2iμn
En

j (8.11)

from the j th equation and

Qn
j,PC̃n + 1

Qn
j,P

D̃n = 0 (8.12)
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944 T. Hagstrom, S. Kim

from the Pth equation. Solving the Eqs. (8.9)–(8.12) leads to

Ãn = (1 − (Qn
j,P )2)Qn

0, j−1

−4iμn(1 + (Qn
0,P )2)

En
j , B̃n = (1 − (Qn

j,P )2)Qn
0, j−1

−4iμn(1 + (Qn
0,P )2)

En
j ,

C̃n = (1 + (Qn
0, j−1)

2)

−4iμn(1 + (Qn
0,P )2)

En
j , D̃n = (1 + (Qn

0, j−1)
2)(Qn

j,P )2

4iμn(1 + (Qn
0,P )2)

En
j

and hence the formula (8.7) is obtained. ��
The next lemma gives solution formulas when there exists an index J such that

aJ + iμn = 0. In this case the problem can be written as two block systems. The first
block system is reduced to the case in Lemma 8.2, and the formulas for the second
one can be derived by a similar computation to that used in Lemma 8.2 and hence we
omit the proof.

Lemma 8.3 Suppose that there exists an index J such that aJ + iμn = 0. Let Φn ∈
C

P+1 be a solution to the linear system (8.6) with En
j e j in the right hand side. Then

φn
� are given by the formula φn

� = sn�, j E
n
j , where if j ≤ J

sn�, j =

⎧⎪⎨
⎪⎩

−1

4iμn
(1 + (Qn

0,�−1)
2)Qn

�, j−1 if � ≤ j,

−1

4iμn
(1 + (Qn

0, j−1)
2)Qn

j,�−1 if � ≥ j
(8.13)

and if j > J

sn�, j =

⎧⎪⎨
⎪⎩

−1

4iμn
Qn

�, j−1(1 − (Qn
j,P )2) if � ≤ j,

−1

4iμn
Qn

j,�−1(1 − (Qn
�,P )2) if � ≥ j .

(8.14)

Wenotice that these formulas inLemma8.3 are consistentwith (8.7) since Qn
c,d = 0

for c ≤ J ≤ d.
As a special case the solution to (8.6) is given in the following lemma.

Lemma 8.4 Let Φn ∈ C
P+1 be a solution to the linear system (8.6). For n �= N, the

φn
� are given by

φn
� = −Qn

0,�−1(1 − (Qn
�,P )2)

2iμn(1 + (Qn
0,P )2)

En
0 (8.15)

and

φn
� = Qn

0,�−1(1 − (Qn
�,P )2)

(1 − (Qn
0,P )2)

φn
0 (8.16)

for � = 0, . . . , P. For n = N,

φn
� =

P∑
j=�

1

a j
En
0 . (8.17)
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Proof When a j + iμn �= 0 for all j , the formula (8.15) is obtained from (8.7) with
j = 0. If there exists J such that aJ + iμn = 0, (8.15) immediately follows from
(8.13) and noting that Qn

�,P = 0 for � ≤ J and Qn
0,�−1 = 0 for � ≥ J +1. In addition,

we have (8.16) by rewriting En
0 in terms of φn

0 .
The formula (8.17) for n = N is obtained straightforwardly by Gaussian elimina-

tion. ��
We note that by the arithmetic-geometric mean inequality

1√|a�| |1 + Qn
�,�| = 2

√|a�μn|
|a� − iμn|

1√|μn| ≤ C√|μn| ,√|a�||1 − Qn
�,�| = 2

√|a�μn|
|a� − iμn|

√|μn| ≤ C
√|μn|

(8.18)

and (λ2n + 1) ≤ C |μn|2 for n �= N .

Lemma 8.5 Let a j be the parameters defined by (3.5) satisfying (3.6). We assume that
Φ ∈ VΓE , φ0 ∈ Hs+1/2(ΓE ) and E0 ∈ Hs−1/2(ΓE ) for s ≥ 0. If Φ and E0 satisfy
(8.5), then it holds that

‖Φ‖VΓE
≤ Ca(P + 1)(‖E0‖H−1/2(ΓE ) + ‖φ0‖H1/2(ΓE )) for s = 0.

In addition, we have the regularity estimate

‖Φ‖V2
ΓE

≤ Ca(P + 1)(‖E0‖H1/2(ΓE ) + ‖φ0‖H3/2(ΓE )) for s = 1.

If cutoff modes are excluded, the constants Ca for the stability and regularity estimates
are independent of a j and the exponents on (P + 1) are halved; that is the constants
in the estimates of Φ become C(P + 1)1/2.

Proof Cutoff modes, n = N : By using the solution formula (8.17), we have

‖ΦN‖2M =
P∑

�=0

|a�||φN
� − φN

�+1|2 =
P∑

�=0

1

|a�| |E
N
0 |2 = |EN

0 |
P∑

�=0

1

|a�| |E
N
0 |

≤ √
2|EN

0 ||φN
0 | =

√
2

|∑P
�=0 a

−1
� | |φ

N
0 |2 ≤ C |φN

0 |2. (8.19)

Here we used (8.17) with � = 0 for the first inequality. Also, invoking Lemma 4.5 and
(8.19), we are led to

‖ΦN‖2L ≤ C2
a (P + 1)2‖ΦN‖2M ≤ C2

a (P + 1)2|φN
0 |2.

Thus, since λN = k is a constant, we have

(λ2N + 1)s((λ2N + 1)‖ΦN‖2L +‖ΦN‖2M) ≤ C2
a (P + 1)2(λ2N + 1)s+1/2|φN

0 |2. (8.20)
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Non-cutoff modes, n �= N : For the estimation of non-cutoff modes, we decompose
N\{N } into two disjoint sets N1 and N2,

N1 = {n ∈ N\{N } : |1 + (Qn
0,P )2| ≥ 1} and N2 = N\(N1 ∪ {N }).

Since |1 + (Qn
0,P )2| ≥ 1 or |1 − (Qn

0,P )2| ≥ 1 for each n ≥ 0, if n ∈ N2, then

|1 − (Qn
0,P )2| ≥ 1. Therefore, for n ∈ N1 the solution formula (8.15) implies

|φn
� + φn

�+1| =
∣∣∣∣∣
Qn

�−1(1 − (Qn
�+1,P )2Qn

�,�)

(1 + (Qn
0,P )2)

(1 + Qn
�,�)E

n
0

2iμn

∣∣∣∣∣ ≤ C

∣∣∣∣ (1 + Qn
�,�)E

n
0

2iμn

∣∣∣∣ ,

and by (8.18) we have
1

|a�| |φ
n
� + φn

�+1|2 ≤ C
|En

0 |2
|μn|3 . (8.21)

A similar computation yields that

|a�||φn
� − φn

�+1|2 = |a�|
∣∣∣∣∣
Qn

�−1(1 + (Qn
�+1,P )2Qn

�,�)

(1 + (Qn
0,P )2)

(1 − Qn
�,�)E

n
0

2iμn

∣∣∣∣∣
2

≤ C |a�||1 − Qn
�,�|2

|En
0 |2

|μn|2 ≤ C

|μn| |E
n
0 |2.

