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Abstract
We present a new model for two phase Darcy flows in fractured media, in which
fractures are modelled as submanifolds of codimension one with respect to the sur-
rounding domain (matrix). Fractures can act as drains or as barriers, since pressure
discontinuities at the matrix-fracture interfaces are permitted. Additionally, a layer of
damaged rock at the matrix-fracture interfaces is accounted for. The numerical anal-
ysis is carried out in the general framework of the Gradient Discretisation Method.
Compactness techniques are used to establish convergence results for a wide range
of possible numerical schemes; the existence of a solution for the two phase flow
model is obtained as a byproduct of the convergence analysis. A series of numerical
experiments conclude the paper, with a study of the influence of the damaged layer
on the numerical solution.

Mathematics Subject Classification 65M08 · 65M60 · 76M12 · 76M10 · 76S05 ·
65M12 · 35K51 · 35K55 · 46N40

1 Introduction

Flow and transport in fractured porous media are of paramount importance for many
applications such as petroleum exploration and production, geological storage of
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carbon dioxide, hydrogeology, or geothermal energy. Two classes of models, dual
continuum and discrete fracture matrix models, are typically employed and possibly
coupled to simulate flow and transport in fractured porous media. Dual continuum
models assume that the fracture network is well connected and can be homogenised
as a continuum coupled to the matrix continuum using transfer functions. On the other
hand, discrete fracture matrix models (DFM), on which this paper focuses, represent
explicitly the fractures as co-dimension one surfaces immersed in the surrounding
matrix domain. The use of lower dimensional rather than equi-dimensional entities to
represent the fractures has been introduced in [4,8,31,36,37] to facilitate the grid gen-
eration and to reduce the number of degrees of freedom of the discretised model. The
reduction of dimension in the fracture network is obtained from the equi-dimensional
model by integration and averaging along the width of each fracture. The resulting so
called hybrid-dimensional model couple the 3D model in the matrix with a 2D model
in the fracture network taking into account the jump of the normal fluxes as well as
additional transmission conditions at the matrix-fracture interfaces. These transmis-
sion conditions depend on the mathematical nature of the equi-dimensional model and
on additional physical assumptions. They are typically derived for a single phaseDarcy
flow for which they specify either the continuity of the pressure in the case of fractures
acting as drains [4,9] or Robin type conditions in order to take into account the dis-
continuity of the pressure for fractures acting either as drains or barriers [5,11,31,37].

Fewer works deal with the extension of hybrid-dimensional models to two-phase
Darcy flows. Most of them build directly the model at the discrete level as in [8,34,40]
or are limited to the case of continuous pressures at the matrix-fracture interfaces as in
[8,10,40]. In [35], an hybrid-dimensional two-phase flow model with discontinuous
pressures at the matrix-fracture interfaces is proposed using a global pressure formu-
lation. However, the transmission conditions at the interface do not take into account
correctly the transport from the matrix to the fracture.

In this paper, a new hybrid-dimensional two-phase Darcy flow model is proposed
accounting for complex networks of fractures acting either as drains or barriers. The
model takes into account discontinuous capillary pressure curves at thematrix-fracture
interfaces. It also includes a layer of damaged rock at the matrix-fracture interface
with its own mobility and capillary pressure functions. This additional layer is not
only a modelling tool. It also plays a major role in the convergence analysis of the
model by giving time estimates on the approximate interfacial saturations, which
yield their compactness (see Remark 4.7) and enables the identification of their limit.
Moreover, when solving the discrete equations with a Newton-Raphson method, a
non-zero distribution of volume at the interfacial unknowns is in general required
for the Jacobian not to be degenerate. The sensitivity of the discrete solution as well
as of the computational performance on interfacial parameters is studied in the test
case section. The results suggest that the model converges with vanishing interfacial
volume. However, this is still an open question.

The discretisation of hybrid-dimensional Darcy flow models has been the object of
many works using cell-centred Finite Volume schemes with either Two Point or Multi
Point Flux Approximations (TPFA and MPFA) [2,3,5,33,36,41,43], Mixed or Mixed
Hybrid Finite Element methods (MFE and MHFE) [4,34,37], Hybrid Mimetic Mixed
Methods (HMM,which containsMixed/Hybrid FiniteVolume andMimetic FiniteDif-
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ference schemes [22]) [6,9,11,30], Control Volume Finite Element Methods (CVFE)
[8,33,38–40], and the Vertex Approximate Gradient (VAG) scheme [9–11,44,45]. Let
us also mention that non-matching discretisations of the fracture and matrix meshes
are studied for single phase Darcy flows in [7,14,32,42]. The convergence analysis
for single-phase flow models with a single fracture is established in [4,37] for MFE
methods, in [14] for nonmatchingMFE discretisations, and in [5] for TPFA discretisa-
tions. The case of single-phase flows with complex fracture networks is studied in the
general framework of the gradient discretisation method in [9] for continuous pressure
models and in [11] for discontinuous pressure models. For hybrid-dimensional two-
phase flowmodels, the only convergence analysis is to our knowledge done in [10] for
the VAG discretisation of the continuous pressure model with fractures acting only as
drains. Let us recall that the gradient discretisation method (GDM) enables conver-
gence analysis of both conforming and non conforming discretisations for linear and
non-linear second order elliptic and parabolic problems. It accounts for various dis-
cretisations such as conforming Finite Element methods, MFE and MHFE methods,
some TPFA and symmetric MPFA schemes, and the VAG and HHM schemes [24].
The main advantage of this framework is to provide, for a given model, a convergence
proof for all schemes satisfying some abstract conditions, at the reduced cost of a sin-
gle convergence analysis; see e.g. [19,20,23,28,29]. We refer to the monograph [21]
for a detailed presentation of the GDM.

The main purpose of this paper is to propose an extension of the gradient discretisa-
tion method to our hybrid-dimensional two-phase Darcy flowmodel. This provides, in
an abstract framework, the convergence of the approximate solution to a weak solution
of the model; as a by-product, this proves the existence of a solution to this continuous
model. The numerical analysis is partially based on the previous work [29] dealing
with the gradient discretisationmethod for singlemedium two-phase Darcy flows. The
main new difficulty addressed in this work compared with the analysis of [29] and
[10] comes from the transmission conditions at the matrix-fracture interfaces; these
conditions involve an upwinding between the fracture phase pressures and the traces
of the matrix phase pressures. Note that, as in [29] and [10], the convergence analysis
assumes that the phase mobilities do not vanish.

The outline of this paper is as follows. Section 2 introduces the geometry of the
fracture network, the function spaces, the strong and weak formulations of the model
as well as the assumptions on the data. Section 3 details the gradient discretisation
method, including the definition of the abstract reconstruction operators, of the discrete
variational formulation (gradient scheme), and of the coercivity, consistency, limit
conformity and compactness properties. Section 4 proves the main result of this paper
which is the convergence of the gradient scheme solution to a weak solution of the
model. This convergence is established using compactness arguments, and requires us
to establish various compactness results on the approximation solutions: averaged in
time and space, uniform-in-time andweak-in-space, etc. TheMintymonotonicity trick
is used to identify the limit of the non-linear term resulting from the the upwinding
between the fracture and matrix phase pressures. Section 5 studies on a 2D numerical
example the influence of the additional layer of damaged rock at the matrix-fracture
interface on the solution of the model. The discretisation used in this test case is based
on the VAG scheme which can be shown from [11] to satisfy the assumptions of our
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Fig. 1 Example of a 2D domain� and 3 intersecting fractures �i , i = 1, 2, 3. We define the fracture plane
orientations by a±(i) ∈ χ for �i , i ∈ I

gradient discretisation method. Note that numerical comparisons of our model with
the equi-dimensional model as well as with the continuous pressure model of [10]
can be found in [1,12] without the accumulation term in the interfacial layer, which
plays a minor role in the numerical tests when this layer is thin with respect to the
fracture (see Sect. 5). It is shown that the discontinuous pressure model analysed in
this paper is more accurate than the continuous pressure model of [10] even in the
case of fractures acting only as drains; this improved accuracy is due to more accurate
transmission conditions at the matrix-fracture interfaces.

2 Notation andmodel

2.1 Geometry

Let � denote a bounded domain of Rd (d = 2, 3), polyhedral for d = 3 and polyg-
onal for d = 2. To fix ideas the dimension will be fixed to d = 3 when it needs to
be specified, for instance in the naming of the geometrical objects or for the space
discretisation in the next section. The adaptations to the case d = 2 are straightfor-
ward.

Let � = ⋃
i∈I �i and its interior � = �\∂� denote the network of fractures

�i ⊂ �, i ∈ I . Each �i is a planar polygonal simply connected open domain included
in a plane Pi of Rd . It is assumed that the angles of �i are strictly smaller than 2π ,
and that �i ∩ � j = ∅ for all i �= j . For all i ∈ I , let us set �i = ∂�i , with n�i as
unit vector in Pi , normal to �i and outward to �i . Further �i, j = �i ∩� j for i �= j ,
�i,0 = �i ∩∂�,�i,N = �i\(⋃ j∈I\{i} �i, j ∪�i,0),� = ⋃

(i, j)∈I×I ,i �= j (�i, j\�i,0)

and �0 = ⋃
i∈I �i,0. It is assumed that �i,0 = �i ∩ ∂�.

We define the two unit normal vectors na±(i) at each planar fracture �i , such that
na+(i) + na−(i) = 0 and oriented outward to the matrix side a±(i) (cf. Fig. 1). We
define the set of indices χ = {a+(i), a−(i) | i ∈ I }, such that #χ = 2#I . For ease of
notation, we use the convention �a+(i) = �a−(i) = �i .

For a = a±(i) ∈ χ , we denote by γa the one-sided trace operator on �a. It satisfies
the condition γa(h) = γa(h �ωa), where ωa = {x ∈ � | (x − y) · na < 0, ∀y ∈ �i }.

On the fracture network �, the tangential gradient is denoted by ∇τ , and is such
that
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∇τ v = (∇τi vi )i∈I ,

where, for each i ∈ I , the tangential gradient ∇τi is defined by fixing a reference
Cartesian coordinate system of the plane Pi containing �i . In the same manner, we
denote by divτq = (divτiqi )i∈I the tangential divergence operator.

2.2 Continuousmodel and hypotheses

We describe here the continuous model and assumptions that are implicitly made
throughout the paper. In the matrix domain �\�, let us denote by �m ∈ L∞(�)d×d

the symmetric permeability tensor, chosen such that there exist λm ≥ λm > 0 with

λm |ζ |2 ≤ �m(x)ζ · ζ ≤ λm |ζ |2 for all ζ ∈ R
d , x ∈ �.

Analogously, in the fracture network �, we denote by � f ∈ L∞(�)(d−1)×(d−1) the
symmetric tangential permeability tensor, and assume that there exist λ f ≥ λ f > 0,
such that

λ f |ζ |2 ≤ � f (x)ζ · ζ ≤ λ f |ζ |2 for all ζ ∈ R
d−1, x ∈ �.

On the fracture network �, we introduce an orthonormal system (τ 1(x), τ 2(x),n(x)),
defined a.e. on �. Inside the fractures, the normal direction is assumed to be a per-
meability principal direction. The normal permeability λ f ,n ∈ L∞(�) is such that
λ f ,n ≤ λ f ,n(x) ≤ λ f ,n for a.e. x ∈ � with 0 < λ f ,n ≤ λ f ,n. We also denote
by d f ∈ L∞(�) the width of the fractures, assumed to be such that there exist
d f ≥ d f > 0 with d f ≤ d f (x) ≤ d f for a.e. x ∈ �. The half normal transmis-
sibility in the fracture network is denoted by

T f = 2λ f ,n

d f
.

Furthermore, φm and φ f are the matrix and fracture porosities, respectively, ρα ∈ R
+

denotes the density of phase α (with α = 1 the non-wetting and α = 2 the wetting
phase) and g ∈ R

d is the gravitational vector field. We assume that φ
m, f

≤ φm, f ≤
φm, f , for some φ

m, f
, φm, f > 0. (kαm, k

α
f ) and (Sαm, S

α
f ) are the matrix and fracture

phasemobilities and saturations, respectively. Hypothesis on these functions are stated
below.

The PDEs model writes: find phase pressures (uαm, u
α
f ) and velocities (qαm,q

α
f )

(α = 1, 2), such that

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

φm∂t S
α
m(pm) + div(qαm) = hαm on (0, T ) × �\�

qαm = −[kS]αm(pm) �m∇uαm on (0, T ) × �\�
φ f d f ∂t S

α
f (p f ) + divτ (qαf ) −

∑

a∈χ
Qα

f ,a = d f hαf on (0, T ) × �

qαf = −d f [kS]αf (p f ) � f ∇τu f on (0, T ) × �

(pm , p f )|t=0 = (pm,0, p f ,0) on (� \ �) × �.

