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Abstract
Let a(z) = ∑

i∈Z ai zi be a complex valued function defined for |z| = 1, such that∑
i∈Z |ai | < ∞; define T (a) = (ti, j )i, j∈Z+ , ti, j = a j−i for i, j ∈ Z

+, the semi-
infinite Toeplitz matrix associated with the symbol a(z); let E = (ei, j )i, j∈Z+ be
a compact operator in �p, with 1 ≤ p ≤ ∞. A semi-infinite matrix of the kind
A = T (a) + E is said quasi-Toeplitz (QT). The problem of the computation of
exp(A) or exp(A)v, with A quasi-Toeplitz and v a vector, arises in many applications.
We prove that the exponential of aQT-matrix A is QT, that is, exp(A) = T (exp(a))+F
where F is a compact operator in �p. This property allows the design of an algorithm
for computing exp(A) and exp(A)v up to any precision. The case of families of n × n
matrices obtained by truncating infinite QT-matrices to finite size is also considered.
Numerical experiments show the effectiveness of this approach.

Mathematics Subject Classification 65F60 · 15A16 · 15B05 · 47B35

1 Introduction

Let T = {z ∈ C : |z| = 1} be the complex unit circle and denote by W the Wiener
algebra, that is, the set of all functions a(z) : T → C of the form a(z) = ∑

i∈Z ai zi

with
∑

i∈Z |ai | < ∞, endowed with the norm ‖a‖W = ∑
i∈Z |ai |.

Given a(z) ∈ W , let T (a) = (ti, j )i, j∈Z+ be the semi-infinite Toeplitz matrix,
associated with the symbol a(z), such that ti, j = a j−i for i, j in the set Z+ of
positive integers. Denote by Tn(a) the n × n leading principal submatrix of T (a). Let
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E = (ei, j )i, j∈Z+ be a compact operator acting on sequences (xi ) ∈ �p for 1 ≤ p ≤ ∞,
that is

∑
i∈Z+ |xi |p < ∞ for p < ∞ and supi∈Z+ |xi | < ∞ for p = ∞.

In this paper, we analyze the problem of computing the matrix exponential of
semi-infinite matrices of the form A = T (a) + E and of families of finite matrices
An = Tn(a) + En , where En is the leading principal submatrix of E . We refer to this
class of matrices as quasi-Toeplitz, in short, QT-matrices [4].

The computation of exp(Tn(a)) has been recently considered by Kressner and
Luce [19] for a finite Toeplitz matrix, motivated by several applications where this
problem is encountered, in particular, the numerical solution of parabolic equations,
and the Merton problem encountered in financial models. Other applications of the
matrix exponential of finite (block) Toeplitz matrices which concern the Erlangian
approximation of Markovian fluid queues are analyzed in [2,9].

Herewe are also interested in the case of semi-infiniteQT-matrices since theymodel
a wide range of queuing problems involving a denumerable set of states where the
computation of important quantities of interest, like the transient distribution and the
occupation period duration, is reduced to computing exp(A)v for a given vector v and
an infinite QT-matrix A = T (a)+ E . For instance, in the context of Markov chains, if
Q is the generator matrix of a continuous-time Markov process, then the probability
distribution π(t) at time t ≥ 0 is given by π(t)T = π(0)T exp(Qt), where π(0) is the
initial distribution [28, Chapter 2]. Similarly, the distribution of the occupation period
duration is obtained by the vector exp(QBt)e, where e is the vector of all ones and
QB is a matrix obtained by removing a suitable number of leading rows and columns
of Q [28, Chapter 5]. In many problems of interest like random walks on the integer
numbers or on the quarter plane [10,30], or in Birth-and-Death processes [21,24], and
in tandem Jackson queues [23,27], the generator Q is a QT-matrix.

Theproblemof computing f (A)v,where A is a linear operator has been investigated
in [13] for a generic function f , in [17] for the exponential function relying on Krylov
subspaces, and in [29] relying on the finite section technique. The case where f (z) is
analytic and A is a Toeplitz matrix is considered in [3] relying on contour integration.

Our aim is to provide effective numerical algorithms for computing the matrix
exponential of a QT-matrix A which exploit the specific structure of A. In particular,
if A = T (a) + E , we show that exp(A) can be represented in the form

exp(A) = T (exp(a)) + F,

where F = ( fi, j ) is a compact operator in �p. Moreover, if
∑

i∈Z |iai | < ∞ and∑
i, j∈Z+ |ei, j | < ∞, then also

∑
i, j∈Z+ | fi, j | < ∞.We prove this by showing that the

set ofQT-matrices is aBanach algebra eitherwith respect to the norm ‖A‖ = α‖a‖W +
‖E‖p, for α = 1

2 (1+√
5), or with the norm ‖A‖ = ‖a‖W +‖a′‖W +∑

i, j∈Z+ |ei, j |.
This property allows us to represent a QT-matrix by storing the Toeplitz part and the
correction part and to operate with them separately. In fact, the decay properties of
the coefficients ai and of the entries ei, j , if 1 < p < ∞, enable us to approximate a
QT-matrix to arbitrary precision by means of a finite number of parameters.

We provide an algorithm for computing both the Toeplitz part T (exp(a)) and the
compact correction F of exp(A). The algorithm relies on the power series represen-
tation of the matrix exponential exp(A) = ∑∞

k=0
1
k! A

k and on a suitable recurrence
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equation which relates Ei+1 to Ei where Ai = T (ai ) + Ei . For approximating the
matrix exponential we used the Taylor expansion instead of Padé approximation, since
an approach based on rational approximation involves matrix inversion that, for QT-
matrices would have a higher computational cost. In order to reduce the number of
terms in the Taylor expansion we used the classical technique of scaling and squaring
[16].

The decay to zero of the coefficients fi of f (z) = ∑
i∈Z fi zi = exp(a(z)) is

analyzed and upper bounds for the numerical bandwidth b of T (exp(a)), that is, the
minimum integer b such that | fi | ≤ ε max j | f j | for i > b, are given, where ε is a given
positive number, say the machine precision. A priori upper bounds for the numerical
rank r , to the numerical size n and to the norm of the correction F are also provided.
Here, for numerical rank of a matrix A we mean the minimum rank of B such that
‖A − B‖ < ε for a given norm ‖ · ‖. By numerical size of F we mean the minimum
value of n such that | fi, j | < ε maxp,q | f p,q | for i, j > n.

The complexity of our algorithm for infinite matrices, in terms of arithmetic opera-
tions, is proportional to r(n + b) log(n + b) + r2n, times the overall number of terms
in the Taylor expansion and the number of squaring steps. The same algorithm can be
adjusted to the case of finite N × N matrices. Clearly, if N > n + b, the complexity
is independent of the size N . This property makes the algorithm very effective in
large part of the cases and more convenient than the approach of [19], which relies
on the displacement representation of Toeplitz-like matrices and of [22,26,32], where
the complexity depends on the size N of the matrix. It is important to point out that,
once the representation exp(A) = T (exp(a)) + F has been computed, the product
y = exp(T (a))v can be written as y = T (exp(a))v + Fv. The first term is a convolu-
tion which can be easily computed by means of FFT, and the second term is reduced
to computing the product of a finite matrix of size n, of rank r , and a vector. The
overall complexity of this multiplication is O(M logM + rn) operations where M
is the maximum of the numerical size of the vector v and the number of computed
components of y.

The algorithms for computing exp(A) and exp(A)v, where A is a semi-infinite or
finite QT-matrix, have been implemented in Matlab and tested with several problems.
These tests include infinite generators from queueing models typically having a Hes-
senberg structure, the n × n finite differences second derivative matrix in the form
Δt
Δ2

x
tridn(1,− 2, 1) encountered in the discretization of the heat equation, and the Mer-

ton problem. Comparisons have been performed with the currently most advanced
toolbox of [19] for computing the exponential of a finite Toeplitz matrix, and with
the toolbox of Al-Mohy and Higham [1] for computing the product exp(A)v for a
sparse matrix A, available from https://github.com/higham/expmv. From the numer-
ical experiments that we have performed, it turns out that the algorithms based on
QT-matrices are much faster than the algorithms of [1,19], and in all cases they are
numerically very reliable. When applied to finite matrices, the effectiveness of our
algorithm is evident in the cases where the size N of the matrix is larger than the
numerical bandwidth b of T (exp(a)) and the numerical size n of F . However, our
algorithm still provides fast computations and accurate results if the size N is smaller
than b and n, like in the case of the Merton problem.
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322 D. A. Bini, B. Meini

The paper is organized as follows. In Sect. 2 we recall some preliminary results
concerning semi-infinite Toeplitz matrices. In Sect. 3 we analyze the properties of
exp(T (a)) and show that exp(T (a)) = T (exp(a)) + F , where F is compact. In
Sect. 4 we perform the decay analysis of the coefficients of the function exp(a) and
give bounds for the numerical size and numerical rank of the correction F . Section 5
extends the results of Sect. 3 to exp(A)where A = T (a)+E , with E 
= 0. In Sect. 6we
describe in detail the algorithm for computing the exponential of a Toeplitz matrix and
we outline the case of a general QT-matrix. Section 7 reports the results of extensive
numerical experimentation.

2 Preliminaries

We recall the basic definition of the matrix exponential of an n × n matrix and the
main properties of semi-infinite Toeplitz matrices which will be used in our analysis.

For an n × n matrix A, it is well known that the series exp(A) := ∑+∞
i=0

1
i ! A

i is
convergent and defines thematrix exponential of A.We refer to the book byN.Higham
[16] for the concept of matrix function and for more details on the matrix exponential.
Indeed, defining the partial sum

Sk =
k∑

i=0

1

i ! A
i , (1)

and the remainder Rk of the series as Rk = ∑∞
i=k+1

1
i ! A

i , for any matrix norm ‖ · ‖
such that ‖A2‖ ≤ ‖A‖2 it follows that

‖Rk‖ =
∥
∥
∥
∥
∥

∞∑

i=k+1

1

i ! A
i

∥
∥
∥
∥
∥

≤
∞∑

i=k+1

1

i ! ‖A‖i (2)

so that limk→∞ ‖Rk‖ = 0 which implies the convergence of the sequence Sk .
This property is still valid if A = (ai, j )i, j∈Z+ is a semi-infinite matrix provided that

A belongs to a Banach algebraA, that is an algebra endowed with a sub-multiplicative
norm ‖ · ‖, such that ‖AB‖ ≤ ‖A‖ · ‖B‖ for any A, B ∈ A, which makes it a Banach
space. Indeed, for A ∈ A, consider the sequence {Sk}k defined in (1). For i > j we
have

‖Si − S j‖ ≤
i∑

h= j+1

1

h! ‖A
h‖ ≤

i∑

h= j+1

1

h! ‖A‖h .