(8.22)

Combining (8.21) and (8.22) yields

(λ2n + 1)s((λ2n + 1)‖Φn‖2L + ‖Φn‖2M) ≤ C(P + 1)

(
(λ2n + 1)s+1

|μn |3 + (λ2n + 1)s

|μn |
)

|En
0 |2

≤ C(P + 1)(λ2n + 1)s−1/2|En
0 |2.

(8.23)
On the other hand, the same calculation as above but using (8.16) instead of (8.15)

shows that for n ∈ N2

1

|a�| |φ
n
� + φn

�+1|2 ≤ C

|μn| |φ
n
0 |2,

|a�||φn
� − φn

�+1|2 ≤ C |μn||φn
0 |2,

from which it follows that

(λ2n + 1)s((λ2n + 1)‖Φn‖2L + ‖Φn‖2M) ≤ C(P + 1)(λ2n + 1)s+1/2|φn
0 |2. (8.24)

Finally, we obtain the stability and regularity estimates by using (8.20), (8.23) and
(8.24) for s = 0 and s = 1, respectively. ��
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Proof of Theorem 8.1 It suffices to prove the regularity estimates (8.3) and (8.4). Let
uex be the solution to the problem (6.6) with gin = fs and gbd = 0 satisfying

‖uex‖H2(Ωb)
≤ C‖ fs‖L2(Ωb)

(8.25)

by Lemma 6.4. Also, by u we denote the solution satisfying CRBCs, i.e.

Δu + k2u = fs in Ωb,

u = 0 on ΓW ,
∂u

∂ν
= 0 on ΓT ,

BP (u) = 0 on ΓE ,

(8.26)

where BP (u) = φP+1 is the trace of the (P + 1)th auxiliary variable φP+1 on ΓE .
Since uex is expressed as uex = ∑∞

n=0 A
ex
n eiμn xYn beyond the support of fs , the error

function z = u − uex satisfies

BP (z) = BP (−uex ) = −Aex
N YN −

∑
n �=N

Qn
0,p A

ex
n eiμnbYn .

Assume that z is written as z = (AN + BN x)YN + ∑
n �=N (Aneiμn x + Bne−iμn x )Yn .

If there exists an index J such that aJ + iμn = 0 for some n, then the error does not
include the corresponding mode, i.e., An = Aex

n and Bn = 0. Otherwise, the boundary
conditions on ΓE and ΓW lead to the linear problem for An and Bn ,

An + Bn = 0,

Qn
0,Pe

iμnb An + 1

Qn
0,Pe

iμnb
Bn = −Qn

0,Pe
iμnb Aex

n ,

for n �= N and

AN = 0 and AN + BN

⎛
⎝b + 2

P∑
j=0

a−1
j

⎞
⎠ = −Aex

N

for n = N . It then follows that

An = (Qn
0,Pe

iμnb)2

1 − (Qn
0,Pe

iμnb)2
Aex
n and Bn = −(Qn

0,Pe
iμnb)2

1 − (Qn
0,Pe

iμnb)2
Aex
n (8.27)

for n �= N and

AN = 0 and BN = −Aex
N

b + 2
∑P

j=0 a
−1
j

for n = N .
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Then z solves the problem (6.6) with gin = 0 and

gbd = ∂z

∂x
− T (z) = −1

b + 2
∑P

j=0 a
−1
j

Aex
N YN +

∑
n �=N

2iμneiμnb(Qn
0,P )2

1 − (eiμnbQn
0,P )2

Aex
n Yn .

Here,wenote that gbd is in H1/2(ΓE ). Indeed, from theboundedness of the coefficients

1

b + 2
∑P

j=0 a
−1
j

and
2i(Qn

0,P )2

1 − (eiμnbQn
0,P )2

of gbd , a trace theorem and (8.25), it follows that

‖gbd‖2H1/2(ΓE )
≤ C

⎡
⎣(λ2N + 1)1/2|Aex

N |2 +
∑
n �=N

(λ2n + 1)1/2|μn|2|eiμnb Aex
n |2

⎤
⎦

≤ C‖uex‖2H3/2(ΓE )
≤ C‖ fs‖2L2(Ωb)

.

Therefore, Lemma 6.4 reveals that

‖u − uex‖H2(Ωb)
≤ C‖gbd‖H1/2(ΓE ) ≤ C‖ fs‖L2(Ωb)

,

which, in turn, results in (8.3)

‖u‖H2(Ωb)
≤ ‖z‖H2(Ωb)

+ ‖uex‖H2(Ωb)
≤ C‖ fs‖L2(Ωb)

.

In addition, a trace inequality yields that

‖u‖H3/2(ΓE ) and ‖∂u

∂x
‖H1/2(ΓE ) ≤ C‖ fs‖L2(Ωb)

, (8.28)

and hence Lemma 8.5 with φ0 = u and E0 = −2∂u/∂x on ΓE shows (8.4). ��

8.2 Regularity of solutions to Problem (8.2)

It is clear that the solution (u, Φ) to the problem (8.2) solves

(
−2

∂u

∂x

)
e0 = −LΔyΦ + (−k2L + M)Φ − Ξ in ΓE ,

∂Φ

∂ν
= 0 on ∂ΓE ,

(8.29)

where Ξ = LΥ .

123



Complete radiation boundary conditions for the Helmholtz… 949

As done in the previous subsection, wewill derive explicit formulas for the solution.
We know that the solution has the series representation

u(x, y) = (AN + BN x)YN (y) +
∑
n �=N

(Ane
iμn x + Bne

−iμn x )Yn(y) (8.30)

and the linear systems for the nth Fourier coefficients

2iμn(Ane
iμnb − Bne

−iμnb)e0 − μ2
nLΦn + MΦn = Ξn (8.31)

for n �= N and
2Bne0 + MΦn = Ξn (8.32)

for n = N hold with Ξn being the nth Fourier coefficients of Ξ . In case of n �= N , it
suffices to derive the formula when a j �= −iμn . Otherwise the system matrix can be
written as a 2× 2 block diagonal matrix and solutions of the lower block are given by
the same formulas as (8.14) in Lemma 8.3.

