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Abstract We study dispersive effects of wave propagation in periodic media, which
can be modelled by adding a fourth-order term in the homogenized equation. The
corresponding fourth-order dispersive tensor is called Burnett tensor and we numeri-
cally optimize its values in order to minimize or maximize dispersion. More precisely,
we consider the case of a two-phase composite medium with an eightfold symmetry
assumption of the periodicity cell in two space dimensions.We obtain upper and lower
bound for the dispersive properties, along with optimal microgeometries.

Mathematics Subject Classification 35B27 · 49K20

1 Introduction

Wave propagation in periodic heterogeneous media is ubiquitous in engineering and
science. Denoting by ε the small ratio between the period size and a characteristic
lengthscale, it can be modeled by the following scalar wave equation

⎧
⎪⎨

⎪⎩

∂2uε

∂t2
− div (aε∇uε) = f,

uε(0, x) = uinit(x),
∂uε

∂t
(0, x) = vinit(x),

(1.1)
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with periodic coefficients aε(x) := a
( x

ε

)
, a right hand side f (t, x) and initial date

uinit(x), vinit(x). For simplicity, we assume that the domain of propagation is the full
spaceRd . It does not change much our results to consider another domain but the case
of the full space avoids to discuss the boundary conditions, as well as the issue of
boundary layers in the homogenization process. Here, a(y) a Y -periodic symmetric
tensor and Y is the unit cube [0, 1]d . We assume that, for 0 < amin ≤ amax,

amin Id ≤ a(y) ≤ amax Id for a.e. y ∈ Y. (1.2)

For very small values of ε, problem (1.1) can be studied by means of the homog-
enization theory [10,12,30,38,47,53]. The result of homogenization theory is that
the solution uε of (1.1) can be well approximated by the solution u of the following
homogenized wave equation

⎧
⎪⎨

⎪⎩

∂2u

∂t2
− div

(
a∗∇u

) = f,

u(0, x) = uinit(x),
∂u

∂t
(0, x) = vinit(x),

(1.3)

where, in the periodic homogenization setting, a∗ is a constant effective tensor given
by an explicit formula involving cell problems (see Sect. 2 for details).

Although it is less classical, it is known that the homogenized equation can be
improved by adding a small fourth-order operator and modifying the source term.
This is the concept of “high order homogenized equation” that goes back to [10,48]
and has been studied by many authors [1,2,4,23,24,32,50]. In the present setting it
reads

∂2vε

∂t2
− div

(
a∗∇vε

) + ε2D∗ ∇4vε = f + ε2div
(
d∗∇ f

)
. (1.4)

whereD∗ is a fourth-order tensor, called Burnett tensor and studied in [19–22], and d∗
is some second-order tensor (see Sect. 2 for details). Equations (1.3) and (1.4) can be
established by two different methods: two-scale asymptotic expansions (Sect. 2), and
Bloch wave expansions (Sect. 3). The interpretation of D∗ is that it plays the role of a
dispersion tensor. This is explained and numerically illustrated in Sect. 4. In particular,
for long times of order up to ε−2, (1.4) is a better approximation of the wave equation
(1.1) than (1.3) (this key observation was first made by [48] and further discussed in
the references, just quoted above).

Dispersion is classically defined as the phenomenon by which waves with different
wavelengths propagate with different velocities. In practice, it induces severe defor-
mations of the profile of the propagating waves in the long time limit. Here we focus
exclusively on dispersion induced by homogenization and not by the more classical
dispersion effects arising in the high frequency limit (or geometric optics, see e.g.
chapter 3 in [44]). In such a homogenization setting, dispersion can occur only in
heterogeneous media. Since composite materials (which are of course heterogeneous)
are ubiquitous in engineering, it is therefore very important to study its associated
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dispersion properties. Dispersion can be a good thing or a bad thing, depending on
the type of applications which we have in mind. Clearly, dispersion is a nasty effect if
one is interested in preserving the profile of a wave or signal during its propagation.
On the contrary, dispersion could be beneficial if one wants to spread and thus dimin-
ish the intensity of, say, a sound wave. In any case, it makes sense to optimize the
periodic structure, namely the coefficient a(y) in (1.1), in order to achieve minimal or
maximal dispersion. There are a few rigorous bounds on the dispersive properties of
periodic structures [21,22] but no systematic numerical study. The goal of the present
paper is to make a first numerical investigation in the optimization of these dispersive
properties. We restrict our attention to two-phase composite materials with isotropic
constituents. In this setting there is an extensive literature on the precise characteri-
zation of the set of all possible values of the homogenized tensor a∗ (see [3,53] and
references therein). However, to our knowledge, nothing is known about the Burnett
tensor D∗ (except the few bounds in [21,22]). Therefore, we use shape optimization
techniques in order to optimize the values of D∗ for a two-phase composite with pre-
scribed volume fractions. Since D∗ is a fourth-order tensor, to simplify the analysis,
we restrict ourselves to a plane 2-d setting and to a geometric 8-fold symmetry in the
unit cell Y , which yields a kind of isotropy for D∗ (see the beginning of Sect. 9 for a
discussion about the relevance of such a symmetry assumption).

A key feature of the dispersion tensor D∗ is that, contrary to the homogenized
tensor a∗, it is not scale invariant. More precisely, we prove in Lemmas 6.1 and 6.3
that if the periodicity cell is scaled by a factor κ then the dispersion tensorD∗ is scaled
by κ2. Actually, even if the periodicity cell is fixed to be the unit cube Y , then the
microgeometry can be periodically repeated k times in Y (with k ≥ 1 any integer)
and the dispersion tensor D∗ is thus divided by k2. In other words, by considering
finer details in the unit periodicity cell, the dispersion tensor D∗ can be made as small
as we want (in norm). As a consequence, the minimization of (a norm of) D∗ is an
ill-posed problem (except if geometric constraint are added) while one can expect that
the maximization problem is meaningful.

More specifically, we consider coefficients defined by

a(y) = aA1YA (y) + aB1YB (y),

where aA, aB > 0 are two constant real numbers, YA and YB are a disjoint partition
of Y , 1YA(y), 1YB (y) are the corresponding characteristic functions. Denote by � =
∂YA ∩ ∂YB the interface between the two phases A and B. We rely on the level set
method [41] for the shape optimization of the interface �, as is now quite common
in structural mechanics [8,40,54]. Under an 8-fold symmetry assumption for the unit
cell Y , the dispersion tensor D∗ is characterized by two scalar parameters α and β.
More precisely, for any vector (ηi )1≤i≤d , Proposition 6.7 states that

D
∗ (η ⊗ η) : (η ⊗ η) = −α

d∑

i=1

η4i − β

d∑

i, j=1,i< j

η2i η
2
j .
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We numerically compute bounds on α and β under two equality constraints for the
phase proportions and for the homogenized (scalar) tensor a∗, as well as an inequality
constraint for the perimeter of the interface �. As a first numerical test (in Sect. 9.1)
we minimize and maximize the simple objective function 2α + β, corresponding to
−D

∗ (η ⊗ η) : (η ⊗ η) for the direction η = (1, 1). When maximizing 2α + β, the
perimeter inequality constraint is not necessary and indeed is not active at the optima.
However, the perimeter constraint is required and active when minimizing 2α + β,
since smaller details of the phase mixture yield smaller dispersion (this refinement
process is stopped by the perimeter constraint). Since this non-attainment process is
very general for dispersion minimization (according to our Lemma 6.3), our second
numerical test (in Sect. 9.2) focuses only on maximizing dispersion, in the following
sense. We compute the upper Pareto front in the plane (α, β), which is classically
defined as the set of values (α+, β+) for which there exists no other (α, β) such that
α ≥ α+ and β ≥ β+. In crude terms, computing this upper Pareto front can be
interpreted as maximizing −D

∗ (although D
∗ is a tensor not a real number). It turns

out that computing this Pareto front is a delicate task since the optimization process is
plagued by the existence of many local optima (in contrast, our algorithm easily finds
global optima when optimizing the homogenized tensor a∗). Therefore, we rely on a
complicated strategy of continuation, re-initialization and non-convex approximation
in order to obtain robust (hopefully global) optimal distributions of the two phases
which minimize or maximize dispersion. Our main finding is that the upper Pareto
front (which of course depends on the phase properties and proportions) seems to
be a line segment. The corresponding optimal configurations are smooth and simple
geometric arrangements of the two phases. Note that the checkerboard pattern seems
to be optimal for maximal α and β. We conclude this brief description of our results
by recognizing that other type of dispersive properties have already been optimized
in a different context [34,46,52].

Let us now describe the contents of our paper. In Sect. 2 we recall the two-scale
asymptotic expansion method for periodic homogenization, as introduced in [10,12,
47].We closely follow the presentation of [4]. Themain result is Proposition 2.2 which
gives (1.4) as a “high order homogenized equation”. In Proposition 2.5 we recall a
result of [19] which states that the Burnett tensor D∗ is non-positive, making (1.4) an
ill-posed equation. This inconvenience will be corrected later in Sect. 4.

In Sect. 3 we recall the classical theory of Bloch waves [12,17,19,45,56] which
is an alternative method for deriving the homogenized problem (1.3), as well as the
high order homogenized equation (1.4). The main result is Lemma 3.1, due to [18,19],
which proves that the Burnett tensor D∗ is the fourth-order derivative of the so-called
first Bloch eigenvalue.

Section 4 explains how to correct Eq. (1.4) to make it well-posed (see Lemma 4.1).
The main idea is a Boussinesq trick (i.e., replacing some space derivatives by time
derivatives) which is possible because (1.4) is merely an approximation at order ε4.

Section 5 presents some one-dimensional numerical simulations of wave propaga-
tion in a periodic medium. It compares the solutions of the original wave equation
(1.1) with those of the homogenized equation (1.3) and the Boussinesq version of
the high order homogenized equation (1.4). It demonstrates that, for long times of
order ε−2, approximation (1.4) is much better than (1.3). Section 5 features also some
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two-dimensional computations where one can see the clear differences, for long times,
between the solutions of the homogenized equation (1.3) and the Boussinesq version
of the high order homogenized equation (1.4) for either a large or a small value of the
dispersion tensor.

Section 6 discusses some properties of the Burnett tensor D∗. First, we explain
that, contrary to the homogenized tensor a∗, the fourth-order tensor D∗ depends on
the scaling of the periodicity cell. More precisely, if the cell Y is scaled to be of
size κ > 0, then D

∗ is scaled as κ2
D

∗. It implies that small heterogeneities yield
small dispersion while large heterogeneities lead to large dispersion (see Lemma 6.3).
Second, we prove that a standard 8-fold symmetry assumption of the coefficients a(y)
in the unit cell Y (or of the two-phase geometry 1YA (y), 1YB (y)) implies that the
Burnett tensor D∗ is characterized by simply two scalar parameters.

Section 7 computes the shape derivative, i.e. the shape sensitivity, of the tensor
D

∗ with respect to the position of the interface �. Our main result is Theorem 7.3
which gives a rigorous shape derivative. From a numerical point of view, Theorem
7.3 is difficult to exploit because it involves jumps of discontinuous solution gradients
through the interface �. Therefore, following [5], in Proposition 7.6 we compute a
simpler shape derivative for a discretized version of D∗.

Section 8 explains our numerical setting based on the level set algorithm of Osher
and Sethian [41] and on a steepest descent optimization algorithm. Constraints on
the volume, the perimeter and the the homogenized tensor a∗ are enforced by means
of Lagrange multipliers. We iteratively update the Lagrange multipliers so that the
constraints are exactly satisfied at each iteration of the optimization algorithm.

Section 9 contains our numerical results on the optimization of the Burnett tensor
D

∗ with respect to the interface �. Since a first numerical test in Sect. 9.1 shows
that dispersion can be minimized by a fine fragmentation of the two phase mixture
(which is just stopped at a length-scale determined by the perimeter constraint), we
later focus on determining the Pareto upper front for dispersion. It is not known if
the set of dispersion tensor D∗ is convex or if its upper bound is a concave curve
in the (α, β) plane. Thus, we explain in Sect. 9.2 that a quadratic function of α and
β is optimized in order to be able to cope with a non-concave upper bound. In the
same subsection we explain our intricate optimization strategy in order to avoid the
many local optima that can be found. It is a combination of continuation, varying
initializations and refinement process of the Pareto front. We are quite confident in
our numerical approximation of the Pareto front since we checked it is insensitive to
the choice of interface initializations, and of parameters for the minimized quadratic
function. In Fig. 17 we compare the upper Pareto front for various aspect ratios of
the two phases, while in Fig. 19 the comparison is made for various volume fractions.
Eventually, Sect. 9.3 is devoted to the optimization of the other dispersion tensor d∗
which is responsible for the dispersion of the source term in the righ hand side of the
high order homogenized equation (1.4).

Finally Sect. 10 is devoted to the (technical) proof of Theorem 7.3 which was stated
in Sect. 7.
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Notations

In the sequel we shall use the following notations.

1. (e1, . . . , ed) denotes the canonical basis of Rd .
2. Y = [0, 1]d denotes the unit cube of Rd , identified with the unit torus Rd/Zd .
3. H1

	 (Y ) denotes the space of Y -periodic functions in H1
loc(R

d).

4. H1
	,0(Y ) denotes the subspace of H1

	 (Y ) composed of functions with zero
Y -average.

5. The Einstein summation convention with respect to repeated indices is used.
6. All tensors are assumed to be symmetric, even if we do not write it explicitly. More

precisely, if C is a n-order tensor C = (
Ci1···in

)

1≤i1,...,in≤d , it is systematically

identified with its symmetrized counterpart CS , defined by

CS =
⎛

⎝
1

n!
∑

σ∈Sn

Cσ(i1)···σ(in)

⎞

⎠

1≤i1,...,in≤d

,

where Sn is the permutation group of order n.
7. If C is a n-order tensor, the notation C∇nu means the full contraction

C∇nu =
d∑

i1,i2,...,in=1

Ci1,i2,...,in
∂nu

∂xi1 · · · ∂xin
,

where C is indistinguishable from its symetric counterpart CS .

2 Two-scale asymptotic expansions

In this section we briefly recall the method of two-scale asymptotic expansion [10,12,
47] and, in particular, explain how dispersion can be introduced in a so-called higher-
order homogenized equation, as first proposed by [48], and studied by many others
[1,2,4,9,23,24,32,50].

The starting point of the method of two-scale asymptotic expansion is to assume
that the solution of (1.1) is given by the following ansatz

uε(t, x) =
∞∑

n=0

εn un
(
t, x,

x

ε

)
,

where y → un(t, x, y) are Y -periodic. This ansatz is formal since, not only the series
does not converge, but it lacks additional boundary layer terms in case of a bounded
domain. Plugging this ansatz in (1.1) and using the chain rule lemma for each term

∇
(
un

(
t, x,

x

ε

))
=

(
∇xun + 1

ε
∇yun

) (
t, x,

x

ε

)
,
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we deduce a cascade of equations which allow us to successively compute each term
un(t, x, y). To make this cascade of equations explicit, we introduce the following
operators

⎧
⎪⎨

⎪⎩

Ayy := − divy
(
a(y)∇y · )

Axy := − divx
(
a(y)∇y · ) − divy

(
a(y)∇x · )

Axx := − divx
(
a(y)∇x · )

,

(2.1)

which satistify, for any function v(x, y),

− div
(
a(ε−1x)∇v(x, ε−1x)

) =
(
ε−2Ayyv + ε−1Axyv + Axxv

)
(x, ε−1x). (2.2)

Then, we deduce the cascade of equations

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

order ε−2, 0 = Ayyu0
order ε−1, 0 = Ayyu1 + Axyu0

order ε0, f = Ayyu2 + Axyu1 + Axxu0 + ∂2u0
∂t2

order ε1, 0 = Ayyu3 + Axyu2 + Axxu1 + ∂2u1
∂t2

...

order εn−2, 0 = Ayyun + Axyun−1 + Axxun−2 + ∂2un−2

∂t2
...

(2.3)

These equations are solved successively by means of the following lemma, called
Fredholm alternative (see [10,12,47] for a proof).

Lemma 2.1 For g(y) ∈ L2(Y ), consider the following problem

{− divy
(
a(y)∇yw

) = g in Y,

y �→ w(y) Y -periodic.
(2.4)

It admits a solution w(y) ∈ H1
	 (Y ), unique up to an additive constant, if and only if

the right hand side satisfies the following compatibility condition

∫

Y
g(y) dy = 0.