From this bound it follows that for any ε > 0 there exists k > 0 such that ‖Si−S j‖ ≤ ε

for any i > j ≥ k. That is, {Sk}k is a Cauchy sequence. Since by definition of Banach
space, the Cauchy sequences inA have a limit inA, there exists a matrix L ∈ A such
that limk→∞ ‖Sk − L‖ = 0. We let L = exp(A).
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On the exponential of semi-infinite quasi-Toeplitz matrices 323

We now recall some results concerning infinite Toeplitz matrices. For more details
on this topic we refer the reader to the book by Böttcher and Grudsky [7].

Let W = {a(z) = ∑
i∈Z ai zi : ∑

i∈Z |ai | < +∞} denote the Wiener algebra
formed by Laurent power series, defined on the unit circle T = {z ∈ C : |z| = 1},
such that the sum of the moduli of their coefficients is finite. It is well known that W
endowedwith the norm‖a‖W = ∑

i∈Z |ai | is aBanach algebra. Fora(z) ∈ W letT (a)

denote the semi-infinite Toeplitz matrix whose entries ti, j are such that ti, j = a j−i for
i, j ∈ Z

+, where Z+ denotes the set of positive integers. Also let a+(z) and a−(z) be
the power series defined by a+(z) = ∑

i∈Z+ ai zi and a−(z) = ∑
i∈Z+ a−i zi so that

a(z) = a0 + a+(z) + a−(z−1). Finally, given the power series b(z) = ∑
i∈Z+ bi zi

define H(b) = (hi, j ) the Hankel matrix such that hi, j = bi+ j−1, for i, j ∈ Z
+.

Any semi-infinite matrix S = (si, j )i, j∈Z+ can be viewed as a linear operator,
acting on semi-infinite vectors v = (vi )i∈Z+ , which maps the vector v onto the vector
u such that ui = ∑

j∈Z+ si, jv j , provided that the summations are finite. For any
p ≥ 1, included p = ∞, we may define the Banach space �p formed by all the

semi-infinite vectors v = (vi )i∈Z+ such that ‖v‖p = (
∑

i∈Z+ |vi |p)
1
p < ∞, where

for p = ∞we have ‖v‖∞ = supi∈Z+ |vi |. It is well known that these norms induce the
correspondingoperator norms‖S‖p = sup‖v‖p=1 ‖Sv‖pwhich are sub-multiplicative,
i.e., ‖AB‖p ≤ ‖A‖p‖B‖p for any semi-infinite matrices A, B having finite norm, and
that the linear space formed by the latter semi-infinitematrices forms aBanach algebra.
We denote by L p the set of linear operators with finite operator norm induced by the
�p norm.

We may wonder if the matrices T (a), H(a+) and H(a−) define bounded linear
operators acting on the Banach space �p. The answer to this question is given by
the following result of [7] which relates the matrix T (a)T (b) to T (ab), H(a−) and
H(a+), see Propositions 1.2 and 1.3 in [7].

Theorem 1 For a(z), b(z) ∈ W let c(z) = a(z)b(z). Then we have

T (a)T (b) = T (c) − H(a−)H(b+).

Moreover, for any p ≥ 1, including p = ∞, we have

‖T (a)‖p ≤ ‖a‖W , ‖H(a−)‖p ≤ ‖a−‖W , ‖H(b+)‖p ≤ ‖b+‖W ,

and the matrices H(a−) and H(b+) define compact operators in �p.

The above result implies that the product of two Toeplitz matrices can be writ-
ten as a Toeplitz matrix plus a correction whose �p operator norm is bounded by
‖a−‖W ‖b+‖W ≤ ‖a‖W ‖b‖W . It is observed in [8] that the smallest closed sub-
algebra of L2 which contains the set of semi-infinite Toeplitz matrices associated
with a continuous symbol is formed by matrices of the kind A = T (a) + Ea where
a(z) is continuous and Ea is a compact operator in L2. In this algebra we have
‖A‖2 ≤ ‖a‖W + ‖Ea‖2.

We can endow the above set of matrices with different norms that are better suited
for numerical computations. In particular, considermatrices of the kind A = T (a)+Ea
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324 D. A. Bini, B. Meini

where a(z) ∈ W and Ea is a compact operator in L p for some 1 ≤ p ≤ ∞, and define
‖A‖ := α‖a‖W + ‖Ea‖p. It is easy to show that if α ≥ (1 + √

5)/2 then this norm
is submultiplicative. In fact, in view of Theorem 1, if A = T (a) + Ea, B = T (b) +
Eb,C = AB, c(z) = a(z)b(z), we have C = T (c) + Ec, Ec = − H(a−)H(b+) +
T (a)Eb+EaT (b)+EaEb so that Ec is compact since the sum of products of operators
of which at least a factor is compact, see [20, Theorem 8.3-2], and

‖AB‖ = ‖T (c) + Ec‖ = α‖c‖W + ‖Ec‖p

≤ α‖a‖W ‖b‖W + ‖a‖W ‖b‖W + ‖a‖W ‖Eb‖p + ‖Ea‖p‖b‖W + ‖Ea‖p‖Eb‖p

≤ (α‖a‖W + ‖Ea‖p)(α‖b‖W + ‖Eb‖p),

where the last inequality follows since α ≥ (1 + √
5)/2.

Thus, the set formed by matrices of the kind T (a) + Ea , where a(z) ∈ W and
Ea is a compact bounded operator in �p, is a Banach algebra with the norm ‖A‖ :=
α‖a‖W + ‖Ea‖p. By choosing for instance p = 1 or p = ∞, the norm ‖A‖ can be
easily computed.

Under the assumption a′(z) ∈ W , where a′(z) = ∑
i∈Z iai zi is the first deriva-

tive of a(z), we may define a more restrictive norm as ‖A‖ := ‖a‖W + ‖a′‖W +
‖Ea‖F , ‖Ea‖F = ∑

i, j∈Z+ |(Ea)i, j |. The set of matrices A = T (a) + Ea where
a′(z) ∈ W and ‖Ea‖F < +∞, endowed with the above norm, is a Banach algebra.
For more details we refer the reader to [4].

Observe that the boundedness of ‖Ea‖2 or of ‖Ea‖F implies that for any ε > 0
there exists k such that |(Ea)i, j | ≤ ε for any i, j > k. This bound allows us to represent
Ea , up to within any given error bound, by using a finite number of parameters. This
property does not hold if, say, the 1-norm or the infinity norm is used. In fact setting
e, the semi-infinite vectors with components equal to 1 and setting e1 the semi-infinite
vector with zero components except for the first which is equal to 1, it holds that
‖eeT1 ‖∞ = 1, ‖e1eT ‖1 = 1.

3 Exponential of a semi-infinite Toeplitz matrix

In this sectionwe study properties of the exponential of a semi-infinite Toeplitz matrix,
by relating in particular exp(T (a)) to T (exp(a)).

Let a ∈ W and consider the associated semi-infinite Toeplitz matrix T (a). From
Theorem 1 and by the monotonicity of the function exp(z) we have

‖ exp(T (a))‖p ≤
∞∑

i=0

1

i ! ‖T (a)‖ip = exp(‖T (a)‖p) ≤ exp(‖a‖W ).

Now we will take a closer look at exp(T (a)) and relate it to T (exp(a)). Since W
is a Banach algebra, the exponential function is well defined over W and we have
exp(a(z)) = ∑+∞

i=0
1
i !a(z)i .
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On the exponential of semi-infinite quasi-Toeplitz matrices 325

We first relate T (a)i to T (ai ), for i ≥ 2. From Theorem 1 we may write T (a)2 =
T (a2) + E2, where E2 = − H(a−)H(a+). For a general i ≥ 0, define Ei as

Ei = T (a)i − T (ai ), (3)

where E0 = 0, E1 = 0. Then we have the following

Theorem 2 Let a ∈ W and let Ei = T (a)i − T (ai ), for i ≥ 1. Then

Ei = T (a)Ei−1 − H(a−)H((ai−1)+), i ≥ 2,

E1 = 0.
(4)

Moreover, for any i ≥ 2 and any integer p ≥ 1, including p = ∞,

‖Ei‖p ≤ 2‖a‖iW . (5)

Proof From the equation T (a)i = T (a)T (a)i−1 and from Theorem 1 we obtain

T (a)i = T (a)T (a)i−1 = T (a)[T (ai−1) + Ei−1]
= T (ai ) − H(a−)H((ai−1)+) + T (a)Ei−1

= T (ai ) + Ei ,

with Ei = − H(a−)H((ai−1)+) + T (a)Ei−1. Whence we deduce recurrence (4).
Moreover, taking the �p-norm in (3) we get the bound (5). ��

Now define Sk, Fk and Gk as follows

Sk =
k∑

i=0

1

i !T (a)i = Gk + Fk,

Gk =
k∑

i=0

1

i !T (ai ), Fk =
k∑

i=0

1

i ! Ei .

The following result shows that the exponential of a QT-matrix is a QT-matrix:

Theorem 3 Let a ∈ W . Then

exp(T (a)) = T (exp(a)) + F

where F = ∑∞
i=0

1
i ! Ei is a compact operator in L p such that

‖F‖p ≤ ‖ exp(T (a))‖p + ‖T (exp(a))‖p ≤ 2 exp(‖a‖W ). (6)
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326 D. A. Bini, B. Meini

Proof Observe that Gk = ∑k
i=0

1
i !T (ai ) = T (

∑k
i=0

1
i !a

i ) is such that limk→∞ Gk =
T (exp(a)). Since limk→∞ Sk = exp(T (a)), there exists the limit

lim
k→∞ Fk = exp(T (a)) − T (exp(a)) =: F . (7)

The bound for the norm holds since ‖ exp(T (a))‖p ≤ exp(‖T (a)‖p), ‖T (a)‖p ≤
‖a‖W , and ‖ exp(a)‖W ≤ exp(‖a‖W ).Moreover, since a(z) ∈ W, H(a−) and H(a+)

are compact so that also Ek and Fk are compact. The correction F is compact in L p

since it is the limit of compact operators [20, Theorem 8.1-5]. ��
If a′(z) ∈ W , we may prove a similar result, by first providing a bound for ‖Ei‖F .