Lemma 8.6 Suppose that a j �= −iμn and μn is not a cutoff axial frequency, i.e.
μn �= 0. Then for Ξ = E je j = ∑∞

n=0 E
n
j Yne j , there exists a unique solution to the

problem (8.31) given by the formula, φn
� = tn�, j E

n
j , where

tn�, j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1 − e2iμnb(Qn
0,�−1)

2)Qn
�, j−1(1 − (Qn

j,P )2)

−4iμn(1 − e2iμnb(Qn
0,P )2)

if � ≤ j,

(1 − e2iμnb(Qn
0, j−1)

2)Qn
j,�−1(1 − (Qn

�,P )2)

−4iμn(1 − e2iμnb(Qn
0,P )2)

if � ≥ j .

(8.33)

Also, the normal derivative of the nth Fourier mode un on ΓE satisfies

∂un
∂x

= (1 + e2iμnb)Qn
0, j−1(1 − (Qn

j,p)
2)

4(1 − e2iμnb(Qn
0,P )2)

En
j Yn . (8.34)

Proof The same computation used in the proof of Lemma 8.2 will be applied. We only
provide the proof of the cases for 0 < j < P , as the other case for j = 0, P can be
treated with small modifications. The only difference from the proof of Lemma 8.2 is
that instead of (8.9) we employ the boundary conditions

An + Bn = 0 on ΓW ,

Ane
iμnb + Bne

−iμnb = Ãn + B̃n on ΓE
(8.35)

and
2iμn(Ane

iμnb − Bne
−iμnb) − 2iμn( Ãn − B̃n) = 0 (8.36)

from the 0th equation.
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By solving (8.10), (8.11), (8.12), (8.35) and (8.36) in terms of En
j , we obtain that

An = eiμnb(1 − (Qn
j,P)2)Qn

0, j−1

4iμn(1 − e2iμnb(Qn
0,P )2)

En
j , Bn = −eiμnb(1 − (Qn

j,P )2)Qn
0, j−1

4iμn(1 − e2iμnb(Qn
0,P )2)

En
j ,

Ãn = e2iμnb(1 − (Qn
j,P )2)Qn

0, j−1

4iμn(1 − e2iμnb(Qn
0,P )2)

En
j , B̃n = −(1 − (Qn

j,P )2)Qn
0, j−1

4iμn(1 − e2iμnb(Qn
0,P )2)

En
j ,

C̃n = −(1 − e2iμnb(Qn
0, j−1)

2)

4iμn(1 − e2iμnb(Qn
0,P )2)

En
j , D̃n = (1 − e2iμnb(Qn

0, j−1)
2)(Qn

j,P)2

4iμn(1 − e2iμnb(Qn
0,P )2)

En
j .

Finally, the formulas (8.33) and (8.34) result from substituting them into (8.8) and

∂un
∂x

= iμn(Ane
iμnb − Bne

−iμnb)Yn,

which completes the proof. ��

In order to study the regularity result of the problem (8.2), properties of tn�, j are
required. Let us define for n �= N ,

t�, j = tn�, j + tn�, j+1 and Δ±
�, j = t�, j ± t�+1, j

(the formula (8.33) can be extended to j or � = P + 1, saying tn�, j = 0 for j or
� = P + 1 since (1 − Qn

P+1,P ) = 0). The following lemma provides estimates of

Δ±
�, j and its proof will be given in the Appendix.

Lemma 8.7 The following inequalities hold,

1√|a�| |Δ
+
�, j |

1√|a j |
≤ C

|μn|2 ,

√|a�||Δ−
�, j |

1√|a j |
≤ C

|μn| . (8.37)

Also, for the analysis in case of aJ + iμn = 0 for some J , we need to estimate the
analogues to Δ±

�, j for s
n
�, j , defined in (8.14). As above, let us define

s�, j = sn�, j + sn�, j+1 and Σ±
�, j = s�, j ± s�+1, j .

The same estimates of Σ±
�, j as those of Δ±

�, j are in the following lemma, which can
be proved in the same way as Lemma 8.7.

Lemma 8.8 The following inequalities hold,
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1√|a�| |Σ
+
�, j |

1√|a j |
≤ C

|μn|2 ,

√|a�||Σ−
�, j |

1√|a j |
≤ C

|μn| . (8.38)

Lemma 8.9 Let a j be the parameters defined by (3.5) satisfying (3.6). Then for any
Υ ∈ (L2(ΓE ))P+1 the solution (u, Φ) to the problem (8.2) satisfies the regularity
result,

‖u‖H2(Ωb)
≤ Ca(P + 1)‖Υ ‖L (8.39)

and
‖Φ‖V2

ΓE
≤ C2

a (P + 1)2‖Υ ‖L. (8.40)

If cutoff modes are excluded, the constants Ca for the stability and regularity estimates
are independent of a j and the exponents on (P + 1) are halved; that is the constant
in the estimate of u becomes C(P + 1)1/2 and that for Φ becomes C(P + 1).

Proof We first prove (8.40).
Proof of (8.40) : Assume that Ξ = ∑∞

n=0 LΥ nYn with Υ n = (γ n
0 , γ n

1 , . . . , γ n
P )t .

Non-cutoff modes, n �= N : We note that

|(1 ± e2iμnb(Qn
p,q)

2)(1 ± (Qn
r ,s)

2)Qn
c,d | < 4, (8.41)

for any 0 ≤ p, q, r , s, c, d ≤ P and |1−e2iμnb(Qn
0,P )2| is bounded below away from

zero for all n �= N .
If a j + iμn �= 0 for 0 ≤ j ≤ P , then Lemma 8.6 shows that the solution φn

� can

be written as φn
� = ∑P

j=0 t
n
�, j (LΥ n) j and a simple computation gives

φn
� =

P∑
j=0

tn�, j

[
1

a j−1
(γ n

j−1 + γ n
j ) + 1

a j
(γ n

j + γ n
j+1)

]

=
P∑
j=0

t�, j
1

a j
(γ n

j + γ n
j+1). (8.42)

Now, the Cauchy–Schwarz inequality and (8.37) show that

1√|a�| |φ
n
� + φn

�+1| ≤
P∑
j=0

1√|a�| |Δ
+
�, j |

1√|a j |
1√|a j |

|γ n
j + γ n

j+1|

≤
⎛
⎝ P∑

j=0

∣∣∣∣∣
1√|a�|Δ

+
�, j

1√|a j |

∣∣∣∣∣
2
⎞
⎠

1/2⎛
⎝ P∑

j=0

1

|a j | |γ
n
j + γ n

j+1|2
⎞
⎠

1/2

≤ C

√
P + 1

|μn|2 ‖Υ n‖L
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and hence we obtain that

(λ2n + 1)2‖Φn‖2L ≤ C(P + 1)2
(λ2n + 1)2

|μn|4 ‖Υ n‖2L ≤ C(P + 1)2‖Υ n‖2L. (8.43)