Thanks to Lemma 2.1 we now deduce from (2.3) the formulas for successive terms
un in the ansatz. These formulas will imply a separation of variables, namely each
function un(t, x, y) is a sum of products of cell solutions depending only on y and
on space derivatives of the homogenized solution u(t, x). Before we start the study of
the cascade of equations, we emphasize two important notations for the sequel. First,
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according to the Fredholm alternative of Lemma 2.1, all cell solutions, introduced
below, have zero-average in the unit cell Y . Second, all tensors below are symmetric
(i.e. invariant by a permutation of the indices) since they are contracted with the
symmetric derivative tensors ∇k

x u(t, x). Nevertheless, for the sake of simplicity in the
notations, we do not explicitly symmetrize all tensors but the reader should keep in
mind that they are indeed symmetric.
Computation of u0: since the source term is zero, the solution is constant with respect
to y,

u0(t, x, y) = u(t, x).

Computation of u1: the source term satisfies the compatibility condition and by
linearity we obtain

u1(t, x, y) = −χi (y)
∂u

∂xi
(t, x) + ũ1(t, x), (2.5)

where χi and χ
(1)
η = ∑d

i=1 ηiχi are solutions in H1
	,0(Y ) of the equations

Ayy χi = − divy (aei ) and Ayy χ(1)
η = − divy (aη) , for η ∈ R

d . (2.6)

Computation of u2: the third equation of (2.3) has a solution if and only if its source
term has a zero Y -average, which leads to the homogenized equation

∂2u

∂t2
− div

(
a∗∇u

) = f, (2.7)

where the homogenized symmetric matrix a∗ is given by

a∗η :=
∫

Y

(
aη − a∇yχ

(1)
η

)
dy, for η ∈ R

d . (2.8)

Inserting (2.5), the third equation of (2.3) becomes

Ayyu2 = −∂2u

∂t2
+ f + divy

(
a e j

) ∂ ũ1
∂x j

+
(
ai j − a∇yχi · e j − divy

(
χi a e j

) ) ∂2u

∂xi x j
. (2.9)

Hence, defining for i, j ∈ {1, . . . , d}

bi j := ai j − a∇yχi · e j − divy
(
χi a e j

)
, with

∫

Y
bi j = a∗

i j , (2.10)

u2 can be written as

u2(t, x, y) = χi j (y)
∂2u

∂xi x j
(t, x) − χi (y)

∂ ũ1
∂xi

(t, x) + ũ2(t, x), (2.11)
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where the functions χi j and χ
(2)
η := χi jηiη j are the solutions in H1

	,0(Y ) of the
equations

Ayy χi j = bi j −
∫

Y
bi j = bi j − a∗

i j and Ayy χ(2)
η = b η · η − a∗η · η, (2.12)

for η ∈ R
d . (2.13)

Note that only the symmetric part of bi j plays a role in (2.9) and the same is true for
χi j in (2.11).
Computation of u3: starting from here, namely for n ≥ 3, the solvability condition
of the Fredholm alternative for the existence of un is

∫

Y

(
∂2un−2

∂t2
− divx

(
a(y)(∇xun−2 + ∇yun−1)

)
)

dy = 0 . (2.14)

Thus, there exists a solution u3 in (2.3) if and only if (2.14) is satisfied for n = 3
which, since the Y -averages of the cell solutions χi are zero, leads to an equation for
ũ1

∂2ũ1
∂t2

− div
(
a∗∇ũ1

) = C∗ ∇3u, (2.15)

with a tensor C∗ defined by

C∗
i jk :=

∫

Y

(
a∇yχi j · ek − ai j χk

)
dy. (2.16)

It turns out, by symmetry in i, j, k, that this tensor vanishes, C∗ = 0 (see [4,37]).
Therefore, since its initial data vanishes, the function ũ1 vanishes too,

ũ1(t, x) = 0. (2.17)

Let us now compute u3 which, by (2.3), is a solution of

Ayyu3 = − ∂2ũ1
∂t2

(t, x) + χi (y)
∂3u

∂t2∂xi
(t, x) − Axyu2 − Axxu1. (2.18)

Replacing u2 and u1 by their expressions (2.11) and (2.5), introducing the solutions
wk in H1

	,0(Y ) of

Ayywk = χk, (2.19)

the solutions χi jk in H1
	,0(Y ) of

Ayy χi jk = ci jk −
∫

Y
ci jk, for i, j, k ∈ {1, . . . , d}, (2.20)
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where

ci jk := a∇yχ jk · ei + divy
(
χ jk a ei

) − ai j χk, (2.21)

and using (2.6), (2.10), u3 can be written as

u3(t, x, y) = wi (y)
∂3u

∂xi∂t2
(t, x) + χi jk(y)

∂3u

∂xi∂x j∂xk
(t, x)

+χi j (y)
∂2ũ1

∂xi∂x j
(t, x) − χi (y)

∂ ũ2
∂xi

(t, x) + ũ3(t, x),
(2.22)

Equation of u4: there exists a solution u4 in (2.3) if and only if condition (2.14) for
n = 4 is satisfied. Replacing u2 and u3 by their formulas (2.11) and (2.22) leads to an
equation for ũ2

∂2ũ2
∂t2

− div
(
a∗∇ũ2

) = C∗ ∇3ũ1 + B
∗ ∇4u + div

(

d∗∇ ∂2u

∂t2

)

, (2.23)

where B∗ is defined by

B
∗
i jk� :=

∫

Y

(

ai j χk� + aim
∂χk�j

∂ym

)

dy, for i, j, k, � ∈ {1, . . . , d}. (2.24)

and

d∗
i j =

∫

Y
a ∇ywi · e j dy =

∫

Y
χi χ j dy, for i, j ∈ {1, . . . , d}. (2.25)

We simplify (2.23) by recalling that C∗ = 0 and using the homogenized equation
(2.7) to replace ∂2u

∂t2
by f + div (a∗∇u). Then, introducing the tensor

D
∗ = −B

∗ − a∗ ⊗ d∗, (2.26)

we deduce that (2.23) is equivalent to

∂2ũ2
∂t2

− div
(
a∗∇ũ2

) = −D
∗ ∇4u + div

(
d∗∇ f

)
. (2.27)

We do not compute explicitly u4 (although it is possible) since our only interest in
studying the equation for u4 is to find the homogenized equation (2.27) for ũ2. We are
now in a position to collect the above results and to give an approximate formula for
the exact solution uε of (1.1)

uε(t, x) ≈ u(t, x) + ε u1
(
t, x,

x

ε

)
+ ε2 u2

(
t, x,

x

ε

)
, (2.28)
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where u is a solution of the homogenized equation (2.7), u1 is defined by (2.5) and u2
by (2.11). Each term, u1 and u2 is the sum of a zero Y -average contribution and of ũ1
and ũ2 defined by

ũ1(t, x) =
∫

Y
u1(t, x, y) dy and ũ2(t, x) =

∫

Y
u2(t, x, y) dy,

which are defined as the solutions of (2.15) and (2.27), respectively. Furthermore, we
know from (2.17) that ũ1(t, x) = 0 is identically zero. Therefore, on average, (2.28)
implies that

uε(t, x) ≈ u(t, x) + ε2 ũ2(t, x) := vε(t, x). (2.29)

It is possible to find a single approximate equation for vε by adding equation (2.7)
with (2.27) multiplied by ε2: it yields

∂2vε

∂t2
− div

(
a∗∇vε

) + ε2D∗ ∇4vε = f + ε2div
(
d∗∇ f

) + O(ε4). (2.30)

Neglecting the term of order ε4 in (2.30) gives the “higher order” homogenized equa-
tion (1.4), as announced in the introduction.

We summarize our results in the following proposition.

Proposition 2.2 The “high order” homogenized equation of the wave equation (1.1)
is

∂2vε

∂t2
− div

(
a∗∇vε

) + ε2D∗ ∇4vε = f + ε2div
(
d∗∇ f

)
. (2.31)

Remark 2.3 Writing an effective equation for a truncated version of the non oscillating
ansatz has been studied in various settings (see [10,23,32,48,50]) under the name of
“higher order homogenization”. Proposition2.2 gives the “secondorder” homogenized
equation which is a proposed explanation of dispersive effects for wave propagation
in periodic media [1,2,23,32,48] or of second gradient theory in mechanics [50].

Remark 2.4 Note that the initial data did not enter the entire asymptotic process which
is purely formal at this stage.

A fundamental property of the Burnett tensor D∗, discovered by [19], is that it is
non-positive.

Proposition 2.5 ([19]) The fourth-order tensorD∗, defined by (2.26), satisfies for any
η ∈ R

d

D
∗ (η ⊗ η) : (η ⊗ η) = −

∫

Y
a ∇y

(

χ(2)
η − 1

2

(
χ

(1)
η

)2
)

·∇y

(

χ(2)
η − 1

2

(
χ

(1)
η

)2
)

dy ≤ 0, (2.32)
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where χ
(1)
η is defined by (2.6) and χ

(2)
η by (2.12).

Remark 2.6 If the tensor D∗ were non-negative, Eq. (2.31) would be well-posed.
Unfortunately, D∗ has the wrong sign, i.e. it is non-positive and (2.31) is thus not
well-posed. We shall see in Sect. 4 how to modify it to make it well-posed by using a
Boussinesq trick.

Remark 2.7 The tensor D∗ arises in the two-scale asymptotic expansion process as
the coefficient fourth-order tensor of the fourth-order derivative ∇4u. Recall from
our notations that D∗∇4u means the full contraction of both fourth-order tensors.
Therefore, only the symmetric part ofD∗ is accessible by this method. In other words,
D

∗ belongs to the class of fully symmetric fourth-order tensors which satisfy, for any
permutation σ of {i, j, k, l},

D
∗
i jkl = D

∗
σ(i)σ ( j)σ (k)σ (l) .

This class of fully symmetric fourth-order tensors is completely characterized by the
knowledge of their quartic form

D
∗ (η ⊗ η) : (η ⊗ η) =

d∑

i, j,k,l=1

D
∗
i jklηiη jηkηl .

Indeed, differentiating the quartic form four times with respect to ηi , η j , ηk, ηl allows
us to recover the (symmetrized) coefficient D∗

i jkl .

In one space dimension, the formula for D∗ is simpler, as stated in the next lemma.

Lemma 2.8 ([19]) In one space dimension, we haveD∗ = −a∗d∗ where a∗ is defined
by (2.8) and d∗ is defined by (2.25).

3 Bloch wave method

Anothermethodof homogenization is the so-calledBlochwavedecompositionmethod
[45,56]. Its application to periodic homogenization is discussed in [12,17]. It relies on
a family of spectral problems for the operator Ayy in the unit cell Y . More precisely,
for a given parameter η ∈ Y , we look for eigenvalues λ = λ(η) in R and eigenvectors
φ = φ(η) in H1

# (Y ), normalized by ‖φ‖L2(Y ) = 1, satisfying

A(η)φ = λ(η)φ ∀y ∈ Y,

where A(η) is the translated (or shifted) operator defined by

A(η) := −
(

∂

∂yk
+ 2π i ηk

)[

ak�

(
∂

∂y�
+ 2π i η�

)]

. (3.1)

123



Optimization of dispersive coefficients in the… 277

with, of course, A(0) = Ayy . The above spectral problem for A(η) in the unit torus
Y , the so-called Bloch problem, admits an infinite countable number of non-negative
eigenvalues and corresponding normalized eigenfunctions [45,56]. We are interested
in the first eigenvalue λ1(η) which is the relevant one in the homogenization process.
When η = 0, one can check that λ1(0) = 0 is a simple eigenvalue of A(0) = Ayy

with constants as eigenfunctions. Regular perturbation theory proves then that λ1(η) is
simple and analytic in a neighborhood of η = 0. We recall some results from [18,19]
about the fourth-order Taylor expansion of λ1(η) at η = 0.

Lemma 3.1 The first eigenvalue λ1(η) admits the following fourth-order expansion:

λ1(η) = 4π2a∗η · η + (2π)4D∗ · (η ⊗ η ⊗ η ⊗ η) + O(|η|6), (3.2)

where 1
8π2 ∇2

ηλ1(0) = a∗ is the homogenizedmatrix definedby (2.8)and 1
4!(2π)4

∇4
ηλ1(0)

= D
∗ is a symmetric fourth-order tensor (called Burnett tensor) which is equivalently

defined by

D
∗
i jkl := −

∫

Y

(

ai j χk� + aim
∂χ̂k�j

∂ym

)

dy, for i, j, k, � ∈ {1, . . . , d}, (3.3)

where the functions χi j are defined by (2.12) and χ̂i jk are the solutions in H1
	,0(Y ) of

Ayy χ̂i jk = a∗
i j χk + ci jk −

∫

Y
ci jk dy, for i, j, k ∈ {1, . . . , d}, (3.4)

where χk are given by (2.6) and ci jk are given by (2.21).

As usual, the tensor D∗ and the functions χ̂i jk are understood as symmetrized (this
is obvious for D∗ which arises as the fourth-order derivative of the eigenvalue λ1).
Note that the functions χ̂i jk are different from the previous ones χi jk defined by (2.20)
since χ̂i jk = χi jk + a∗

i j wk .

Remark 3.2 As a by-product of Lemma 3.1 it was shown in [18] that the η-derivatives
of the first eigenfunction φ1(y, η) coincide with the solutions of some cell problems.

A fundamental property of the Bloch waves is that they diagonalize the operator
Ayy in L2(Rd). More precisely, we have the following Bloch wave decomposition
written in rescaled variables x = εy and ξ = η/ε.

Lemma 3.3 Any function f ∈ L2(Rd) can be decomposed as

f (x) =
∑

n≥1

∫

ε−1Y
αε
n(ξ)φn

( x

ε
, εξ

)
e2π i x ·ξdξ (3.5)

where

αε
n(ξ) =

∫

Rd
f (x) e−2π i x ·ξ φn

( x

ε
, εξ

)
dx , (3.6)
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and φn(y, η) is the n-th normalized eigenfunction of (3.1). Furthermore, it satisfies
Parseval equality

∫

Rd
| f (x)|2dx =

∑

n≥1

∫

ε−1Y
|αε

n(ξ)|2dξ. (3.7)

We now explain how the Bloch wave method is used for the homogenization of the
wave equation (1.1). First, we recall the definition of the Fourier transform f̂ (ξ) of a
function f (x) ∈ L2(Rd)

f (x) =
∫

Rd
f̂ (ξ)e2π i x ·ξdξ . (3.8)

For simplicity, let us replace the fixed (with respect to ε) initial data and source term
in (1.1) by well-prepared initial data and source in terms of Bloch waves. Denoting
by ûinit(ξ), v̂init(ξ) and f̂ (t, ξ) the Fourier transforms of uinit(x), vinit(x) and f (t, x)
[in the sense of (3.8)], we introduce these new forcing term and initial data

fε(t, x) =
∫

ε−1Y
f̂ (t, ξ)φ1

( x

ε
, εξ

)
e2π i x ·ξdξ , (3.9)

uinitε (x) =
∫

ε−1Y
ûinit(ξ)φ1

( x

ε
, εξ

)
e2π i x ·ξdξ,

vinitε (x) =
∫

ε−1Y
v̂init(ξ)φ1

( x

ε
, εξ

)
e2π i x ·ξdξ,

and change (1.1) into

⎧
⎪⎨

⎪⎩

∂2uε

∂t2
− div (aε∇uε) = fε(t, x),

uε(0, x) = uinitε (x),
∂uε

∂t
(0, x) = vinitε (x).

(3.10)

Similarly, using Lemma 3.3, we decompose the solution of (3.10) as

uε(t, x) =
∫

ε−1Y
ûε
1(t, ξ)φ1

( x

ε
, εξ

)
e2π i x ·ξdξ, (3.11)

Since the eigenbasis {φn} diagonalizes the elliptic operator, equation (3.10) is reduced
to a family of ordinary differential equations: for any ξ ∈ ε−1Y , ûε

1(t, ξ) is a solution
of the following ordinary differential equation

⎧
⎪⎨

⎪⎩

d2ûε
1

dt2
+ ε−2λ1(εξ)ûε

1 = f̂ (t, ξ),

ûε
1(0, ξ) = ûinit(ξ),

dûε
1

dt
(0, ξ) = v̂init(ξ).

(3.12)
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Using the Taylor expansion (3.2) of λ1, we deduce that

⎧
⎪⎪⎨

⎪⎪⎩

d2ûε
1

dt2
+

(
4π2a∗ξ · ξ + ε2(2π)4D∗ · (ξ ⊗ ξ ⊗ ξ ⊗ ξ)

)
ûε
1 = f̂ (t, ξ) + O(ε4),

ûε
1(0, ξ) = ûinit(ξ),

dûε
1

dt
(0, ξ) = v̂init(ξ).