To this end, observe that the subset ofW formed by functions a(z) such that a′(z) ∈ W
is a Banach algebra. This property enables us to prove the following

Lemma 1 Let a(z) ∈ W and E ∈ F then ‖T (a)E‖F ≤ ‖a‖W ‖E‖F . Moreover, if
a′(z) ∈ W , then for any k ≥ 1 we have

‖H(a−)H((ak−1)+)‖F ≤ (k − 1)‖a‖k−2
W ‖a′‖2W .

Proof For the first part, let V = T (a)E so that vi, j = ∑
r∈Z+ ar−i er , j . Observe that

for any j, r ∈ Z
+, one has

∑
i∈Z+ |ar−i er , j | ≤ ∑

k∈Z |ak | · |er , j | = ‖a‖W |er , j |. From
this inequality we find that

‖V ‖F =
∑

i, j∈Z+
|vi, j | ≤

∑

i, j∈Z+

∑

r∈Z+
|ar−i er , j | =

∑

r , j∈Z+

∑

i∈Z+
|ar−i er , j |

≤ ‖a‖W
∑

r , j∈Z+
|er , j | = ‖a‖W ‖E‖F .

For the second part, we have ‖H(a−)‖F = ∑
i, j,∈Z+ |a1−i− j | = ∑

h∈Z+ h|a−h | ≤
‖a′‖W which is finite since a′(z) ∈ W . Similarly, ‖H((ak−1)+)‖F ≤ ‖(ak−1)′‖W <

∞ since both the functions ak−1(z) and (ak−1(z))′ belong toW . Thus, for the matrix
product Lk = H(a−)H((ak−1)+) we find that

‖Lk‖F ≤ ‖H(a−)‖F · ‖H((ak−1)+‖F ≤ ‖a′‖W ‖(ak−1)′‖W .

Now, since (ak−1(z))′ = (k − 1)ak−2(z)a′(z), we have

‖(ak−1)′‖W ≤ (k − 1)‖a‖k−2
W ‖a′‖W .

Thus we get ‖Lk‖F ≤ (k − 1)‖a‖k−2
W ‖a′‖2W . ��

From the above result we deduce the following

Theorem 4 If a′(z) ∈ W , then

‖Ei‖F ≤ i(i − 1)

2
‖a′‖2W ‖a‖i−2

W , i ≥ 2.
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Moreover, exp(T (a)) = T (exp(a)) + F, with F such that

‖F‖F ≤ 1

2
‖a′‖2W exp(‖a‖W ).

Proof Taking norms in (4), by Lemma 1 we have

‖Ei‖F ≤ ‖T (a)Ei−1‖F + (i − 1)‖a‖i−2
W ‖a′‖2W , i ≥ 2,

where E0 = E1 = 0. By applying again Lemma 1 we deduce that

‖Ei‖F ≤ ‖a‖W ‖Ei−1‖F + (i − 1)‖a‖i−2
W ‖a′‖2W .

Therefore, by using an induction argument we arrive at

‖Ei‖F ≤ i(i − 1)

2
‖a′‖2W ‖a‖i−2

W , i ≥ 2,

which proves the first bound. This implies that

‖F‖F ≤
∞∑

i=0

1

i ! ‖Ei‖F ≤ 1

2
‖a′‖2W exp(‖a‖W ),

which completes the proof. ��

4 Decay properties and analysis of the correction

The aim of this section is to study decay properties of the entries of exp(T (a)) =
T (exp(a)) + F . These properties will enable us to approximate the series f (z) =
∑+∞

i=−∞ fi zi = exp(a(z)) by a Laurent polynomial f̃ (z) = ∑k+
i=− k− fi zi , such that

| fi | ≤ ε max j | f j | for |i | > b = max{k−, k+}, where ε > 0 is a given tolerance, and
to approximate the correction F by a matrix F̃ such that ‖F − F̃‖ ≤ ε, and f̃i, j = 0
if i > n or j > n. We refer to b as the numerical band-width of T (exp(a)), while
r = rank(F̃), and n are referred to as the numerical rank and the numerical size of the
correction F . A priori upper bounds for the numerical band-width, numerical rank r ,
and numerical size n are provided.

More specifically, in the case where exp(a(z)) is analytic in an annulus containing
the unit circle, we give upper bounds to | fi | which provide estimates of their conver-
gence to zero and show that for the function a(z) = θ(z−1 − 2 + z) these bounds are
strict for any value of θ . Moreover, we show that the numerical rank and the numerical
size of F are strictly related to the decay of | fi |.

We recall that not all the functions in the Wiener class are analytic in an open
annulus containing the unit circle, consider for instance a(z) = ∑

i∈Z\{0} 1
i2
zi . On the

other hand, Laurent polynomials are analytic in a neighbourhood of the unit circle so
that our analysis covers the class of finite representable QT matrices.
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4.1 Decay properties

The analysis of the decay relies on theCauchy estimate of the coefficients of an analytic
function [15, Theorem 4.4c]:

Theorem 5 Let h(z) = ∑+∞
i=−∞ hi zi be a Laurent series convergent in an annulus

r < |z| < R. Then, for any ρ with r < ρ < R, the coefficients satisfy

|hi | ≤ max|z|=ρ
|h(z)| · ρ−i , i ∈ Z.

If a(z) is analytic in an annulus r < |z| < R, then exp(a(z)) is analytic as well
in the annulus r < |z| < R. Therefore, from Theorem 5, the coefficients of f (z) =∑+∞

i=−∞ fi zi = exp(a(z)), which define the Toeplitz part of exp(T (a)), have an
exponential decay. Indeed, for any r < ρ < R and for any k ∈ Z, one has

| fk | ≤ max|z|=ρ
| exp(a(z))|ρ−k . (8)

In particular, the larger is R > 1, the faster is the decay of the coefficients fk with
k < 0, while the smaller is r < 1, the faster is the decay of the coefficients fk with
k > 0.

We may give a more strict bound for the decay with a suitable choice of ρ ∈ (r , R)

by minimizing the right-hand side of (8). A similar argument has been applied in [18],
to estimate the decay of the exponential of banded matrices. In this latter case, since
a(z) is a Laurent polynomial, R > r > 0 can take any value.

Let z = ρ(cos t + i sin t), where i is the complex unit such that i2 = − 1. For
simplicity, consider the case where ai ∈ R and observe that

exp(a(z)) = exp

⎛

⎝
∑

j∈Z
a jρ

j cos j t

⎞

⎠ exp

⎛

⎝i
∑

j∈Z
a jρ

j sin j t

⎞

⎠ .

Since the second factor has modulus 1, we get | exp(a(z))| = exp(
∑

j∈Z a jρ
j cos j t)

≤ exp(a0 + ∑
j 
=0 |a j |ρ j ). Let us define v(ρ) = ∑

j 
=0 |a j |ρ j , so that we may write

ρ−k max|z|=ρ
| exp(a(z))| ≤ ρ−k exp(a0) exp(v(ρ)).

Therefore, we may minimize the bound by computing the zeros of the derivative of
γ (ρ) = ρ−k exp(v(ρ)). From the condition γ ′(ρ) = 0 we get the equation ρv′(ρ) =
k, which allows us to provide bounds for the decay of the coefficients which are better
than the simple exponential obtained directly by (8).

We show this by means of a simple example which will be considered again in Sect.
7 on numerical experiments.

Consider the matrix A = T (a), where a(z) = θ(z−1 − 2 + z). For θ = (n + 1)2,
the n×n section of A coincides with the finite difference approximation of the second
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Table 1 Upper bounds for the numerical bandwidth of the infinite matrix exp(A) for A = θT (a), a(z) =
z−1 − 2 + z, obtained by means of the analysis based on the Cauchy theorem. These values coincide with
the actual values reported in Table 9 obtained by means of the numerical computation

θ 513 1025 2049 4097 8193 16,385 32,768

Bandwidth 273 385 544 769 1088 1538 2174

derivative over a grid of width Δx = 1/(n + 1). We have v′(ρ) = θ(1 − 1/ρ2), so
that the optimal value of ρ solves the equation ρ2 − k

θ
ρ − 1 = 0, having the positive

solution ρ1(k) = k
2θ +

√( k
2θ

)2 + 1. Observe that ρ1(k) + 1/ρ1(k) = 2
√

1 + ( k
2θ

)2

so that we get the bound

| fk | ≤ ρ1(k)
−k exp

⎛

⎝2θ

⎛

⎝

√

1 +
(

k

2θ

)2

− 1

⎞

⎠

⎞

⎠ (9)

which allows us to provide an a-priori estimate of the numerical bandwidth of the
Toeplitz part of exp(T (a)).

In fact, computing the logarithm of the above bound for a sufficiently large number
of positive integers k and comparing it to the logarithm of ε, with the help of Matlab,
we get upper bounds for the numerical bandwidth of exp(T (a)) displayed in Table 1. It
is interesting to observe that in this specific case, the theoretical upper bounds exactly
coincide with the actual values obtained in the algorithmic treatment performed in
Sect. 7 reported in Table 9.

A similar analysis can be performed for matrices arising in Markov chains, where
a0 < 0, ai ≥ 0 for i 
= 0 and

∑
i ai ≤ 0. Observe that the nonnegativity of ai for

i 
= 0 implies that max|z|=ρ | exp(a(z))| = exp(a0 + ∑
j 
=0 ρ j a j ) so that the bounds

that one obtains are sharp.