In addition, the same computation as above gives that

√|a�||φn
� − φn

�+1| ≤
P∑
j=0

√|a�||Δ−
�, j |

1√|a j |
1√|a j |

|γ n
j + γ n

j+1|

≤
⎛
⎝ P∑

j=0

∣∣∣∣∣
√|a�|Δ−

�, j
1√|a j |

∣∣∣∣∣
2
⎞
⎠

1/2⎛
⎝ P∑

j=0

1

|a j | |γ
n
j + γ n

j+1|2
⎞
⎠

1/2

≤ C

√
P + 1

|μn| ‖Υ n‖L,

which shows that

(λ2n + 1)‖Φn‖2M ≤ C(P + 1)2
λ2n + 1

|μn|2 ‖Υ n‖2L ≤ C(P + 1)2‖Υ n‖2L. (8.44)

Thus, it follows from (8.43) and (8.44) that

(λ2n + 1)2‖Φn‖2L + (λ2n + 1)‖Φn‖2M ≤ C(P + 1)2‖Υ n‖2L. (8.45)

In case when aJ + iμn = 0 for some J , the system of Eqs. (8.29) breaks into two
block diagonal systems. We notice that φn

� is represented by

φn
� =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

J∑
j=0

tn�, j (LΥ n) j for � ≤ J ,

P∑
j=J+1

sn�, j (LΥ n) j for � ≥ J + 1,

(8.46)

where tn�, j and s
n
�, j are definedby (8.33) (with P replaced by J ) and (8.14), respectively.

By using Lemmas 8.7 and 8.8 as in the argument used above, the same result as (8.45)
can be derived.
Cutoff modes, n = N : In this case, ΦN satisfies (8.32), which is equivalent to

2b−1φN
0 e0 + MΦN = LΥ N (8.47)

since AN = 0 from the boundary condition on ΓW and AN + BNb = φN
0 . By

examining the real and imaginary parts of the inner product of the left hand side of
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(8.47) with ΦN , we observe that

2

b
|φN

0 |2 + ‖ΦN‖2M ≤ C

∣∣∣∣(2bφN
0 e0 + MΦN , ΦN )CP+1

∣∣∣∣ ≤ C‖Υ N‖L‖ΦN‖L
≤ Ca(P + 1)‖Υ N‖L‖ΦN‖M.

(8.48)
The last inequality is the result from Lemma 4.5. Therefore, it follows that

‖ΦN‖M ≤ Ca(P + 1)‖Υ N‖L. (8.49)

Applying Lemma 4.5 again to the above inequality (8.49) yields that

‖ΦN‖L ≤ C2
a (P + 1)2‖Υ N‖L

and hence it is concluded that

(λ2N + 1)2‖ΦN‖2L + (λ2N + 1)‖ΦN‖2M ≤ C4
a (P + 1)4‖Υ N‖2L. (8.50)

Finally, combining (8.45) and (8.50) implies

‖Φ‖V2
ΓE

≤ C2
a (P + 1)2‖Υ ‖L,

which completes the proof of (8.40).
Proof of (8.39) : We shall estimate gbd = ∂u/∂x − T (u) in H1/2(ΓE ),

‖gbd‖H1/2(ΓE ) ≤ Ca(P + 1)‖Υ ‖L. (8.51)

Once the inequality is established, Lemma 6.4 with (8.51) yields that

‖u‖H2(Ωb)
≤ Ca(P + 1)‖Υ ‖L,

which completes the proof of (8.39).
Now, we are left with proving (8.51). To do this, as done in (8.42) we use (8.33)

with � = 0 and (8.34) for n �= N and a j + iμn �= 0 to have

∂un
∂x

− iμnun =
P∑
j=0

Qn
0, j−1(1 − Qn

j, j (Q
n
j+1,P )2)(1 + Qn

j, j )

2(1 − e2iμnb(Qn
0,P )2)

1

a j
(γ j + γ j+1)Yn .

The Cauchy–Schwarz inequality and (8.18) shows that

‖∂un
∂x

− iμnun‖2L2(ΓE )
≤
⎛
⎝ P∑

j=0

C |1 + Qn
j, j |

1

|a j | |γ
n
j + γ n

j+1|
⎞
⎠

2
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≤
⎛
⎝ P∑

j=0

C
|1 + Qn

j, j |2
|a j |

⎞
⎠
⎛
⎝ P∑

j=0

1

|a j | |γ
n
j + γ n

j+1|2
⎞
⎠

≤ C
P + 1

|μn| ‖Υ n‖2L

and so we obtain

(λ2n + 1)1/2‖∂un
∂x

− iμnun‖2L2(ΓE )
≤ C(P + 1)‖Υ n‖2L. (8.52)

In case when aJ + iμn = 0 for some n and j , since ∂un/∂x and un are affected by
only the first (J + 1) components of Υ , it holds that

(λ2n + 1)1/2‖∂un
∂x

− iμnun‖2L2(ΓE )
≤ C(J + 1)‖Υ n‖2L ≤ C(P + 1)‖Υ n‖2L. (8.53)

For the cutoff mode, i.e., n = N , we use (8.48) and (8.49) to see

‖∂uN

∂x
‖2L2(ΓE )

= |BN |2 = 1

b2
|φN

0 |2

≤ Ca(P + 1)‖Υ N‖L‖ΦN‖M ≤ C2
a (P + 1)2‖Υ N‖2L.

(8.54)

Finally by combining (8.52), (8.53) and (8.54) we obtain

‖∂u

∂x
− T (u)‖H1/2(ΓE ) ≤ Ca(P + 1)‖Υ ‖L,

which completes the proof. ��

9 Finite element approximations

Now, we are in a position to discuss the solvability and quasi-optimal convergence of
the finite element approximation (uh, Φh) to the solution u and the auxiliary variables
Φ = (φ0, . . . , φP )t to the variational problem (4.1).

Let Th denote a partition of Ωb with shape-regular meshes and let h represent the
diameter of elements, e.g., h = maxK∈Th diam(K ). By extracting the boundary nodes
on ΓE generated by Th , we define the boundary meshes, which are denoted by T b

h . Let
S̃h denote a subspace of H̃1(Ωb) consisting of piecewise polynomial finite element
functions and S0h denote the subset of functions in S̃h which vanish on ΓW . Also, Gh

is analogously defined by a finite element subspace of H1(ΓE ). We assume that f is
the trace of a function on ΓW in our approximation space as the errors associated with
boundary quadrature in the finite elementmethod arewell understood. Let Sh be the set
of functions in S̃h which coincidewith f onΓW . Denoting byVh the set of all elements
(uh, Φh) in Sh × (Gh)

P+1 such that uh = φh,0 on ΓE forΦh = (φh,0, . . . , φh,P )t and
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by V0
h the set of all elements (uh, Φh) in S0h × (Gh)

P+1 such that uh = φh,0 on ΓE ,
the finite element approximation to (u, Φ) is the function (uh, Φh) ∈ Vh satisfying

A((uh, Φh), (ξh, Ψh)) = 0 for all (ξh, Ψh) ∈ V0
h . (9.1)

Asmentioned earlier,wewill now invoke an argument due toSchatz [33] to establish
the unique solvability andquasi-optimal convergenceoffinite element approximations.
This requires that the mesh size h satisfies 0 < h < h0 for a constant h0, which may
depend on the stability and regularity estimates of the elliptic problem studied in
Sect. 8.