(1a)
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Fig. 2 Illustration of the
coupling condition. It can be
seen as an upwind two point
approximation of Qα

f ,a. The
upwinding takes into account the
damaged rock type at the
matrix-fracture interfaces. The
arrows show the positive
orientation of the normal fluxes
qαm · na and Qα

f ,a Sf (pf)
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f,a

Sα
a (γapm)qα

m

qα
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The matrix-fracture coupling condition on (0, T ) × �a (for all a ∈ χ ) are

{
qαm · na + Qα

f ,a = η∂t S
α
a (γa pm)

Qα
f ,a = [kS]αf (p f )T f �uα�−

a − [kS]αa(γa pm)T f �uα�+
a ,

(1b)

where η = daφa, with da ∈ (0,
d f
2 ) representing the interfacial width and φa ∈

(0, 1] the interfacial porosity (cf. Fig. 2). We assume that each of these parameters is
uniformly bounded below. In these equations, we have

S2μ = 1 − S1μ for μ ∈ {m, f } ∪ χ , and (pm, p f ) = (u1m − u2m, u
1
f − u2f ). (1c)

In the above, we used the shorthand notations

�uα�a = γau
α
m − uαf , �uα�+

a = max(0, �uα�a) and �uα�−
a = �−uα�+

a

as well as, for μ ∈ {m, f } ∪ χ , ϕμ ∈ L2((0, T ) × Mμ) and a.e. (t, x) ∈ (0, T )×Mμ,

Sαμ(ϕμ)(t, x) = Sαμ(x, ϕμ(t, x)) and [kS]αμ(ϕμ)(t, x) = kαμ(x, S
α
μ(x, ϕμ(t, x))).

Here and in the following, Mμ is defined by

Mμ =
⎧
⎨

⎩

� if μ = m
� if μ = f
�a if μ = a ∈ χ.

The various boundary conditions imposed on the domain are: homogeneous Dirichlet
conditions at the boundary of the domain, pressure continuity and flux conservation at
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the fracture-fracture intersections, and zero normal flux at the immersed fracture tips.
In other words,

γ∂�\∂�um = 0 on ∂� \ ∂�, γ∂�∩∂�u f = 0 on∂� ∩ ∂�

γ�i ū f ,i = γ� j ū f , j on �i, j for all i �= j such that �i, j

has a non zerod − 2 Lebesgue measure
∑

i∈I
q f ,i · n�i = 0 on �, q f ,i · n�i = 0 on �i,N , i ∈ I

Let us define L2(�) = {v = (vi )i∈I , vi ∈ L2(�i ), i ∈ I }. The assumptions under
which the model is considered are:

• pm,0 ∈ H1(�\�) and p f ,0 ∈ L2(�),

• For μ ∈ {m, f } and α = 1, 2, hαμ ∈ L2((0, T ) × Mμ),
• For μ ∈ {m, f } ∪ χ : S1μ : Mμ × R → [0, 1] is a Caratheodory function; for a.e.
x ∈ Mμ, S1μ(x, ·) is a non-decreasing Lipschitz continuous function on R; for all

q ∈ R, S1μ(·, q) is piecewise constant on a finite partition (M j
μ) j∈Jμ of polytopal

subsets of Mμ.
• For α = 1, 2 and μ ∈ {m, f } ∪ χ : there exist constants kμ, kμ > 0, such that

kαμ : Mμ × [0, 1] → [kμ, kμ] is a Caratheodory function.

Recall that a Caratheodory function is measurable w.r.t. its first argument and contin-
uous w.r.t. its second argument.

2.3 Weak formulation

The subspace H1(�) of L2(�) consists in functions v = (vi )i∈I such that vi ∈ H1(�i )

for all i ∈ I , with continuous traces at the fracture intersections �i, j for all i �= j . Its
subspace of functions with vanishing traces on �0 is denoted by H1

�0
(�).

Let us nowdefine the hybrid-dimensional function spaces that are used as variational
spaces for the Darcy flow model. Starting from

V = H1(�\�) × H1(�),

consider the subspace

V 0 = V 0
m × V 0

f

where (with γ∂� : H1(�\�) → L2(∂�) the trace operator on ∂�)

V 0
m = {v ∈ H1(�\�) | γ∂�v = 0 on ∂�} and V 0

f = H1
�0

(�).
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The weak formulation of (1) amounts to finding (uαm, u
α
f )α=1,2 ∈ [L2(0, T ; V 0

m)×
L2(0, T ; V 0

f )]2 satisfying the following variational equalities, for any α = 1, 2 and
any (ϕα

m, ϕ
α
f ) ∈ C∞

0 ([0, T ) × �) × C∞
0 ([0, T ) × �):

∑

μ∈{m, f }

(
−

∫ T

0

∫

Mμ

φμS
α
μ(pμ)∂tϕ

α
μdτμdt +

∫ T

0

∫

Mμ

[kS]αμ(pμ) �μ∇uαμ · ∇ϕα
μdτμdt

−
∫

Mμ

φμS
α
μ(pμ,0)ϕ

α
μ(0, ·)dτμ

)

+
∑

a∈χ

(∫ T

0

∫

�a

T f

(
[kS]αa(γa pm)�uα�+a − [kS]αf (p f )�u

α�−a
)
�ϕα�adτdt

−
∫ T

0

∫

�a

ηSαa (γa pm)∂tγaϕ
α
mdτdt −

∫

�a

ηSαa (γa pm,0)γaϕ
α
m(0, ·)dτ

)

=
∑

μ∈{m, f }

∫ T

0

∫

Mμ

hαμϕ
α
μdτμ.

(2)

Here,

dτμ(x) =
{
dx if μ = m
dτ f (x) = d f (x)dτ(x) if μ = f

with dτ(x) the d − 1 dimensional Lebesgue measure on �.

3 The gradient discretisationmethod

The gradient discretisation method consists in selecting a set (called a gradient dis-
cretisation) of a finite-dimensional space and reconstruction operators on this space,
and in substituting them for their continuous counterpart in the weak formulation of
the model. The scheme thus obtained is called a gradient scheme. Let us first define
the set of discrete elements that make up a gradient discretisation.

Definition 3.1 (Gradient discretisation (GD)) A spatial gradient discretisation for
a discrete fracture matrix model is DS = (X0, (�

μ
DS

,∇μ
DS

)μ∈{m, f }, (�·�a,DS )a∈χ ,
(Ta

DS
)a∈χ ), where

• X0 is a finite-dimensional space of degrees of freedom (DOFs),
• For μ ∈ {m, f }, �μ

DS
: X0 → L2(Mμ) reconstructs a function on Mμ from the

DOFs,
• For μ ∈ {m, f }, ∇μ

DS
: X0 → L2(Mμ)

dim Mμ reconstructs a gradient on Mμ from
the DOFs,

• For a ∈ χ , �·�a,DS : X0 → L2(�a) reconstructs, from the DOFs, a jump on �a

between the matrix and fracture,
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• For a ∈ χ , Ta
DS

: X0 → L2(�a) reconstructs, from the DOFs, a trace on �a from
the matrix.

These operators must be chosen such that the following expression defines a norm on
X0:

‖w‖DS =
(
‖∇m

DS
w‖2

L2(�)
d + ‖∇ f

DS
w‖2

L2(�)
d−1 +

∑

a∈χ
‖�w�a,DS‖2L2(�a)

)1/2
.

The spatial gradient discretisation DS is extended to a space-time gradient discretisa-
tion by setting D = (DS, ID, (tn)n=0,...,N ) with

• 0 = t0 < t1 < · · · < tN = T a discretisation of the time interval [0, T ],
• ID : H1(�\�) × L2(�) → X0 an operator designed to interpolate the initial
condition.

The space-time operators act on a family u = (un)n=0,...,N ∈ (X0)N+1 the following
way: for all n = 0, . . . , N − 1 and all t ∈ (tn, tn+1],

�
μ
Du(t, ·) = �

μ
DS
un+1, ∇μ

Du(t, ·) = ∇μ
DS
un+1,

T
a
Du(t, ·) = T

a
DS
un+1, �u�a,D(t, ·) = �un+1�a,DS .

(3)

We extend these functions at t = 0 by considering the corresponding spatial operators
on u0.

Ifw = (wn)n=0,...,N is a family in X0, the discrete time derivatives δtw : (0, T ] →
X0 are defined such that, for all n = 0, . . . , N − 1 and all t ∈ (tn, tn+1], with�t

n+ 1
2

=
tn+1 − tn ,

δtw(t) = wn+1 − wn

�t
n+ 1

2

∈ X0.

Let (eν)ν∈DOFD be a basis of X0. If w ∈ X0, we write w = ∑
ν∈DOFD wνeν .

Then, for g ∈ C(R), we define g(w) ∈ X0 by g(w) = ∑
ν∈DOFD g(wν)eν . In other

words, g(w) is defined by applying g to each degree of freedom of w. Although this
definition depends on the choice of basis (eν)ν∈DOFD , we do not explicitly indicate
this dependency. This definition of g(w) is particularly meaningful in the context of
piecewise constant reconstructions, see Remark 3.3 below.

The gradient scheme for (1) consists in writing the weak formulation (2) with
continuous spaces and operators replaced by their discrete counterparts, after a formal
integration-by-parts in time. In other words, the gradient scheme is: find (uα)α=1,2 ∈
[(X0)N+1]2 such that, with p = u1 − u2,
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30 J. Droniou et al.

p0 = ID(pm,0, p f ,0) (4)

and, for any α = 1, 2 and vα ∈ (X0)N+1,

∑

μ∈{m, f }

(∫ T

0

∫

Mμ

φμ�
μ
D

[
δt S

α
μ(p)

]
�

μ
Dv

αdτμdt

+
∫ T

0

∫

Mμ

[kS]αμ(�μ
D p) �μ∇μ

Du
α · ∇μ

Dv
αdτμdt

)

+
∑

a∈χ

(∫ T

0

∫

�a

(
[kS]αa(Ta

D p)T f �u
α�+

a,D − [kS]αf (� f
D p)T f �u

α�−
a,D

)
�vα�a,Ddτdt

+
∫ T

0

∫

�a

ηTa
D

[
δt S

α
a (p)

]
T
a
Dv

αdτdt
)

=
∑

μ∈{m, f }

∫ T

0

∫

Mμ

hαμ�
μ
Dv

αdτμdt . (5)

3.1 Properties of gradient discretisations

The convergence analysis of the GDM is based on a few properties that sequences of
GDs must satisfy.

Definition 3.2 (Piecewise constant reconstruction operator) Let (eν)ν∈DOFD be the
basis of X0 chosen in Sect. 3. For μ ∈ {m, f } ∪ χ , an operator� : X0 → L2(Mμ) is
called piecewise constant if it has the representation

�u =
∑

ν∈DOFD
uν1ω

μ
ν

for all u =
∑

ν∈DOFD
uνeν ∈ X0,

where (ω
μ
ν )ν∈DOFD is a partition of Mμ up to a set of zero measure, and 1ω

μ
ν
is the

characteristic function of ωμ
ν .

In the following, all considered function reconstruction operators �μ
D and T

a
D are

assumed to be piecewise constant.

Remark 3.3 Recall that, if g ∈ C0(R) and u ∈ X0, then g(u) ∈ X0 is defined by
the degrees of freedom (g(uν))ν∈DOFD . Then, any piecewise constant reconstruction
operator � commutes with g in the sense that g(�u) = �g(u).

The coercivity property enables us to control the functions and trace reconstruction
by the norm on X0. This is a combination of a discrete Poincaré inequality and a
discrete trace inequality.

Definition 3.4 (Coercivity of spatial GD) Let

CDS = max
0 �=v∈X0

‖�m
DS

v‖L2(�) + ‖� f
DS

v‖L2(�) + ∑
a∈χ ‖Ta

DS
v‖L2(�a)

‖v‖DS

.
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A sequence (Dl
S)l∈N of gradient discretisations is coercive if there exists CP > 0 such

that
CDl

S
≤ CP for all l ∈ N. (6)

This consists in choosing a family

The consistency ensures that a certain interpolation error goes to zero along
sequences of GDs.

Definition 3.5 (Consistency of spatial GD) For u = (um, u f ) ∈ V 0 and v ∈ X0,
define

sDS (v, u) = ‖∇m
DS

v − ∇um‖
L2(�)

d + ‖∇ f
DS

v − ∇τu f ‖L2(�)
d−1

+ ‖�m
DS

v − um‖L2(�) + ‖� f
DS

v − u f ‖L2(�)

+
∑

a∈χ

(
‖�v�a,DS − �u�a‖L2(�a)

+ ‖Ta
DS

v − γaum‖L2(�a)

)
,

and SDS (u) = minv∈X0 sDS (v, u). A sequence (DlS)l∈N of gradient discretisations is

GD-consistent (or consistent for short) if, for all u = (um, u f ) ∈ V 0,

lim
l→∞SDl

S
(u) = 0. (7)

To define the notion of limit-conformity, we need the following two spaces:

C∞
� = C∞

b (� \ �)
d
,

C∞
� =

{
q f = (q f ,i )i∈I | q f ,i ∈ C∞(�i )

d−1
,

∑

i∈I q f ,i · n�i = 0 on�,

q f ,i · n�i = 0 on�i,N , i ∈ I
}
,

where C∞
b (� \ �) ⊂ C∞(� \ �) is the set of functions ϕ, such that for all x ∈ �

there exists r > 0, such that for all connected components ω of {x+y ∈ R
d | |y| < r}

∩(�\�) one hasϕ ∈ C∞(ω), and such that all derivatives ofϕ are bounded. The limit-
conformity imposes that, in the limit, the discrete gradient and function reconstructions
satisfy a natural integration-by-part formula (Stokes’ theorem).