4.2 Numerical size of the correction

Here we estimate the numerical size of the correction F = exp(T (a)) − T (exp(a)),
where we assume that a(z) = ∑n+

i=− n− ai zi is a Laurent polynomial. We recall the
following identity [16, Section 10.2], which is valid also for operators S and H [12]:

exp(S + H) − exp(S) =
∫ 1

0
exp(S(1 − s))H exp((S + H)s)ds. (10)

Consider the bi-infinite Toeplitz matrix T±∞(a) = (ti, j )i, j∈Z, ti, j = a j−i . It is well
known [6] that if a(z) ∈ W then T±∞(a) defines a bounded operator in �2(Z) such
that ‖T±∞(a)‖2 ≤ ‖a‖W . Partition it into a 2 × 2 block matrix

T±∞(a) =
[
T̂ (a) Y1
Y2 T (a)

]

(11)
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where T̂ (a) = (a j−i )i, j≤0 and Y1,Y2 derive from the partitioning. Split T±∞(a) as

T±∞(a) = S + H , S =
[
T̂ (a) Y1
0 T (a)

]

, H =
[
0 0
Y2 0

]

. (12)

Observe that exp(T±∞(sa)) = T±∞(exp(sa)) so that, by partitioning T±∞(exp(sa))

into a 2 × 2 block matrix we get

T±∞(exp(sa)) =
[∗ Z(s)

∗ T (exp(sa))

]

,

where Z(s) = (zi, j (s))i≤0, j>0, zi, j (s) = f j−i (s), exp(a(z)s) = ∑
i∈Z fi (s)zi , and

the ∗’s denote suitable submatrices. Since, for the block triangular structure of S, one
has

exp(sS) =
[∗ ∗
0 exp(sT (a))

]

,

it turns out that the correction F is given by the (2, 2) block of exp(S) − exp(S + H).
In view of (10), this matrix is expressed by the following integral

F = −
∫ 1

0
exp(T (a)(1 − s))Y2Z(s)ds. (13)

In view of the results of Sect. 4.1, the coefficients fk(s) have an exponential decay
as k → ∞, more specifically | fk(s)| ≤ max|z|=ρ | exp(a(z)s)|ρ−k ≤ σ(ρ)ρ−k where
σ(ρ) = maxs∈[0,1] max|z|=ρ | exp(a(z)s)|.

SinceY2 is nonzero only in the top-right n−×n− submatrix Ŷ2, the integrand of (13)
can bewritten in the form T1(s)Ŷ2Z1(s), where T1(s) is formed by the first n− columns
of exp(T (a)(1−s)) and Z1(s) is formed by the last n− rows of Z(s).More specifically,
the j th columnof Z1(s) has entries f j−n−−1(s), . . . , f j (s). Therefore, if � is the length
of the meaningful part of the infinite vector ( fi (s))i≥1, that is | fi (s)| < ε‖ f (s)‖∞ for
i > �, then the columns of Z(s) of index j > � have entries of modulus smaller than
ε‖ f (s)‖∞ so that they are relatively negligible and can be replaced by zero. Therefore,
the value of � provides the number of significant columns of the correction F . This
value can be estimated in terms of the specific function a(z) by following the analysis
of Sect. 4.1. For instance, in the case a(z) = θ(z−1−2+ z) considered in the previous
section, we get the same bound (9) for � where θ is replaced by θs, and the maximum
over s ∈ [0, 1] must be taken.

A similar analysis can be carried out for estimating the significant number of rows
of the correction. It turns out that the number of non-negligible columns depends on
the decay of fi (s) for i > 0, while the number of non-negligible rows depends on the
decay of fi (s) for i < 0.
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4.3 Rank of the correction

The a-priori estimation of the numerical rank of the correction F is a difficult task.
A similar problem is examined in the paper [19] by Kressner and Luce, where the
displacement rank of the exponential of a finite Toeplitz matrix is considered. The dis-
placement rank of a matrix A is defined as rankΔ(A)whereΔ(A) = Z A− AZ and Z
is the Toeplitz matrix having ones in the subdiagonal and zeros elsewhere. The numer-
ical rank of F and the numerical displacement rank of exp(T (a)) are closely related.
In fact, if exp(T (a)) = T (exp(a)) + F , then Δ(exp(A)) = Δ(T (exp(a)) + Δ(F).
This way, if rank(F) = k then rankΔ(exp(T (a))) ≤ 2k + 2 since the displacement
rank of a Toeplitz matrix is at most 2. That is, a bound for the rank of the correction F
provides a bound for the displacement rank. Conversely, a bound for the displacement
rank of exp(T (a)) provides a bound for the displacement rank of the correction F .

Indeed, the numerical size of the correction analyzed in the previous section is
an upper bound for the numerical rank of F . It is possible to give a-priori bounds
for the numerical rank of F depending only on the norm of T (a), by using tools of
numerical integration analyzed in [31] by Trefethen. Since these bounds do not use
other information except the norm of T (a), they are very general and thus not very
sharp. However, they can be made sharper if information about the function a(z) is
available which allow us to choose integration contours well suited for the specific
features of a(z).

Using the Dunford–Cauchy formula one can write [11]

exp(A) = 1

2π i

∫

Γ

ez(z I − A)−1dz

where Γ is a Jordan curve containing all the eigenvalues of the operator A, say a circle
of center 0 and radius R > ‖A‖ for a give operator norm ‖ · ‖. Applying this formula
to the matrices S and S + H of Eq. (12) and with Γ being the circle of center 0 and
radius R > max(‖S‖, ‖S + H‖), we get

exp(S + H) − exp(S) = 1

2π i

∫

|z|=R
ez(z I − S)−1H(z I − S − H)−1dz. (14)

Since S + H = T±∞(a) then ‖S + H‖2 ≤ ‖a‖W . Moreover, from (12) we have
|S + H | = |S| + |H | ≥ |S| so that, by the monotonicity of the 2-norm, it follows that
‖S‖2 ≤ ‖S + H‖2. This way, any R such that R > ‖a‖W guarantees the condition
R > max(‖S‖2, ‖S + H‖2). By using the same arguments of the previous section,
based on the 2 × 2 block partitioning of S and S + H , we obtain that F is the (2,2)
block of the integral (14).

Observe that the matrix H has finite rank n− so that, by applying a quadrature
formula with N knots to approximate the integral of this submatrix, we find that F is
approximated by the sum of N matrices of rank at most n−, i.e., by a matrix of rank
at most Nn−. This way, the problem turns into finding the minimum number of knots
which provides a numerical approximation of this integral with error at most ε. This
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problem is investigated for an analytic function over the annulus {z ∈ C, r−1 <

|z| < r} by Trefethen and Weideman in [31] where the following result is proved:

Theorem 6 Let u(z) be an analytic function in the annulus {z ∈ C : r−1 < |z| < r} for
r > 1, which takes values inC. Let M > 0 be such that M ≥ |u(z)| for r−1 < |z| < r .
Then,

|I − IN | ≤ 4πM

rN − 1
,

where I = ∫
|z|=1 u(z)dz, and IN is the approximation obtained with the trapezoidal

rule with N knots.

In order to apply this result to our case, we have to scale the problem in such a way
that the integral is taken on the unit circle. First observe that the trapezoidal rule applied
to the right-hand side of (14) is the same as applying the trapezoidal rule separately
to both terms in the left-hand side. Therefore it is enough to consider an integral of
the form I = 1

2π i

∫
|z|=R e

z(z I − A)−1dz, where A is such that ‖A‖2 ≤ ‖a‖W and
R > ‖a‖W . In order to rescale the latter integral we change the variable z = Ry and
get

I = 1

2π i

∫

|y|=1
eRy

(

y I − 1

R
A

)−1

dy. (15)

Observe that the entries of the integrand matrix are analytic functions for |y| >

‖A‖2/R so that we may apply Theorem 6 to each entry of the matrix with r−1 >

‖A‖2/R and arrive at the following

Theorem 7 Let I be the integral in (15), with A such that ‖A‖2 ≤ ‖a‖W and R >

‖a‖W . Denote IN its approximation with the trapezoidal rule with N knots. Then we
have

‖I − IN‖2 ≤ 2 min
(r ,R)∈Ω

{
R

(r N − 1)(R − r‖a‖W )
max

{
eR/r r , eRr/r

}}

where Ω = {(r , R) : R > ‖a‖W , 1 < r < R/‖a‖W }.
Proof It is sufficient to estimate an upper bound mi, j for the value of the modulus of
the (i, j) entry of the integrand function in (15) for r−1 < |y| < r . This way, the
matrix M = (mi, j )i, j is a componentwise upper bound for the matrix integral, so that
we may apply Theorem 6 to get the component-wise bound |I − IN | ≤ 2

r N−1
|M |.

Since the 2-norm ismonotonic, from the latter boundwe get ‖I−IN‖2 ≤ 2
r N−1

‖M‖2.
In order to estimate M we rely on the entry-wise inequalities

∣
∣
∣
∣
∣
eRy

(

y I − 1

R
A

)−1
∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
eRy y−1

(

I − 1

Ry
A

)−1
∣
∣
∣
∣
∣
≤ eR|y|

|y|
(

I − 1

|Ry| |A|
)−1

≤ eR|y|

|y|
(

I − 1

|R/r | |A|
)−1

=: M(|y|),
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where we have used the property that |(I − B)−1| ≤ (I − |B|)−1, if ‖B‖2 < 1. Thus
taking the maximum of each entry of M(|y|) over r−1 < |y| < r , we get the matrix
M which provides the sought entry-wise bound for the modulus of the integrand:

M = sup
r−1<|y|<r

M(|y|) = max
r−1≤|y|≤r

eR|y|

|y| ·
(
I − r

R
|A|

)−1
.

Since the function eR|y|/|y| is convex, the maximum over the interval [r−1, r ] is taken
at one end of the interval so that

M = max
{
eR/r r , eRr/r

}
·
(
I − r

R
|A|

)−1
.

Taking the norm yields

‖M‖2 ≤ max
{
eR/r r , eRr/r

}
· R

R − r‖A‖2 .

Thus, since ‖A‖2 ≤ ‖a‖W , we get

‖I − IN‖2 ≤ 2R

(r N − 1)(R − r‖a‖W )
max

{
eR/r r , eRr/r

}

and the proof is complete. ��
Observe that if Rr ≤ ‖a‖W + 1 the maximum value is taken by the first function.