In our case, for a given order (n p, ne)with P = n p+ne and the damping parameters
a j given by (3.5) satisfying (3.6), we already know that the sesquilinear form A(·, ·)
is bounded,

|A((u, Φ), (ξ, Ψ ))| ≤ C‖(u, Φ)‖V‖(ξ, Ψ )‖V .

Also, since

|((M − M̄)Φ,Φ)ΓE | =
n p−1∑
j=0

2|a j |‖φ j − φ j+1‖2L2(ΓE )
≤ Cn2p‖Φ‖2L

due to the fact that |a j | ≤ k for j = 0, . . . , n p − 1, it follows from (5.13) that the
sesquilinear form A(·, ·) satisfies the inequality

|A((u, Φ), (u, Φ))| ≥ C1‖(u, Φ)‖2V − C2n
2
p(‖u‖2L2(Ωb)

+ ‖Φ‖2L) (9.2)

in V0 × V0 for some positive constants C1 and C2. Now, the solvability and quasi-
optimal convergence of finite element approximations are given in the following
theorem. The proof follows the same line as the standard Schatz’s argument in [33]
with the regularity result given in Theorem 8.1 and Lemma 8.9.

Theorem 9.1 Let a j be the parameters defined by (3.5) satisfying (3.6). Then there
exists an h0 > 0 such that for 0 < h < h0, (9.1) has a unique solution (uh, Φh) ∈ Vh

satisfying
‖(u, Φ) − (uh, Φh)‖V ≤ Ch‖(u, Φ)‖V2 . (9.3)

Furthermore, the solution uh satisfies the L2-error estimate

‖u − uh‖L2(Ωb)
≤ Ca(P + 1)h2‖(u, Φ)‖V2 . (9.4)

Here the constant Ca is independent of a j if cutoff modes are not involved.

Proof Let (e, E) = (u, Φ) − (uh, Φh) ∈ V0 be the error function. Since the
sesquilinear form A(·, ·) is symmetric (not Hermitian), that is, A((u, Φ), (ξ, Ψ )) =
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A((ξ̄ , Ψ̄ ), (ū, Φ̄)) for (u, Φ), (ξ, Ψ ) ∈ V0, the solution (w, Υ ) ∈ V0 to the dual
problem

A((ξ, Ψ ), (w, Υ )) = (ξ, e)Ωb + (LΨ , E)ΓE for all (ξ, Ψ ) ∈ V0

also satisfies the regularity estimates in Theorem 8.1 and Lemma 8.9. By choosing
a linear or bilinear interpolation Υh = (γh,0, . . . , γh,P )t of Υ = (γ0, . . . , γP )t , it is
obvious that

‖Υ − Υh‖2L,1 =
P∑
j=0

1

|a j | ‖γ j + γ j+1 − γh, j − γh, j+1‖2H1(ΓE )

≤ Ch2
P∑
j=0

1

|a j | ‖γ j + γ j+1‖2H2(ΓE )
= Ch2‖Υ ‖2L,2

and

‖Υ − Υh‖2M =
P∑
j=0

|a j |‖(γ j − γ j+1) − (γh, j − γh, j+1)‖2L2(ΓE )

≤ Ch2
P∑
j=0

|a j |‖γ j − γ j+1‖2H1(ΓE )
= Ch2‖Υ ‖2M,1,

which reveals that

‖(w, Υ ) − (wh, Υh)‖V ≤ Ch‖(w, Υ )‖V2 (9.5)

with a linear or bilinear interpolation wh of w. The approximation property (9.5) and
Lemma 8.9 show that

‖e‖2L2(Ωb)
+ ‖E‖2L ≤ C |A((e, E), (w, Υ ) − (wh, Υh))|

≤ Ch‖(e, E)‖V‖(w, Υ )‖V2

≤ C2
a (P + 1)2h‖(e, E)‖V(‖e‖2L2(Ωb)

+ ‖E‖2L)1/2,

(9.6)

which in turn gives

(‖e‖2L2(Ωb)
+ ‖E‖2L)1/2 ≤ C2

a (P + 1)2h‖(e, E)‖V . (9.7)

From Gårding’s inequality (9.2) for (e, E),

C1‖(e, E)‖2V − C2n
2
p(‖e‖2L2(Ωb)

+ ‖E‖2L) ≤ |A((e, E), (e, E))|
= |A((e, E), (u, Φ))| ≤ C‖(e, E)‖V‖(u, Φ)‖V ,
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we see that

C1‖(e, E)‖V − C2n
2
p(‖e‖2L2(Ωb)

+ ‖E‖2L)1/2 ≤ C‖(u, Φ)‖V
and apply (9.7) to the inequality to obtain

(C1 − C2C
2
an

2
p(P + 1)2h)‖(e, E)‖V ≤ C‖(u, Φ)‖V . (9.8)

For unique solvability of the finite dimensional problem, suppose that f = 0, and
so (u, Φ) = 0. Then there exists h0 such that C1 −C2C2

an
2
p(P + 1)2h0 > 0. For such

0 < h < h0, we clearly see that (e, E) = 0, implying the unique solvability of finite
element problem.

Also, the error estimate (9.3) in the energy norm is proved fromGårding’s inequality
for 0 < h < h0 and Theorem 8.1,

C‖(e, E)‖2V ≤ |A((e, E), (e, E))| = |A((e, E), (u, Φ) − (uh, Φh))|
≤ Ch‖(e, E)‖V‖(u, Φ)‖V2

with a linear or bilinear interpolation (uh, Φh) of (u, Φ), which leads to (9.3).
For the L2-error estimate, let (we, Υe) ∈ V0 be the solution to the adjoint problem

A((ξ, Ψ ), (we, Υe)) = (ξ, e)Ωb

for all (ξ, Ψ ) ∈ V0. Then the same argument used for (9.6) with Theorem 8.1 instead
of Lemma 8.9 shows again that

‖e‖2L2(Ωb)
= A((e, E), (we, Υe))

≤ Ch‖(e, E)‖V‖(we, Υe)‖V2

≤ Ca(P + 1)h‖(e, E)‖V‖e‖L2(Ωb)
,

which implies that

‖e‖L2(Ωb)
≤ Ca(P + 1)h‖(e, E)‖V ≤ Ca(P + 1)h2‖(u, Φ)‖V2

and completes the proof. ��
We note that the regularity constant in Lemma 8.9 may increase polynomially

(quadratically, but linearly if cutoff modes are excluded) as P grows and so a smaller
mesh h may be required for large P to retain the unique solvability and quasi-optimal
convergence, though this has not been encountered in our experiments. However,
when a cutoff modes is present, Ca depending on max j=0,...,P {1/|a j |} comes in the
regularity constant and it is found in numerical tests that the convergence of finite
element approximations is affected by the smallest parameter used for CRBCs. A
discussion on the convergence with respect to Ca and h will be made in the following
section.
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10 Numerical experiments

In this section we provide numerical examples that confirm the well-posedness and
convergence theories that were developed in the preceding sections. We specialize to
R
2 and take Θ = (0,W ). Note that now

Yn(y) =
√

2

W
cos

(nπ

W
y
)

are transverse eigenfunctions associated with eigenvalues λ2n = (nπ/W )2 for n ≥ 0.
The domain Ωb = (0, b) × (0,W ) is a rectangular region obtained by truncating the
semi-infinite waveguide Ω∞ at x = b (see Fig. 2). We set W = 1.