Definition 3.6 (Limit-conformity of spatial GD) For all q = (qm,q f ) ∈ C∞
� × C∞

� ,

ϕa ∈ C∞
0 (�a) and v ∈ X0, define

wDS (v,q, ϕa) =
∫

�

(
∇m

DS
v · qm + (�m

DS
v)divqm

)
dx

+
∫

�

(
∇ f

DS
v · q f + (�

f
DS

v)divτq f

)
dτ(x)

−
∑

a∈χ

∫

�a

qm · naTa
DS

vdτ(x)
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+
∑

a∈χ

∫

�a

ϕa

(
T
a
DS

v − �
f
DS

v − �v�a,DS

)
dτ(x)

andWDS (q, ϕa) = max0 �=v∈X0
1

‖v‖DS
|wDS (v,q, ϕa)|. A sequence (Dl

S)l∈N of gradi-

ent discretisations is limit-conforming if, for all q = (qm,q f ) ∈ C∞
� × C∞

� and all
ϕa ∈ C∞

0 (�a),
lim
l→∞WDl

S
(q, ϕa) = 0. (8)

Remark 3.7 (Domain of WDS ) Usually, the measure WDS of limit-conformity is
defined on spaces in which the Darcy velocities of solutions to the model are expected
to be, not smooth spaces asC∞

� × C∞
� [21, Definition 2.6]. However, if we do not aim

at obtaining error estimates (which is the case here, given that such estimates would
require unrealistic regularity assumptions on the data and the solution), WDS only
needs to be defined and to converge to 0 on spaces of smooth functions—see Lemma
A.2.

For any space-dependent function f , define Tξ f (x) = f (x + ξ). Likewise, for
any time-dependent function g, let Thg(t) = g(t + h). The compactness property
ensures a sort of discrete Rellich theorem (compact embedding of H1

0 into L2). By
the Kolmogorov theorem, this compactness is equivalent to a uniform control of the
translates of the functions.

Definition 3.8 (Compactness of spatial GD) For all v ∈ X0 and ξ = (ξm, ξ f ), with

ξm ∈ R
d and ξ f = (ξ if )i∈I ∈ ⊕

i∈I τ(Pi ), where τ(Pi ) is the (constant) tangent
space of Pi , define

τDS (v, ξ) = ‖Tξm
�m

DS
v − �m

DS
v‖

L2(R
d
)

+
∑

i∈I

(
‖Tξ if

�
f
DS

v − �
f
DS

v‖L2(Pi )
+

∑

a=a±(i)

‖Tξ if
T
a
DS

v − T
a
DS

v‖L2(Pi )

)
,

where all the functions on � (resp. �i ) have been extended to R
d (resp. Pi ) by 0

outside their initial domain. Let TDS (ξ) = max0 �=v∈X0
1

‖v‖DS
τDS (v, ξ). A sequence

(Dl
S)l∈N of gradient discretisations is compact if

lim
|ξ |→0

sup
l∈N

TDl
S
(ξ) = 0. (9)

All these properties for spatial GDs naturally extend to space–time GDs with, for
the consistency, additional requirements on the time steps and on the interpolants of
the initial conditions.

Definition 3.9 (Properties of space-time gradient discretisations) A sequence of
space-time gradient discretisations (Dl)l∈N is

1. Coercive if (Dl
S)l∈N is coercive.
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2. Consistent if

(i) (Dl
S)l∈N is consistent,

(ii) �t l = maxn=0,...,N−1 �t l
n+ 1

2
→ 0 as l → ∞, and

(iii) For all ϕ = (ϕm, ϕ f ) ∈ H1(�\�) × L2(�), letting ϕl = IDl (ϕm, ϕ f ) we
have, as l → ∞,

‖ϕm − �m
Dl
S
ϕl‖L2(�) → 0,

‖γaϕm − T
a
Dl
S
ϕl‖L2(�a)

→ 0 ∀a ∈ χ,

‖ϕ f − �
f
Dl
S
ϕl‖L2(�) → 0.

3. Limit-conforming if (Dl
S)l∈N is limit-conforming.

4. Compact if (Dl
S)l∈N is compact.

Elements of (X0)N+1 are identified with functions (0, T ] → X0 by setting, for
u ∈ (X0)N+1 with u = (un)n=0,...,N ,

∀n = 0, . . . , N − 1 , ∀t ∈ (tn, tn+1] , u(t) = un+1. (10)

This definition is compatible with the choices of space-time operators made in Def-
inition 3.1, in the sense that, for any t ∈ (0, T ], �μ

Du(t, x) = �
μ
DS

(u(t))(x) (and
similarly for the other reconstruction operators). With the identification (10), the norm
on (X0)N+1 is

‖u‖2D =
∫ T

0
‖u(t)‖2DS

dt .

4 Convergence analysis

In the rest of this paper, when the phase parameter α is absent this implicitly means
that it is equal to 1. For example, we write Sμ for S1μ. The main convergence result is
the following.

Theorem 4.1 (Convergence Theorem) Let (Dl)l∈N be a coercive, consistent, limit-
conforming and compact sequence of space-time gradient discretisations, with
piecewise constant reconstructions. Then for any l ∈ N there is a solution (uα,l)α=1,2
of (5) with D = Dl .

Moreover, there exists (uα)α=1,2=(uαm, u
α
f )α=1,2∈[L2(0, T ; V 0

m)×L2(0, T ; V 0
f )]2

solution of (2) such that, up to a subsequence as l → ∞,

1. The following weak convergences hold, for α = 1, 2,
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⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�
μ

Dl u
α,l⇀uαμ weakly in L2((0, T ) × Mμ) , for μ ∈ {m, f },

∇μ

Dl u
α,l⇀∇uαμ weakly in L2((0, T ) × Mμ)

dimMμ , for μ ∈ {m, f },
T
a
Dl u

α,l⇀γauαm weakly in L2((0, T ) × �a) , for alla ∈ χ,

�uα,l�a,Dl⇀�uα�a weakly in L2((0, T ) × �a) , for alla ∈ χ.

(11)

2. The following strong convergences hold, with p = u1 − u2 and pμ = u1μ − u2μ:

{
�

μ

Dl Sμ(p
l) → Sμ(pμ) in L2((0, T ) × Mμ) , for μ ∈ {m, f },

T
a
Dl Sa(p

l) → Sa(γa pm) in L2((0, T ) × �a) , for all a ∈ χ.
(12)

Remark 4.2 (Uniform-in-time strong-in-space convergence) It is additionally proved
in [26] that the saturations converge uniformly-in-time strongly in L2 (that is, in
L∞(0, T ; L2(�))).

Remark 4.3 (Discretisation spaces varying with the time step) As mentioned in [13,
Remark 3.5] for a different model, it is also possible to consider gradient schemes in
which the gradient discretisation changes at each time step. This consists in choosing a
family D̃S = (DS,n)n=0,...,Nl of spatial gradient discretisations DS,n (as in Definition
3.1), in considering unknowns u = (un)n=0,...,N ∈ ∏N

n=0 X
0
S,n and in defining the

space-time operators (3) with �
μ
DS
un+1, ∇μ

DS
un+1, T

a
DS
un+1 and �un+1�a,DS respec-

tively replaced by �
μ
DS,n+1

un+1, ∇μ
DS,n+1

un+1, T
a
DS,n+1

un+1 and �un+1�a,DS,n+1 . The

gradient scheme is then written as in (5). For a sequence (D̃l
S)l∈N of such families

of spatial GDs, the notions coercivity, consistency, limit-conformity and compactness
are defined by writing the bound and convergences in (6), (7), (8) and (9) with CDl

S
,

SDl
S
(u),WDl

S
(q, ϕa) and TDl

S
(ξ) replaced by

sup
n=0,...,Nl

CDl
S,n

, sup
n=0,...,Nl

SDl
S,n

(u) , sup
n=0,...,Nl

WDl
S,n

(q, ϕa) and sup
n=0,...,Nl

TDl
S,n

(ξ).

With these notions, Theorem 4.1 still holds.
By using spatial GDs that change at each time step, one can represent in the GDM

framework numerical methods with moving or dynamically refined meshes, or whose
gradient reconstruction involves time-dependent parameters (as in RTk Mixed Finite
Elements with a diffusion tensor that depends on some unknown of the system; see
[13, Section 4.1]).

Before delving into the proof of the theorem, let us give an overview of the strategy.
The convergence of the solutions to the gradient schemes (5) is established by a
compactness technique, as briefly described in [18, Section 1.2]: (i) prove a priori
estimates on the solutions to the scheme, (ii) using discrete compactness theorems,
deduce from these estimates that the (reconstructions of the) approximate solutions
are compact in appropriate spaces, (iii) prove that any limit, in these spaces, of the
approximate solutions is a solution to the continuous model (2).
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(i) Apriori estimates. Thefirstapriori estimates are classically obtained byusing the
approximate solution uα itself as a test function in the scheme (5). After summing
the two equations corresponding to each phase, the diffusion terms then directly
yield an estimate on ∇μ

Du
α . The time derivative term form the discrete counter-

part of Sμ(pμ)∂t pμ which, after integration in time, would yield an estimate on
Sμ(pμ)with (Sμ)

′ = Sμ. To make explicit that this estimate is actually an esti-
mate on the saturation, we re-write Sμ as Bμ(Sμ) for a well-chosen Bμ. These
a priori estimates are stated in Lemma 4.4. These initial estimates only concern
spatial derivatives of the approximate solution (they are a discrete equivalent of
L2(0, T ; H1

0 ) estimates). Since this solution depends on both time and space,
estimates are also required on its (discrete) time derivative to establish the com-
pactness in an appropriate space. These time derivative estimates are the purpose
of Lemma 4.6 and, classically for parabolic PDEs, they are obtained in a weak
spatial norm (a sort of discrete H−1 norm). They are obtained on δt Sμ(p) and,
thanks to the modelling of the damaged rock type at the matrix-fracture interface
(term η∂t S

α
a (γa pm) in (1b)), also on δt Sa(p). These estimates are instrumen-

tal to obtain the compactness in time and space of all the saturations in the
model.

(ii) Compactness. The estimates on the discrete spatial and temporal derivatives,
together with the compactness property of the gradient discretisations, yield
estimates on the spatial and temporal translates of the saturations (Lemmas 4.8
and 4.9). A use of the Kolmogorov theorem and of the consistency of the gradient
discretisations (to identify, through Lemma A.2, weak limits of reconstructed
gradients and traces as the gradient and trace of the limit of the approximate
solutions) then give the convergences (11) and (12); this is stated in Theorem
4.11. A discontinuous Ascoli-Arzela theorem (Theorem A.1) is then applied in
Theorem 4.13 to obtain the convergence of the saturations uniformly-in-time and
weakly in L2(�). This uniform-in-time convergence is essential to pass to the
limit, in (iii) below, in the energy estimate (16) (which involves pointwise-in-time
values of the saturations).

(iii) The limit is a solution of the model. The conclusion, presented in Sect. 4.3, con-
sists in proving that the limit of the approximate solutions is a solution to the
continuous model. As we do not have strong convergence of the phase pressures
uα , the main challenge in analysing this limit arises from the non-linear upwind-

ing terms [kS]αa(Ta
D p)T f �uα�+

a,D − [kS]αf (� f
D p)T f �uα�−

a,D. The limit of this
term is obtained by using the monotony properties of this upwinding, a Minty
trick, and the discrete energy estimate (16).

4.1 Preliminary estimates

Let us introduce some useful auxiliary functions. These functions are the same as in
[19,25], with adjustments to account for the fact that the saturations depends on x and
might not vanish at p = 0. For μ ∈ {m, f } ∪ χ , let RSμ(x,·) be the range of Sμ(x, ·).
The pseudo-inverse of Sμ(x, ·) is the mapping [Sμ(x, ·)]i : RSμ(x,·) → R defined by
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[Sμ(x, ·)]i (q) =
⎧
⎨

⎩

inf{z ∈ R | Sμ(x, z) = q} if q > Sμ(x, 0) ,
0 if q = Sμ(x, 0) ,
sup{z ∈ R | Sμ(x, z) = q} if q < Sμ(x, 0).

That is, [Sμ(x, ·)]i (q) is the point z in RSμ(x,·) that is the closest to Sμ(x, 0) and such
that Sμ(x, z) = q . The function Bμ(x, ·) : R → [0,∞] is given by

Bμ(x, q) =
⎧
⎨

⎩

∫ q

Sμ(x,0)
[Sμ(x, ·)]i (τ )dτ if q ∈ RSμ(x,·) ,

∞ else.