(3.13)

At least formally, dropping the O(ε4) in the above equation, ûε
1(t, ξ) is well approxi-

matedby v̂ε(t, ξ)which is theFourier transformof the solutionvε(t, x)of the following
high order homogenized equation

⎧
⎪⎨

⎪⎩

∂2vε

∂t2
− div

(
a∗∇vε

) + ε2D∗ · ∇4
xvε = f (t, x),

vε(0, x) = uinit(x),
∂vε

∂t
(0, x) = vinit(x),

(3.14)

This equations is identical to the “higher order” homogenized equation (1.4), or (2.30),
except for the right hand sidewhich does not feature the additional term ε2div (d∗∇ f ).
This is due to our replacement of the original right hand side f by its well-prepared
variant fε, defined by (3.9) (see [4] for a more complete explanation).

In any case, the differential operator of the “higher order” homogenized equation is
the same whatever the method of derivation, be it two-scale asymptotic expansions or
Bloch wave decomposition. Once again, the fourth-order tensor D∗ is a manifestation
of dispersive effects in the wave propagation.

4 Boussinesq approximation

The high order homogenized equations (1.4), (2.31) and (3.14) are not well posed
since, by virtue of Proposition 2.5, the tensor D∗ has the “wrong” sign (the bilinear
form associated to the operator D∗ ∇4

x is non-positive). The goal of this section is to
explain how to modify these equations in order to make them well-posed by using a
classical Boussinesq trick (see e.g. [16] for historical references). This trick has been
applied in recent works [1,2,23,24,32]. It is also well known in the study of continuum
limits of discrete spring-mass lattices [33].

The key point is that both Eqs. (3.13) and (2.30) are actually defined, up to the
addition of a small remainder term of order ε4. Therefore one can modify them adding
any term of the same order ε4, without altering their approximate validity. Let us
explain the Boussinesq trick for (3.14) (the case of (2.31) is completely similar). We
define the minimum value

m = min|ξ |=1

D
∗ · (ξ ⊗ ξ ⊗ ξ ⊗ ξ)

a∗ξ · ξ
, (4.1)

which is a non-positive number m ≤ 0 because of Proposition 2.5 (if m > 0 were
positive, (3.14) would be well posed and there would be nothing to do). Introducing
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the non-negative second order tensor C = −mId ≥ 0, we define a fourth order tensor
D∗ by

D∗ · (ξ ⊗ ξ ⊗ ξ ⊗ ξ) = D
∗ · (ξ ⊗ ξ ⊗ ξ ⊗ ξ) + (

a∗ξ · ξ
)
(Cξ · ξ) ≥ 0 ∀ξ ∈ R

d ,

(4.2)

which is non-negative in view of (4.1). Then, the Fourier transform of (3.14)

d2v̂ε

dt2
(ξ) + 4π2 (

a∗ξ · ξ
)
v̂ε(ξ) + ε2(2π)4D∗ · (ξ ⊗ ξ ⊗ ξ ⊗ ξ)v̂ε(ξ) = f̂ (ξ)

(4.3)

can be replaced by

(
1 + ε24π2Cξ · ξ

) d2v̂ε

dt2
+

(
4π2a∗ξ · ξ + ε2(2π)4D∗ · (ξ ⊗ ξ ⊗ ξ ⊗ ξ)

)
v̂ε

= f̂ (t, ξ) + ε24π2 (Cξ · ξ) f̂ (t, ξ) + O(ε4), (4.4)

since truncating (4.3) implies

d2v̂ε

dt2
(ξ) + 4π2 (

a∗ξ · ξ
)
v̂ε(ξ) = f̂ (ξ) + O(ε2).

By the inverse Fourier transform, applied to (4.4), we deduce the following equation

∂2vε

∂t2
− ε2div

(

C∇ ∂2vε

∂t2

)

− div
(
a∗∇vε

) + ε2D∗ · ∇4vε = f − ε2div (C∇ f ) + O(ε4) ,

which is well posed because C and D∗ are non-negative.
We summarize our result in the following lemma.

Lemma 4.1 Up to an error term of orderO(ε4), the high order homogenized equation
(3.14) is equivalent to

∂2vε

∂t2
− ε2div

(

C∇ ∂2vε

∂t2

)

− div
(
a∗∇vε

) + ε2D∗ · ∇4vε = f − ε2div (C∇ f ) ,

while the high order homogenized equation (1.4) is equivalent to

∂2vε

∂t2
− ε2div

(

C∇ ∂2vε

∂t2

)

− div
(
a∗∇vε

) + ε2D∗ · ∇4vε

= f − ε2div
(
(C − d∗)∇ f

)
, (4.5)

which are both well posed because C ≥ 0 and D∗ ≥ 0.
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Remark 4.2 In 1-d, by virtue of Lemma 2.8, we have D
∗ = −a∗d∗ with d∗ > 0.

Therefore, in 1-d it is possible to choose D∗ = 0 and C = d∗. Then, the right hand
side of (4.5) is simply f , as in the usual homogenized equation (1.3).

From a numerical point of view, (4.5) should be solved rather than the ill-posed
original Eq. (1.4). Of course, any choice of matrixC , whichmakes (4.2) non-negative,
is acceptable. Therefore, there is a whole family of higher order homogenized equation
(4.5), all of them being equivalent up to order ε4. In this context, the dispersive effect
is measured by the fourth-order tensor D∗ and not by D∗ alone.

It was proved in [23,32] (see also [2]) that the solution vε of (4.5) provides an
approximation of the exact solution uε of (1.1), up to an error term of order ε in the
L∞
t (L2

x )-norm for long times up to T ε−2.

Remark 4.3 The dispersive character of the high order homogenized equation (4.5)
can easily be checked for plane-wave solutions, in the absence of any source term.
Indeed, plugging in (4.5) a plane wave solution

u(t, x) = uei(ωt−ξ ·x),

where u ∈ R is the amplitude, ω ∈ R
+ the frequency and ξ ∈ R

d the wave number,
we obtain the dispersion relation

ω(ξ) =
(
a∗ξ · ξ + ε2D∗ · ξ ⊗ ξ ⊗ ξ ⊗ ξ

1 + ε2Cξ · ξ

)1/2

≤ √
a∗ξ · ξ . (4.6)

For ε|ξ | � 1, a Taylor expansion of (4.6) yields

ω(ξ) = √
a∗ξ · ξ

(

1 + ε2

2

D∗ · ξ ⊗ ξ ⊗ ξ ⊗ ξ

a∗ξ · ξ
− ε2

2
Cξ · ξ + O(ε4)

)

.

Recall from (4.2) that D∗ = D
∗ + C ⊗ a∗ + R, with R · ξ ⊗ ξ ⊗ ξ ⊗ ξ ≥ 0 for

any ξ . Denoting by ξ0 a minimizer in (4.1), we have R · ξ0 ⊗ ξ0 ⊗ ξ0 ⊗ ξ0 = 0 and
Rξ0 ⊗ ξ0 ⊗ ξ0 = 0 by minimality. Thus, in this optimal direction we deduce

ω(ξ0) =
√
a∗ξ0 · ξ0

(

1 + ε2

2

D
∗ · ξ0 ⊗ ξ0 ⊗ ξ0 ⊗ ξ0

a∗ξ0 · ξ0
+ O(ε4)

)

.

From (4.6) we deduce the group velocity

V (ξ) = dω

dξ
(ξ) = a∗ξ√

a∗ξ · ξ
+ ε2δ(ξ) + O(ε4) ,

where the corrector term can be computed in the optimal direction

δ(ξ0) = −Cξ0 · ξ0

2

a∗ξ0
√
a∗ξ0 · ξ0

−
√
a∗ξ0 · ξ0Cξ0
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Simplifying further to the isotropic case, a∗ξ0 · ξ0 = a∗|ξ0|2, we obtain

δ(ξ0) = 3m
√
a∗

2
ξ0 ⇒ V (ξ0) = √

a∗ ξ0

|ξ0|
(

1 + 3m

2
ε2 + O(ε4)

)

.

Sincem ≤ 0 by virtue of (4.1), we deduce that, up to fourth order, the group velocity is
smaller when taking into account dispersive effect. Furthermore, to reduce dispersion
(namely to have V (ξ0) as close as possible to

√
a∗ξ0/|ξ0|) is equivalent to minimize

|m| or, in other words, to minimize the (absolute) value of D∗.

5 Numerical simulation of the dispersive effect

To illustrate the dispersive effect and explain the role of the high order homogenized
equation (4.5), we perform some numerical experiments in 1-d and 2-d. Similar com-
putations previously appeared in [2,48], therefore our goal is purely pedagogical and
illustrative. To simplify, the source term f is set to zero.

5.1 Numerical results in 1-d

We first start with the one-dimensional case. By virtue of Lemma 2.8 the one-
dimensional high order homogenized equation (1.4) reads as follows:

∂2vε

∂t2
− a∗ ∂2vε

∂x2
− ε2a∗d∗ ∂4vε

∂x4
= 0.

By virtue of Lemma 4.1, this equation is equivalent, approximately up to an error of
O(ε4), to

∂2vε

∂t2
− ε2C

∂4vε

∂x2∂t2
− a∗ ∂2vε

∂x2
+ ε2a∗(C − d∗)∂

4vε

∂x4
= 0, (5.1)

where C ≥ 0 plays the role of a parameter (a scalar in 1-d). Following the test case of
[2], in the numerical simulations, the periodic coefficient is

a
( x

ε

)
= √

2 + sin

(

2π

(
x

ε
− 1

4

))

,

with ε = 0.05. Then, the homogenized tensor a∗ and dispersive tensor d∗ are a∗ = 1
and d∗ = 0.00909633, respectively. The computational domain is � = (− 0.5, 0.5),
complemented with periodic boundary conditions, and we discretize it with a space
step�x = 1/2000 and a time step�t = 0.02×�x . We use a leapfrog scheme in time
and, in space, a fourth-order centered finite difference scheme for the diffusion term
and a second order centered scheme for the dispersive term.We consider two different
sets of initial condition which are non-oscillating. The first type of initial data features
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a zero initial velocity and triggers two waves (see Fig. 1) propagating symmetrically
in opposite directions:

vε(t = 0, x) = exp

(

− x2

0.05

)

and
∂vε

∂t
(t = 0, x) = 0 .

The second set of initial data yields a single wave (see Fig. 2) for the standard homog-
enized equations, propagating with group velocity

√
a∗:

vε(t = 0, x) = exp
(
−64x2

)
and

∂vε

∂t
(t = 0, x) = 128

√
a∗x exp

(
−64x2

)
.

In Figs. 1 and 2, we compare the numerical solutions of the original wave equation
(1.1), of the homogenized wave equation (1.3) and of the high order homogenized
equation (5.1), for three different values of the C parameter, and at different times T .
The five different curves are: case 1, the solution of (1.1); case 2, the solution of (1.3);
case 3, the solution of (5.1) with C = d∗; case 4, the solution of (5.1) with C = 2d∗
and case 5, the solution of (5.1) with C = 4d∗.

We notice that all solutions are very close (in the supremum norm) for short times
(say T = 1) while for larger times (say T = 100) only the solutions of the high order
homogenized equation stay close to the “exact” solution [while the homogenized
solution propagates at the wrong speed, a clear manifestation of dispersive effects not
taken into account in (1.3)]. At very long times (say T = 400), the agreement between
the exact and high order homogenized solutions is very good for the first example but
less convincing for the second example: this may be due to themore complex profile of
the solutions which may be more prone to numerical diffusion/dispersion that pollute
their accuracy for such long times. In any case, the high order homogenized equation
(5.1) is clearly a better approximation than the standard homogenized equation (1.3).

5.2 Numerical results in 2-d

We now turn to the two-dimensional case. The goal is here to compare the standard
homogenized wave equation and the high order homogenized wave equation for vari-
ous values of the dispersion tensor. It is almost impossible to make a comparison with
the solution of the original wave equation (1.1), because it would require a too fine
mesh. Therefore, our goal is to compare an optimal maximal value of the dispersion
tensor and a non-optimal one.

The computational domain � is the unit square with periodic boundary conditions.
The initial conditions are set to uinit = {1− 8(x − 0.5)2 + 16(x − 0.5)4)}2{1− 8(y −
0.5)2 + 16(y − 0.5)4)}2 and vinit = 0. We consider a two-phase periodic material
with aA = 10 and aB = 30, which corresponds to the material properties of case 3 in
Fig. 17. The resulting homogenized coefficient is set to a∗ = 17.325. The period ε is
set to ε = 0.05.

We perform numerical simulations in three cases. The first case is the standard
homogenized wave equation. The second case is the high oder homogenized wave
equation with an approximate maximal value of α = 0.05 and β = 0 (see Fig. 17).
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(a) (b)

(c) (d)

(e) (f)

Fig. 1 Plot of the solutions of Eqs. (1.1), (1.3) and (5.1) with the first type of initial conditions. a T = 1,
b T = 10, c T = 50, d T = 100, e T = 200, f T = 400

The third case is also the high oder homogenized wave equation with a non-optimal
dispersion tensor with small α = 0.02 and β = 0. We rely on a spectral or Fourier-
based numerical algorithm for high accuracy and almost no diffusive or dispersive
effects of the numerical scheme (as in [48]). More precisely, the initial data is decom-
posed on Fourier modes and the ordinary differential equations (with respect to time)
for each modes are solved exactly. The numerical solution is then recovered by the
inverse Fourier transform (of course, a FFT algorithm is used for the sake of CPU
time). The mesh sizes for both the space variable x and the Fourier variable ξ are
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(a) (b)

(c) (d)

(e) (f)

Fig. 2 Plot of the solutions of Eqs. (1.1), (1.3) and (5.1) with the second type of initial conditions. a T = 1,
b T = 10, c T = 50, d T = 100, e T = 200, f T = 400

216 × 216. In Fig. 3 are plotted the solution at various times t = 20, 50, 100 in �,
as well as a comparison of the three solution along the line y = 0.5. One can check
that the three solutions become different at large times t = 50, 100. In particular, the
solution with larger dispersion (case 2) effect is more different from the homogenized
solution (case 1) than the solution with smaller dispersion (case 3).

We checked that our solutions in Fig. 3 are converged under mesh refinement,
namely the results are almost identical for the two meshes 216 × 216 and 215 × 215.
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Fig. 3 2-d wave computation. a Case 1 at t = 20, b case 2 at t = 20, c case 3 at t = 20, d plot on the
y = 0.5 at t = 20, e case 1 at t = 50, f case 2 at t = 50, g case 3 at t = 50, h plot on the y = 0.5 at t = 20,
i case 1 at t = 100, j case 2 at t = 100, k case 3 at t = 100, i plot on the y = 0.5 at t = 20,

In other words, the Fourier numerical method is dispersion-free for both meshes up to
time t = 100.

6 Some properties of the Burnett tensor D∗

We first investigate the dependence of D∗ to the choice of the periodicity cell. For any
integer k ≥ 1, define the coefficients

ak(y) = a(ky) in Y,

which are just the periodic repetition of smaller cells of size 1/k in the unit cell Y .
The same microstructure or geometry can be modeled by a or ak but with a different
value of the small parameter. Define

εk = kε.

Then we have

a
( x

ε

)
= ak

(
x

εk

)

.
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In other words, if more periodic patterns are present in the unit cell, there are less
unit cells in the macroscopic domain and the ratio εk is larger. One can reproduce the
homogenization process of Sect. 2 with these new coefficients ak and small parameters
εk . According toProposition 2.2, the newhigh order homogenized equation of thewave
equation (1.1) is

∂2vε

∂t2
− div

(
a∗
k∇vε

) + ε2kD
∗
k ∇4vε = f + ε2kdiv

(
d∗
k ∇ f

)
, (6.1)

with new homogenized properties a∗
k ,D

∗
k , d

∗
k corresponding to the new coefficient ak .

Lemma 6.1 For any integer k ≥ 1, one has

a∗
k = a∗, D

∗
k = k−2

D
∗, d∗

k = k−2d∗.

In other words, ε2kD
∗
k = ε2D∗ and ε2k d

∗
k = ε2d∗.

Proof Let us denote by χk
i and χk

i j the cell solutions for the coefficients ak . It is easily
seen that

χk
i (y) = 1

k
χi (ky), χk

i j (y) = 1

k2
χi j (ky),

from which we deduce the desired properties. ��
Remark 6.2 As a consequence of Lemma 6.1, the dispersion tensor can be made as
small as desired (in norm) by considering smaller and smaller periodic patterns in the
unit cell. However, there is no contradiction because the product ε2kD

∗
k is constant. In

any case, there is no point in minimizing the norm or a negative linear combination
of entries of D∗, except if one adds a geometrical constraint (like an upper bound
on the perimeter) which would prevent the unlimited fragmentation of the periodic
microstructure.