In the first example, we take k = 20 and choose f corresponding to the analytic
solution of (2.1)–(2.3):

uex (x, y) =
6∑

n=0

1

7
√
2
eiμn xYn(y)

in Ωb with b = 0.2. The exact solution uex is a superposition of seven propagating
modes. In order to apply an efficient CRBC on ΓE , the optimal parameters discussed
in Sect. 7 are computed on the interval [μ6, k] ≈ [6.6853, 20] by the Remez algorithm
and their distributions forn p = 1, 2, . . . , 5 are depicted inFig. 4. Theirmaximal reflec-
tion coefficients for propagating modes are presented in Table 2 as well. We compute
piecewise bilinear finite element approximations uh with mesh h = 1/800, 1/1600
and 1/3200 by using the finite element library deal.II [1]. To see the convergence
of approximate solutions, we measure relative L2- and H1-errors and report the errors
in Fig. 5. It is observed that approximate solutions obtained by CRBCs converge as
the order of CRBCs increases until mesh size errors dominate. In particular, when
the mesh size is small enough so that mesh error is ignorable, the relative L2-error
converges at the same convergence rate of the maximal reflection coefficients.

The second example illustrates the effect of CRBCs on evanescent modes. To do
this, we take k = 20 and choose an analytic solution uex including seven propagating
modes and ten evanescent modes

uex (x, y) =
16∑
n=0

1

17
√
2
eiμn xYn(y).

We also assume that the source coming from the left boundary ΓW is close to the
artificial boundary ΓE , e.g., b = 0.1 (W = 1). For this example, we use the same
purely imaginary parameters as those obtained with n p = 4 since the CRBC with
n p = 4 serves as an accurate absorbing boundary condition for propagating modes
for themeshes h = 1/800, 1/1600 and 1/3200. For the real parameters responsible for
damping evanescent modes, we solve numerically the min–max problem (6.2) on the
interval [μ̃7, Mσ ] ≈ [9.1438, 147.0887], where Mσ is determined by e−Mσ b = ρp.

The distribution of the real parameters and the maximal reflection coefficients ρe for
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(a)

(b)

(c)

(d)

(e)

Fig. 4 Distribution of optimal parameters for n p = 1, 2, . . . , 5. The seven red circles represent the exact
propagation frequencies μn and the blue * marks are the optimal parameters of n p = 1 in (a) through
n p = 5 in (e)

Table 2 Maximal reflection
coefficients for propagating
modes and evanescent modes
resulting from CRBCs with the
optimal parameters for k = 20

n p ρp ne ρe

1 7.1448E−2 1 3.6102E−1

2 1.2794E−3 2 3.4899E−2

3 2.2883E−5 3 3.2613E−3

4 4.0927E−7 4 3.0468E−4

5 7.3199E−9 5 2.8463E−5

each ne are shown in Fig. 6 and Table 2, respectively. The numerical results given in
Fig. 7 also illustrate the convergence of solutions with respect to increasing ne. Also,
it can be seen that the convergence rate of the relative L2-errors coincides with the
decay rate of ρe as long as the mesh is fine enough.

In the third example, the performance of CRBCs for the cutoff mode is examined.
We set k = 6π and choose uex such that the exact solution is composed of six
propagating modes and one cutoff mode:

uex (x, y) =
6∑

n=0

1

7
√
2
eiμn xYn(y)

defined on Ωb with b = 0.2 (W = 1). We increase the number of purely imaginary
parameters in the optimal way for propagating modes with n p = 1 ∼ 30. As indicated
inTheorem6.1, the error of the cutoffmode is controlled by SP = |b+2

∑P
j=0 a

−1
j |−1,

which is illustrated in Fig. 8. We notice that the optimal parameters used for propa-
gating modes do not seem to be the best choice.

In case that cutoff modes are involved, we may want to try other choices of param-
eters, with which CRBCs can reduce SP to much smaller level while the reflection
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Fig. 5 Relative L2- and
H1-errors for the exact
propagating solution

(a)

(b)

(c)

(d)

(e)

Fig. 6 Distribution of optimal parameters for ne = 1, 2, . . . , 5. The red circles represent the exact decay
rate of evanescent modes μ̃n and the blue * marks are the optimal parameters of ne = 1 in (a) through
ne = 5 in (e)

Fig. 7 Relative L2- and
H1-errors for the solution
including both of propagating
modes and evanescent modes
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Fig. 8 Relative L2- and
H1-errors for the solution
including both of propagating
modes and a cutoff mode
satisfying CRBCs with optimal
parameters

coefficients from propagating modes are not deteriorated too much, e.g., Newman’s
nodes a j = −ike j/

√
P based on geometric sequences for j = 0, . . . , P . Aswe can see

Fig. 9 of relative L2-errors, the CRBCs with geometric sequences produce improved
results, though it is observed that the errors obtained from this approach have an irreg-
ular behavior for large P . It can be explained in terms of a small parameter aP for large
P . According to the formula for SP , it seems that one might improve the accuracy
of CRBCs at the continuous level by adding a small parameter such as the smallest
parameter aP of the geometric sequences, which reduces SP to the error tolerance.
However, the cutoff mode on the discrete level does not satisfy the actual equation on
the continuous level

MΦN = −2
∂u

∂x
e0

but solves an equation of a propagating or evanescent mode

(−μ2
N ,h L + M)ΦN

h = −2
∂uh
∂x

e0

for some discrete axial frequency μN ,h �= 0 since no discrete eigenvalue of the trans-
verse Laplace operator will typically coincide with the cutoff transverse eigenvalue
λ2n . When small parameters are used, some components of L become large but in
contrast corresponding components of M become small. Therefore in case that h is
not small enough that μN ,h is big, −μ2