Bμ(x, ·) is convex lower semi-continuous (l.s.c.) and satisfies the following properties
[25]

Bμ(x, Sμ(x, r)) =
∫ r

0
τ
∂Sμ
∂q

(x, τ )dτ, (13)

∀a, b ∈ R , a(Sμ(x, b) − Sμ(x, a)) ≤ Bμ(x, Sμ(x, b)) − Bμ(x, Sμ(x, a)) (14)

and, for some K0, K1 and K2 not depending on x or r ,

K0Sμ(x, r)2 − K1 ≤ Bμ(x, Sμ(x, r)) ≤ K2r
2. (15)

In the following, we write A � B for “A ≤ MB for a constant M depending only
on an upper bound of CD and on the data in the assumptions of Sect. 2.2”.

Lemma 4.4 (Energy estimates) Under the assumptions of Sect. 2.2, let D be a gradi-
ent discretisation with piecewise constant reconstructions �μ

D, T
a
D. Let (u

α)α=1,2 ∈
[(X0)N+1]2 be a solution of the gradient scheme of (5). Take T0 ∈ (0, T ] and
k ∈ {0, . . . , N − 1} such that T0 ∈ (tk, tk+1]. Then

∑

μ∈{m, f }

∫

Mμ

φμ

[
Bμ(Sμ(�

μ
DS

p(T0))) − Bμ(Sμ(�
μ
DS

p0))
]
dτμ

+
2∑

α=1

∑

μ∈{m, f }

∫ T0

0

∫

Mμ

[kS]αμ(�μ
D p)�μ∇μ

Du
α · ∇μ

Du
αdτμdt

+
∑

a∈χ

∫

�a

η
[
Ba(Sa(T

a
DS

p(T0))) − Ba(Sa(T
a
DS

p0))
]
dτ

+
2∑

α=1

∑

a∈χ

∫ T0

0

∫

�a

(
[kS]αa(Ta

D p)T f �u
α�+

a,D

− [kS]αf (� f
D p)T f �u

α�−
a,D

)
�uα�a,Ddτdt

≤
2∑

α=1

∑

μ∈{m, f }

∫ tk+1

0

∫

Mμ

hαμ�
μ
Du

αdτμdt .

(16)
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As a consequence,

∑

α=1,2

‖uα‖2D � 1 +
∑

μ∈{m, f }
‖�μ

D p0‖2L2(Mμ)
+

∑

a∈χ
‖Ta

DS
p0‖2L2(�a)

. (17)

Proof We remove the spatial coordinate x in the arguments, when not needed. Rea-
soning as in [19, Lemma 4.1], Property (14) gives

∑

μ∈{m, f }

∫ tk+1

0

∫

Mμ

φμ�
μ
D

[
δt Sμ(p)

]
�

μ
D pdτμdt

=
∑

μ∈{m, f }

k∑

n=0

∫

Mμ

φμ

[
Sμ(�

μ
DS

pn+1) − Sμ(�
μ
DS

pn)
]
�

μ
DS

pn+1dτμ

≥
∑

μ∈{m, f }

k∑

n=0

∫

Mμ

φμ

[
Bμ(Sμ(�

μ
DS

pn+1)) − Bμ(Sμ(�
μ
DS

pn))
]
dτμ

=
∑

μ∈{m, f }

∫

Mμ

φμ

[
Bμ(Sμ(�

μ
DS

p(T0))) − Bμ(Sμ(�
μ
DS

p0))
]
dτμ

(18)

where we have used, by definition, �μ
DS

p(T0) = �
μ
DS

pk+1. Similarly,

∫ tk+1

0

∫

�a

ηTa
D

[
δt Sa(p)

]
T
a
D pdτdt ≥

∫

�a

η
[
Ba(Sa(T

a
DS

p(T0)))

− Ba(Sa(T
a
DS

p0))
]
dτ. (19)

Equation (16) is then obtained by taking vα = (uα0 , . . . , u
α
k+1, 0, . . . , 0) (for α = 1, 2)

in the gradient scheme (5), by summing the resulting equations over α = 1, 2, by using
(18) and (19), and by reducing the time integrals in the left-hand side from [0, tk+1]
to [0, T0], due to the non-negativity of the integrands.

The inequality (17) is the consequence of a few simple estimates on the terms of
(16) with T0 = T . For the symmetric diffusion terms (for α = 1, 2 and μ ∈ {m, f }),
we write

∫ T

0

∫

Mμ

[kS]αμ(�μ
D p)�μ∇μ

Du
α ·∇μ

Du
αdτμdt ≥ dμkμλμ‖∇μ

Du
α‖2L2((0,T )×Mμ)

(20)

where dμ = 1 if μ = m. The matrix–fracture coupling terms are handled by noticing
that, for any s ∈ R, s+s = (s+)2 and s−s = −(s−)2, so that for α = 1, 2 and a ∈ χ ,

∫ T

0

∫

�a

(
[kS]αa(Ta

D p)T f �u
α�+

a,D − [kS]αf (� f
D p)T f �u

α�−
a,D

)
�uα�a,Ddτdt
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=
∫ T

0

∫

�a

(
[kS]αa(Ta

D p)T f (�u
α�+

a,D)
2 + [kS]αf (� f

D p)T f (�u
α�−

a,D)
2dτdt

)

� ‖�uα�a,D‖2L2((0,T )×�a)
. (21)

Here, we have used [kS]αa(Ta
D p) ≥ ka, [kS]αf (� f

D p) ≥ k f and |s|2 = (s+)2 + (s−)2.
Plugging estimates (15), (20) and (21) in (16) (with T0 = T ) and invoking Cauchy–
Schwarz inequalities leads to

2∑

α=1

[
‖∇m

D uα‖2
L2((0,T )×�)

d + ‖∇ f
Du

α‖2
L2((0,T )×�)

d−1 +
∑

a∈χ
‖�uα�a,D‖2L2((0,T )×�)

]

�
∑

μ∈{m, f }

[ 2∑

α=1

‖hαμ‖L2((0,T )×Mμ)
‖�μ

Du
α‖L2((0,T )×Mμ)

+ ‖�μ
D p0‖2L2(Mμ)

]

+ ‖Ta
DS

p0‖2L2(Mμ)
.

The proof of (17) is complete by noticing that the left-hand side is equal to∑2
α=1 ‖uα‖2D, and by using Young’s inequality and the definition of CD in the right-

hand side. ��
The existence of a solution to the gradient scheme follows by a standard fixed

point argument based on the Leray–Schauder topological degree, see e.g. [10,
proof of Lemma 3.2] or [23, Step 1 in the proof of Theorem 3.1].

Corollary 4.5 Under the assumptions of Lemma 4.4, there exists a solution to the
gradient scheme (5).

We nowwant to obtain estimates on the discrete time derivatives. Let the dual norm
of W = [wm, w f , (wa)a∈χ ] ∈ (X0)2+�χ be defined by

|W |DS ,∗ = sup

{ ∑

μ∈{m, f }

∫

Mμ

φμ�
μ
DS

wμ�
μ
DS

vdτμ

+
∑

a∈χ

∫

�a

ηTa
DS

waT
a
DS

vdτ : v ∈ X0 , ‖v‖DS ≤ 1

}

. (22)

Lemma 4.6 (Weak estimate on time derivatives) Under the assumptions of Sect. 2.2,
let D be a gradient discretisation with piecewise constant reconstructions �μ

D, T
a
D.

Let (uα)α=1,2 ∈ [(X0)N+1]2 be a solution of the gradient scheme of (5). Then,
∫ T

0

∣
∣
∣
[
δt Sm(p)(t), δt S f (p)(t), (δt Sa(p)(t))a∈χ

]∣
∣
∣
2

DS ,∗
dt � 1 +

∑

α=1,2

‖uα‖2D.
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Remark 4.7 (Damaged rockmodelling) Themodelling of the damaged rock type (term
η∂t S

α
a (γa pm) in (1b)) is essential to obtain the estimate on δt Sa(p) above. These esti-

mates are required to obtain the compactness of this discrete saturation (see Theorems
4.11 and 4.13).

Proof Takev ∈ X0 and apply (5)withα = 1 to the test function (0, . . . , 0, v, 0, . . . , 0),
where v is at an arbitrary position n. This shows that, for all n = 0, . . . , N and
t ∈ (tn, tn+1]

∑

μ∈{m, f }

∫

Mμ

φμ�
μ
D

[
δt Sμ(p)

]
(t)�μ

Dvdτμ +
∑

a∈χ

∫

�a

ηTa
D

[
δt Sa(p)

]
(t)Ta

Dvdτ

=
∑

μ∈{m, f }

(∫

Mμ

[ 1

�t
n+ 1

2

∫ tn+1

tn

hμ(s)ds
]
�

μ
Dvdτμ

−
∫

Mμ

[kS]μ(�μ
D p)(t) �μ∇μ

Du(t) · ∇μ
Dvdτμ

)

−
∑

a∈χ

∫

�a

(
[kS]a(Ta

D p)(t)T f �u(t)�
+
a,D

− [kS] f (� f
D p)(t)T f �u(t)�

−
a,D

)
�v�a,Ddτ

�

∥
∥
∥
∥
∥
∥

1

�t
n+ 1

2

∫ tn+1

tn

hμ(s)ds

∥
∥
∥
∥
∥
∥
L2(Mμ)

‖v‖DS + ‖u(t)‖DS‖v‖DS ,

where we have used the definition of CD in the last step. Taking the supremum over
all v such that ‖v‖DS ≤ 1 shows that

∣
∣
∣
[
δt Sm(p)(t), δt S f (p)(t), (δt Sa(p)(t))a∈χ

]∣
∣
∣
DS ,∗

� 1

�t
n+ 1

2

∫ tn+1

tn

‖hμ(s)‖L2(Mμ)
ds

+‖u(t)‖DS . (23)

Take the square of this relation, use (a + b)2 ≤ 2a2 + 2b2, and apply Jensen’s inequal-
ity to introduce the square inside the time integral. Multiply then by �t

n+ 1
2
and sum

over n to conclude. ��
Lemma 4.8 (Estimate on time translates) Under the assumptions of Sect. 2.2, let D
be a gradient discretisation with piecewise constant reconstructions�μ

D, T
a
D. For any

h > 0 and any solution (uα)α=1,2 ∈ [(X0)N+1]2 of (5),
∑

μ∈{m, f }
‖Sμ(Th�

μ
D p) − Sμ(�

μ
D p)‖2L2((0,T )×Mμ)

+
∑

a∈χ
‖Sa(ThT

a
D p)

−Sa(T
a
D p)‖2L2((0,T )×�a)

� (h + �t)
(
1 +

2∑

α=1

‖uα‖2D
)
, (24)
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where we recall that Thg(s) = g(s+h) and�t = max{�t
n+ 1

2
: n = 0, . . . , N −1},

and where all functions of time have been extended by 0 outside (0, T ).

Proof Let us start by assuming that h ∈ (0, T ), and let us consider integrals over
(0, T − h) (we therefore do not use extensions outside (0, T ) yet). By the Lipschitz
continuity and monotonicity of the saturations Sμ = S1μ we have |Sμ(b)− Sμ(a)|2 �
(Sμ(b) − Sμ(a))(b − a). Thus, setting n(s) = min{k = 1, . . . , N | tk ≥ s} for all
s ∈ R,

∑

μ∈{m, f }

∫ T−h

0

∫

Mμ

|Sμ(Th�
μ
D p) − Sμ(�

μ
D p)|2dτμds

+
∑

a∈χ

∫ T−h

0

∫

�a

|Sa(ThT
a
D p) − Sa(T

a
D p)|2dτds

�
∑

μ∈{m, f }

∫ T−h

0

∫

Mμ

φμ

(
Sμ(Th�

μ
D p) − Sμ(�

μ
D p)

)
(s)(Th�

μ
D p

− �
μ
D p)(s)dτμds

+
∑

a∈χ

∫ T−h

0

∫

�a

η
(
Sa(ThT

a
D p) − Sa(T

a
D p)

)
(s)(ThT

a
D p

− T
a
D p)(s)dτds

�
∫ T−h

0

[ ∑

μ∈{m, f }

∫

Mμ

∫ tn(s+h)

tn(s)

φμ�
μ
D

[
δt Sμ(p)

]
(t)(Th�

μ
D p

− �
μ
D p)(s)dtdτμ

+
∑

a∈χ

∫

�a

∫ tn(s+h)

tn(s)

ηTa
D

[
δt Sa(p)

]
(t)(ThT

a
D p

− T
a
D p)(s)dtdτ

]
ds. (25)

In the last line, we simply wrote Sμ(Th�
μ
D p)(s) − Sμ(�

μ
D p)(s) = Sμ(�

μ
D p)(s +

h)− Sμ(�
μ
D p)(s) as the sum of the jumps if Sμ(�

μ
D p) between s and s + h (likewise

for Sa(T
a
D p)).

For a fixed s, define v ∈ (X0)N+1 by

vk =
{
pn(s+h) − pn(s) if n(s) + 1 ≤ k ≤ n(s + h)
0 else.