A similar result holds true if one considers a scaled version of the unit cell.

Lemma 6.3 For any real number κ > 0, consider a scaled periodicity cell Z =
(0, κ)d . Introduce the scaled variable z := κy, with y ∈ Y , and define the Z-periodic
coefficients aκ(z) := a( z

κ
). Then, its homogenized coefficients satisfy

a∗
κ = a∗, D

∗
κ = κ2

D
∗, d∗

κ = κ2d∗.

Proof Note first that, when computing homogenized formula on Z , one has to average
on the cell Z which has volume κd . Let us denote by χκ

i and χκ
i j the cell solutions for

the coefficients ã. It is easily seen that

χκ
i (z) = κχi

( z

κ

)
, χκ

i j (z) = κ2χi j

( z

κ

)
,

from which we deduce the desired properties. ��
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Remark 6.4 As a consequence of Lemma 6.3, if one can change the periodicity cell,
then the dispersion tensor can be made as large (or small) as desired by considering
larger (or smaller) periodicity cells. However, for a given physical configuration, there
is no contradiction because the product ε2κD

∗
κ is constant. In any case, if one fix the

periodicity cell to be Y = (0, 1)d , then one cannot use this scaling argument and the
norm of D∗ can be bounded from above. Indeed, in 1-d, for a two-phase mixture of
aA, aB in proportions γ, (1 − γ ), the following upper bound on −D

∗ was proved in
[21]

−D
∗ ≤ 1

12
(a∗)2γ 2(1 − γ )2(a−1

A − a−1
B )2,

and this upper bound is uniquely attained by a simple laminate of aA, aB with just one
point-interface in the unit cell Y = (0, 1).

We now consider the effect of rotations on the periodicity cell. The analytic formula
of Lemma 6.5 will be useful to check some of our numerical results which feature
equivalent shapes, up to rotations (see Remark 9.7).

Lemma 6.5 LetR be a rotation matrix and consider the rotated variable z := Ry, as
well as the rotated material properties ã(z) := Ra(RT z)RT . Then, the homogenized
properties of ã(z) satisfy

ã∗ = Ra∗RT , d̃∗ = Rd∗RT , D̃
∗(ξ ⊗ ξ) · (ξ ⊗ ξ)D∗(Rξ ⊗ Rξ) · (Rξ ⊗ Rξ).

Proof Let us denote by χ̃i (z) and χ̃i j (z) the cell solutions for the coefficients ã(z).

One can check that, for any vector η ∈ R
d , we have χ̃

(1)
η (z) = χ

(1)
Rη

(RT z) and

χ̃
(2)
η (z) = χ

(2)
Rη

(RT z), from which we deduce the desired properties. ��
In order to simplify the analysis of the fourth-order tensorD∗, we choose to restrict

the geometry of the periodic coefficients. From now on we make the following 8-fold
symmetry assumption on the periodic coefficient a(y):

1. y → a(y) is a scalar-valued function,
2. a is even in the sense that a = a ◦ Si for 1 ≤ i ≤ d, where Si is the symmetry

operator defined by

Si (y) = (y1, . . . , yi−1,−yi , yi+1, . . . , yd),

3. a is 90◦-rotationally invariant in the sense that a = a ◦ Pi j for 1 ≤ i, j ≤ d, where
Pi j is the permutation operator defined by

Pi j (y) = Pi j (y1, . . . , yi , . . . , y j , . . . , yd) = (y1, . . . , y j , . . . , yi , . . . , yd).

Note that, by periodicity of the coefficients, one can consider that the unit cell is
Y = (− 1/2,+ 1/2)d and the above assumption it equivalent to symmetries with
respect to the principal hyperplanes (orthogonal to the main axis) and to the diagonal
hyperplanes passing through the origin.
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The following result is then easily proved (see e.g. section 3 in chapter 6 of [10],
or [14,15]).

Lemma 6.6 Under the 8-fold symmetry assumption, if w is a Y -periodic solution of

− divy
(
a(y)∇yw

) = g in Y,

then w ◦ Si is a Y -periodic solution of

− divy
(
a(y)∇y(w ◦ Si )

) = g ◦ Si in Y,

and w ◦ Pi j is a Y -periodic solution of

− divy
(
a(y)∇y(w ◦ Pi j )

) = g ◦ Pi j in Y.

Proposition 6.7 Under the 8-fold symmetry assumption, the dispersion tensor D∗ is
characterized by two parameters α, β ∈ R

D
∗ (η ⊗ η) : (η ⊗ η) = −α

d∑

i=1

η4i − β

d∑

i, j=1,i< j

η2i η
2
j , (6.2)

with constant α and β, independent of the indices i, j such that, for any i �= j ,

α :=
∫

Y
a|∇χi i − χi∇χi |2 dy (6.3)

β :=
∫

Y

(
2a(∇χi i − χi∇χi ) · (∇χ j j − χ j∇χ j ) + a|∇χi j + ∇χ j i

− χi∇χ j − χ j∇χi |2
)
dy. (6.4)

Remark 6.8 From Proposition 6.7 and the negative character of the tensor D∗ (see
Proposition 2.5) we deduce the following bounds on α and β

α ≥ 0 and 2α + (d − 1)β ≥ 0.

Thefirst bound is obtained by considering all components ηi equal to zero, but one. The
second bound is obtained by maximizingD∗ (η ⊗ η) : (η ⊗ η): writing the optimality
condition and using the symmetry of the problem, the maximizer is attained when all
η2i are equal, yielding this second bound.

A similar computation shows that under the assumption of Proposition 6.7, the
optimal value of the Boussinesq parameter m, defined by (4.1), is

m = −1

a∗
(
α + max(0, (β − 2α)(d − 1)/(2d))

)
.
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Proof The fact that, under the 8-fold symmetry assumption, the homogenized tensor
a∗ is scalar is classical, see e.g. Section 1.5 in [30] (the isotropy of a∗ can easily be
proved by the same arguments as those below). Using Lemma 6.6 one can check the
following symmetry properties on the cell solutions

χi ◦ Si = −χi , χi ◦ S j = χi for i �= j,

χi i ◦ Sk = χi i for 1 ≤ k ≤ d,

for i �= j χi j ◦ Si = χi j ◦ S j = −χi j , χi j ◦ Sk = χi j for k �= i, j.

In particular, χi j and (χiχ j ) have the same symmetry properties. On the other hand,
we also have the following permutation properties

χi ◦ Pi j = χ j , χi i ◦ Pi j = χ j j , χi j ◦ Pjk = χik for i �= j.

From formula (2.32) in Proposition 2.5 we find that

D
∗
i jkl := −

[∫

Y
a∇

(

χi j − 1

2
χiχ j

)

· ∇
(

χkl − 1

2
χkχl

)

dy

]S

, (6.5)

where the index Smeans thatD∗
i jkl has to be symmetrized. Now, using the permutation

properties of the cell functions, it is easily seen that

D
∗
i i i i = −

∫

Y
a|∇χi i − χi∇χi |2 dy does not depend on the direction i .

Similarly,

2D∗
i i j j = −

∫

Y

(
2a(∇χi i − χi∇χi ) · (∇χ j j − χ j∇χ j ) + a|∇χi j

+∇χ j i − χi∇χ j − χ j∇χi |2
)
dy

is independent of the couple of indices i �= j . Let us show that all other entries of the
tensor D∗ vanish. Consider, for example, the entry

D
∗
i i i j = −

∫

Y
a∇

(

χi i − 1

2
χ2
i

)

· ∇
(

χi j − 1

2
χiχ j

)

dy .

We decompose it as

D
∗
i i i j =

d∑

k=1

−
∫

Y
adkii d

k
i j dy with dkii = ∂

∂yk

(

χi i − 1

2
χ2
i

)

,

dki j = ∂

∂yk

(

χi j − 1

2
χiχ j

)

.
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For k �= i, j , the function dkii = dkii ◦S j is evenwith respect to y j , while dki j = −dki j ◦S j

is odd with respect to y j . Therefore, the integrand adkii d
k
i j has zero average on Y . For

k = i , diii = diii ◦ Si is odd with respect to yi , while dii j = dii j ◦ Si is even with

respect to yi (as the derivative of an odd function). Again, the integrand adiii d
i
i j has

zero average on Y . Eventually, for k = j , d j
ii = d j

ii ◦ S j is odd with respect to y j (as

the derivative of an even function), while d j
i j = d j

i j ◦ S j is even with respect to yi (as

the derivative of an odd function), and the integrand ad j
ii d

j
i j has zero average on Y .

This implies that D∗
i i i j = 0.

A similar argument work for all other entriesD∗
i i jk , with different i, j, k, andD

∗
i jkl ,

with different i, j, k, l. A key ingredient is always that χi j and (χiχ j ) have the same
symmetry properties. Therefore, we obtain the desired result. ��
Remark 6.9 A proof, similar to that of Proposition 6.7, shows that, under the 8-fold
symmetry assumption, the second order tensor d∗, defined by (2.25), is isotropic too,
i.e. is proportional to the identity matrix.

7 Shape optimization

7.1 Two phase periodic mixture

From now on we shall study dispersive effects for wave propagation in a two-phase
periodic medium. More precisely, in the context of periodic homogenization we
assume that the unit cell Y = (0, 1)d is decomposed in two subdomains Y A and
Y B , separated by a smooth interface � (see Fig. 4). The subdomains Y A and Y B are
filled with an isotropic linear material, which coefficients aA and aB , respectively. We
consider only those mixtures which satisfy the 8-fold symmetry assumption of Sect. 6.
Our ultimate goal is to find the set of all possible dispersion tensorsD∗ with, possibly,
a volume constraint for the two phases, a perimeter constraint (on the measure of �)
and a prescribed homogenized property a∗. In particular, we would like to knowwhich
microstructures in the unit cell yield minimal or maximal values of D∗. To do so, we
study the shape optimization problem which determines the optimal geometry in the
unit cell Y in order to minimize some objective function depending on D

∗ or more
generally on the first and second-order cell problems (which give the value of D∗ by
virtue of Proposition 2.5). More specifically, we consider coefficients defined by

a(y) = aA1YA (y) + aB1YB (y),

where aA, aB > 0 are two constant positive real numbers, 1YA(y), 1YB (y) are the
characteristic functions of Y A and Y B .

To optimize the dispersive properties of a periodic two-phase geometry, we consider
the following objective function:

J (Y A) =
∫

Y
J

(
y, {χi }1≤i≤d , {χi j }1≤i, j≤d

)
dy , (7.1)
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Fig. 4 Periodicity cell of a
two-phase composite

where J is a smooth function satisfying adequate growth conditions, χi is the first
order cell solution of (2.6), χi j is the second order cell solution of (2.12). By virtue of
Proposition 2.5, the entries of the dispersion tensor D∗ are of the type of (7.1).

We shall minimize the objective function J (Y A) with constraints (all of them or
just some of them) like volume fraction of Y A and Y B , perimeter or measure of
�, homogenized tensor a∗. As is well known, optimal designs do not always exist
in such problems [3,39,43,53], unless some smoothness, geometrical or topological
constraint is added. We shall not discuss this issue since our goal is rather numerical
than theoretical.

7.2 Shape derivative in the multi-material problem

In order to minimize the objective function (7.1), a gradient based shape optimization
algorithm [36,43,51] is applied. Most of the works on the Hadamard method for
computing shape sensitivity are concerned with problems where the domain boundary
is the optimization variable. However, here we rather optimize an interface between
two materials and there are fewer works in this setting. Let us mention the cases
of Darcy flows [13], conductivity problems [28,42] and elasticity systems [5,7,31].
There are also someworks concernedwith the optimization of the homogenized tensor
a∗ in terms of the cell properties a(y) [11,26,49]. In this work, we follow the same
approach but applied to the higher order cell problems in homogenization and to the
dispersion tensor D∗.

To begin with, we recall the approach of Murat and Simon [39] for shape differen-
tiation. For a smooth reference open set �, we consider domains of the type

�θ = (Id + θ)(�),

with a vector field θ ∈ W 1,∞(Rd ,Rd).

Definition 7.1 The shape derivative of J (�) at� is defined as the Fréchet derivative in
W 1,∞(Rd ,Rd) at 0 of the application θ → J ((Id+ θ)(�)) The following asymptotic
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expansion holds in the neighborhood of 0 ∈ W 1,∞(Rd ,Rd):

J ((Id + θ)(�)) = J (�) + J ′(�)(θ) + o(θ) with lim
θ→0

| o(θ) |
‖ θ ‖ = 0, (7.2)

where the shape derivative J ′(�) is a continuous linear form on W 1,∞(Rd ,Rd).

Lemma 7.2 Let� be a smooth bounded open set and φ1(x) ∈ W 1,1(Rd) and φ2(x) ∈
W 2,1(Rd) be two given functions. The shape derivatives of

J1(�) =
∫

�

φ1(x) dx and J2(�) =
∫

∂�

φ2(x) ds

are

J ′
1(�)(θ) =

∫

∂�

θ(x) · n(x)φ1(x) ds

and

J ′
2(�)(θ) =

∫

∂�

θ(x) · n(x)

(
∂φ2(x)

∂n
+ H(x)φ2(x)

)

ds ,

for any θ ∈ W 1,∞(Rd;Rd), respectively,where H is themean curvature of ∂�, defined
by H = div n, n is the unit normal vector on ∂� and ds is the (d − 1)-dimensional
measure along ∂�.

In order to differentiate the material properties of a periodic composite material,
one has to restrict the directions of differentiation to periodic vector fields. In other
words, the boundary of the periodicity cell ∂Y is not modified and only the interface
� between the two phases is moved. Thus, from now on the vector field θ belongs to
W 1,∞(Rd ,Rd) and is Y -periodic.

Theorem 7.3 The shape derivative of the objective function J, defined in (7.1) reads

J ′(Y A)(θ) =
∫

�

D
(
{χi }1≤i≤d , {χi j }1≤i, j≤d , {pi }1≤i≤d , {pi j }1≤i, j≤d

)
θ · n ds ,

(7.3)

with

D = [J ] + [a](∇χi − ei )t ·
(

∇ pi + e j

(

pi j −
∫

Y
pi j dy

))

t

+[a](∇χi j − χ j ei )t · ∇t pi j

−[a−1] (a(∇χi − ei ) · n)

(

a

(

∇ pi + e j

(

pi j −
∫

Y
pi j dy

))

· n
)

−[a−1] (
a(∇χi j − χ j ei ) · n) (

a∇ pi j · n)
,
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where [∗] = ∗A −∗B denotes the jump through the interface � and n = nA = −nB is
the unit normal vector of �. The suffix ∗t denotes the tangential component of a vector.
The adjoint states pi , pi j ∈ H1

#,0(Y ) are defined as the unique periodic solutions of
the following adjoint problems:

− div(a∇ pi ) = −∂J

∂χi
+ div

(

ae j

(

pi j −
∫

Y
pi j

))

+ ae j · ∇ pi j in Y,

(7.4)

− div(a∇ pi j ) = −∂J

∂χi j
in Y. (7.5)

Remark 7.4 In the statement of Theorem 7.3 the Einstein summation convention with
respect to repeated indices is used. The solutions of the adjoint equations (7.4) and
(7.5) are defined up to an additive constant. They are unique in H1

#,0(Y ), namely when
their average on Y is zero. Therefore, when this normalization condition is used, the
integral term (

∫

Y pi j ) in (7.4) can safely be dropped.

Remark 7.5 The governing equation (2.12) of the second order corrector functions χi j

depends on the first order corrector functions χi . Therefore, in numerical practice, the
functions χi j are computed after the functions χi . On the other hand, the adjoint equa-
tion (7.4) for pi depends on pi j , while the other adjoint equation (7.5) depends merely
on the corrector functions χi and χi j . Therefore, the second order adjoint functions
pi j are computed first, followed by the computation of the first order adjoint functions
pi . This peculiarity is similar to the backward character of the adjoint equation for a
time dependent problem.

The proof of Theorem 7.3 is obtained by a standard, albeit tedious, application of
the Lagrangian method for shape derivation (see [7,28,42] for similar proofs). For the
sake of completeness, it is given in Sect. 10.