If R/r ≥ ‖a‖W + 1 the maximum is taken by the second function. In these two
cases the above problem turns into a constrained minimization problem which could
be analyzed by applying the Kuhn–Tucker conditions.

An easier way to find out how large or small the bounds for the numerical rank
obtained by applying the above theorem are, is to numerically evaluate this upper
bound for (r , R) ranging in a grid discretization of Ω and taking the minimum. Then
find the values of N which makes this minimum less than or equal to exp(‖a‖W )ε/2.
Indeed, the value obtained this way multiplied by min(n−, n+) is an upper bound for
the numerical rank of the correction F .

Table 2 reports the values of the number N of knots as function of ‖a‖W computed
this way. Indeed, these values are over estimates of the real values encountered in
practice as shown in the numerical experiments. Actually, having more information
about the function a(z) helps to find a better contour line containing the eigenvalue of
T (a). This may provide better bounds for the number of required knots as shown in
[11].

A different analysis can be based on the properties of the exponential series.
Consider the case of a Laurent polynomial a(z) = ∑n+

i=− n− ai zi and observe that
rankH(a−) ≤ n−. Thus, from (4) we have rank(Ei ) ≤ rank(Ei−1) + n−. More-
over, since Ei = Ei−1T (a) − H((ai−1)−)H(a+), we may also write rank(Ei ) ≤
rank(Ei−1) + n+. Whence we get
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Table 2 Values of the number N of knots such that N min(n−, n+) is an upper bound for the numerical
rank of F = exp(T (a)) − T (exp(a)) for different values of ‖a‖W
‖a‖W 1 2 4 8 16 32 64 128

N 41 52 69 98 148 241 420 775

Table 3 Values of the number k + 1 such that (k + 1)min(n−, n+) is an upper bound for the numerical
rank of F = exp(T (a)) − T (exp(a)) for different values of ‖a‖W
‖a‖W 1 2 4 8 16 32 64 128

k + 1 19 24 32 46 71 117 205 380

rank(Ei ) ≤ rank(Ei−1) + n ≤ (i − 1)n, n = min(n−, n+).

Now we are ready to estimate the numerical rank of the correction matrix F =∑∞
i=0

1
i ! Ei . In fact, we may write F = Fk + Sk where Fk = ∑k

i=0
1
i ! Ei , Sk =

∑∞
i=k+1

1
i ! Ei . We have rank(Fk) ≤ n(k + 1) while, in view of (5) we may write

‖Sk‖p ≤ 2
∞∑

i=k+1

1

i ! ‖a‖iW ≤ 2‖a‖k+1
W

(k + 1)! e
‖a‖W .

This property provides a tool for estimating the numerical rank of F . In fact, we
may proceed this way. Given ε > 0, say the machine precision of the floating point
arithmetic, find k such that ‖Sk‖p ≤ ε exp(‖a‖W ). This can be obtained by imposing
the condition 2

(k+1)! ‖a‖k+1
W e‖a‖W ≤ ε exp(‖a‖W ). Then, determine the bound for the

numerical rank of F as (k + 1)n.
Table 3 provides upper bounds for the numerical rank of F in the case where n = 1,

obtained by means of this analysis.

5 A generalization

Herewedealwith the case of amatrix A = T (a)+E wherea(z) ∈ W and E is compact
in L p, or a′(z) ∈ W and ‖E‖F < +∞. Matrices of the kind T (a) + E are typically
encountered in applications related to the analysis of certain stochastic processes. The
argument used in Sect. 3 can be applied to provide an expression to exp(A). In fact,
we may write exp(A) = Sk + Rk , where Sk = ∑k

i=0
1
i ! A

i and Rk = ∑∞
i=k+1

1
i ! A

i , so

that Sk = Gk + Fk with Gk = ∑k
i=0

1
i !T (ai ), Fk = ∑k

i=0
1
i ! Di , where

Di = Ai − T (ai ), i ≥ 0. (16)
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Observe that D0 = 0, D1 = E . As in the previous section, there exists

F = lim
k→∞ Fk = lim

k→∞ Sk − lim
k→∞Gk = exp(A) − T (exp(a)).

Theorem 8 Let A = T (a) + E where a(z) ∈ W and E is compact in L p. Then
exp(A) = T (exp(a)) + F, with F a compact operator in L p such that

‖F‖p ≤ exp(‖T (a) + E‖p) + exp(‖a‖W ) ≤ ‖a‖W (1 + exp(‖E‖p)).

Proof Taking p-norms in both sides of F = exp(T (a) + E) − T (exp(a)), we get
the sought bound. Concerning the compactness of F , we observe that H(a−) and
E are compact and bounded in the p norm. Therefore from (16) and in view of
[20, Lemma 8.3-2], it follows that Di is compact for any i . This implies that Fk is
compact for any k as well, so that F is compact as a limit of compact operators
[20, Theorem 8.1-5]. ��

If a′(z) ∈ W and ‖E‖F < +∞ we may prove a similar result.
Concerning ‖F‖F , from (16) we deduce that, for i ≥ 1,

Ai = (T (a) + E)(T (ai−1) + Di−1)

= T (a)T (ai−1) + ET (ai−1) + ADi−1

and, in view of Lemma 1, it follows that

Ai = T (ai ) − H(a−)H((ai−1)+) + ET (ai−1) + ADi−1.

Hence, we obtain

Di = ADi−1 − H(a−)H((ai−1)+) + ET (ai−1). (17)

Since from Lemma 1 we have ‖T (a)Di−1‖F ≤ ‖a‖W ‖Di−1‖F , we may write

‖ADi−1‖F = ‖T (a)Di−1 + EDi−1‖F ≤ (‖a‖W + ‖E‖F )‖Di−1‖F .

Therefore, from the above inequality and from Lemma 1, in view of (17), we obtain

‖Di‖F ≤ (‖a‖W + ‖E‖F )‖Di−1‖F + (i − 1)‖a‖i−2
W ‖a′‖2W + ‖a‖i−1

W ‖E‖F ,

≤ ξ‖Di−1‖F + γi , i ≥ 1,

where

ξ = ‖a‖W + ‖E‖F , γi = (i − 1)‖a‖i−2
W ‖a′‖2W + ‖a‖i−1

W ‖E‖F , i ≥ 1, (18)
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and ‖D0‖F = 0, ‖D1‖F = ‖E‖F . Thus we may bound ‖Di‖F with the value that
the polynomial p(z) = ∑i−1

j=0 z
jγi− j takes at ξ = ‖a‖W + ‖E‖F , i.e,

‖Di‖F ≤
i−1∑

j=0

ξ jγi− j , ξ = ‖a‖W + ‖E‖F . (19)

Thus, concerning the sequence Fk , from (19) we obtain

‖Fk‖F ≤
k∑

i=1

1

i ! ‖Di‖ ≤
k∑

i=1

i−1∑

j=0

1

i !ξ
jγi− j .

For notational simplicity set α = ‖a‖W , β = ‖E‖F so that ξ = α +β and γk = (k −
1)αk−2‖a′‖2W +αk−1β. Then, since α ≤ ξ , we have γk ≤ (k−1)ξ k−2‖a′‖2W +ξ k−1β.
Whence we deduce that

‖Fk‖F ≤
k∑

i=1

i−1∑

j=0

1

i !
[
‖a′‖2W (i − j − 1)ξ i−2 + βξ i−1

]

= ‖a′‖2W
k∑

i=1

1

2

i(i − 1)

i ! ξ i−2 + β

k∑

i=1

i

i !ξ
i−1

≤ 1

2
‖a′‖2W exp(ξ) + β exp(ξ).

Thus we may conclude with the following

Theorem 9 Let A = T (a) + E. If a′(z) ∈ W and ‖E‖F < ∞, then for the matrices
Di of (16) we have

‖Di‖F ≤
i−1∑

j=0

(‖a‖W + ‖E‖F ) jγi− j ,

where the constants γi , i ≥ 1, are defined in (18).Moreover, exp(A) = T (exp(a))+F,
with F = limk→∞ Fk, Fk = ∑k

i=0
1
i ! Di and

‖F‖F ≤
(
1

2
‖a′‖2W + ‖E‖F

)

exp(‖a‖W + ‖E‖F ).

The above theorem states that, also in the case of A = T (a) + E , the matrix
F = exp(A) − T (exp(a)) is such that

∑
i, j∈Z+ | fi, j | < +∞. Moreover, if E = 0,

the bounds given in the above theorem reduce to the bounds given in Theorem 4.
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With some formal manipulations, it is possible to provide the following bound for
‖Di‖F expressed in closed form

‖Di‖F ≤ 1

‖E‖F

(

ϕ
(‖a‖W + ‖E‖F )i − ‖a‖iW

‖E‖F
− ψi‖a‖i−1

W

)

,

ϕ = ‖a′‖2W + ‖E‖2F , ψ = ‖a′‖2W
which, taking the limit for ‖E‖F → 0, coincides with the bound of Theorem 4.

6 Algorithms

In this section we provide an algorithm for computing the exponential function of a
QT-matrix A = T (a) + E . Since a(z) ∈ W , the coefficients ai of a(z) decay to zero
as i → ±∞, and the boundedness of ‖E‖p for p 
= 1,∞ implies that the entries
ei, j of the matrix E decay to zero as i → ∞ or j → ∞. Thus, we may represent
a(z) in an approximate way just by considering a finite number of coefficients, i.e,
a(z) = ∑n+

i=− n− ai zi + r(z), with n−, n+ ≥ 0, where we assume that the remainder
r(z) is such that ‖r‖W ≤ ε, for a given error bound ε. Similarly, also the matrix E
can be represented in an approximate way by storing only a finite number of nonzero
entries. Observe that for the decay of the coefficients ai , also the matrix H(a−) can
be represented, up to an error ε, by means of a semi-infinite matrix which is zero
everywhere except in its n− × n− leading principal submatrix, which coincides with
the Hankel matrix associated with a−1, . . . , a−n− .

For computational reasons, it is convenient to represent H(a−) as the product
UV T where U and V have infinitely many rows and n− columns. Moreover, due to
the truncation of the series, the matrices U and V have null entries for a sufficiently
large row index.