With this choice,
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�
μ
Dv(t, x) = 1(tn(s),tn(s+h)](t) (Th�

μ
D p − �

μ
D p)(s, x),

T
a
Dv(t, x) = 1(tn(s),tn(s+h)](t) (ThT

a
D p − T

a
D p)(s, x),

∇μ
Dv(t, x) = 1(tn(s),tn(s+h)](t) (Th∇μ

D p − ∇μ
D p)(s, x) , and

�v�a,D(t, x) = 1(tn(s),tn(s+h)](t) (Th�p�a,D − �p�a,D)(s, x).

(26)

We keep s fixed and concentrate on the integrand of the outer integral in the right-
hand side of (25). Estimate (23), the definition (22) of | · |DS ,∗, and Young’s inequality
yield

∑

μ∈{m, f }

∫ T

0

∫

Mμ

φμ�
μ
D

[
δt Sμ(p)

]
�

μ
Dvdτμdt +

∑

a∈χ

∫ T

0

∫

�a

ηTa
D

[
δt Sa(p)

]
T
a
Dvdτdt

�
∫ T

0
(‖hμ(t)‖L2(Mμ)

+ ‖u(t)‖DS )‖v‖DS1(tn(s),tn(s+h)](t)dt

�
∫ T

0
(‖hμ(t)‖L2(Mμ)

+ ‖u(t)‖DS )
21(tn(s),tn(s+h)](t)dt + (tn(s+h) − tn(s))‖v‖2DS

.

Returning to (25), integrate the previous estimate over s ∈ (0, T − h). In this step, it
is crucial to realise that

tn(s+h) − tn(s) ≤ h + �t and
∫ T−h

0
1(tn(s),tn(s+h)](t)ds ≤

∫ T

0
1[t−h−�t,t](s)ds ≤ h + �t .

Hence, recalling the definition of v,

RHS(25) � (h + �t)

[ ∫ T

0
(‖hμ(t)‖L2(Mμ)

+ ‖u(t)‖DS )
2dt

+
∫ T−h

0
‖pn(s+h)‖2DS

ds +
∫ T−h

0
‖pn(s)‖2DS

ds

]

� (h + �t)
(
1 + ‖u‖2D + ‖p‖2D

)
.

Since p = u1 − u2, this proves (24) with L2(0, T − h) norms in the left-hand side,
instead of L2(0, T ) norms. The complete form of (24) follows by recalling that 0 ≤
Sμ ≤ 1, so that ‖Sμ(�μ

D p)‖2L2((T−h,T )×Mμ)
� h (and similarly for other saturation

terms). ��

Lemma 4.9 (Estimate on space translates) Under the assumptions of Sect. 2.2, let
D be a gradient discretisation with piecewise constant reconstructions �μ

D, T
a
D. Let

(uα)α=1,2 ∈ [(X0)N+1]2 be a solution of (5), and let ξ = (ξm, ξ f ), with ξm ∈ R
d

and ξ f = (ξ if )i∈I ∈ ⊕
i∈I τ(Pi ), where τ(Pi ) is the (const.) tangent space of Pi .
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Then, extending the functions �μ
D p and Sμ by 0 outside Mμ,

‖Tξm
Sm(�

m
D p) − Sm(�

m
D p)‖2

L2((0,T )×Rd
)
+

∑

i∈I

(
‖Tξ if

S f (�
f
D p)

− S f (�
f
D p)‖2L2((0,T )×Pi )

+
∑

a=a±(i)

‖Tξ if
Sa(T

a
D p) − Sa(T

a
D p)‖2L2((0,T )×Pi )

)

� TDS (ξ)

2∑

α=1

‖uα‖2D + |ξ |,

where we recall that Tζ f (x) = f (x + ζ ), and TDS is given in Definition 3.8.

Proof Let us focus on the matrix �, and remember that, as a function of x, Sm is
piecewise constant on a polytopal partition (� j ) j∈Jm . Write

Tξm
Sm(�

m
D p) − Sm(�

m
D p) = Sm(x + ξm,�

m
D p(x + ξm, t)) − Sm(x + ξm,�

m
D p(x, t))

+ Sm(x + ξm,�
m
D p(x, t)) − Sm(x,�

m
D p(x, t)). (27)

Let �ξm
= ⋃

j {x ∈ � j | x + ξm /∈ � j } ∪ {x ∈ R
d \ � | x + ξm ∈ �} be the set

of points x that do not belong to the same element � j as their translate x + ξm . By
assumption on Sm ,

sup
q∈R

|Sm(x + ξm, q) − Sm(x, q)| ≤
{

0 on R
d \ �ξm

,

1 on �ξm
.

Moreover, since each � j is polytopal, |�ξm
| � |ξm |. Hence,

∫ T

0

∫

R
d
sup
q∈R

|Sm(x + ξm, q) − Sm(x, q)|2dxdt � |ξm |. (28)

On the other hand, by definition of TDS and the Lipschitz continuity of Sm ,

∫ T

0

∫

R
d
|Sm(x + ξm,�

m
D p(x + ξm, t)) − Sm(x + ξm,�

m
D p(x, t))|2dxdt

�
∫ T

0

∫

R
d
|�m

D p(x + ξm, t) − �m
D p(x, t)|2dxdt � ‖p‖2DTDS (ξ). (29)

Plugging (28) and (29) into (27) and reasoning similarly for S f and Sa concludes the
proof. ��
Remark 4.10 This proof is the only place where the assumption that each M j

μ is poly-
topal is used; this is to ensure that |�ξm

| � |ξm | (and likewise for fracture and
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interfacial terms). Obviously, this asssumption on the sets M j
μ could be relaxed (e.g.,

into “each M j
μ has a Lipschitz-continuous boundary”), but assuming that these sets

are polytopal is not restrictive for practical applications.

4.2 Initial convergences

Wecan now state our initial convergence theorem for sequences of solutions to gradient
schemes. This theorem does not yet identify the weak limits of such sequences.

Theorem 4.11 (Averaged-in-time convergence of approximate solutions) Let (Dl)l∈N
be a coercive, consistent, limit-conforming and compact sequence of space-time gra-
dient discretisations, with piecewise constant reconstructions. Let (uα,l)α=1,2 ,l∈N be

such that (uα,l)α=1,2 ∈ [(X0
l )

Nl+1]2 is a solution of (5) with D = Dl . Then, there
exists (uα)α=1,2 = (uαm, u

α
f )α=1,2 ∈ [L2(0, T ; V 0

m)× L2(0, T ; V 0
f )]2 such that, up to

a subsequence as l → ∞, the convergences (11) and (12) hold.

Proof Combining Lemmata 4.4 and A.2 immediately gives (11) up to a subsequence.
By assumption, 0 ≤ Sμ, Sa ≤ 1 and therefore, by Lemmata 4.8 and 4.9 and
the Kolmogorov compactness theorem, there exists a subsequence of (�μ

Dl Sμ(p
l))l

that strongly converges in L2((0, T ) × Mμ) and a subsequence of (Ta
Dl Sa(p

l))l

that strongly converges in L2((0, T ) × �a). Also, by assumption, Sμ, Sa are non-
decreasing functions, which allows us to identify the limits in (12) by applying
Corollary A.3. ��

Let C∞
� be the subspace of functions in C∞

b (� \�) vanishing on a neighbourhood
of the boundary ∂�. Define also C∞

� = γ�(C∞
0 (�)) as the image of C∞

0 (�) through
the trace operator γ� : H1

0 (�) → L2(�).
The following lemma and theorem add a uniform-in-time weak L2 convergence

property to the convergences established in Theorem 4.11.

Lemma 4.12 (Uniform-in-time,weak-in-space translate estimates)Under the assump-
tions of Sect. 2.2, let D be a gradient discretisation with piecewise constant
reconstructions �

μ
D, T

a
D. Let (u

α)α=1,2 ∈ [(X0)N+1]2 be a solution of the gradi-
ent scheme (5), and p = u1 − u2. Then, for all ϕ = (ϕm, ϕ f ) ∈ C∞

� × C∞
� and all

s, t ∈ [0, T ],
∣
∣
∣
∣
∣
∣

∑

μ∈{m, f }

〈
dμφμ�

μ
DSμ(p)(s) − dμφμ�

μ
DSμ(p)(t), ϕμ

〉

L2(Mμ)

+
∑

a∈χ

〈
ηTa

DSa(p)(s) − ηTa
DSa(p)(t), γaϕm

〉
L2(�a)

∣
∣
∣
∣
∣

� SDS (ϕ) + (SDS (ϕ) + Cϕ)

(

1 +
2∑

α=1

‖uα‖2D
) 1

2 [
|s − t | 12 + (�t)

1
2

]
. (30)
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where Cϕ only depends on ϕ, d f is the width of the fractures, and dm = 1.

Proof Let us introduce an interpolant PDS
: C∞

� × C∞
� → X0 such that, for all

ϕ ∈ C∞
� × C∞

� , sDS (PDS
ϕ, ϕ) = SDS (ϕ). As in the proof of Lemma 4.8, let n(r) =

min{k = 1, . . . , N | tk ≥ r} for all r ∈ [0, T ]. Denote by L the left-hand side of (30)
and introduce �μ

DS
PDS

ϕ in the first sum and T
a
DS
PDS

ϕ in the second sum to write

L ≤
∑

μ∈{m, f }

(∣
∣
∣
∣

〈
dμφμ�

μ
DSμ(p)(s) − dμφμ�

μ
DSμ(p)(t), ϕμ − �

μ
DS
PDS

ϕ
〉

L2(Mμ)

∣
∣
∣
∣

)

(31)

+
∑

a∈χ

(∣
∣
∣
〈
ηTa

DSa(p)(s) − ηTa
DSa(p)(t), γaϕm − T

a
DS
PDS

ϕ
〉
L2(�a)

∣
∣
∣
)

+
∣
∣
∣
∣
∣
∣

∑

μ∈{m, f }

〈
dμφμ

[
�

μ
DSμ(p)(s) − �

μ
DSμ(p)(t)

]
,�

μ
DS
PDS

ϕ
〉

L2(Mμ)

+
∑

a∈χ

〈
η
[
T
a
DSa(p)(s) − T

a
DSa(p)(t)

]
,Ta

DS
PDS

ϕ
〉

L2(�a)

∣
∣
∣
∣
∣

(32)

� SDS (ϕ) +
∣
∣
∣
∣
∣
∣

∑

μ∈{m, f }

〈
dμφμ

[
�

μ
DSμ(p)(s) − �

μ
DSμ(p)(t)

]
,�

μ
DS
PDS

ϕ
〉

L2(Mμ)

+
∑

a∈χ

〈
η
[
T
a
DSa(p)(s) − T

a
DSa(p)(t)

]
,Ta

DS
PDS

ϕ
〉

L2(�a)

∣
∣
∣
∣
∣
. (33)

Here, the terms (31) and (32) have been estimated by using 0 ≤ Sμ, Sa ≤ 1 and the
definition of PDS

ϕ. Let L1 be the second addend in (33). Assuming that t < s, and
hence n(t) ≤ n(s), write�μ

DSμ(p)(s)−�
μ
DSμ(p)(t) andT

a
DSa(p)(s)−T

a
DSa(p)(t)

as the sum of their jumps, and recall the definition (22) of | · |DS ,∗ to obtain

L1 ≤
∣
∣
∣
∣

n(s)−1∑

k=n(t)

�t
k+ 1

2

( ∑

μ∈{m, f }

〈
dμφμ�

μ
Dδt Sμ(p)(tk+1),�

μ
DS

PDS
ϕ
〉

L2(Mμ)

+
∑

a∈χ

〈
ηT

a
Dδt Sa(p)(tk+1),T

a
DS

PDS
ϕ
〉

L2(Mμ)

)∣
∣
∣
∣

≤
n(s)−1∑

k=n(t)

�t
k+ 1

2

∣
∣
∣
[
δt Sm(p)(tk+1), δt S f (p)(tk+1), (δt Sa(p)(tk+1))a∈χ

]∣
∣
∣
DS ,∗

‖PDS
ϕ‖DS

≤ ‖PDS
ϕ‖DS

∫ T

0
1[tn(t),tn(s)](r)

∣
∣
∣
[
δt Sm(p)(r), δt S f (p)(r), (δt Sa(p)(r))a∈χ

]∣
∣
∣
DS ,∗

dr .
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Use now Lemmata 4.6 and the Cauchy–Schwarz inequality to infer

L1 � ‖PDS
ϕ‖DS

(

1 +
2∑

α=1

‖uα‖2D
) 1

2 [
(s − t)

1
2 + (�t)

1
2

]
. (34)

By the triangle inequality,

‖PDS
ϕ‖DS ≤ SDS (ϕ) + ‖∇ϕm‖

L2(�)
d + ‖∇τ ϕ f ‖L2(�)

d−1

+
∑

a∈χ
‖�ϕ�a‖L2(�a)

= SDS (ϕ) + Cϕ.