7.3 Shape derivative of a discrete approximation

Although the formulation discussed in the previous subsection is satisfying from
a mathematical point of view, its numerical implementation is quite tricky since it
requires one of the two following delicate algorithms. A first possibility is to re-mesh
at each iteration so that the mesh is fitted to the interface �: then, jumps, as well as
continuous quantities, can be accurately computed (see section 6.4 in [6]). A second
possibility is to fix themesh and capture� by e.g. a level set function. In this latter case,
only approximate jumps and continuous quantities at the interface can be computed
(see [7]). Both approaches are not obvious to implement in practice. To avoid these
difficulties, we use the approximated shape sensitivity in themulti-material setting pro-
posed in [5,35,55]. In this formulation, the optimization problem is first discretized
and second its shape sensitivity is derived. Let us introduce a finite-dimensional space
of conforming finite elements Vh ⊂ H1

0,#(Y ) in which are computed the approxi-

mate solutions χh
i of (2.6), χh

i j of (2.12), p
h
i of (7.4) and phi j of (7.5). More precisely,
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χh
i ∈ Vh and χh

i j ∈ Vh are the unique solutions of, respectively,

∫

Y
a(∇χh

i − ei ) · ∇φh dy = 0 ∀φh ∈ Vh, (7.6)
∫

Y
a(∇χh

i j − χh
i e j ) · ∇φh dy =

∫

Y
(ai j − a∗,h

i j − a∇χh
i · e j )φh dy ∀φh ∈ Vh .

(7.7)

The precise definitions of phi and phi j will be given in the proof below. Typically, these
approximate solutions are of the type

χh
i :=

Nh∑

k=1

χi,k(�)ϕk(x), phi :=
Nh∑

k=1

pi,k(�)ϕk(x)

where Nh is the dimension of Vh , ϕk(x) are the shape functions and χi,k(�), resp.
pi,k(�), are the nodal values ofχh

i , resp. p
h
i ,whichdependon the interface�.However,

the basis functions ϕk are independent of� and, in particular, do not satisfy any special
transmission conditions at the interface �. It implies that the state functions χh

i are
shape differentiable [5].

We introduce the discrete objective function

Jh(Y
A) =

∫

Y
J

(
y, {χh

i }1≤i≤d , {χh
i j }1≤i, j≤d

)
dy . (7.8)

Proposition 7.6 The discrete objective function Jh is shape differentiable and its
derivative reads

J ′
h(Y

A)(θ) =
∫

�

Dh({χh
i }1≤i≤d , {phi }1≤i≤d , ) θ · n ds , (7.9)

where

Dh :=[J ] + [a]
{

(∇χh
i − ei ) · ∇ phi + (∇χh

i j − χh
i e j ) · ∇ phi j + ∇χh

i · e j phi j

− ∇χh
j · ei

∫

Y
phi j dy + ei · e j

(∫

Y
phi j dy − phi j

)}

. (7.10)

Proof The proof follows that of Proposition 1.5 in [5].We use the Lagrangian method,
which introduces a Lagrangian Lh as the sum of the objective function and of the
constraints multiplied by Lagrange multipliers, namely the discrete variational for-
mulations (7.6) and (7.7),

Lh(�, {χ̂h
i }1≤i≤d , {χ̂h

i j }1≤i, j≤d , { p̂hi }1≤i≤d , { p̂hi j }1≤i, j≤d)

:=
∫

Y
J (y, {χ̂h

i }1≤i≤d , {χ̂h
i j }1≤i, j≤d) dy +

∫

Y
a(∇χ̂h

i − ei ) · ∇ p̂hi dy
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+
∫

Y
a(∇χ̂h

i j − χ̂h
i e j ) · ∇ p̂hi j dy −

∫

Y
(ai j − a∗,h

i j − a∇χ̂h
i · e j ) p̂hi j dy , (7.11)

where the functions χ̂h
i , χ̂h

i j , p̂
h
i , p̂

h
i j are any functions in Vh and with

a∗,h
i j =

∫

Y
(ai j − a∇χ̂h

j · ei ) dy .

The space Vh is independent of the interface �. Therefore, the LagrangianLh can be
differentiated in the usual manner and its stationarity is going to give the optimality
conditions of the optimization problem.

By definition the partial derivative of Lh with respect to phi and phi j leads to the
variational formulation (7.6) and (7.7).Next, the discrete adjoint equations are obtained
by taking the partial derivative ofLh with respect to the variables χh

i and χh
i j . It yields

the following discrete variational formulations

∫

Y
a(∇ phi + e j p

h
i j ) · ∇φh dy +

∫

Y

∂J

∂χh
i

φh dy

−
∫

Y
a∇ phi j · e jφh dy = 0 ∀φh ∈ Vh, (7.12)

∫

Y
a∇ phi j · ∇φh dy +

∫

Y

∂J

∂χh
i j

φh dy = 0 ∀φh ∈ Vh, (7.13)

which are approximations of the exact variational formulations of (7.4) and (7.5).
Eventually, by a classical result (see e.g. Lemma 3.5 in [7]), the partial derivative

of Lh with respect to � is precisely the shape derivative of Jh . Applying Lemma 7.2
to the Lagrangian (7.11) leads to (7.10). ��

8 Level set and optimization algorithms

In order to make it possible to change topology by merging boundaries during the
shape optimization procedure, the level set method, introduced by Osher and Sethian
[41], is used. As shown in Fig. 5, the basic idea is that the boundary is represented as
the zero iso-surface of a level set function φ(y) and the subdomains are distinguished
by the sign of the level set function φ(x). More precisely, the level set function φ(y)
is defined by

∀y ∈ Y

⎧
⎪⎨

⎪⎩

φ(y) > 0 if y ∈ Y A

φ(y) = 0 if y ∈ �

φ(y) < 0 if y ∈ Y B

Based on the level set representation, the approximate material property for the finite
element analyses is defined as follows:
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Fig. 5 Level set function

aY (y) := aA + hw(φ(y))(aB − aA), ∀y ∈ Y (8.1)

where hw : R → R is a smooth monotone approximate Heaviside function:

∀τ ∈ R, hw(τ) :=

⎧
⎪⎨

⎪⎩

0 if τ < −w
1
2

(
1 + τ

w
+ 1

π
sin(πτ

w
)
)

if − w ≤ τ ≤ w

1 if τ > w

(8.2)

where the parameterw > 0 is the width of the smoothed approximate interface. There
is nothing critical in this interface smoothing process (for example, other functions hw

could be used), but it makes easier the finite element implementation. For instance,
the boundary element method [29] is not required here.

In the level set method for shape optimization, the shape changes during the opti-
mization is represented as an evolution of the level set function. That is, introducing
fictitious time t ∈ [0, T ] (that could be interpreted as a descent step), the shape evo-
lution is obtained by solving the following Hamilton-Jacobi equation:

∂φ

∂t
+ V | ∇φ |= 0, t ∈ (0, T ), x ∈ Y , (8.3)

with periodic boundary conditions and where the normal velocity V is defined as a
descent direction for the shape sensitivity

J ′(Y A)(θ) = −
∫

�

v θ · n ds. (8.4)

A typical simple choice is to define V as an extension of v [which is defined merely
on the interface � by (8.4)] to the entire cell Y . However, it is well known that the
shape sensitivity does not have sufficient smoothness [36] and following a classical
regularization process we replace V by a regularized variant Vreg which is defined as
the unique solution in H1

# (Y ) of

∫

Y

(
ε2r ∇Vreg · ∇ Ṽ + Vreg Ṽ

)
dy =

∫

�

vṼ dy for any Ṽ ∈ H1
# (Y )
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where εr > 0 is a regularization parameter, having the interpretation of a smooth-
ing length (typically of the order of a few mesh cell size). In numerical practice,
since the interface � is not exactly meshed, we replace the interface integral in the
above variational formulation by a volume integral with a smoothed Dirac function
δw(d�(y))where d� is the signed distance function to the interface � and δη is defined
as follows:

δη(τ ) :=

⎧
⎪⎪⎨

⎪⎪⎩

0 if τ < −η

1
2η

(
1 + cos(πτ

η
)
)

if − η ≤ τ ≤ η

0 if τ > η

where η > 0 is a small parameter.
In order tominimize numerical dissipation in solving theHamilton–Jacobi equation

(8.3), the level set function is reinitialized as the signed distance function d� at each
optimization iteration by solving

∂φ

∂t
+ sign(φ0) (|∇φ| − 1) = 0 in Y

starting from the initial condition φ0(y), the prior level set function. This equation,
as well as the Hamilton–Jacobi equation (8.3), are solved by a standard second-order
upwind explicit finite difference scheme.

In truth, we are performing constrained optimization so that the velocity V is not
computed only in terms of the derivative of the objective function (8.4) but also in
terms of the constraints derivatives. More precisely, we rely on a standard Lagrangian
approach, i.e. we replace the objective function by the Lagrangian which is the sum of
the objective function and of the constraints multiplied by Lagrangemultipliers. These
Lagrange multipliers are updated at each iteration in such a way that the constraints
are exactly satisfied.

The optimization process goes on as follows. First, the level set function is initial-
ized to represent an appropriate initial configuration. Second, iterations of a steepest
descent method start. Each iteration is made of the following steps. In a first step,
the governing equations are solved using the finite element method and the objec-
tive function is computed. If the objective function is converged, the optimization is
stopped. If not, the adjoint equations are solved in a second step. In a third step, the
Lagrange multipliers are estimated to satisfy the constraints and the resulting shape
derivative of the Lagrangian is used to deduce the velocity V in (8.3) (this velocity
is regularized as explained above). In a fourth step, the level set function is updated
based on the Hamilton–Jacobi equation (8.3). Note that the Lagrangemultiplier for the
volume constraint is computed using Newton’s method so that the volume constraint
is exactly satisfied. Finally, if the objective function is improved and all constraints
are satisfied, the time increment of the Hamilton–Jacobi equation is increased and we
go back to the second step for the next optimization iteration. Otherwise, the time
increment is decreased and we go back to the fourth step.
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Fig. 6 Analysis and design
domain for the unit cell

9 Numerical simulations

In our numerical simulations, we impose the 8-fold symmetry condition for the two-
dimensional unit cell. We shall call this situation “isotropic” since the homogenized
tensor a∗ reduces to a scalar tensor and, by Proposition 6.7, the dispersion tensor D∗
is characterized by only two scalar coefficients α and β in any space dimension, while
a general fully symmetric fourth-order tensor depends on 5 independent coefficients
in 2-d and 15 in 3-d. This is clearly a major simplification of the computational task of
describing all possible values of D∗. It is comparable to the assumption of isotropy in
linearized elasticity, where such an assumption allowed Hashin and Shtrikman to find
their famous bounds on the effective Lamé moduli of two-phase composites [25]. Of
course, there may be unit cells without the 8-fold symmetry such that a∗ and D

∗ are
isotropic in the above sense. Of course again, there may be non-isotropic tensors D∗
which may achieve more optimal values, at least in some space directions, than any
isotropic tensors D∗. However, since this is a first numerical study, our assumption of
8-fold symmetry is reasonable, all the more since it is common practice in engineering
to favor symmetric designs.

As shown in Fig. 6, the analysis domain is a quarter of the unit cell (for simplicity),
while the design domain is one eighth of the unit cell, namely half of the analysis
domain. The design is recovered on the other half of the analysis domain by sym-
metry with respect to the diagonal. The finite element analysis is performed with the
FreeFEM++ software [27]. The domain is meshed with triangular elements and we
use P1 finite elements. The two phases are isotropic with material properties aA = 10
and aB = 20, respectively. In all our numerical examples, we rely on a structured
triangular mesh for the finite element analysis. This mesh is obtained from a regu-
lar squared mesh by dividing each square in four triangles along its diagonals. The
squared mesh is used for the finite differences discretization of the Hamilton–Jacobi
equation. The regularization parameter is set to ε2r = 0.05, the width of the approxi-
mated Heaviside function is set to w = 0.02 and the width of the approximated Dirac
function is η = 0.055.
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9.1 Optimizing an energy associated to D∗

In this subsection, as a first numerical test, we choose the specific direction η = (1, 1)
and we minimize or maximize the energy D

∗ (η ⊗ η) : (η ⊗ η) = 2α + β for the
Burnett tensor D∗ with volume constraint, perimeter constraint and prescribing the
homogenized tensor a∗ as follows:

min
�

or max
�

J (�) := 2α(�) + β(�)

subject to : Gv(�) :=
∫

Y A dy
∫

Y A∪Y B dy
− Gv = 0

Gp(�) :=
∫

�

d� − Gp ≤ 0

Ga∗(�) := ∥
∥a∗(�) − a∗∥∥= 0

where Gv , Gp and Ga∗ are constraint functions for the volume, the perimeter and
the homogenized tensor a∗, respectively. The constants Gv , Gp and a∗ are prescribed
values for these constraints, respectively. Note that the objective function J (�) =
2α(�)+β(�) is always non-negative, being the second bound established in Remark
6.8. We shall use the optimization algorithm of Sect. 8. However, it is not obvious to
find an admissible initial configuration, satisfying all constraints. Therefore, we adopt
the following four-step optimization procedure, starting from any initialization:

Step 1: optimize Gv alone to satisfy Gv = 0.
Step 2: minimize Gp, while keeping Gv = 0, to satisfy Gp ≤ 0.
Step 3: minimize Ga∗ , with the constraints Gv = 0 and Gp ≤ 0, to satisfy Ga∗ = 0.
Step 4: optimize J (�), with the constraints Gv = 0, Gp ≤ 0 and Ga∗ = 0.

In this subsection, we use a 50 × 50 structured mesh for the analysis domain. The
isotropic materials A and B have material properties aA = 10 and aB = 20. The upper
limit of the perimeter constraint is set to Gp = 1.5. We consider two cases for the
volume constraint: either Gv = 0.9 or Gv = 0.1, which can be interpreted as material
A being the inclusion in the first case, and material B being the inclusion in the second
case. By symmetry, the homogenized tensor a∗ is isotropic and its prescribed scalar
value is set to 10.705 in the first case and 18.72 in the second case. The relative error
for judging whether the constraint function Ga∗ is satisfied is set to 5 × 10−3.

Figures 7 and 8 show initial and optimal configurations when material A (in black)
is the inclusion and when material B (in white) is the inclusion, respectively. We test
three different initial configurations, for which the optimal configurationsmay be quite
different. Therefore, we guess there are many local optimal solutions for this type of
optimization problems. In the minimization cases, the inclusions are changed to more
complex and detailed shape. This is consistent with our Remark 6.2 which states that
smaller inclusions yield smaller dispersion (in absolute value). On the other hand, in
the maximization cases, the smaller inclusions may merge and give rise to simpler
optimal shapes.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 7 Volume fraction Gv = 0.9 (material A, in black, being the inclusion). a Initial configuration of case
1. b configuration after step 3; α = 2.094 × 10−3, β = 2.903 × 10−3, J = 7.092 × 10−3. c minimized
solution of case 1;α = 1.590×10−3, β = −1.995×10−3, J = 1.185×10−3, J/J0 = 0.1670,Gp : active.
dmaximized solution of case 1; α = 9.979×10−4, β = 5.932×10−3, J = 7.928×10−3, J/J0 = 1.179,
Gp : non-active. e Initial configuration of case 2. f configuration after step 3; α = 1.566 × 10−3, β =
2.880×10−3, J = 6.012×10−3. gminimized solution of case 2; α = 1.979×10−3, β = −2.425×10−3,
J = 1.533 × 10−3, J/J0 = 0.2549, Gp : active. h maximized solution of case 2; α = 2.296 × 10−3,
β = 1.521 × 10−3, J = 6.113 × 10−3, J/J0 = 1.017, Gp : non-active. i Initial configuration of case 3. j
configuration after step 3; α = 5.339×10−4, β = 4.862×10−3, J = 5.929×10−3. kminimized solution
of case 3; α = 9.226 × 10−4, β = −4.680 × 10−4, J = 1.377 × 10−3, J/J0 = 0.2323, Gp : active. l
maximized solution of case 3; α = 7.778× 10−4, β = 6.550× 10−3, J = 8.106× 10−3, J/J0 = 1.367,
Gp : non-active

Remark 9.1 The perimeter constraint is active in all cases of minimizing J (�) and
non-active in all cases of maximizing J (�). This is consistent with our Remark 6.2.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 8 Volume fraction Gv = 0.1 (material B, in white, being the inclusion). a Initial configuration of case
4. b configuration after step 3; α = 3.808 × 10−3, β = 5.195 × 10−3, J = 1.281 × 10−2. c Minimized
solution of case 4;α = 3.903×10−3, β = −6.129×10−3, J = 1.677×10−3, J/J0 = 0.1308,Gp : active.
dMaximized solution of case 4; α = 1.332×10−3, β = 1.113×10−2, J = 1.379×10−2, J/J0 = 1.077,
Gp : non-active. e Initial configuration of case 5. f Configuration after step 3; α = 2.966 × 10−3, β =
4.893×10−3, J = 1.083×10−2. gMinimized solution of case 5; α = 3.897×10−3, β = −6.151×10−3,
J = 1.643 × 10−3, J/J0 = 0.1518, Gp : active. h Maximized solution of case 5; α = 1.331 × 10−3,
β = 1.112 × 10−2, J = 1.378 × 10−2, J/J0 = 1.273, Gp : non-active. i Initial configuration of case 6. j
configuration after step 3; α = 9.965×10−4, β = 8.009×10−3, J = 1.000×10−2. kMinimized solution
of case 6; α = 2.241 × 10−3, β = −2.234 × 10−3, J = 2.247 × 10−3, J/J0 = 0.2247, Gp : active. l
Maximized solution of case 6; α = 1.334× 10−3, β = 1.117× 10−2, J = 1.384× 10−2, J/J0 = 1.384,
Gp : non-active.