N ,h L might be dominant over the actual cut-
off mode system matrix M and so the resulting solution would not be accurate. The
mesh size affected by the small parameter used for CRBCs can be examined in Fig. 9.
We observe the minimum errors at P = 13, 17, 22 for h = 1/800, 1/1600, 1/3200,
respectively, in the plot and they are shifted as h is halved. The ratios of the smallest
parameter aP = −ike−√

P determining Ca = O(a−1
P ) between two minimum error
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Fig. 9 Relative L2-errors for the
solution including both of
propagating modes and a cutoff
mode satisfying CRBCs with
Newman nodes

(a) (b)

Fig. 10 Relative L2-errors in approximate solutions with h refined according to P for the solution including
both of propagating modes and a cutoff mode satisfying CRBCs with Newman nodes

points are e
√
13/e

√
17 ≈ 0.5960 and e

√
17/e

√
21 ≈ 0.5670, which indicates that it

appears that Cah in Gåding’s inequality is the main factor contributing to solvability
and quasi-optimality of the finite element analysis (9.8), and it is necessary to choose
h small enough when cutoff modes exist and aP is small. To see this observation in
more detail, we take a mesh refinement according to P in such a way that e

√
Ph is a

constant Cnewman. For example, Cnewman is taken to be e
√
10/800 ≈ 0.03 and we do

numerical tests with h = Cnewmane−√
P for each P . The results are given in Fig. 10a

with mesh size for each P in (b). While relative L2-errors in approximations for opti-
mal parameters with decreasing h are not improved due to reflection errors, those for
Newman’s nodes decrease asymptotically at the same rate of that of SP , without any
oscillatory behavior as long as meshes are refined according to P .

Aside from this, it is found in Fig. 11 that the norm of auxiliary variables, (‖Φ‖2L+
‖Φ‖2M)1/2, of the second and third examples increases with increasing P as in the
stability analysis of Theorem 8.1 but its variance is small. The independence of the
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(a) (b)

Fig. 11 Norm of auxiliary variables, (‖Φ‖2L + ‖Φ‖2M)1/2

Fig. 12 Relative L2- and H1-
errors with h = 1/200, 1/400,
1/800, 1/1600, 1/3200

finite element problem from P seems to be caused by the small variance of the norm
with respect to P .

In the last example, we are concerned with finite element convergence as h
approaches zero. To do this, we set k = 100 and take the computational domain
to be Ωb = (0, 0.1) × (0, 1), i.e., b = 0.1 and W = 1, for which the number of
propagating modes is 32. We choose the CRBC of order (np, ne) = (4, 3) for which
ρp = 3.9590 × 10−6 and ρe = 5.3492 × 10−5 and so reflection errors are negligible
compared with mesh errors. The wave source f on ΓW is given so that the exact
solution is defined by

u(x, y) =
31∑
n=0

1

64
√
2
eiμn xYn(y) +

63∑
n=32

1

64
√
2
e−μ̃n xYn(y)

having 32 propagating modes and 32 evanescent modes. The plot in Fig. 12 shows the
quasi-optimal convergence of relative L2- and H1-errors in finite element approxima-
tions with (n p, ne) = (4, 3).
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11 Appendix

Proof of Lemma 8.7 t�, j is given by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1 − e2iμnb(Qn
0,�−1)

2)Qn
�, j−1(1 − Qn

j, j (Q
n
j+1,P )2)

−4iμn(1 − e2iμnb(Qn
0,P )2)

(1 + Qn
j, j ) if � ≤ j,

(1 − e2iμnb(Qn
0, j−1)

2Qn
j, j )Q

n
j+1,�−1(1 − (Qn

�,P )2)

−4iμn(1 − e2iμnb(Qn
0,P )2)

(1 + Qn
j, j ) if � > j .

(11.1)
We first consider Δ±

�, j for � �= j . A simple computation shows

Δ+
�, j =

[
(1 − e2iμnb(Qn

0,�−1)
2Qn

�,�)Q
n
�+1, j−1(1 − Qn

j, j (Q
n
j+1,P)2)

−4iμn(1 − e2iμnb(Qn
0,P )2)

]

(1 + Qn
�,�)(1 + Qn

j, j )

for � < j , and Δ+
�, j = Δ+

j,� by the symmetry of t�, j . Analogously, it can be shown

that Δ−
�, j is given by

[
(1 + e2iμnb(Qn

0,�−1)
2Qn

�,�)Q
n
�+1, j−1(1 − Qn

j, j (Q
n
j+1,P )2)

4iμn(1 − e2iμnb(Qn
0,P )2)

]
(1 − Qn

�,�)(1 + Qn
j, j )

for � < j and

[
(1 − e2iμnb(Qn

0, j−1)
2Qn

j, j )Q
n
j+1,�−1(1 + Qn

�,�(Q
n
�+1,P )2)

−4iμn(1 − e2iμnb(Qn
0,P )2)

]
(1 − Qn

�,�)(1 + Qn
j, j )

for � > j . Thus, by (8.18) we have

1√|a�| |Δ
+
�, j |

1√|a j |
≤ C

|iμn|
( |1 + Qn

�,�|√|a�|
)( |1 + Qn

j, j |√|a j |

)
≤ C

|μn|2 , (11.2)

√|a�||Δ−
�, j |

1√|a j |
≤ C

|iμn|
(√|a�||1 − Qn

�,�|
)( |1 + Qn

j, j |√|a j |

)
≤ C

|μn| . (11.3)

In case of � = j , we see that

Δ+
�,� =

[
2(1 + e2iμnb(Qn

0,P )2/Qn
�,�) − (1 + Qn

�,�)((Q
n
�+1,P )2 + e2iμnb(Qn

0,�−1)
2)

−4iμn(1 − e2iμnb(Qn
0,P )2)

]
(1 + Qn

�,�),

(11.4)

Δ−
�,� =

[
((Qn

�+1,P )2 − e2iμnb(Qn
0,�−1)

2)

−4iμn(1 − e2iμnb(Qn
0,P )2)

]
(1 − Qn

�,�)(1 + Qn
�,�). (11.5)
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Now by the fact that |1 + Qn
�,�|/|a�| = 2/|a� − iμn| ≤ C/|μn|, (8.18), (11.4) and

(11.5), it is easy to show that

1√|a�| |Δ
+
�,�|

1√|a�| ≤ C
|1 + Qn

�,�|
|iμn||a�| ≤ C

|μn|2 ,

√|a�||Δ−
�,�|

1√|a�| ≤ C

|μn| ,

which completes the proof. ��

References

1. Bangerth, W., Hartmann, R., Kanschat, G.: deal. II—a general-purpose object-oriented finite element
library. ACM Trans. Math. Softw. 33(4), 24 (2007)

2. Bécache, E., Dhia, A.-S.B.-B., Legendre, G.: Perfectly matched layers for the convected Helmholtz
equation. SIAM J. Numer. Anal. 42(1), 409–433 (2004)