Plugging this into (34) and the resulting inequality into (33) concludes the proof. ��

Theorem 4.13 (Uniform-in-time,weak-in-space convergence)Under the assumptions
of Theorem 4.11, for all μ ∈ {m, f } and a ∈ χ , Sμ(pμ) : [0, T ] → L2(Mμ) and

Sa(γa pm) : [0, T ] → L2(�a) are continuous for the weak topologies of L
2(Mμ) and

L2(�a), respectively, and

�
μ

Dl Sμ(p
l) −→ Sμ(pμ) uniformly in [0, T ], weakly in L2(Mμ),

T
a
Dl Sa(p

l) −→ Sa(γa pm) uniformly in [0, T ], weakly in L2(�a),
(35)

where the definition of the uniform-in-time weak L2 convergence is recalled in
“Appendix A.1”.

Proof The proof hinges on the discontinuous Arzelà-Ascoli theorem (Theorem
A.1 in the appendix). Consider first the matrix saturation. The space Rm ={
dmφmϕm | ϕm ∈ C∞

0 (� \ �)
}
is dense in L2(�). Apply (30) to ϕ = (ϕm, 0). Since

ϕ f = γaϕm = 0, only the term involving Sm remains in the left-hand side. The
resulting estimate and the property 0 ≤ Sm ≤ 1 show that the sequence of functions
(t �→ �m

Dl Sm(p
l)(t))l∈N satisfies the assumptions of Theorem A.1 with R = Rm .

Hence, (�m
Dl Sm(p

l))l∈N has a subsequence that converges uniformly on [0, T ]weakly
in L2(�). Given (12), the weak limit of this sequence must be Sm(pm).

A similar reasoning, based on the space R f =
{
d f φ f ϕ f | ϕ f ∈ C∞

�

}
—which

is dense in L2(�)—and using ϕ = (0, ϕ f ) in (30), gives the uniform-in-time weak

L2(�) convergence of � f
Dl S f (p

l) towards S f (p f ).
Let us now turn to the convergence of the trace saturations. Take ϕm ∈ C∞

� such
that the support of γaϕm is non empty for exactly one a ∈ χ . Considering ϕ = (ϕm, 0)
in (30) leads to

∣
∣
∣
∣

〈
ηTa

Dl Sa(p
l)(s) − ηTa

Dl Sa(p
l)(t), γaϕm

〉

L2(�a)

∣
∣
∣
∣
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� SDS (ϕ) + (SDS (ϕ) + Cϕ)

(

1 +
2∑

α=1

‖uα‖2D
) 1

2 [
|s − t | 12 + (�t)

1
2

]

+
∣
∣
∣
∣

〈
dmφm�

m
Dl Sm(p

l)(s) − dmφm�
m
Dl Sm(p

l)(t), ϕm
〉

L2(�)

∣
∣
∣
∣ . (36)

Since it was established that (dmφm�
m
Dl Sm(p

l))l∈N converges uniformly-in-time

weakly in L2(�), the sequence (〈dmφm�m
Dl Sm(p

l), ϕm〉L2(�))l∈N is equi-continuous
and the last term in (36) therefore tends to 0 uniformly in l as s − t → 0.
Hence, (36) enables the usage of Theorem A.1, by noticing that {ηγaϕm | ϕm ∈
C∞
� , supp(γbϕm) = ∅ for allb ∈ χ with b �= a} is dense in L2(�a), and gives the

uniform-in-time weak L2(�a) convergence of T
a
Dl Sa(p

l). ��

4.3 Proof of Theorem 4.1

The proof of the main convergence theorem can now be given.

First step: passing to the limit in the gradient scheme.
Let us introduce the family of functions (Fa,αDl )

α=1,2
a∈χ :

Fa,αDl (t, x, β) =
[
T f [kS]αa(Ta

Dl p
l)β+ − T f [kS]αf (� f

Dl p
l)β−]

(t, x), for all β ∈ L2(�a),

and their continuous counterparts (Fa,α)α=1,2
a∈χ :

Fa,α(t, x, β) =
[
T f [kS]αa(γa pm)β+ − T f [kS]αf (p f )β

−]
(t, x), for allβ ∈ L2(�a).

The following properties are easy to check. Firstly, since T f , [kS]αa and [kS] f are
positive and s �→ s+ and s �→ −s− are non-decreasing,

[
Fa,αDl (t, x, β)−Fa,αDl (t, x, γ )

][
β(t, x)−γ (t, x)

]
≥ 0, for allβ, γ ∈ L2(�a). (37)

Secondly, by the convergences (12), for (βl)l∈N ⊂ L2(�a) and β ∈ L2(�a),

βl −→ β inL2((0, T ) × �a) �⇒ Fa,αDl (βl) −→ Fa,α(β) in L2((0, T ) × �a).

(38)
Thirdly, by Lemma 4.4, the sequences (Fa,αDl (�ul�a,Dl ))l∈N (a ∈ χ , α = 1, 2) are

bounded in L2((0, T ) × �a) and there exists thus ρα
a ∈ L2((0, T ) × �a) such that,

up to a subsequence,

Fa,αDl (�uα,l�a,Dl )⇀ρα
a weakly in L2((0, T ) × �a). (39)

Consider ϕα = (ϕα
m, ϕ

α
f ) = ∑b

k=1 θ
α,k ⊗ ψα,k , where (ψα,k)k∈N = (ψ

α,k
m ,

ψ
α,k
f )k=1,...,b ∈ C∞

� × C∞
� and (θα,k)k=1,...,b ∈ C∞

0 ([0, T )). Take (v
α,l
n )n=0,...,Nl =
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(PDl
S
ϕα(t ln))n=0,...,Nl ∈ (X0

l )
Nl+1 as “test function” in (5). Here, PDl

S
is defined as in

the proof of Lemma4.12.Apply the discrete integration-by-parts of [21, SectionD.1.7]
on the accumulation terms in (5), let l → ∞ and use standard convergence arguments
[19,21] based on Theorem 4.11 to see that

2∑

α=1

{ ∑

μ∈{m, f }

(
−

∫ T

0

∫

Mμ

φμS
α
μ(pμ)∂tϕ

α
μdτμdt

+
∫ T

0

∫

Mμ

[kS]αμ(pμ) �μ∇uαμ · ∇ϕα
μdτμdt

−
∫

Mμ

φμS
α
μ(pμ,0)ϕ

α
μ(0, ·)dτμ

)

+
∑

a∈χ

(∫ T

0

∫

�a

ρα
a�ϕα�adτdt −

∫ T

0

∫

�a

ηSαa (γa pm)∂tγaϕ
α
mdτdt

−
∫

�a

ηSαa (γa pm,0)γaϕ
α
m(0, ·)dτ

)}

=
2∑

α=1

∑

μ∈{m, f }

∫ T

0

∫

Mμ

hαμϕ
α
μdτμdt .

(40)

Note that Equation (40) also holds for any smooth ϕα , by density of tensorial functions
in smooth functions [17, Appendix D]. Recalling the weak formulation (2), proving
Theorem 4.1 is now all about showing that

∑

a,α

∫ T

0

∫

�a

ρα
a�ϕα�adτdt =

∑

a,α

∫ T

0

∫

�a

Fa,α(�uα�a)�ϕ
α�adτdt . (41)

This is achieved by using Minty’s trick.
Second step: proof that

lim sup
l→∞

∑

a,α

∫ T

0

∫

�a

Fa,αDl (�uα,l�a,Dl )�uα,l�a,Dldτdt ≤
∑

a,α

∫ T

0

∫

�a

ρα
a�uα�adτdt .

(42)

Having inmind to employ the energy inequality (16)with T0 = T , we first establish,
for μ ∈ {m, f } and a ∈ χ , the following convergences as l → ∞:

∫ T

0

∫

Mμ

hαμ�
μ

Dl u
α,ldτμdt −→

∫ T

0

∫

Mμ

hαμu
α
μdτμdt , (43)

∫

Mμ

φμBμ(Sμ(�
μ

Dl
S
pl0))dτμ −→

∫

Mμ

φμBμ(Sμ(pμ,0))dτμ , (44)
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∫

�a

ηBa(Sa(T
a
Dl
S
pl0))dτ −→

∫

�a

ηBa(Sa(γa pm,0))dτ. (45)

The convergence (43) is obvious by Theorem 4.11. From the choice (4) of the scheme’s
initial conditions, together with the consistency of the interpolation operator ID,
�

μ

Dl
S
pl0 → pμ,0 in L2(Mμ) and T

a
Dl
S
pl0 → γa pm,0 in L2(�a), as l → ∞. Then,

(15) and [27, Lemma A.1] yield (44) and (45).
We further show that

lim inf
l→∞

∫

Mμ

φμBμ(Sμ(�
μ

Dl
S
plNl ))dτμ ≥

∫

Mμ

φμBμ(Sμ(pμ)(T ))dτμ , (46)

lim inf
l→∞

∫

�a

ηBa(Sa(T
a
Dl
S
plNl ))dτ ≥

∫

�a

ηBa(Sa(γa pm)(T ))dτ , (47)

lim inf
l→∞

∫ T

0

∫

Mμ

[kS]αμ(�μ

Dl p
l)�μ∇μ

Dl u
α,l · ∇μ

Dl u
α,ldτμdt

≥
∫ T

0

∫

Mμ

[kS]αμ(pμ)�μ∇uαμ · ∇uαμdτμdt . (48)

By the uniform-in-time weak L2 convergences of Theorem 4.13, Sμ(�
μ

Dl
S
pl
Nl )

⇀Sμ(pμ)(T ) in L2(Mμ) and Sa(T
a
Dl
S
pN

l

n )⇀Sa(γa pm)(T ) in L2(�a), as l → ∞.

Note also that, since (by assumption) Sμ and Sa are not explicitly space-dependent on
each open set of the formerly introduced partitions of Mμ and �a, respectively, so are
Bμ and Ba. On these partitions, Bμ and Ba are convex l.s.c. and an easy adaptation of
[25, Lemma 4.6] (which essentially states the L2-weak l.s.c. of strongly l.s.c. convex
functions on L2), to account for the terms φμ and η, thus shows that (46) and (47)
hold. To prove (48), apply the Cauchy-Schwarz inequality to write

∫ T

0

∫

Mμ

[kS]αμ(�μ

Dl p
l)�μ∇uαμ · ∇μ

Dl u
α,ldτμdt

≤
(∫ T

0

∫

Mμ

[kS]αμ(�μ

Dl p
l)�μ∇uαμ · ∇uαμdτμdt

) 1
2

×
(∫ T

0

∫

Mμ

[kS]αμ(�μ

Dl p
l)�μ∇μ

Dl u
α,l · ∇μ

Dl u
α,ldτμdt

) 1
2

and take the inferior limit as l → ∞, using the strong convergence of [kS]αμ(�μ

Dl p
l)

and weak convergence of ∇μ

Dl u
α,l to pass to the limit in the left-hand side and the first

term in the right-hand side.

123



Numerical analysis of a two-phase flow discrete... 49

Let us now come back to the proof of (42). Plugging the convergences (43)–(48)
into (16) with T0 = T yields

lim sup
l→∞

∑

a,α

∫ T

0

∫

�a

Fa,αDl (�uα,l�a,Dl )�uα,l�a,Dldτdt

≤
∑

μ,α

(∫ T

0

∫

Mμ

hαμu
α
μdτμdt −

∫ T

0

∫

Mμ

[kS]αμ(pμ) �μ∇uαμ · ∇uαμdτμdt
)

+
∑

μ

(∫

Mμ

φμBμ(Sμ(pμ,0))dτμ −
∫

Mμ

φμBμ(Sμ(pμ)(T ))dτμ
)

+
∑

a

(∫

�a

ηBa(Sa(γa pm,0))dτ −
∫

�a

ηBa(Sa(γa pm)(T ))dτ
)
. (49)

Recall thatC∞
0 ([0, T )) ⊗ [C∞

� × C∞
� ] is dense in (L2((0, T ) × Mμ))μ∈{m, f }. Owing

to “Appendix A.3”, we infer from (40) that φ f ∂t S
α
f (p f ) ∈ L2(0, T ; V 0

f
′
), that

φm∂t S
α
m(pm) + ∑

a γ
∗
a (η∂t S

α
a (γa pm)) ∈ L2(0, T ; V 0

m
′
) (where γ ∗

a is the adjoint of
γa), and that, for any ϕα ∈ V ,

2∑

α=1

{ ∑

μ∈{m, f }

(∫ T

0
〈φμ∂t Sαμ(pμ), ϕα

μ〉dt +
∫ T

0

∫

Mμ

[kS]αμ(pμ) �μ∇uαμ · ∇ϕα
μdτμdt

)

+
∑

a∈χ

(∫ T

0

∫

�a

ραa �ϕα�adτdt +
∫ T

0
〈η∂t Sαa (γa pm), γaϕ

α
m〉dt

)}

=
2∑

α=1

∑

μ∈{m, f }

∫ T

0

∫

Mμ

hαμϕ
α
μdτμ.