9.2 Upper bounds on the dispersive effect

The goal of this subsection is to numerically find upper bounds on the coefficient α

and β of the isotropic dispersive tensor D∗ defined in Proposition 6.7, constituting
an upper Pareto front. Recall that this isotropy condition is the result of our 8−fold
symmetry assumption in the unit cell which drastically simplifies the task of finding
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(a) (b)

Fig. 9 Comparison between the linear and parabolic formulations; the contour colors represent values of
the objective function with const.1 < const.2 < const.3. a Linear formulation, b parabolic formulation

upper bounds. We restrict ourselves to upper bounds since, by virtue of Remark 6.2,
an optimal lower bound on −D

∗ is zero (which is achieved by taking smaller and
smaller repetition of the same microstructure in the unit cell). Of course, non trivial
lower bounds could be found if one adds a perimeter constraint but we did not explore
this issue and instead focus only on upper bounds.

We use numerical (gradient-based) optimization to find such upper bounds and,
more precisely, the upper Pareto front in the (α, β) plane for given phase properties
and proportions. Our goal is thus to obtain the curve of upper bounds for all possible
(α, β), which is alike the celebrated Hashin-Shtrikman bounds [25] but for dispersive
effects. If the set of all possible (α, β) were convex, then the upper Pareto front could
be obtained by maximizing all possible linear convex combination of α and β:

max
�

θα(�) + (1 − θ)β(�)

subject to : Gv(�) = 0, Gp(�) ≤ 0, Ga∗(�) = 0 (9.1)

where θ ∈ [0, 1] is a parameter, the phase proportion and the homogenized tensor
a∗ are constrained, and a perimeter constraint is added on the interface � to exclude
too fragmented configurations. Unfortunately, it is not known whether the set of all
possible (α, β) is convex or not and solving (9.1) for different values of θ ∈ [0, 1]
would yield an upper bound merely on the convex envelope of this unknown set.

In order to capture a possibly non-convex upper bound, we modify (9.1) by replac-
ing the linear objective function by a rotated quadratic one. The main idea (see
Fig. 9) is to locally approximate the Pareto front by parabolas the main axis of
which is oriented by an angle θ with respect to the horizontal axis. Discretizing
uniformly the angle as 0 ≤ θi ≤ π

2 , for i = 1, 2, . . . , n, we introduce rotated coordi-
nates
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⎛

⎝
αθi

βθi

⎞

⎠ :=
⎛

⎝
cos θi sin θi

− sin θi cos θi

⎞

⎠

⎛

⎝
αN

βN

⎞

⎠ ,

⎛

⎝
αN

βN

⎞

⎠ :=
⎛

⎜
⎝

α(�)−αmin
αmax−αmin

β(�)−βmin
βmax−βmin

⎞

⎟
⎠ ,

where αmax, αmin, βmax, βmin are maximum and minimum values for α and β (see
Remark 9.2 for their evaluation). Therefore, αN and βN represent normalized α and
β. Then, we replace the linear formulation (9.1) by the following parabolic formula-
tion

max
�

Ji (�) := αθi − cpβ
2
θi

subject to : Gv(�) = 0, Gp(�) ≤ 0, Ga∗(�) = 0 (9.2)

where cp > 0 is a parameter for the parabola (we shall discuss its choice in a
next subsection). For sufficiently large values of cp we expect that such parabo-
las can better fit the possibly non-convex shape of the (α, β) set, although one can
easily imagine non-convex (but highly unlikely) shapes that cannot be approached
from the outside by parabolas. All the numerical results in this section have
been obtained by using the parabolic formulation (9.2) with a complicated dis-
cretization and initialization strategy for the angle θ that we now describe (see
Fig. 10).

Since the results of the previous subsection have shown evidence of possible local
maxima for (9.2), we devise a strategy to avoid as much as possible the effect of
local optima and blind initializations in the optimization process. The details of our
optimization strategy are as follows:

step 1: The level set function is initialized and the parabola parameter cp is defined.
step 2: The function Gv(�) is optimized until satisfying Gv(�) = 0.
step 3: The function Gp(�) is minimized with Gv(�) = 0 until satisfying Gp ≤ 0.
step 4: The function Ga∗(�) is minimized with Gv = 0 and Gp ≤ 0 until satisfying

Ga∗ = 0.
step 5: As shown in Fig. 10a, starting from the optimal shape of step 4, three optimal

solutions are computed by maximizing Ji |i=1,2,3 with constraints, for the
angular parameters θ1 = 0, θ2 = π/2 and θ3 = π/4. This is the end of the
initialization and we now start iterating by adding more and more angles θi
and removing those which are not optimal (step 9).

step 6: A new discrete angle θi+1 is defined which yields a new objective function
Ji+1 to be maximized. To begin with, find a “nearest neighbor” pair (θ j , θk)

such that their corresponding optimal values (α j , β j ) and (αk, βk) are far-
thest apart, where the distance is measured by the Euclidean distance in the
normalized αN -βN coordinate system, as shown in Fig. 10b. The pair (θ j , θk)

is said to be “nearest neighbor” if no other angle θi lies between them (the
angles are not labeled in a monotone order). The next angular parameter θi+1
is then defined as the mid-point of this pair:

θi+1 := θ j + θk

2
.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 10 Optimization strategy for obtaining a Pareto front of optimal solutions. a Step 5; optimal solutions
for θ1, θ2, θ3 are computed with the initial shape obtained at step 4, b step 6; next point θi+1 for maximizing
Ji+1 is defined as the mid-point of the nearest neighbor pair having the longest distance, c step 7; two
optimizations for the new parameter θi+1 are run for different initializations, being the optimal solutions
for θ j and θk , d step 7; two candidates for the optimal solution of Ji+1 are obtained, e step 8; the optimal
solution of Ji+1 is selected as the best of the two candidates, f step 9; previous solutions are deleted if the
new i + 1-th optimal solution is better, g step 9; Pareto front is updated, h step 11; if the solution for θ = 0
is deleted, the new point is set to θ = 0 and the two initializations are taken as the optimal solutions for
θ = π/2 and θ = θi .

To avoid a too fine local search, we do not consider too close pairs (θ j , θk)

such that |θ j − θk | < εθ , where εθ > 0 is set to 1 × 10−4.
step 7: To find an optimal solution for the new discrete angle θi+1, we run two dif-

ferent optimization calculations. As shown in Fig. 10c, the initialization of
each run is the optimal solution for θ j or θk , respectively. We thus obtain
two candidates for being the optimal solution associated to θi+1, as shown in
Fig. 10d.

step 8: The values of the objective function Ji+1 for the two candidates computed
in step 7 are compared. The candidate with the largest value is kept as the
optimal solution for θi+1, while the other candidate is deleted, as shown in
Fig. 10e.

step 9: To update the Pareto front, the newly obtained optimal solution �i+1 is com-
pared with previous optimal solutions �l , l = 1, 2, . . . i . More precisely (see
Fig. 10f, g), a previous solution �l is deleted from the Pareto front if it is
inferior to �i+1 in the sense that:

Jl(�l) ≤ Jl(�i+1) .

step 10: The iterative optimization process is stopped if a maximal number nθ of
discrete angles have been created. Go to step 11, if one of the end points
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(θ = 0 or θ = π/2) of the Pareto front is deleted in step 9. Otherwise, iterate
by going back to step 6.

step 11: If the end point θ = 0 was deleted, then the next new discrete angle is
θi+1 = 0. We perform step 7 with two initializations, corresponding to the
optimal solutions for θ = π/2 and θi , as shown in Fig. 10h. After that go
back to step 8. A symmetric argument is used in the case of the other end
point θ = π/2.

In this subsection, we use a 90 × 90 structured mesh for the analysis domain. The
prescribed homogenized coefficient is set to ā∗ = 14.141667. The relative error for
judging whether the constraint function Ga∗ is satisfied is set to 5× 10−3. The upper
limit of the perimeter constraint is set to Gp = 5.0. The perimeter constraint is never
active for the final results of the Pareto front. However, it is active and useful to improve
convergence for the intermediate results.

Remark 9.2 The maximum and minimum values αmax, αmin, βmax, βmin are a priori
unknown values. We initialize them as:

αmax := 1.2α0, αmin := 0.9α0, βmax := 1.2|β0|, βmin := β0 (9.3)

where α0, β0 are the values of α and β at the optimal solution of step 4. Then, in the
successive iterations, these values are constantly updated as the maximal or minimal
values of the previous computations.

Remark 9.3 The strategy is quite complex to implement and required a high compu-
tational cost at first glance. However, the set of optimal solutions is easily updated
by storing the connectivity of the Pareto optimal solutions. In other words, the Pareto
front is seen as a curve discretized by the boundary element method. Therefore, the
strategy could be extended to the three dimensional case where the length of a segment
is replaced by the area of a fictitious triangular element.

Remark 9.4 We tried the same strategy applied to the linear formulation (9.1) instead
of the parabolic formulation. However, we could never obtain the same results and
always finished with suboptimal solutions. A possible explanation is the presence of
local minima together with non-convex level lines of the objective function.

9.2.1 Comparison of initializations

Sincewe expect possible localminima at each individual optimization step, it is impor-
tant to check that our strategy avoids, as much as possible, local minima for the final
result, i.e. for the Pareto front. Therefore, we examine the effect of different initial
configurations in step 1 upon the estimated upper bound on the set of dispersive coef-
ficients (α, β). Here, the parabolic parameter cp is set to 50. Figure 11 displays three
different initial configurations. The volume constraint is set to Gv = 0.5, meaning
that both phases have the same proportion. The following numerical tests are also an
opportunity to check the convergence of the Pareto front as the number of discrete
angles θi , and therefore optimal shapes �i , are added to the Pareto front.
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(a) (b) (c)

Fig. 11 Initial configurations. a Case 1, b case 2, c case 3

Figure 12 shows the obtained Pareto fronts for each case of initial configuration in
Fig. 11. As can be clearly seen, the estimated Pareto fronts expand as the number of
points nθ increase during the optimization process and, though very different initially,
they almost overlap each other in the end, say for nθ = 500, see Fig. 12f. As a
conclusion, we claim that our final upper Pareto front is numerically insensitive to the
the initial configuration.

A striking feature of the obtained upper Pareto front in Fig. 13 is that it is almost
linear. We estimate that the Pareto front is thus the line 2α + 1

2β ≈ 0.06. Although
the Pareto front is almost linear, we confirm that, in practice, the non-convexity of the
curve must be taken into account during the optimization process, since intermediate
results are not convex curves.

Figure 13 features some of the obtained optimal shapes at nθ = 500 (each line
of subfigures corresponds to a different initialization of Fig. 11). Clearly, the optimal
configurations for each angular parameter θi are very similar, regardless of the initial
configuration (note that the shapes of the second line are identical to the ones of the
first and third lines by a simple translation in the periodicity cell).

Remark 9.5 Although the perimeter constraint is active at several intermediate optimal
solutions, the constraint is non-active on the final upper bound in all examples.

Remark 9.6 The optimal shape for the end point of the Pareto front, corresponding
to maximal α, looks like a checkerboard pattern (see the left column of Fig. 13).
Therefore, we computed the values of α and β for the checkerboard pattern of Fig. 14a
and found that indeed it yields a value α = 2.86×10−2 which is maximal. Therefore,
we conjecture that this checkerboard pattern is an optimal configuration for maximal
α.

Although it is less obvious, the optimal shape for maximal β in Fig. 13l looks
like another checkerboard pattern. We again computed the values of α and β for the
checkerboard pattern of Fig. 14b and obtained the largest value β = 5.52 × 10−2.
Again we conjecture that this checkerboard pattern is an optimal configuration for
maximal β.

We must admit that those checkerboard patterns are not clearly attained by our
numerical optimization, which is a clear limitation of our approach. One reason is that
it may be difficult to reproduce sharp corners with an algorithm based on (smooth)
shape differentiation. Another reason is the presence of many local optima.
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case 1
case 2
case 3

(c)

-0.06
-0.05
-0.04
-0.03
-0.02
-0.01

 0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06

 0  0.01  0.02  0.03

case 1
case 2
case 3

(d)

-0.06
-0.05
-0.04
-0.03
-0.02
-0.01

 0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06

 0  0.01  0.02  0.03

case 1
case 2
case 3

(e)

-0.06
-0.05
-0.04
-0.03
-0.02
-0.01

 0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06

 0  0.01  0.02  0.03

case 1
case 2
case 3

(f)

Fig. 12 Upper bound or Pareto front in the (α, β) plane. Dependency on the initial configurations (cases
1, 2 and 3). a nθ = 10, b nθ = 20, c nθ = 50, d nθ = 100, e nθ = 200, f nθ = 500

Remark 9.7 The two checkerboard configurations in Fig. 14 are equivalent after rota-
tion by π/4 and scaling by a factor of

√
2. Since in Sect. 6 we obtained formulas for

the dispersion tensorD∗ of a scaled or rotated microstructure, it is tempting to validate
our numerical computations by checking the validity of these formulas. First, by virtue
of Lemma 6.5, under the 8-fold symmetry assumption and for a rotation R of angle
π
4 , the dispersive tensor after rotation is given by:
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(p)

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (q) (r)

Fig. 13 Optimal shapes of the upper Pareto front at nθ=500. a Case 1: θi = 0, α = 2.87 × 10−2,
β = −4.96 × 10−2 (maximal α), b case 1: θi � π

10 , α = 2.11 × 10−2, β = −2.61 × 10−2, c case 1:

θi � π
5 , α = 1.64× 10−2, β = −7.92× 10−3, d case 1: θi � 3π

10 , α = 1.23× 10−2, β = 8.52× 10−3, e

case 1: θi � 2π
5 , α = 7.60×10−3, β = 2.75×10−2, f case 1: θi = π

2 , α = 9.95×10−4, β = 5.29×10−2

(maximal β), g case 2: θi = 0, α = 2.76 × 10−2, β = −4.83 × 10−2 (maximal α), h case 2: θi � π
10 ,

α = 2.08 × 10−2, β = −2.44 × 10−2, i case 2: θi � π
5 , α = 1.60 × 10−2, β = −6.30 × 10−3, j case 2:

θi � 3π
10 , α = 1.20 × 10−2, β = 1.05× 10−2, k case 2: θi � 2π

5 , α = 7.18× 10−3, β = 2.93× 10−2, l

case 2: θi = π
2 , α = 8.33 × 10−4, β = 5.41 × 10−2 (maximal β), m case 3: θi = 0, α = 2.86 × 10−2,

β = −4.91 × 10−2 (maximal α), n case 3: θi � π
10 , α = 2.12 × 10−2, β = −2.62 × 10−2, o case 3:

θi � π
5 , α = 1.65× 10−2, β = −8.22× 10−3, p case 3: θi � 3π

10 , α = 1.24× 10−2, β = 8.40× 10−3, q

case 3: θi � 2π
5 , α = 7.69×10−3, β = 2.75×10−2 r case 3: θi = π

2 , α = 9.85×10−4, β = 5.24×10−2

(maximal β)

(a) (b)

Fig. 14 Checkerboard patterns, conjectured to yield maximal α (left) and maximal β (right). a Maximal
α: α = 2.86 × 10−2, β = −4.97 × 10−2, b maximal β: α = 9.26 × 10−4, β = 5.52 × 10−2
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Table 1 Comparison of the checkerboards of Fig. 14 and their rotated and scaled versions

Figure 14a Figure 14b

α β α β

Original 2.86 × 10−2 − 4.97 × 10−2 9.26 × 10−4 5.52 × 10−2

Rotation 1.87 × 10−3 1.11 × 10−1 1.43 × 10−2 − 2.48 × 10−2

Scaling 9.32 × 10−4 5.53 × 10−2 2.85 × 10−2 − 4.96 × 10−2

D̃
∗ (η ⊗ η ⊗ η ⊗ η) = D

∗ (Rη ⊗ Rη ⊗ Rη ⊗ Rη) = −1

4
(2α + β)

(
η41 + η42

)

−1

2
(6α − β)η21η

2
2 .