Define pi (z) = 1
i !a(z)i , i ≥ 0, so that, for a sufficiently large i, exp(a) can be

approximated by si (z), defined by means of the recursion

pi (z) = 1

i
a(z)pi−1(z),

si (z) = si−1(z) + pi (z), i ≥ 1,
(20)

with s0(z) = 1.
We consider separately, in the following two sections, the Toeplitz case, i.e., A =

T (a), and the general case where A = T (a) + E with E 
= 0.

6.1 The Toeplitz case

Consider the case where A is Toeplitz, i.e., A = T (a) and E = 0. According to the
results of the previous section, the matrix exp(A) is approximated by T (sk) + Fk ,
for a suitable k ≥ 1. In order to compute sk(z) we rely on formula (20), while for
computing Fk = ∑k

i=0
1
i ! Ei we rely on recursion (4).
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We define Êi = 1
i ! Ei , so that we may rewrite Eq. (4) in the following form

Êi = 1

i
T (a)Êi−1 − 1

i
H(a−)H((pi−1)+), i ≥ 1,

so that Fk = ∑k
i=0 Êi .

In order to reduce the complexity of the computation, we will represent also the
matrices Êi , Fi and the matrix H(a−) in the form

Êi = UiV
T
i , Fi = WiY

T
i , H(a−) = UV T , (21)

whereUi , Vi ,Wi ,Yi ,U and V are matrices with infinitely many rows and with a finite
number of columns. Moreover, due to the finite representation, these matrices have
null entries if the row index is sufficiently large. Therefore they can be represented,
up to an arbitrarily small error, with a finite number of parameters.

Using the decompositions (21) we may write

UiV
T
i = 1

i
T (a)Ui−1V

T
i−1 − 1

i
UV T H((pi−1)+),

whence

Ui = [
T (a)Ui−1 U

]
, Vi = [ 1

i Vi−1 − 1
i H((pi−1)+)V

]
. (22)

Moreover, from the relation Fk = Fk−1 +UkV T
k we obtain

Wk = [Wk−1 Uk], Yk = [Yk−1 Vk]. (23)

By using these decompositions, the implementation of Eq. (4), together with the
computation of Fk = ∑k

i=1 Êi and of the function sk(z) = ∑k
i=0 pi (z), will proceed

as described in the following algorithm, where matrices are formed by a finite number
of rows containing the nonzero part of the corresponding infinite matrices.

Algorithm 1 kth step of Taylor expansion
Input: Integer k ≥ 1, the coefficient vectors of the functions a(z), pk−1(z), sk−1(z) and the matrices

U , V ,Uk−1, Vk−1,Wk−1, Yk−1, such that (21) holds for i = k − 1
Output: The coefficient vectors of the functions pk (z), sk (z) and the matrices Uk , Vk ,Wk , Yk , such

that (21) holds for i = k
Computation:

1: compute P1 = H((pk−1)+)V /k, set Q1 = [ 1k Vk−1 − P1]
2: compute P2 = T (a)Uk−1, set Q2 = [P2 U ]
3: compress the pair Q1, Q2 and get a new pair Vk ,Uk
4: set S1 = [Wk−1 Uk ] and S2 = [Yk−1 Vk ]
5: compress the pair S1, S2 and get the new pair Wk , Yk
6: compute pk (z) = 1

k a(z)pk−1(z) and set sk (z) = sk−1(z) + pk (z)
7: truncate sk (z) and pk (z)
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In the above description we have used a compression operation in stages 3 and
5 acting on a pair of matrices, together with the operation of truncating a Laurent
polynomial at stage 7. We will describe these operations in Sect. 6.3. Observe also
that even if the involved matrices have infinitely many rows, only a finite number of
them are nonzero. A detailed implementation of the above algorithm keeps track of
the number of nonzero rows of each matrix.

6.2 The general case

Consider the case where A = T (a) + E , with E 
= 0. According to the results of
Sect. 5, the matrix exp(A) is approximated by T (sk)+ Fk , for a suitable k ≥ 1, where
Fk = ∑k

i=0
1
i ! Di and the matrices Di are defined in (16).

As in the previous section, define D̂i = 1
i ! Di , so that, in view of (17), we have

D̂i = 1

i
AD̂i−1 − 1

i
H(a−)H((pi−1)+) + 1

i
ET (pi−1). (24)

Let us represent the matrices E, H(a−) and Di in the form E = WYT , H(a−) =
UV T and D̂i = UiV T

i , whereW ,Y ,U , V ,Ui and Vi have a finite number of columns.
We may rewrite Eq. (24) in the form

UiV
T
i = 1

i
(T (a) + WYT )Ui−1V

T
i−1 − 1

i
UV T H((pi−1)+) + 1

i
WY T T (pi−1).

Whence we deduce that

Ui = [(T (a)Ui−1 + W (Y TUi−1) U W ],
Vi =

[
1

i
Vi−1 − 1

i
H((pi−1)+)V

1

i
T (pi−1)

T Y

]

.

Moreover, by representing Fk as Fk = WkY T
k , from the relation Fk = Fk−1+UkV T

k
we obtain

Wk = [Wk−1 Uk], Yk = [Yk−1 Vk].

It is immediate to write an algorithm that implements the above equations.

6.3 Compression and truncation

Given the matrix E in the form E = FGT where F and G are matrices of size m × k
and n × k, respectively, we aim to reduce the size k and to approximate E by means
of Ẽ = F̃ G̃T where F̃ and G̃ are matrices of size m × k̃ and n × k̃, respectively, with
k̃ ≤ k.

We use the following procedure which, for simplicity, we describe in the case of
real matrices. Compute the QR factorizations F = Q f R f ,G = QgRg , where Q f

123



340 D. A. Bini, B. Meini

and Qg are orthogonal and R f , Rg are upper triangular. Then, in the factorization
FGT = Q f (R f RT

g )QT
g , compute the SVD of the matrix in the middle R f RT

g =
UΣV T where the singular values σi satisfying the condition σi < εσ1 are removed
together with the corresponding columns of U and V , where ε is a given tolerance,
say the machine precision. In output, the matrices F̃ = Q f UΣ1/2, G̃ = QgVΣ1/2

are delivered.
This procedure is described with more details in Algorithm 2. The overall cost of

this algorithm is O(k2(m + n)).

Algorithm 2 Compression
Input: Matrices F and G of size m × k and n × k, respectively, a real ε > 0
Output:matrices F̃ and G̃ of sizem× k̃ and n× k̃, respectively, such that k̃ ≤ k and ‖FGT − F̃ G̃T ‖2 ≤

ε‖F‖2‖G‖2
Computation:

1: Compute the QR factorizations F = Q f R f , G = QgRg ;

2: compute the SVD of R f R
T
g , i.e., R f R

T
g = UΣV T ;

3: select the integer � such that σi < εσ1 for i > � where σi are the singular values, and set Û , V̂ the
submatrices formed by the first � columns of U and V , respectively; set Σ̂ = diag(σ1, . . . , σ�) so that
‖UΣV T − ÛΣ̂ V̂ T ‖2 ≤ σ�+1;

4: output F̃ = Q f ÛΣ̂
1
2 , G̃ = QgV̂ Σ̂

1
2 .

6.4 Scaling and squaring

The scaling and squaring technique, described in the book [16], is a standard way for
accelerating convergence of the exponential series. It consists of replacing the matrix
Awith B = 1

2q A, computing the exponential exp(B) and recover exp(A) as exp(B)2
q
.

The advantage is that, with a suitable choice of q, the length of the Taylor expansion is
substantially reduced, at the cost of performing a small number of repeated squarings.

This technique is easily implementable in our framework. In particular, in the case
where A = T (a), we determine the least integer q such that ‖a‖W /2q < 1, then we
set â(z) = a(z)/2q so that

exp(T (a)) = exp(T (̂a))2
q

and we may compute exp(T (a)) by first computing exp(T (̂a)), which requires a
shorter power series expansion, and then computing exp(T (̂a))2

q
by means of q steps

of repeated squarings applied to exp(T (̂a)).
The square of a matrix of the kind T (a)+ E is computed by means of the equation

(T (a) + E)2 = T (a2) − H(a−)H(a+) + T (a)E + ET (a) + E2 =: T (a2) + Ê

where Ê = − H(a−)H(a+) + T (a)E + ET (a) + E2.
Assuming that E is factored in the form E = WYT , for W and Y being slim

matrices, and that H(a−)H(a+) is factored asUV T , then Ê is factored as Ê = Û V̂ T
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where

Û = [−U T (a)W W ], V̂ = [V Y T (a)T Y + Y (WTY )]. (25)

This formula requires to compute a rank revealing factorization of the Hankel prod-
uct H(a−)H(a+). Two algorithms for this computation are described in [5] and are
based on a Lanczos-type method, in the form of the Golub–Kahan bidiagonalization
procedure [25], or on a random sampling approach [14]. The cost of these approaches,
which exploit the Hankel structure, is O(rn log n + r2n) where r is the value of the
numerical rank of the product. A compression step, performed according to Algorithm
2 can be applied to reduce the rank of Û and V̂ . Algorithm 3 describes the squaring
of QT-matrix.

Algorithm 3 Square of a QT-matrix

Input: a(z), W and Y defining the QT-matrix A = T (a) + WYT

Output: b(z), Û and V̂ such that A2 = T (b) + Ê , with ‖Ê − Û V̂ T ‖2 ≤ ε‖Û‖2‖V̂ T ‖2
Computation:

1: compute b(z) = a(z)2

2: compute a rank revealing factorization H(a−)H(a+) = UV T

3: set S1 = [−U T (a)W W ], S2 = [V Y T (a)T Y + Y (WT Y )]
4: compress the pair S1, S2 to get the new pair Û , V̂

6.5 Cost analysis

We may perform a complexity analysis of the algorithms designed in the previous
sections. We consider only the case where A = T (a) and divide the problem into the
different sub-problems of evaluating the recurrence (4) bymeans of Eqs. (22) and (23),
performing the compression according to Algorithm 2, and computing the repeated
squaring of a QT-matrix.