Note that the duality product between (V 0
f )

′ and V 0
f is taken respective to the measure

dτ f (x) = d f (x)dτ(x), and remember the abuse of notation (57). Apply this to ϕα =
(uαm, u

α
f ). Recalling that S2μ = 1 − S1μ, we have ∂t S

2
μ(pμ) = −∂t S1μ(pμ) and thus

∑

μ∈{m, f }

∫ T

0
〈φμ∂t Sμ(pμ), pμ〉dt +

∑

a∈χ

∫ T

0
〈η∂t Sa(γa pm), γa pm〉dt

+
2∑

α=1

{ ∑

μ∈{m, f }

∫ T

0

∫

Mμ

[kS]αμ(pμ) �μ∇uαμ · ∇uαμdτμdt +
∑

a∈χ

∫ T

0

∫

�a

ρα
a�uα�adτdt

}

=
2∑

α=1

∑

μ∈{m, f }

∫ T

0

∫

Mμ

hαμu
α
μdτμdt . (50)

[19, Lemma 3.6] establishes a temporal integration-by-parts property by using
arguments purely based on the time variable, and that can easily be adapted to
our context, even considering the “combined” time derivatives φm∂t S

α
m(pm) +
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∑
a γ

∗
a (η∂t S

α
a (γa pm)) and the heterogeneities of themedia treated here—i.e. the pres-

ence of φμ, see assumptions in Sect. 2.2. This adaptation yields

∫ T

0
〈φ f ∂t S

α
f (pμ), p f 〉V 0

f
′
,V 0

f
dt =

∫

M f

φ f B f (S f (p f )(T ))dτ f

−
∫

M f

φ f B f (Sμ(p f )(0))dτ f

and

∫ T

0
〈φm∂t Sαm(pm), pm〉dt +

∑

a∈χ

∫ T

0
〈η∂t Sαa (γa pm), γa pm〉dt

=
∫

Mm

φmBm(Sm(pm)(T ))dx −
∫

Mm

φmBm(Sm(pm)(0))dx

+
∑

a∈χ

(∫

�a

ηBa(Sa(γa pm)(T ))dτ

−
∫

�a

ηBa(Sa(γa pm)(0))dτ
)
.

Plugging these relations into (50) and using (49) concludes the proof of (42).

Third step: conclusion.
As in the first step, take ϕα = (ϕα

m, ϕ
α
f ) = ∑b

k=1 θ
α,k ⊗ ψα,k and set

(v
α,l
n )n=0,...,Nl = (PDl

S
ϕα(t ln))n=0,...,Nl ∈ (X0

l )
Nl+1. Developing the monotonicity

property (37) of Fa,αDl , integrating over (0, T ) × �a and summing over a, α yields

∑

a,α

∫ T

0

∫

�a

Fa,αDl (�uα,l�a,D)�u
α,l�a,Ddτdt

−
∑

a,α

∫ T

0

∫

�a

Fa,αDl (�vα,l�a,D)(�u
α,l�a,D − �vα,l�a,D)dτdt

−
∑

a,α

∫ T

0

∫

�a

Fa,αDl (�uα,l�a,D)�v
α,l�a,Ddτdt ≥ 0.

Use (38), (39) and (11) to pass to the limit in the second and third integral terms:

lim sup
l→∞

∑

a,α

∫ T

0

∫

�a

Fa,αDl (�uα,l�a,D)�u
α,l�a,Ddτdt

≥
∑

a,α

∫ T

0

∫

�a

Fa,α(�ϕα�a)(�u
α�a − �ϕα�a)dτdt
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+
∑

a,α

∫ T

0

∫

�a

ρα
a�ϕα�adτdt .

Use (42) and the density of the tensorial function spaces C∞
0 ([0, T )) ⊗ [C∞

� × C∞
� ]

in L2(0, T ; V ) (cf. [11, proposition 2.3]) to obtain

∑

a,α

∫ T

0

∫

�a

ρα
a (�u

α�a−�vα�a)dτdt ≥
∑

a,α

∫ T

0

∫

�a

Fa,α(�vα�a)(�u
α�a−�vα�a)dτdt

for all (vα)α=1,2 ∈ L2(0, T ; V )2. The conclusion is now standard in the Minty trick
(see e.g. [21, Proof of Theorem 3.34]): for any smooth (ϕα)α=1,2, choose vα =
uα ± εϕα and let ε → 0 to derive (41) and conclude the proof. ��

5 Two-phase flow test cases

We present in this section a series of test cases for two-phase flow through a fractured
2 dimensional reservoir of geometry as shown in Fig. 3. The domain� is of extension
(0, 10)m × (0, 20)m and the fracture width d f is assumed constant equal to 1 cm.
We consider isotropic permeability in the matrix and in the fracture. The following
geological configuration is considered: thematrix and fracture permeabilities areλm =
0.1 Darcy and λ f = 100 Darcy, respectively; the matrix and fracture porosities are
φm = 0.2 and φ f = 0.4, respectively.

Initially, the reservoir is saturated with water (density ρ2 = 1000 kg/m3, viscosity
κ2 = 0.001 Pa.s) and oil (density ρ1 = 700 kg/m3, viscosity κ1 = 0.005 Pa.s) is
injected from below. Also, hydrostatic distribution of pressure is assumed. The oil
then rises by gravity, thanks to its lower density compared to water. At the lower
boundary of the domain, we impose constant capillary pressure of 0.1 bar and water
pressure of 3 bar; at the upper boundary, the capillary pressure is constant equal to 0
bar and the water pressure is 1 bar. Elsewhere, homogeneous Neumann conditions are
imposed.

We use the VAG scheme to obtain solutions for the DFM. We refer to [11] for a
presentation of the scheme as a gradient scheme, and for proofs that, under standard
regularity assumptions on the meshes, the corresponding sequences of gradient dis-
cretisations are coercive, GD-consistent, limit-conforming and compact. The tests are
driven on a triangular mesh extended to a 3D mesh with one layer of prisms (we use a
3D implementation of the VAG scheme). The resulting numbers of cells and degrees
of freedom are exhibited in Table 1. The mesh size is of order 10d f .

The non-linear system of equations occurring at each time step is solved via a
Newton algorithm with relaxation. To solve the linear system obtained at each step of
the Newton iteration, we use the sequential version of the SuperLU direct sparse solver
[15,16]. The stopping criterion on the L1 relative residual is critrelNewton. To ensure well
defined values for the capillary pressure, after each Newton iteration, we project the
(oil) saturation on the interval [0, 1 − 10−14]. The time stepping is progressive, i.e.
after each iteration, the upcoming time step is deduced by multiplying the previous
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Fig. 3 Geometry of the reservoir
under consideration. Fracture in
red and matrix domain in blue.
� = (0, 10)m × (0, 20)m and
d f = 0.01m

Table 1 Nb Cells is the number of cells of the mesh; Nb DOF is the number of discrete unknowns; Nb
DOF el. is the number of discrete unknowns after elimination of cell unknowns without fill-in. Time steps
used in the simulations in days (d)

Nb Cells Nb DOF Nb DOF el. critrelNewton �tmax for 0 ≤ t ≤ 1/2 d �tmax for 1/2 d < t ≤ 10 d

5082 10610 5528 1.E−6 0.01 d 0.19 d

one by 2, while imposing a maximal time step �tmax . If at a given time iteration the
Newton algorithm does not converge after 35 iterations, then the actual time step is
divided by 4 and the time iteration is repeated. The number of time step failures at the
end of a simulation is indicated by NChop.

Inside the matrix domain the capillary pressure function is given by Corey’s law
pm = −am log(1−Sm)witham = 1bar. Inside the fracture network,we suppose p f =
−a f log(1− S f ) with a f = 0.02 bar. The matrix and fracture relative permeabilities
of each phase α are given by Corey’s laws kαr ,m(S

α
m) = (Sαm)

2 and kαr , f (S
α
f ) = Sαf , and

the phase mobilities are defined by kαμ(S
α
μ) = 1

κα
kαr ,m(S

α
μ), μ ∈ {m, f } (see Fig. 4).

The phase saturations at the interfacial layers are defined by the interpolation

Sαa = θ Sαm + (1 − θ)Sαf , (51)

with parameter θ ∈ [0, 1]. The mapping Sαa : [0,+∞) → [0, 1) is a diffeomorphism
so the choice

[kS]αa = θkαm(S
α
m) + (1 − θ)kαf (S

α
f ).
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Fig. 4 Curves for capillary pressures and relative permeabilities

is valid, since this function can be written as kαa(S
α
a ) with kαa(ξ) = θkαm(S

α
m ◦

(Sαa )
−1(ξ))+ (1− θ)kαf (S

α
f ◦ (Sαa )

−1(ξ)). Finally, the interfacial porosity φa is set to
0.2 and

da = d f

2
ε,

with parameter ε > 0. The parameter η is then defined by η = φada.
Let us start with some remarks. From the capillary pressure functions (cf. Fig. 4),

it is obvious that for given p, the one-sided jump of the oil saturation is negative, i.e.

Sm(p) − S f (p) < 0. (52)

To account for the interfacial zone properly, the mobilities have to be adjusted by
choosing the model parameter θ depending on the rock type characteristics of the
layer. Obviously, θ = 0 refers to a fracture rock type and θ = 1 to a matrix rock
type.

On the other hand, with larger η, the volume of the interfacial layers gets augmented
and the interfacial accumulation terms play a more important role. The availability
of the supplementary volume has a direct impact on the phase front speed inside
the fracture during its filling: (51)–(52) show that the volume of oil in the interfa-
cial layers is strictly decreasing as a function of θ , given a distribution of capillary
pressures. This indicates that, from the accumulation point of view, the fracture front
speed should grow with growing θ , and this effect should be enhanced by a larger
η.

Figure 5a indicates that, for a fixed θ = 0, 0.5, 1, the solutions are not sensitive to
small variations of ε. Quantitatively, we see that the solution for ε = 0.1 is close to
the solution for ε = 10−6. With respect to the computational performance exposed in
Table 2, we thus see that choosing ε = 0.1 is a good compromise between accuracy
and cost. This point is presented in more detail for the intermediate rock type, i.e.
θ = 0.5, in Fig. 6. Figure 5b confirms the aforementioned feature of extended (large
ε) interfacial layers to delay the propagation of the oil in the drain. As suggested,
this effect is even more important, with decreasing θ . In Fig. 5c, we study the impact
of the choice of the interfacial mobility for parameters θ = 0, 0.5, 1 on the solution.
Here, the interfacial accumulation is negligible due to an ε close to zero. Let us remark
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(b)(a)

(c)

Fig. 5 Fracture oil saturation for time t = 6h

Table 2 Computational cost

θ 0 0.5 1

ε 1 1.E−1 1.E−6 0 1 1.E−1 1.E−6 0 1 1.E−1 1.E−6 0

N�t 125 125 125 – 125 125 125 – 183 284 377 –

NNewton 506 521 547 513 521 546 674 892 1410

NChop 0 0 0 0 0 0 22 61 94

CPU 147 160 159 151 152 170 402 860 1402

that in the limit of a vanishing interfacial layer, i.e. η = 0, we aim at recovering the
fracture mobilities for the mass exchange fluxes between the matrix-fracture interface
and the fracture. Hence, in this case, the right choice of θ would be 0. We observe
that changing the mobilities does not much influence the solution, due to the fact that
fluxes are mostly oriented from the fracture towards the interfacial layers. The regions
where a difference is observed in the fracture oil front for the different models are
those with a small positive oil saturation. There, the relative permeabilities for θ = 0
and θ = 0.5 are very close and the difference to θ = 1 is at its peak; this explains the
behaviour of the fracture front for the three models.

Table 2 shows that the computational cost increases with decreasing ε and that,
in the case of ε = 0, the Jacobian becomes singular. Furthermore, the efficiency
severely deteriorates for θ = 1. In this case, S′

a(p) is (significantly) smaller during
the filling of the fracture (for capillary pressures p below a characteristic p1 ∈ R

+),
since S′

m(p) � S′
f (p). When oil fluxes oriented from the fracture to the interface are

present, the Jacobian is thus ill-conditioned.
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Fig. 6 Volume occupied by oil in the matrix, fracture and oil volume normalised by ε in the interfacial
layers, for θ = 0.5, as a function of time

6 Conclusion

We introduced a new discrete fracture matrix model for two phase Darcy flow,
permitting pressure discontinuity at the matrix-fracture interfaces. It respects the het-
erogeneities of the media and between the matrix and the fractures, since it takes into
account saturation jumps due to different capillary pressure curves in the respective
domains. It also considers damaged layers located at the matrix-fracture interfaces.
Another feature of themodel are upwind fluxes between these interfacial layers and the
fractures. The upwinding is needed for transport dominated flow in normal direction
to the fractures. The extension to gravity is straightforward (cf. [12]).

We developed the numerical analysis of the model in the framework of the gradient
discretisationmethod,which contains for example theVAGandHMMschemes. Based
on compactness arguments, we showed in Theorem 4.1 the strong L2 convergence of
the saturations and the weak L2 and H1 convergences for the pressures to a solution
of Model (1). In Theorem 4.13, we established uniform-in-time, weak L2 in space
convergence for the saturations, a result that is extended to uniform-in-time, strong
L2 in space convergence in [26].