Second, since the scaling factor between the two configurations of Fig. 14 is
√
2, by

virtue of Lemma 6.3, the dispersive tensors have a ratio of 2. We confirm that our
numerical results of Fig. 14 satisfy those formulas, within an error of less than 1%, as
can be checked in Table 1.

9.2.2 Sensitivity to the parabolic parameter cp

We investigate the dependence of the Pareto front to the parameter cp which enters
the definition of the objective function in (9.2). The previous computations were per-
formed with cp = 50. We now consider various values cp = 1, 30, 60, 80 for the sole
initialization of case 1 in Fig. 11a. As in Fig. 12 we compute the Pareto front in the
(α, β) plane for these different values of cp.

Figure 15 shows theobtainedPareto fronts for each cases and for increasingnumbers
nθ of points. Except for the case cp = 1, all fronts are almost identical for a large
number of points nθ = 500. Therefore, our Pareto front does not depend on this
parameter, provided it is not too small. The bad behavior in the case cp = 1 is similar
to the observed bad behavior for the linear formulation of the optimization problem
(9.1).

Figure 16 displays the obtained optimal configurations at nθ = 500. Except in the
case of Fig. 16n, all shapes are very similar, regardless of the parameter cp.

9.2.3 Dependence on the aspect ratio of the material properties aB/aA

We examine how the upper bound varies with the aspect ratio of thematerial properties
aB/aA. We compare the previous case, aA = 10 and aB = 20, called case 1 in the
sequel, to the new case 2 for which aA = 10 and aB = 25 and case 3 for which
aA = 10 and aB = 30. The prescribed value for the volume constraint is Gv = 0.5
and the parabolic parameter is cp = 50. The prescribed homogenized tensors are set
to a∗ = 14.141667 in case 1, a∗ = 15.812500 in case 2 and a∗ = 17.32500 in case
3, where each value is the middle point between its upper and lower bounds (given
by the Hashin-Shtrikman bounds). Figure 17 shows the two obtained Pareto fronts
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(b)
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 0.01
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 0.05
 0.06
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(c)

-0.06
-0.05
-0.04
-0.03
-0.02
-0.01

 0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06

 0  0.01  0.02  0.03

cp=1
cp=30
cp=60
cp=80

(d)

-0.06
-0.05
-0.04
-0.03
-0.02
-0.01

 0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06

 0  0.01  0.02  0.03

cp=1
cp=30
cp=60
cp=80

(e)

-0.06
-0.05
-0.04
-0.03
-0.02
-0.01

 0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06

 0  0.01  0.02  0.03
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cp=30
cp=60
cp=80

(f)

β

α

β

α

β

α

β

α

β

α

β

α

Fig. 15 Sensitivity of the Pareto front to the parabolic parameter cp , for increasing numbers nθ of points.
a nθ = 10, b nθ = 20, c nθ = 50, d nθ = 100, e nθ = 200, f nθ = 500

which are quite different. Both seem to be linear curves and the range of dispersion
is larger for a larger aspect ratio. Remark that, as the ratio aB/aA converges to 1, one
can easily show that the first and second order cell functions χi , χi j converge to 0
and, therefore, the dispersion tensorD∗ converges to 0 too. This is consistent with our
numerical observation that the range of D∗ is smaller for smaller aspect ratio.
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)

Fig. 16 Optimal configurations at nθ = 500 for cp = 30, 60, 80. a cp = 30: θi = 0, α = 2.86 × 10−2,
β = −4.96× 10−2 (maximal α), b cp = 30: θi � π

10 , α = 2.11× 10−2, β = −2.63× 10−2, c cp = 30:

θi � π
5 , α = 1.66×10−2, β = −9.30×10−3, d cp = 30: θi � 3π

10 , α = 1.22×10−2, β = 9.00×10−3,

e cp = 30: θi � 2π
5 , α = 7.37 × 10−3, β = 2.76 × 10−2, f cp = 30: θi = π

2 , α = 1.09 × 10−3,

β = 5.39 × 10−2 (maximal β), g cp = 60: θi = 0, α = 2.86 × 10−2, β = −4.96 × 10−2 (maximal α),
h cp = 60: θi � π

10 , α = 2.12 × 10−2, β = −2.63 × 10−2, i cp = 60: θi � π
5 , α = 1.65 × 10−2,

β = −8.04 × 10−3, j cp = 60: θi � 3π
10 , α = 1.24 × 10−2, β = 8.52 × 10−3, k cp = 60: θi � 2π

5 ,

α = 7.62 × 10−3, β = 2.71 × 10−2, l cp = 60: θi = π
2 , α = 9.93 × 10−4, β = 5.18 × 10−2 (maximal

β), m cp = 80: θi = 0, α = 2.83 × 10−2, β = −4.90 × 10−2 (maximal α), n cp = 80: θi � π
10 ,

α = 2.08 × 10−2, β = −2.56 × 10−2, o cp = 80: θi � π
5 , α = 1.64 × 10−2, β = −7.86 × 10−3,

p cp = 80: θi � 3π
10 , α = 1.23 × 10−2, β = 9.24 × 10−3, q cp = 80: θi � 2π

5 , α = 7.56 × 10−3,

β = 2.76 × 10−2, r cp = 80: θi = π
2 , α = 9.72 × 10−4, β = 5.18 × 10−2 (maximal β)

Figure 18 displays the obtained optimal configurations for case 2 and case 3. By
comparison with Figure 13, the optimal shapes of case 1, case 2 and case 3 are very
similar.

9.2.4 Dependence on the volume constraint Gv

Next, we examine the effect of the phases proportion (or volume constraint Gv) upon
the estimated upper bound on the parameters α and β of the dispersive tensor. The
values are set to Gv = 0.5 in case 1, Gv = 0.6 in case 2 and Gv = 0.7 in case 3,
respectively. The material properties are set to aA = 10 and aB = 20. The prescribed
tensors are set to a∗ = 14.141667 in case 1, a∗ = 13.197500 in case 2 and a∗ =
12.324720 in case 3, where each value is the middle point between its upper and lower
Hashin-Shtrikman bounds. Figure 19 shows the obtained Pareto optimal solutions for
each cases.
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 0  0.02  0.04  0.06  0.08

β

α

case 1
case 2
case 3

Fig. 17 Pareto front of the upper bound on dispersion: case 1 (aA = 10, aB = 20), case 2 (aA = 10,
aB = 25) and case 3 (aA = 10, aB = 30)

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Fig. 18 Configurations of the Pareto front in case 2 (aA = 10, aB = 25) and case 3 (aA = 10, aB = 30).
a Case 2, θi = 0, α = 5.50×10−2, β = −9.10×10−2 (maximal α), b case 2, θi � π

10 , α = 4.09×10−2,

β = −4.56 × 10−2, c case 2, θi � π
5 , α = 3.26 × 10−2, β = −9.86 × 10−3, d case 2, θi � 3π

10 ,

α = 2.44 × 10−2, β = 2.26 × 10−2, e case 2, θi � 2π
5 , α = 1.47 × 10−2, β = 6.06 × 10−2, f case

2, θi = π
2 , α = 2.79 × 10−3, β = 1.01 × 10−1 (maximal β), g case 3, θi = 0, α = 8.55 × 10−2,

β = −1.36 × 10−1 (maximal α), h case 3, θi � π
10 , α = 6.39 × 10−2, β = −7.01 × 10−2, i case 3,

θi � π
5 , α = 5.19× 10−2, β = −9.37× 10−3, j case 3, θi � 3π

10 , α = 4.06× 10−2, β = 3.71× 10−2, k

case 3, θi � 2π
5 , α = 2.59×10−2, β = 9.16×10−2, l case 3, θi = π

2 , α = 6.33×10−3, β = 1.54×10−1

(maximal β)
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Fig. 19 Upper bounds in different prescribed value of volume constraint

As can be seen, the obtained curves are almost linear. The range of the Pareto front
is maximal for Gv = 0.5 (its range should converge to the single point 0 when Gv

converges to 0 or 1, i.e. in the limit of pure phases). Figure 20 shows the obtained
optimal configurations for the upper bound in cases 2 and 3. By comparison with
Fig. 13, the optimal configurations of cases 1, 2 and 3 are similar.

Remark 9.8 It is easy to prove that, when the volume fractionGv tends to 0 or to 1, then
the periodic coefficients a(y) converge to a constant, while the first and second order
cell functions χi , χi j converge to 0. Therefore, the dispersion tensor D∗ converges to
0 too. This is consistent with our numerical observation that the range ofD∗ is smaller
for Gv closer to 0 or 1.

9.3 Optimizing the dispersion coefficient d∗ for the source term

In the high order homogenized equation (1.4), another source of dispersion comes
from the source term which is perturbed by a second order derivative, the coefficient
of which is thematrix d∗, defined by (2.25). The goal of this subsection is to investigate
the range of this matrix d∗. Under our 8-fold symmetry assumption, the tensor d∗ is
a scalar matrix, i.e., can be rewritten as follows:

d∗
i j = γ Id with γ :=

∫

Y
χ2
1 dy .

Therefore, we minimize or maximize this dispersion coefficient γ with volume con-
straint, perimeter constraint and prescribing the homogenized tensor a∗, as follows:
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Fig. 20 Optimal configurations on the upper bound in case 2 and case 3 (comparison of Gv). a Case 2,
θi = 0, α = 2.52 × 10−2, β = −3.95 × 10−2 (maximal α), b case 2, θi � π

10 , α = 1.95 × 10−2,

β = −2.12 × 10−2, c case 2, θi � π
5 , α = 1.51 × 10−2, β = −5.42 × 10−3, d case 2, θi � 3π

10 ,

α = 1.11 × 10−2, β = 9.30 × 10−3, e case 2, θi � 2π
5 , α = 6.81 × 10−3, β = 2.61 × 10−2, f case

2, θi = π
2 , α = 8.05 × 10−4, β = 4.55 × 10−2 (maximal β), g case 3, θi = 0, α = 1.88 × 10−2,

β = −2.55 × 10−2 (maximal α), h case 3, θi � π
10 , α = 1.48 × 10−2, β = −1.26 × 10−2, i case 3,

θi � π
5 , α = 1.15× 10−2, β = −1.08× 10−3, j case 3, θi � 3π

10 , α = 8.61× 10−3, β = 8.87× 10−3, k

case 3, θi � 2π
5 , α = 5.19×10−3, β = 1.97×10−2, l case 3, θi = π

2 , α = 7.95×10−4, β = 3.28×10−2

(maximal β)

min
�

or max
�

J (�) := γ (�)

subject to : Gv(�) = 0, Gp(�) ≤ 0, Ga∗(�) = 0

We rely on the optimization algorithm of Sect. 8 and adopt the four-step opti-
mization procedure of Sect. 9.1, starting from the same initializations. We use a
50 × 50 structured mesh for the analysis domain. The isotropic materials A and B
have material properties aA = 10 and aB = 20. The upper limit of the perimeter
constraint is set to Gp = 1.5. We consider two cases for the volume constraint:
either Gv = 0.9 or Gv = 0.1, which can be interpreted as material A being
the inclusion in the first case, and material B being the inclusion in the second
case. By symmetry, the homogenized tensor a∗ is isotropic and its prescribed scalar
value is set to 10.705 in the first case and 18.72 in the second case. The rel-
ative error for judging whether the constraint function Ga∗ is satisfied is set to
5 × 10−3.

Figures 21 and 22 show initial and optimal configurations when material A (in
black) is the inclusion and when material B (in white) is the inclusion, respec-
tively. When minimizing γ , the inclusions are fragmented with smaller and more
complex details (which depend on the value of the perimeter constraint which is
always active). This is consistent with our Remark 6.2 which states that smaller
inclusions yield smaller dispersion. On the other hand, when maximizing γ , we
obtain a single smooth inclusion in the unit cell and the perimeter constraint is not
active.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 21 Optimal shapes for d∗ with volume fractionGv = 0.9 (material A, in black, being the inclusion). a
Initial configuration of case 1, b configuration after step 3; γ = 2.4654×10−3, cminimized solution of case
1; γ = 1.5538× 10−3, Gp : active, d maximized solution of case 1; γ = 3.5786× 10−3, Gp : non-active,
e Initial configuration of case 2, f configuration after step 3; γ = 1.9652 × 10−3, g minimized solution
of case 2; γ = 1.1584 × 10−3, Gp : active, h maximized solution of case 2; γ = 3.5721 × 10−3, Gp :
non-active, i Initial configuration of case 3, j configuration after step 3; γ = 1.2119 × 10−3, k minimized
solution of case 3; γ = 9.8363 × 10−4, Gp : active, l maximized solution of case 3; γ = 36303 × 10−3,
Gp : non-active

10 Proof of Theorem 7.3

This section is devoted to the proof of Theorem 7.3, which gives the shape derivative of
an objective function depending on the first-order and second-order cell solutions. As
usual, we rely on the Lagrangian method, which introduces a Lagrangian as the sum
of the objective function and of the constraints multiplied by Lagrange multipliers.
The governing equations are treated as constraints and the corresponding Lagrange
multipliers are precisely the adjoint states at optimality. Eventually, the shape deriva-
tive is obtained as a simple partial derivative of the Lagrangian using Lemma 7.2.
There is a slight difficulty since the solutions χi and χi j of the cell problems are not
shape differentiable (in the sense of Definition 7.1) because their normal derivatives
are discontinuous across the interface� (see [7,42]). However, when restricted to each
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 22 Optimal shapes for d∗ with volume fraction Gv = 0.1 (material B, in white, being the inclusion).
a Initial configuration of case 4, b configuration after step 3; γ = 2.8098× 10−3, c minimized solution of
case 4; γ = 1.8606 × 10−3, Gp : non-active, d maximized solution of case 4; γ = 4.1621 × 10−3, Gp :
non-active, e Initial configuration of case 5, f configuration after step 3; γ = 2.2688× 10−3, g minimized
solution of case 5; γ = 8.8245×10−4,Gp : active,hmaximized solution of case 5; γ = 4.1492×10−3,Gp :
non-active, i Initial configuration of case 6, j configuration after step 3; γ = 1.4962 × 10−3, k minimized
solution of case 6; γ = 6.9058 × 10−4, Gp : active, l maximized solution of case 6;γ = 4.1065 × 10−3,
Gp : non-active

subdomain Y A and Y B , the functions χi and χi j are shape differentiable. Therefore,
we shall rewrite the cell equations as transmission problems and define an adequate
Lagrangian which will involve additional Lagrange multipliers for the interface trans-
mission conditions (see [7,42]).