Concerning (22), we have to compute the product T (a)Ui−1, where T (a) is an
infinite Toeplitz matrix having bandwidth n− +n+, andUi−1 has infinitely many rows
and a finite number, say ri−1, of columns.Denoting bymi−1 the number of numerically
nonzero rows ofUi−1, the problem is reduced to multiplying an (mi−1 + n−) ×mi−1
Toeplitz matrix and an mi−1 × ri−1 matrix. By using fast algorithms for Toeplitz-
vector matrix multiplication we have a cost of O(ri−1(mi−1 + n−) log(mi−1 + n−))

arithmetic operations (ops). Similarly, the computation of the product H((pi−1)+)V
is reduced to multiplying an ni−1 × qi Hankel matrix times a matrix of size qi × s,
where ni−1 is the degree of the polynomial (pi−1(z))+, s is the number of columns
of V , qi = min(ni−1, n), with n the number of numerically nonzero rows of V . Thus,
even this computation has a cost of O(sni−1 log ni−1)). In fact, the product of aHankel
matrix and a vector, up to permutation, is the same as the product of a Toeplitz matrix
and a vector where FFT-based algorithms can be used.

The cost of compression in the steps 3 and 5 of Algorithm 1, performed with
Algorithm 2, which relies on QR and SVD, is proportional to the square of the rank
and to the maximum dimension. Finally, the cost analysis of Algorithm 3 is the same
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as that of Algorithm 1, except for the computation of the rank-revealing factorization
H(a−)H(a+) = UV T .

An upper bound for the overall cost of the computation of the exponential can
be given in terms of the overall number q of terms in the exponential series and the
number of squaring steps. To this purpose, denote by b, n and r upper bounds for
the numerical bandwidth, size and rank of the correction, respectively of all the QT-
matrices involved in the Taylor series computation and in the squaring stage. Then
we may write the overall cost in the form O(q((b + n)r log(b + n) + nr2)). In the
numerical experimentation performed so far, the values of b, n and r coincide with
those of the matrix exp(T (a)). Recall also that, according to our analysis of Sect. 4.1,
the values of the numerical bandwidth b and of the numerical size n have the same
behaviour. Thus, the most expensive part of this complexity bound is the term O(r2n)

due to compression. In the cases where the numerical rank of F is much smaller than
the numerical size the algorithm performs very efficiently.

7 Numerical experiments

We have provided a Matlab implementation of the algorithm for the computation of
exp(T (a)) = T (exp(a)) + F , based on Taylor expansion with scaling and squaring,
valid for semi-infinite matrices. We denote this algorithm with the symbol infQT.
This algorithm can be also applied to finite n × n matrices under the assumption
that n is larger than the numerical bandwidth of T (exp(a)) and the numerical size
of F . In fact, if this condition is satisfied, then it can be verified that, numerically,
exp(Tn(a)) = Tn(exp(a)) + Fn + Jn Fn Jn , where Jn is the n × n permutation matrix
with ones in the anti-diagonal and Fn is the n × n leading principal submatrix of F .

A second algorithm has been implemented for finite matrices, which works also
in the general case where the bandwidth of T (exp(a)) or the numerical size of F is
larger than n. This version relies on the CQT-matrix arithmetic, valid for both finite and
infinite QT-matrices, available in the package CQT-Toolbox of [5], and substantially
coincides with the expm function invoked with the option ‘taylor’ available in the
CQT-Toolbox. The computation of the exponential relies once again on the truncated
Taylor series with scaling and squaring, but acting on finite QT-matrices. We will refer
to this version with the symbol finQT. The software is provided upon request by the
authors.

We have compared our implementation with the function expmt for computing
matrix exponential of finite Toeplitz matrices recently introduced by Kressner and
Luce [19]. This version is based on the properties of Displacement Rank operators.
We will refer to this algorithm with the symbol DR. We have also considered the
Matlab function expmv of [1], available from https://github.com/higham/expmv, for
computing the product y = exp(A)x , where A is a sparse matrix which relies only on
Matrix-Vector multiplications. We denote this software with the symbol MV, while we
use the symbol M to denote the algorithm expm of Matlab.

It must be said that the algorithm DR, based on displacement rank, is not optimized
for banded matrices and does not exploit any decay of coefficients of exp(A). In
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principle, it would actually be possible to incorporate decay into DR by truncating
generators. On the other hand, both infQT and finQT exploit decay properties.

Some numerical experiments have been performed with several test problems by
analyzing theCPU time and the approximation error.All the experiments have been run
under the Linux system on an I7 processor with Matlab R2018a. For each experiment
we report theCPU time computedwith the commandstic andtoc, and the normwise
relative error. In the case where we compute the vector y = exp(A)x , the error is
given by ‖y − ŷ‖∞/‖y‖∞, where y is computed by means of Matlab and ŷ denotes
the vector computed with the algorithms infQT, finQT, DR, MV. In computing
B = exp(A), the error has been evaluated as maxi, j |bi, j − b̂i, j |/maxi, j |bi, j |, where
bi, j are the values of the matrix exponential computed by the Matlab function expm
and b̂i, j are the values computed by the algorithms infQT, finQT, DR. The CPU
time does not include the cost of reconstructing the exponential matrix as a full matrix
for the algorithm DR. In some cases, we report also the graph with the distribution of
the errors obtained with the command mesh(log10(abs(Err))) where Err is
the matrix (B − B̂)/maxi, j |bi, j − b̂i, j |.

In all the experiments, in the truncation and compression stages, we set the param-
eter ε equal to the machine precision 2.22e−16. Moreover, in the evaluation of the
error, in the case of finite matrices we compared the output of the different algorithms
to the output of the Matlab function expm. In the case of an infinite matrix A, in
order to make comparisons with the algorithms valid for finite matrices for computing
y = Ax , we have truncated A to the matrix AN of finite size N , where N is larger than
the numerical bandwidth and the numerical size of the correction of exp(A). We have
computed the vector w := expm(AN )xN where xN is the truncation of x to finite size
N . The comparison of the different algorithms is restricted to the first M components
of the computed vectors, for a suitable M < N . The values of M and N are reported
in the related tables. This comparison provides a heuristic approach which may give
some error estimate of the algorithms.

The tests concern: two problems with infinite matrices coming from the transient
analysis of M/M/1 queues modeled by Markov chains in continuous time where A is
a generator [28]; the case of the finite-differences second derivative in finite dimen-
sion A = (Δt/Δ

2
x )tridn(1,− 2, 1), coming from the numerical treatment of the heat

equation where Δt = Δx = 1/(n + 1); a matrix used as test in [19] which models the
Merton problem.

7.1 Infinite matrices: the transient analysis of anM/M/1 queue

The M/M/1 queue (see [28, Section 5.1]) is a queueing model where customers arrive
according to a Poisson process with rate λ > 0, i.e., interarrival times are independent
and identically exponentially distributedwith rateλ. The service times are independent
and identically exponentially distributed with rate μ > 0. There is one server, the
service discipline is FIFO and the queue capacity is infinite. This queue is modelled
by means of a Markov process, where Xt is the number of customers in the queue at
time t . The probability distribution of Xt , i.e., the number of customers in the queue at
time t , is given by the vector π(t)T = π(0)T exp(Qt)where Q is the generator matrix
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of the form Q = T (a)+ E where a(z) = z−1μ− (λ+μ)+ zλ and E = μe1eT1 , with
e1 = (1, 0, 0, . . .)T . The distribution of the busy period duration is obtained by means
of the vector y = exp(T (a)t)e, where e is the vector of all ones (see [28, Section
5.1.2]).

A generalization of the above model gives rise to the following generator matrix,
that represents an M/G/1 type Markov process [24],

Q =

⎛

⎜
⎜
⎜
⎜
⎝

b0 b1 b2 b3 . . .

μ − (λ + μ) k0 k1 . . .

μ − (λ + μ) k0
. . .

. . .
. . .

. . .

⎞

⎟
⎟
⎟
⎟
⎠

.

where bi ≥ 0 for i > 0, b0 = − ∑∞
i=1 bi , μ > 0 and ki , i ≥ 0, are nonnegative

numbers such that
∑∞

k=0 ki = λ.

7.1.1 Bandedmatrix with large bandwidth

We have considered the matrix Q defined by μ = 230, λ = 1, ki = 1/λ, i =
0, . . . , 200, ki = 0 for i > 200. With these values, the queue turns out to be positive
recurrent and the range of the components yi of the busy period duration vector y =
exp(A)e which are in the range [ε, 1 − ε] is meaningfully large, where ε = 2.2204 ·
10−16. In fact, we have restricted the computation to the first m components of y
having values in the above interval.

The computation has been performed in the following way: for t = 2i , i =
0, 1, . . . , 6, we have considered the matrix A = t Q and computed exp(A) together
with y = exp(A)e bymeans of theinfQT algorithm. In this computation, we used the
information about the numerical bandwidth of exp(A) and the size of the correction,
to determine how many terms to sum up in the computation of y together with the
value of meaningful components yi . The former value is used to truncate the size of
the infinite matrix to a finite value N in order to apply the algorithms finQT, DR,
MV, M.

Figure 1 displays the graphs with the timings of the different algorithms, while
Table 4 reports the errors in the approximation of y. Table 5 reports the values of the
lower and upper bandwidth k−, k+ in the Toeplitz part of exp(t Q), the values of the
numerical size (m, n) and the rank r of the correction F , together with the truncation
size N where the infinite matrix is truncated in order to apply the other algorithms
with truncation error less than the machine precision.