Finally, we presented a series of test cases, with the objective to study the impact
of the interfacial layer on the solution. The observed behaviour of the solutions for the
different situations corresponds to the expectations. It exhibits significant differences,
during the filling of the fracture, for large interfacial layers and small differences for
small layers. In terms of computational cost, we saw that the presence of a damaged
zone at the matrix-fracture interface is needed in order to solve the linear system
of the discrete problem, occurring at each time step. We also observed that for a
large contrast between the drain’s and the interfacial layer’s capillary pressures, the
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simulation becomes expensive. Therefore, we see that, in order to cope with both,
fractures acting as drains or as barriers, the possibility to deal with mixed rock types
for the damaged zone is essential.

Acknowledgements The authors would like to thank Total S.A. and the Australian Research Council’s
Discovery Projects funding scheme (Project Number DP170100605) for supporting this work.

A Appendix

A.1 Uniform-in-time weak L2 convergence

Let A be a subset of Rn , endowed with the standard Lebesgue measure, and {ϕ :
 ∈ N} be a dense countable set in L2(A). On any bounded ball of L2(A), the weak
topology can be defined by the following distance:

dist(v,w) =
∑

 ∈N

min (1, | 〈v − w, ϕ 〉L2(A) |)
2 

.

A sequence (vm)m∈N of bounded functions [0, T ] → L2(A) converges uniformly on
[0, T ] weakly in L2(A) to some v if it converges uniformly for the weak topology of
L2(A), meaning that, for all φ ∈ L2(A), 〈vm(·), φ〉L2(A) → 〈v(·), φ〉L2(A) uniformly
on [0, T ] as m → ∞.

With this introductory material, the following result is a consequence of [21,
Theorem 4.26] or [19, Theorem 6.2] (see also the reasoning at the end of [19,
Proof of Theorem 3.1]).

Theorem A.1 (Discontinuous weak L2 Ascoli–Arzela theorem) Let R be a dense
subset of L2(A) and (vm)m∈N be a sequence of functions [0, T ] → L2(A) such that

• supm∈N supt∈[0,T ] ‖vm(t)‖L2(A) < +∞,
• for all ϕ ∈ R, there exist ωϕ : [0, T ]2 → [0,∞) and (δm(ϕ))m∈N ⊂ [0,∞)

satisfying

ωϕ(s, t) → 0 as s − t → 0 , δm(ϕ) → 0 as m → ∞ , and

∀(s, t) ∈ [0, T ]2 , ∀m ∈ N , |〈vm(s) − vm(t), ϕ〉L2(A)| ≤ δm(ϕ) + ωϕ(s, t).

Then, there exists a function v : [0, T ] → L2(A) such that, up to a subsequence as
m → ∞, vm → v uniformly on [0, T ] weakly in L2(A). Moreover, v is continuous
on [0, T ] for the weak topology of L2(A).

A.2 Generic results on gradient discretisations

The following lemma is a classical result in the context of the standard gradient dis-
cretisation method, see e.g. [21, Lemma 4.7]. We give a sketch of its proof for gradient
discretisations adapted to discrete fracture matrix model.
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Lemma A.2 (Regularity of the limit) Let (Dl)l∈N be a coercive and limit-conforming
sequence of gradient discretisations, and let (vl)l∈N be such that vl ∈ (X0

l )
Nl+1,

where Nl is the number of time steps of Dl . We assume that (‖vl‖Dl )l∈N is bounded.
Then, there exists v = (vm, v f ) ∈ L2(0, T ; V 0

m) × L2(0, T ; V 0
f ) such that, up to a

subsequence, the following weak convergences hold:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

�
μ

Dlv
l⇀vμ in L2((0, T ) × Mμ) , for μ ∈ {m, f },

∇μ

Dlv
l⇀∇vμ in L2((0, T ) × Mμ)

d
, for μ ∈ {m, f },

T
a
Dlv

l⇀γavm in L2((0, T ) × �a), for all a ∈ χ,

�vl�a,Dl⇀�v�a in L2((0, T ) × �a), for all a ∈ χ.

(53)

Proof By coercivity and since (‖vl‖Dl )l∈N is bounded, all the sequences in (53) are
bounded in their respective spaces. Up to a subsequence, we can therefore assume that

there exists vμ ∈ L2((0, T ) × Mμ), ξμ ∈ L2((0, T ) × Mμ)
d
, βa ∈ L2((0, T ) × �a)

and ja ∈ L2((0, T ) × �a) such that �
μ

Dlv
l⇀vμ, ∇μ

Dlv
l⇀ξμ, T

a
Dlv

l⇀βa and

�vl�a,Dl⇀ ja weakly in their respective L2 spaces as l → ∞.
Take q ∈ C∞

� ×C∞
� , ϕa ∈ C∞

0 (�a) and ρ ∈ C∞
0 (0, T ). For F a function of x, set

(ρ ⊗ F)(t, x) = ρ(t)F(x). The definition ofWDl
S
(see Definition 3.6) yields

∣
∣
∣
∣

∫ T

0

∫

�

(
∇m

Dlv
l · (ρ ⊗ qm) + (�m

Dlv
l)div(ρ ⊗ qm)

)
dxdt

+
∫ T

0

∫

�

(
∇ f

Dlv
l · (ρ ⊗ q f ) + (�

f
Dlv

l)divτ (ρ ⊗ q f )
)
dτ(x)dt

−
∑

a∈χ

∫ T

0

∫

�a

(ρ ⊗ (qm · na))Ta
Dlv

ldτ(x)dt

+
∑

a∈χ

∫ T

0

∫

�a

(ρ ⊗ ϕa)
(
T
a
Dlv

l − �
f
Dlv

l − �vl�a,Dl

)
dτ(x) dt

∣
∣
∣
∣

≤ ‖vl‖Dl‖ρ‖L2(0,T )WDl
S
(q, ϕa).

The limit-conformity shows that the right-hand side of this inequality tends to 0.
Hence,

∫ T

0

∫

�

(
ξm · (ρ ⊗ qm) + vmdiv(ρ ⊗ qm)

)
dxdt

+
∫ T

0

∫

�

(
ξ f · (ρ ⊗ q f ) + v f divτ (ρ ⊗ q f )

)
dτ(x)dt

−
∑

a∈χ

∫ T

0

∫

�a

(ρ ⊗ (qm · na))βadτ(x)dt
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+
∑

a∈χ

∫ T

0

∫

�a

(ρ ⊗ ϕa)
(
βa − v f − ja

)
dτ(x) dt = 0.

Applying this to (q, ϕa) = ((qm, 0), 0)with qm ∈ C∞
0 (�\�)d , and using the density

of tensorial functions {∑N
r=1 ρr⊗qm : N ∈ N , ρr ∈ C∞

0 (0, T ) , qm ∈ C∞
0 (�\�)d}

in C∞
0 ((0, T ) × (� \ �))d (see [17, Appendix D]) shows that ξm = ∇vm . With

(q, ϕa) = ((0,q f ), 0) where q f ∈ C∞
0 (�i )

d−1, we obtain ξ f = ∇v f . Considering

now (q, ϕa) = ((qm, 0), 0) with qm ∈ C∞
b (� \ �)d and applying the divergence

theorem gives βa = γavm . Finally, taking (q, ϕa) = ((0, 0), ϕa) with a general
ϕa ∈ C∞

0 (�a) yields ja = βa − v f = γavm − v f = �v�a. ��
With [29, Lemma 3.6], we can state the following.

Corollary A.3 Under the assumptions of Lemma A.2, if gμ : R → R (μ ∈ {m, f }) and
ga : R → R (a ∈ χ) are continuous, non-decreasing functions and if (�μ

Dl gμ(v
l))l

strongly converges in L2((0, T ) × Mμ) and (Ta
Dl ga(v

l))l strongly converges in

L2((0, T ) × �a), then

{
�

μ

Dl gμ(v
l) → gμ(vμ) in L2((0, T ) × Mμ),

T
a
Dl ga(v

l) → ga(γavm) in L2((0, T ) × �a).

A.3 Identification of time derivatives

We discuss here how weak formulations, with derivatives on test functions, enable us
to recover some regularity properties on time derivatives of quantities of interest.

Let us start with a classical situation, similar to [19, Remark 1.1]. Let (M, ν)

be a measured space and E be a Banach space densely embedded in L2(M), so that
E ↪→ L2(M) ↪→ E ′. Assume also that E ′ is separable. LetL : L2(0, T ; E) → R be a
continuous linear form and let E ⊂ C1

0([0, T ); E) be such that E0 = {" ∈ E : "(0, ·)
= 0} is dense in L2(0, T ; E). Suppose thatU ∈ L2(0, T ; E) andU0 ∈ L2(M) satisfy,
for all " ∈ E,

−
∫ T

0

∫

M
U (t, x)∂t"(t, x)dν(x)dt +

∫

M
U0(x)"(0, x)dν(x) = L("). (54)

This relation shows that

# : " �→ −
∫ T

0

∫

M
U (t, x)∂t"(t, x)dν(x)dt

is linear (equal toL) on E0, and continuous for the topology of L2(0, T ; E). By density
ofE0 in this space,# canbe extended into an element of (L2(0, T ; E))′ = L2(0, T ; E ′)
(see [17, Theorem 1.4.1]). We denote this element by ∂tU , as it clearly corresponds to
the distributional derivative ofU [17, Section 2.1.2]. By [17, Section 2.5.2] this shows
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thatU : [0, T ] → L2(M) is continuous and, using [17, Proposition 2.5.2] to integrate
by parts in (54), that U (0) = U0 and

∀" ∈ E , 〈∂tU ,"〉L2(0,T ;E ′),L2(0,T ;E)dt =
∫ T

0
〈∂tU (t),"(t)〉E ′,Edt = L(").

(55)
By density of E in L2(0, T ; E), this relation actually holds for any " ∈ L2(0, T ; E).

We now consider the setting in the proof of Theorem 4.1 (see Section 4.3). Fixing
M = M f , dν = dτ f , E = V 0

f , E = C1([0, T ];C∞
� ) and

L(") =
∫ T

0

∫

M f

hαf"dτ f dt −
∫ T

0

∫

M f

[kS]αf (p f ) � f ∇uαf · ∇"dτ f dt

+
∑

a∈χ

(∫ T

0

∫

�a

ρα
a (−")dτdt

)
,

and using (40) with ϕα
m = 0 and ϕα

f = ", ϕ
β
f = 0, for α, β = 1, 2 with α �= β, this

identifies ∂t (φ f S
α
f (p f )) = φ f ∂t S

α
f (p f ) as an element of L2(0, T ; V 0

f
′
).

Let us now deal with a slightlymore complicated case, in which the time derivatives
of two functions need to be combined to exhibit a certain regularity. With the same
M and E as above, take (N , λ) a measured space and γ : E → L2(N ) a continuous
linear mapping. Assume that U ∈ L2(0, T ; E), V ∈ L2(0, T ; L2(N )), U0 ∈ L2(M)

and V0 ∈ L2(N ), satisfy, for all φ ∈ E,

−
∫ T

0

∫

M
U (t, x)∂t"(t, x)dν(x)dt −

∫ T

0

∫

N
V (t, x)∂tγ ("(t))(x)dλ(x)dt

+
∫

M
U0(x)"(0, x)dν(x)+

∫

N
V0(x)γ ("(0))(x)dλ(x)=L(").

(56)
The same reasoning as above shows that

#̃ : " �→ −
∫ T

0

∫

M
U (t, x)∂t"(t, x)dν(x)dt −

∫ T

0

∫

N
V (t, x)∂tγ ("(t))(x)dλ(x)dt

canbe extended into a linear continuous formon L2(0, T ; E). Lettingγ ∗ : L2(N )→E ′
be the adjoint of γ (that is, 〈g, γ (")〉L2(N ) = 〈γ ∗g,"〉E ′,E for all g ∈ L2(N ) and
" ∈ E), the form #̃ is naturally denoted by ∂tU + γ ∗∂t V . Note that, in this sum,
the two terms cannot be separated and it cannot, for example, be asserted that
∂tU ∈ L2(0, T ; E ′) and γ ∗∂t V ∈ L2(0, T ; E ′). Then, a reasoning similar to the one
in [17] shows that U + γ ∗V : [0, T ] → L2(M) is continuous with value U0 + γ ∗V0
at t = 0, and that, for all " ∈ L2(0, T ; E),

〈∂tU + γ ∗∂t V ,"〉L2(0,T ;E ′),L2(0,T ;E) = L(").
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To write more natural equations, in the paper we sometimes make an abuse of notation
and separate the two derivatives. We then write

〈∂tU + γ ∗∂t V ,"〉L2(0,T ;E ′),L2(0,T ;E) =
∫ T

0
〈∂tU ,"〉dt +

∫ T

0
〈γ ∗∂t V ,"〉dt

=
∫ T

0
〈∂tU ,"〉dt +

∫ T

0
〈∂t V , γ"〉dt,

(57)

where, in the right-hand side, the duality brackets do not have indices, to avoid claiming
that ∂tU ∈ L2(0, T ; E ′) or γ ∗∂t V ∈ L2(0, T ; E ′), and to remember that these two
terms must be understood together.

Used in (40) with γ = γa for all a ∈ χ , the above reasoning and notations enable
us to identify the (combined) time derivatives of φmS

α
m(pm) and

∑
a ηS

α
a (γa pm) as

an element of L2(0, T ; V 0
m

′
).
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