Thus, we introduce the restrictions χ A
i and χ A

i j to Y A, and χ B
i and χ B

i j to Y B , of
the solutions χi of (2.6) and χi j of (2.12), 1 ≤ i, j ≤ d. They satisfy the following
transmission problems:

⎧
⎪⎪⎨

⎪⎪⎩

− div(aA∇χ A
i ) = −div(aAei ) in Y A

− div(aB∇χ B
i ) = −div(aBei ) in Y B

χ A
i = χ B

i on �

aA(∇χ A
i − ei ) · nA = −aB(∇χ B

i − ei ) · nB on �,

(10.1)
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and

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

− div(aA∇χ A
i j ) = aA

i j − aA∇χ j · ei − div(χ A
j a

Aei ) − a∗
i j in Y A

− div(aB∇χ B
i j ) = aB

i j − aB∇χ j · ei − div(χ B
j a

Bei ) − a∗
i j in Y B

χ A
i j = χ B

i j on �

aA(∇χ A
ji − χ A

j ei ) · nA = −aB(∇χ B
i j − χ B

j ei ) · nB on �,

(10.2)

which, taking into account periodicity condition, are equivalent to (2.6) and (2.12),
respectively. Of course, the functions χ A

i , χ
A
i j and χ B

i , χ B
i j are smooth on their subdo-

mains, namely χ A
i , χ

A
i j ∈ H2(Y A) and χ B

i , χ B
i j ∈ H2(Y B). If � is smooth, they are

restrictions to their subdomains of smooth functions in the entire unit cell Y . Then, for
1 ≤ i, j ≤ d, for any functions χ̂ A

i , χ̂
A
i j , χ̂

B
i , χ̂ B

i j in H1
# (Y ), for any bulk “Lagrange

multiplier” functions p̂A
i , p̂

A
i j , p̂

B
i , p̂

B
i j in H1

# (Y ) and interface “Lagrange multiplier”

functions λ̂i , λ̂i j , γ̂i , γ̂i j in H1
# (Y ), we define a Lagrangian L as follows:

L
(
�, {χ̂ A

i }, {χ̂ A
i j }, {χ̂ B

i }, {χ̂ B
i j }, { p̂A

i }, { p̂A
i j }, { p̂Bi }, { p̂Bi j }, {λ̂i }, {λ̂i j }, {γ̂i }, {γ̂i j }

)

:=
∫

Y A
J (y, {χ̂ A

i }, {χ̂ A
i j }) dy +

∫

Y B
J (y, {χ̂ B

i }, {χ̂ B
i j }) dy

−
∫

Y A
div

(
aA(∇χ̂ A

i − ei )
)
p̂A
i dy −

∫

Y B
div

(
aB(∇χ̂ B

i − ei )
)
p̂Bi dy

+
∫

�

λ̂i (χ̂
A
i − χ̂ B

i ) ds +
∫

�

γ̂i

(
aA(∇χ̂ A

i − ei ) · nA + aB(∇χ̂ B
i − ei ) · nB

)
ds

−
∫

Y A

(
div

(
aA(∇χ̂ A

i j − χ̂ A
j ei )

)
+ aA

i j − â∗
i j − aA∇χ̂ A

j · ei
)
p̂A
i j dy

−
∫

Y B

(
div

(
aB(∇χ̂ B

i j − χ̂ B
j ei )

)
+ aB

i j − â∗
i j − aB∇χ̂ B

j · ei
)
p̂Bi j dy

+
∫

�

λ̂i j (χ̂
A
i j − χ̂ B

i j ) ds +
∫

�

γ̂i j

(
aA(∇χ̂ A

i j − χ̂ A
j ei ) · nA

+ aB(∇χ̂ B
i j − χ̂ B

j ei ) · nB
)
ds , (10.3)

where the integrals on the interface �, involving the Lagrange multipliers λ̂i , λ̂i j , γ̂i ,
γ̂i j , are meant to enforce the transmission conditions on �, as they appear in (10.1),
(10.2). The coefficient â∗

i j is defined in terms of χ̂i by a formula similar to (2.8) for
the homogenized tensor, namely

â∗
i j =

∫

Y

(
aei − a∇χ̂i

) · e j dy .

Of course, in (10.3) the summation convention is used for 1 ≤ i, j ≤ d. The notation
ˆon top of each function means that it is not the optimal function, but any function in
H1
# (Y ). At optimality, we shall remove theˆand we shall recover χi , χi j , solutions of
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(10.1), (10.2), and pi , pi j , solutions of (7.4), (7.5), respectively. The important fact in
the definition of L is that all variables χ̂ and p̂ are independent of � and defined in
the fixed space H1

# (Y ). Therefore, the stationarity of the Lagrangian is going to give
the optimality conditions of the optimization problem.

In a first (and easy) step, taking the partial derivatives of the Lagrangianwith respect
to the Lagrange multipliers p, λ and γ yield the state Eqs. (10.1), (10.2). This is an
obvious computation since the Lagrangian is linear with respect to p, λ and γ , and we
skip it.

In a second step, taking the partial derivatives of the Lagrangian with respect to the
variables χ leads to the adjoint equations (7.4), (7.5). In other words, for a direction
of derivation ψ = (ψ A, ψ B) with ψ A,B ∈ H1

# (Y ), we ask that pi be determined by

〈
∂L

∂χi
, ψ

〉

= 0 , (10.4)

and pi j by 〈
∂L

∂χi j
, ψ

〉

= 0 . (10.5)

Let us explain the details for (10.5). We choose a test function ψ , with values ψ A in
Y A and ψ B in Y B , which a priori is not continuous through the interface �. We find

〈
∂L

∂χi j
, ψ

〉

=
∫

Y A

∂J

∂χ A
i j

ψ A dy −
∫

Y A
div

(
aA∇ψ A

)
pA
i j dy

+
∫

Y B

∂J

∂χ B
i j

ψ B dy −
∫

Y B
div

(
aB∇ψ B

)
pBi j dy

+
∫

�

λi j (ψ
A − ψ B) ds +

∫

�

γi j

(
aA∇ψ A · nA + aB∇ψ B · nB

)
ds

= 0 .

After two integration by parts, recalling the notation [·] for the jump through �, we
deduce

〈
∂L

∂χi j
, ψ

〉

=
∫

Y A

(
∂J

∂χ A
i j

− div
(
aA∇ pA

i j

)
)

ψ A dy

+
∫

Y B

(
∂J

∂χ B
i j

− div
(
aB∇ pBi j

)
)

ψ B dy

+
∫

�

λi j [ψ] ds +
∫

�

γi j [a∇ψ · n] ds

+
∫

�

([ψa∇ pi j · n] − [pi j a∇ψ · n]) ds = 0 . (10.6)

Now we choose the test function ψ which satisfies successively five different types of
conditions at the interface �.
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1. Assume ψ to have compact support in Y A. It gives

〈
∂L

∂χi j
, ψ

〉

=
∫

Y A

∂J

∂χi j
ψ dy −

∫

Y A
div

(
aA∇ψ

)
pA
i j dy = 0,

which, by integration by parts, since ψ and its gradient vanish on �, leads to

− div(aA∇ pA
i j ) = − ∂J

∂χ A
i j

in Y A. (10.7)

A symmetric computation works for Y B . Because of (10.7) the two integrals on
Y A and Y B cancel in (10.6).

2. Assume aA∇ψ A ·nA = aB∇ψ B ·nB = 0 and [ψ] = 0 on �. Thus (10.6) reduces
to

∫

�

ψ[a∇ pi j · n] ds = 0,

for any value of the trace ψ = ψ A = ψ B on �. This implies [a∇ pi j · n] = 0.
3. Assume just aA∇ψ A · nA = aB∇ψ B · nB = 0. Then (10.6) reduces to

∫

�

[ψ] (
λi j + a∇ pi j · n)

ds = 0,

for any value of the jump [ψ] on �. This gives the optimal value of the Lagrange
multiplier λi j = −aA∇ pA

i j · nA = aB∇ pBi j · nB .
4. Assume now [a∇ψ · n] = 0. This time, (10.6) reduces to

∫

�

a∇ψ · n[pi j ] ds = 0,

for any value of the trace a∇ψ · n = aA∇ψ A · nA = aB∇ψ B · nB . Thus we find
[pi j ] = 0 on �.

5. Finally if ψ does not satisfy any condition at the interface, (10.6) reduces to

∫

�

[a∇ψ · n] (γi j − pi j
)
ds = 0,

which gives the optimal value of the Lagrange multiplier γi j = pi j on �.

The five above items imply that pi j is indeed a solution of (7.5) and furthermore
the optimal Lagrange multipliers are determined.

Similarly for (10.4), taking a test function ψ , with discontinuous values ψ A in Y A

and ψ B in Y B , after integrating by parts, we find

〈
∂L

∂χi
, ψ

〉

=
∫

Y A

(
∂J

∂χ A
i

− div
(
aA∇ pA

i

)
− div

(
aA pA

i j e j
)
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− aA∇ pA
i j · e j +

(∫

Y
pi j

)

div(aAe j )

)

ψ A dy

+
∫

Y B

(
∂J

∂χ B
i

− div
(
aB∇ pBi

)
− div

(
aB pBi j e j

)

− aB∇ pBi j · e j +
(∫

Y
pi j

)

div(aBe j )

)

ψ B dy

+ 2
∫

�

[aψpi j e j · n] ds +
∫

�

([ψa∇ pi · n] − [pia∇ψ · n]) ds

−
(∫

Y
pi j

)∫

�

[ψae j · n] ds

+
∫

�

λi [ψ] ds +
∫

�

γi [a∇ψ · n] ds

−
∫

�

γi j [aψe j · n] ds = 0 , (10.8)

where the terms in factor of (
∫

Y pi j ) come from the differentiation of â∗
i j .

1. Taking ψ to have compact support in Y A, or in Y B , yields the bulk equation (7.4)
away from �.

2. Assume aA∇ψ A ·nA = aB∇ψ B ·nB = 0 and [ψ] = 0 on �. Thus (10.8) reduces
to

2
∫

�

ψ[api j e j · n] ds +
∫

�

ψ[a∇ pi · n] ds −
(∫

Y
pi j

) ∫

�

ψ[ae j · n] ds

−
∫

�

γi jψ[ae j · n] ds = 0

for any value of the trace ψ = ψ A = ψ B on �. Since we already know that
γi j = pi j , this implies [a(∇ pi + pi j e j − (

∫

Y pi j )e j ) · n] = 0.
3. Assume just aA∇ψ A · nA = aB∇ψ B · nB = 0. Then (10.8) reduces to

∫

�

[ψ]
(

λi + a

(

∇ pi + pi j e j −
(∫

Y
pi j

)

e j

)

· n
)

ds = 0,

for any value of the jump [ψ] on �. This gives the optimal value of the Lagrange
multiplier λi = −a(∇ pi + pi j e j − (

∫

Y pi j )e j ) · n.
4. Assume now [a∇ψ · n] = 0. This time, (10.8) reduces to

∫

�

a∇ψ · n[pi ] ds = 0,

for any value of the trace a∇ψ · n. Thus we find [pi ] = 0 on �.
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5. Finally if ψ does not satisfy any condition at the interface, (10.8) reduces to

∫

�

[a∇ψ · n] (γi − pi ) ds = 0,

which gives the optimal value of the Lagrange multiplier γi = pi on �.

The five above items imply that pi is indeed a solution of (7.4) and furthermore the
optimal Lagrange multipliers are determined.

Finally, in a third and final step, we apply Lemma 7.2 to the computation of the
partial derivative of the Lagrangian L with respect to Y A in the direction θ . By a
classical result (see e.g. Lemma 3.5 in [7]), we know that this partial derivative ofL
is precisely the shape derivative of J ,

J ′(Y A)(θ) =
〈
∂L

∂�
, θ

〉 (
�, {χ A,B

i }, {χ A,B
i j }, {pA,B

i }, {pA,B
i j }, {λi }, {λi j }, {γi }, {γi j }

)

when the right hand side is evaluated at the optimal state and adjoint solutions (i.e.
without .̂). It remains to compute the partial shape derivative ofL and to show that it
is equal to the right hand side of (7.3).

As a preliminary step, we perform an integration by parts in the definition (10.3)
of the Lagrangian to make it more symmetric. It yields

L
(
�, {χ̂ A,B

i }, {χ̂ A,B
i j }, { p̂A,B

i }, { p̂A,B
i j }, {λ̂i }, {λ̂i j }, {γ̂i }, {γ̂i j }

)
:=

∫

Y A
J A dy

+
∫

Y B
J B dy +

∫

Y A
aA(∇χ̂ A

i − ei ) · ∇ p̂A
i dy +

∫

Y B
aB(∇χ̂ B

i − ei ) · ∇ p̂Bi dy

+
∫

�

λ̂i (χ̂
A
i − χ̂ B

i ) ds +
∫

�

(
(γ̂i − p̂A

i )aA(∇χ̂ A
i − ei ) · nA

+ (γ̂i − p̂Bi )aB(∇χ̂ B
i − ei ) · nB

)
ds

+
∫

Y A

(
aA(∇χ̂ A

i j − χ̂ A
j ei ) · ∇ p̂A

i j + (−aA
i j + â∗

i j + aA∇χ̂ A
j · ei ) p̂A

i j

)
dy

+
∫

Y B

(
aB(∇χ̂ B

i j − χ̂ B
j ei ) · ∇ p̂Bi j + (−aB

i j + â∗
i j + aB∇χ̂ B

j · ei ) p̂Bi j
)
dy

+
∫

�

λ̂i j (χ̂
A
i j − χ̂ B

i j ) ds +
∫

�

(
(γ̂i j − p̂A

i j )a
A(∇χ̂ A

i j − χ̂ A
j ei ) · nA

+ (γ̂i j − p̂Bi j )a
B(∇χ̂ B

i j − χ̂ B
j ei ) · nB

)
ds . (10.9)

To obtain the shape derivative, Lemma 7.2 is applied to the Lagrangian (10.9) and the
resulting expression is evaluated at the optimal states, adjoints and Lagrange param-
eters (i.e. without .̂). This leads to

〈
∂L

∂�
, θ

〉

=
∫

�

(
J A − J B

)
θ · n ds

+
∫

�

(
aA(∇χ A

i − ei ) · ∇ pA
i − aB(∇χ B

i − ei ) · ∇ pBi

)
θ · n ds
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+
∫

�

(
aA(∇χ A

i j − χ A
j ei ) · ∇ pA

i j + (−aA
i j + a∗

i j + aA∇χ A
j · ei )pA

i j

)
θ · n ds

−
∫

�

(
aB(∇χ B

i j − χ B
j ei ) · ∇ pBi j + (−aB

i j + a∗
i j + aB∇χ B

j · ei )pBi j
)
θ · n ds

+
∫

�

λi
∂(χ A

i − χ B
i )

∂n
θ · n ds

+
∫

�

( ∂(γi − pA
i )

∂n
aA(∇χ A

i − ei ) · nA

+ ∂(γi − pBi )

∂n
aB(∇χ B

i − ei ) · nB
)
θ · n ds

+
∫

�

λi j
∂(χ A

i j − χ B
i j )

∂n
θ · n ds

+
∫

�

( ∂(γi j − pA
i j )

∂n
aA(∇χ A

i j − χ A
j ei ) · nA

+ ∂(γi j − pBi j )

∂n
aB(∇χ B

i j − χ B
j ei ) · nB

)
θ · n ds , (10.10)

where we have already taken into account the continuity on � of the functions χ and
p, as well as the optimal values of the Lagrange parameters γ = p (in particular, it
cancels all terms in factor of the mean curvature H in the shape derivatives of surface
integrals). We simplify (10.10) by recalling the normal flux interface conditions from
(10.1) and (10.2), and the optimal value of λ. It yields

〈
∂L

∂�
, θ

〉

=
∫

�

[J ]θ · n ds +
∫

�

[a(∇χi − ei ) · ∇ pi ]θ · n ds

+
∫

�

[a(∇χi j − χ j ei ) · ∇ pi j ]θ · n ds +
∫

�

[−ai j + a∇χ j · ei ]pi j θ · n ds

−
∫

�

a(∇ pi + pi j e j − (

∫

Y
pi j )e j ) · n[ ∂χi

∂n
]θ · n ds

−
∫

�

[ ∂pi
∂n

]a(∇χi − ei ) · n θ · n ds

−
∫

�

a∇ pi j · n[ ∂χi j

∂n
]θ · n ds

−
∫

�

[ ∂pi j
∂n

]a(∇χi j − χ j ei ) · n θ · n ds , (10.11)

Several integrands in (10.11) are discontinuous across the boundary �. To make their
values more precise, we rewrite them into continuous normal and tangential compo-
nents, so the jumps appear only on the coefficient a and its inverse a−1. For example

[a(∇χi − ei ) · ∇ pi ] = a(∇χi − ei ) · n [∂pi
∂n

] + [a(∇χi − ei )t ] · ∇t pi

= [a−1] (a(∇χi − ei ) · n) (a∇ pi · n) + [a](∇tχi − ei ) · ∇t pi

and
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[a(∇χi j − χ j ei ) · ∇ pi j ] = [a−1] (
a(∇χi j − χ j ei ) · n) (

a∇ pi j · n)

+[a](∇tχi j − χ j ei ) · ∇t pi j .

Some calculations leads to

〈
∂L

∂�
, θ

〉

=
∫

�

[J ]θ · n ds +
∫

�

[a](∇χi − ei )t · (∇ pi + ei p̃i j )t θ · n ds

−
∫

�

[a−1]
(
a(∇χi − ei ) · n

)(
a(∇ pi + e j p̃i j ) · n

)
θ · n ds

+
∫

�

[a](∇χi j − χ j ei )t · ∇t pi j θ · n ds

−
∫

�

[a−1]
(
a(∇χi j − χ j ei ) · n

)(
a∇ pi j · n

)
θ · n ds , (10.12)

with p̃i j = pi j − ∫

Y pi j . This finishes the proof of Theorem 7.3.
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