3. Bendali, A., Guillaume, P.: Non-reflecting boundary conditions for waveguides. Math. Comput.
68(225), 123–144 (1999)

4. Bramble, J.H., Pasciak, J.E.: Analysis of a finite PML approximation for the three dimensional time-
harmonic Maxwell and acoustic scattering problems. Math. Comput. 76(258), 597–614 (2007)

5. Chen, Z., Zheng, W.: Convergence of the uniaxial perfectly matched layer method for time-harmonic
scattering problems in two-layered media. SIAM J. Numer. Anal. 48(6), 2158–2185 (2010)

6. Courant, R., Hilbert, D.: Methods of Mathematical Physics, vol. 1. Wiley, New York (1953)
7. Druskin, V., Güttel, S., Knizhnerman, L.: Near-optimal perfectly matched layers for indefinite

Helmholtz problems. SIAM Rev. 58(1), 90–116 (2016)
8. Druskin, V., Lieberman, C., Zaslavsky, M.: On adaptive choice of shifts in rational Krylov subspace

reduction of evolutionary problems. SIAM J. Sci. Comput. 32(5), 2485–2496 (2010)
9. Givoli, D.: Nonreflecting boundary conditions. J. Comput. Phys. 94(1), 1–29 (1991)

10. Givoli, D., Hagstrom, T., Patlashenko, I.: Finite element formulation with high-order absorbing bound-
ary conditions for time-dependent waves. Comput.MethodsAppl.Mech. Eng. 195(29–32), 3666–3690
(2006)

11. Givoli, D., Neta, B.: High-order non-reflecting boundary scheme for time-dependent waves. J. Comput.
Phys. 186(1), 24–46 (2003)

12. Givoli, D., Neta, B., Patlashenko, I.: Finite element analysis of time-dependent semi-infinite wave-
guides with high-order boundary treatment. Internat J. Numer. Methods Eng. 58(13), 1955–1983
(2003)

13. Goldstein, C.I.: A finite element method for solving Helmholtz type equations in waveguides and other
unbounded domains. Math. Comput. 39(160), 309–324 (1982)

14. Güttel, S., Knizhnerman, L.: A black-box rational Arnoldi variant for Cauchy–Stieltjes matrix func-
tions. BIT 53(3), 595–616 (2013)

15. Hagstrom, T.: Radiation boundary conditions for the numerical simulation of waves. Acta Numer. 8,
47–106 (1999)

16. Hagstrom, T., Mar-Or, A., Givoli, D.: High-order local absorbing conditions for the wave equation:
extensions and improvements. J. Comput. Phys. 227(6), 3322–3357 (2008)

17. Hagstrom, T., Warburton, T.: Complete radiation boundary conditions: minimizing the long time error
growth of local methods. SIAM J. Numer. Anal. 47(5), 3678–3704 (2009)

18. Hagstrom, T., Warburton, T., Givoli, D.: Radiation boundary conditions for time-dependent waves
based on complete plane wave expansions. J. Comput. Appl. Math. 234(6), 1988–1995 (2010)

19. Harari, I., Patlashenko, I., Givoli, D.: Dirichlet-to-Neumann maps for unbounded wave guides. J.
Comput. Phys. 143(1), 200–223 (1998)

20. Higdon, R.L.: Absorbing boundary conditions for difference approximations to the multidimensional
wave equation. Math. Comput. 47(176), 437–459 (1986)

123



966 T. Hagstrom, S. Kim

21. Higdon, R.L.: Numerical absorbing boundary conditions for the wave equation. Math. Comput.
49(179), 65–90 (1987)

22. Ingerman, D., Druskin, V., Knizherman, L.: Optimal finite difference grids and rational approxima-
tionsof the square root. I. Elliptic functions. Commun. Pure Appl. Math. 53, 1039–1066 (2000)

23. Kim, S.: Analysis of complete radiation boundary conditions for the Helmholtz equation in perturbed
waveguides. (Manuscript)

24. Kim, S.: Analysis of the convected Helmholtz equation with a uniform mean flow in a waveguide with
complete radiation boundary conditions. J. Math. Anal. Appl. 410(1), 275–291 (2014)

25. Kim, S., Pasciak, J.E.: Analysis of a Cartesian PML approximation to acoustic scattering problems in
R
2. J. Math. Anal. Appl. 370(1), 168–186 (2010)

26. Kim, S., Zhang, H.: Optimized Schwarz method with complete radiation transmission conditions for
the Helmholtz equation in waveguides. SIAM J. Numer. Anal. 53(3), 1537–1558 (2015)

27. Kim, S., Zhang, H.: Optimized double sweep Schwarz method with complete radiation boundary
conditions for the Helmholtz equation in waveguides. Comput. Math. Appl. 72(6), 1573–1589 (2016)

28. Knizherman, L., Druskin, V., Zaslavsky, M.: On optimal convergence rate of the rational Krylov-
subspace reduction for electromagnetic problems in unbounded domains. SIAM J. Numer. Anal. 47,
953–971 (2009)

29. Koshiba, M., Tsuji, Y., Sasaki, S.: High-performance absorbing boundary conditions for photonic
crystal waveguide simulations. Microw. Wirel. Compon. Lett. IEEE 11(4), 152–154 (2001)

30. Petrushev, P., Popov, V.: Rational Approximation of Real Functions, Volume 28 of Encyclopedia of
Mathematics. Cambridge University Press, Cambridge (1987)

31. Rabinovich, D., Givoli, D., Bécache, E.: Comparison of high-order absorbing boundary conditions
and perfectly matched layers in the frequency domain. Int. J. Numer. Methods Biomed. Eng. 26(10),
1351–1369 (2010)

32. Saad, Y.: Numerical Methods for Large Eigen Value Problems, vol. 66. Society for Industrial and
Applied Mathematics, Philadelphia, PA (2011)

33. Schatz, A.H.: An observation concerning Ritz-Galerkin methods with indefinite bilinear forms. Math.
Comput. 28, 959–962 (1974)

34. Strang, G.: The discrete cosine transform. SIAM Rev. 41(1), 135–147 (1999)
35. Tsynkov, S.V.: Numerical solution of problems on unbounded domains. A review. Appl. Numer. Math.

27(4), 465–532 (1998)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Complete radiation boundary conditions for the Helmholtz equation I: waveguides
	Abstract
	1 Introduction
	2 Fourier series of solutions to the Helmholtz equation in waveguides
	3 Complete radiation boundary conditions
	4 Variational reformulation
	5 Existence and uniqueness of solutions to the Helmholtz equation with the CRBCs
	6 Convergence of approximate solutions satisfying CRBCs
	7 Parameter selection
	8 Stability and regularity of the variational problem
	8.1 Stability and regularity of solutions to Problem (8.1)
	8.2 Regularity of solutions to Problem (8.2)

	9 Finite element approximations
	10 Numerical experiments
	11 Appendix
	References