It is interesting to observe that the cost of infQT is negligible with respect to the
other algorithms. In fact, since the numerical bandwidth of the Toeplitz part and the
size of the correction are quite small, the complexity of computing exp(A) is small as
well and is independent of the truncation size N , while the other algorithms have a
cost which necessarily depends on N . Concerning the approximation errors, Table 4
shows that algorithm infQT performs better than the other algorithms while DR has
the largest errors and seems to loose half the digits.
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Fig. 1 CPU times in computing
y = exp(t Q)e for the
semi-infinite generator matrix Q
for t = 2i , i = 0, 1, . . . , 6

Table 4 Error estimates in the
computation of y = exp(A)e for
the infinite generator matrix
A = t Q and the vector e with
components 1. The
corresponding truncation values
N and M are reported in Table 5

t 1 2 4 8

DR 7.1e−07 6.5e−06 1.6e−05 2.7e−06

finQT 1.3e−12 2.6e−12 5.2e−12 1.0e−11

infQT 5.8e−14 1.2e−13 2.3e−13 4.6e−13

expmv 2.3e−13 1.3e−12 1.4e−12 1.3e−12

Table 5 Lower and upper bandwidth k−, k+ of the Toeplitz part, numerical sizes m, n and rank r of the
correction F in exp(A) = T (exp(a)) + F , where A = t Q for the infinite generator matrix Q. In the last
two lines, N is the size of the truncated matrix to which the other algorithms are applied while M is the
number of meaningful components of y which are computed

t 1 2 4 8 16 32 64

k− 390 680 1219 2238 4181 8361 16,721

k+ 2634 3076 3625 4268 4982 9963 19,925

m 364 645 1282 2197 4129 7815 14,474

n 2315 5008 8076 11,818 17,657 20,935 30,885

r 42 50 49 35 19 12 10

N 3024 5008 8076 11,818 17,657 20,935 36,646

M 390 680 1219 2238 4181 8361 16,721

7.1.2 Dense matrix with exponential decay

In this test we considered a dense semi-infinite generator matrix Q = T (a),
defined by the function a(z) = t(a0 + ∑∞

i=1(0.9
i z−i + (i + 1)0.7i zi )), where

a0 = −∑∞
i=1

(
0.9i + (i + 1)0.7i

)
, for t = 2 j , j = 0, 1, . . . , 6. We have computed

exp(T (a)) with the algorithms infQT, finQT, DR and M and we have multiplied
the matrix exponential by the vector e of all ones. The size of e and of the trunca-
tion of T (a), for applying algorithms for finite matrices, is determined according to
the numerical bandwidth and to the size of the correction in exp(T (a)). We have not
applied the algorithm MV since it is taylored for sparse matrices while T (a) is a dense
matrix.
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Figure 2 reports the plot with the CPU time of the algorithms, while Table 6 reports
the values of the relative errors in computing y = exp(T (a))e, where e is the vector
of all ones, for each value of t . Figure 3 graphically shows the distribution of the
errors, as function of (i, j), in the matrix exponential for the algorithms infQT and
DR. Table 7 reports the sizes of the bandwidth, the size and the rank of the correction
together with the truncation size of the infinite matrix performed to apply algorithms
finQT and DR.

Even in this case the CPU time of algorithm infQT is negligible and almost
independent of t , while for the other algorithms it grows significantly. Concerning

Fig. 2 CPU times in the
approximation of y = exp(A)e
for A = t Q where Q is a dense
semi-infinite generator having
exponential decay and
t = 2i , i = 0, . . . , 6

Table 6 Error estimates in the computation of y = exp(A)e for A = t Q, where Q is a dense semi-infinite
generator having exponential decay, and the vector e has components 1. The corresponding values of the
truncation parameter N are reported in Table 7

t 1 2 4 8 16 32 64

DR 4.8e−13 1.4e−12 3.0e−13 5.7e−13 1.7e−12 2.9e−11 7.2e−10

finQT 3.5e−13 6.9e−13 1.4e−12 2.8e−12 5.5e−12 1.1e−11 2.2e−11

infQT 2.4e−14 4.7e−14 8.2e−14 1.6e−13 3.2e−13 6.3e−13 1.2e−12

Fig. 3 Errors in the approximation of exp(A) for A = t Q, where Q is a dense semi-infinite generator
having exponential decay, where t = 2. Left: algorithm based on displacement rank; right: algorithm based
on quasi-Toeplitz matrices
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Table 7 Lower and upper
bandwidth k−, k+ of the
Toeplitz part, numerical sizes
m, n and rank r of the correction
F in exp(A) = T (exp(a)) + F ,
where A = t Q and Q is an
infinite matrix with exponential
decay

t 1 2 4 8 16 32 64

k− 861 1076 1403 1914 2728 4063 6313

k+ 371 470 607 792 1023 1283 1538

m 755 959 1201 1674 2439 3695 5832

n 316 404 540 1144 1938 2961 4245

r 10 12 13 13 13 12 10

N 1232 1546 2010 2706 3751 5346 7851

In the last line, N is the size of the truncated matrix to which the other
algorithms are applied

the approximation errors, from Table 6 it turns out that the algorithm infQT is the
one which performs better than the other algorithms. In particular infQT has a more
uniform distribution of the errors with respect to the parameter t while DR slightly
deteriorates if t takes large values. The better performance of infQT is also illustrated
by Fig. 3 which shows that the larger errors generated by DR are more uniformly
distributed in all the matrix, while for infQT not only the errors are smaller, but the
most part of them is much below the machine precision, and the largest errors are
more concentrated along the main diagonal.

7.2 Second derivative

A second test concerns the n × n matrix An = θ tridn(1,− 2, 1) which, for θ =
(n + 1)2 provides the finite differences discretization of the second derivative of a
sufficiently regular function. In the semi-discretization solution of the heat equation
uxx (x, t)−γ ut (x, t) = 0, γ > 0, with initial conditions u(x, 0) = b(x) and boundary
conditions u(0, t) = u(1, t) = 0, the vector v(t) = (v

(t)
i ) defined by the recurrence

v(t+Δt ) = exp(θ tridn(1,− 2, 1))v(t), θ = Δt
γΔ2

x
, where v(0) = (v

(0)
i ), v

(0)
i = b(iΔx ),

provides approximation of the solution u(iΔx , t + Δt ). Choosing Δt of the order of
γΔx , leads to computing exp((n + 1)tridn(1,− 2, 1)). Moreover, updating the vector
v(t+Δt ) involves the multiplication of the matrix exponential and a vector.

In the experiments we have chosen Δt = γΔx so that the matrix to exponentiate
is An = (n + 1)tridn(1,− 2, 1). We computed exp(An) for n = 2i , i = 9, . . . , 15,
by using the algorithms infQT, finQT, DR, M. We multiplied a random vector
v by these matrices, moreover, we computed the product exp(An)v by means of the
algorithm MV. In the case of algorithm M, for the memory problems due to the full
storage of the matrix, we have performed the experiments for n ≤ 213.

Figure 4 displays the cpu times of the different algorithms for computing exp(An)

and the total time for computing the product exp(An)v, for several values of n. Table 8
reports the errors in approximating the vector y = exp(An)v. The errors in the entries
of exp(An) are distributed differently for algorithms DR and QT. Figure 5 reports the
plot of these errors for n = 512.

Also for this test, algorithm infQT is much faster than the other algorithms. In
fact, for the matrix exp(An) the bandwidth, and the size of the correction F have a
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Fig. 4 CPU times in the approximation of exp(An) (left) and of y = exp(An)v (right) for the n × n matrix
An = (n + 1)tridn(1,− 2, 1), and a random vector v for n = 2i , i = 9, . . . , 16

Table 8 Errors in computing y = exp(An)v for An = (n + 1)tridn(1, − 2, 1)

n 512 1024 2048 4096 8192

DR 1.6e−12 2.0e−12 2.5e−12 8.7e−12 1.2e−11

finQT 5.0e−12 7.6e−12 1.6e−11 2.6e−11 4.8e−11

infexp 6.1e−13 1.1e−12 5.3e−12 6.5e−12 1.6e−11

MV 1.5e−13 2.1e−13 2.5e−12 2.4e−12 6.6e−12

Fig. 5 Errors in the approximation of exp(An) for the n×n matrix An = (n+1)tridn(1, − 2, 1), n = 512,
computed with the algorithms infQT and DR

slow growth with respect to n while the rank of F seems independent of n as shown
in Table 9. The dependence on n of the cpu time for infQT is due to the cost of
multiplying the QT-matrix exp(An) and the vector v. This computation, performed
with FFT, has a cost which grows as O(n log n). Observe also that actual values of the
bandwidth are in accordance with the values obtained with the analysis performed in
Sect. 4.1 reported in Table 1. From the point of view of errors, the different algorithms
perform similarly with a slight better performance of infQT and MV.
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Table 9 Numerical bandwidth, size and rank of the correction in the infinite matrix exp((n +
1)trid(1, − 2, 1) = T (exp(a))+E , for a(z) = (n+1)(z−1−2+z), where the threshold ε = 2.2204ee−16
is used

n 512 1024 2048 4096 8192 16,384 32,768

Bandwidth 273 385 544 769 1088 1538 2174

Size (E) 287 406 574 812 1148 1624 2296

Rank (E) 15 15 15 15 15 15 15

Table 10 CPU time in seconds and corresponding errors for the n × n Merton matrix

n 1000 2000 4000 8000 16,000 32,000 64,000

M 0.23 1.7 13.9 116 – – –

DR 0.3 0.8 3.4 12.9 48.2 185.9 *

finQT 0.57 1.1 2.4 7.0 17.3 40.0 91.4

DR err 2.9e−11 3.8e−11 1.8e−10 1.3e−9

finQT err 2.3e−11 9.2e−11 2.9e−10 1.2e−9

Fig. 6 Errors in the approximation of exp(A) for theMerton problem. Left: algorithmbased on displacement
rank; right: algorithm based on quasi-Toeplitz matrices

7.3 TheMerton problem

The last test with finite matrices concerns the Merton problem used in [19] as bench-
mark. In this test, the matrix sequence Tn is not generated by a single symbol a(z) but
each matrix Tn is the truncation of an infinite matrix with its own symbol an(z). The
exponential of Tn has a correction whose size largely exceeds n. Therefore algorithm
infQT does not apply, but finQT can still be used.

In Table 10 we report the CPU time needed by the algorithms M, finQT and
DR together with the approximation error. A “*” denotes breakdown due to lack of
memory. From this table it clearly turns out that the time of the Matlab function expm
grows as O(n3), the time of the DR algorithm grows as O(n2) as pointed out in [19],
while the time of finQT has a cost which grows slightly more than linearly with
n. In terms of time, our algorithm outperforms the algorithm of [19] for moderately
large values of n. Concerning the errors, computed up to size n = 8000 for memory
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reasons, we can see that the two algorithms perform similarly. Finally, in Fig. 6 we
report the plot of the errors obtained in the two cases. We may see that the errors show
a similar distribution with respect to (i, j). The Matlab tests, as well as the evaluation
of the error norm, have been halted for n > 8000 due to lack of memory. The function
expmt has a breakdown for n ≥ 64,000 for lack of memory.
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