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Abstract We provide both a general framework for discretizing de Rham sequences
of differential forms of high regularity, and some examples of finite element spaces that
fit in the framework. The general framework is an extension of the previously intro-
duced notion of finite element systems, and the examples include conforming mixed
finite elements for Stokes’ equation. In dimension 2 we detail four low order finite
element complexes and one infinite family of highorder finite element complexes. In
dimension 3 we define one low order complex, which may be branched into Whitney
forms at a chosen index. Stokes pairs with continuous or discontinuous pressure are
provided in arbitrary dimension. The finite element spaces all consist of composite
polynomials. The framework guarantees some nice properties of the spaces, in partic-
ular the existence of commuting interpolators. It also shows that some of the examples
are minimal spaces.

Mathematics Subject Classification 65N30 · 58A12

1 Introduction

This article is concerned with developing finite element complexes similar to those
described in [4,8,13,24,27,32], but with enhanced continuity properties. Finite ele-
ment spaces should be compatible in a precise sense, which in general will depend
on the partial differential equation one wants to solve and will reflect the functional
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framework one adopts for the analysis. One way of phrasing compatibility is that
the discrete spaces should form a subcomplex of a certain Hilbert complex, whose
norm reflects the desired continuity, and that they should be equipped with bounded
projections that commute with the differential operators. The fields we seek to dis-
cretize here can all be interpreted as differential forms, and the relevant operators are
instances of the exterior derivative. What we seek can then be called good discrete de
Rham sequences. The finite elements described in the above cited works are only par-
tially continuous: for vectorfields continuity holds only in either tangential or normal
directions, at interfaces of the mesh. In this paper, full continuity is achieved. This is
particularly relevant for the Stokes equation.

Inmany cases the bounded projections alluded to above, can be obtained by an aver-
aging technique [12,14], from the interpolators associated with degrees of freedom,
defined on smooth differential forms. Since the averaging technique is defined so as
to commute with the differential, we may concentrate on getting degrees of freedom
that provide commuting interpolators. As it turns out, the existence of such degrees of
freedom, on a finite element space, can be deduced from a few algebraic constraints,
that have been clarified in a framework of finite element systems (FES) introduced
in [9] and further developed in [10,11,13]. A precise notion of compatibility guar-
antees that the so-called harmonic degrees of freedom are unisolvent and provide an
interpolator that commutes.

Recall Ciarlet’s definition of a finite element (e.g. [16] Sect. 10), in terms of spaces
equipped with degrees of freedom (DoF). The framework of FES gives DoFs a sec-
ondary role. Rather, compatibility is defined in terms of restrictions and differentials.
On a compatible FES there will in general be many choices of DoFs, for the same
spaces. The harmonic DoFs are a natural choice among these possibilities. As we will
see DoFs seemmost useful to describe low order elements, where there is not so much
choice.

In this paper we provide both a generalization of the framework of FES that can
handle higher order continuity of differential forms and some examples of new spaces
that fit into the framework. The generalization essentially consists in allowing for other
types of restriction operators than pullback of differential forms. These restriction
operators reflect that higher continuity implies that more information about the fields
should be available on interfaces in the mesh. The examples of FES we provide, are all
composite finite elements on a simplicial mesh, that are piecewise polynomials with
respect to a simplicial refinement. For the spaces of scalar functions, considered as 0-
forms, we use continuously differentiable composite elements, as introduced by Hsieh
and Clough-Tocher and discussed further in [16,19,25,35]. The rest of the sequences,
pertaining to differential k-forms for k ≥ 1, appear to be new. These sequences end
with conformingmixedfinite elements for the Stokes equation: continuous vectorfields
with either continuous or discontinuous divergence.

Our results are quite closely related to those of [20], where finite element families
for Stokes’ equation are defined in 2D, for both H1−L2 conforming and H1

div−H1

conforming settings, as part of de Rham sequences with high regularity. In [29] these
results are extended to 3D. The spaces attached to triangles or tetrahedra consist of
polynomials, including polynomial bubbles. In particular they are smooth functions.
Their degrees of freedom for vectorfields include in particular all first order partial
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derivatives at vertices. Our local spaces of vectorfields, on the other hand, consist
of composite polynomials which are not necessarily of class C1, and our degrees
of freedom at vertices are just the vertex values and (for H1

div) vertex values of the
divergence, which is a particular combination of first order derivatives. We point
out that our spaces come equipped with commuting interpolators. The lower order
continuity/differentiability imposed at vertices (for instance), and the composite nature
of our elements, seem important in this respect, from the point of view provided by
FES, for the given continuity one wants to achieve. The commuting diagram that we
obtain, as a consequence of compatibility, makes the proof of the inf-sup condition
easier than the macro-element techniques introduced for Stokes in [34]. Or, at least,
it provides an alternative type of proof.

We also mention a connection with [22,23]. In two dimensions they construct a
complex of spaces equipped with degrees of freedom that provide commuting inter-
polators, and such that the two last spaces form a Stokes pair. In dimension 3 they
construct Stokes pairs equipped with degrees of freedom that make the interpolator
commute. In both cases, the local spaces contain rational functions, where we have
used composite polynomials for similar purposes. In dimension two their lowest order
complex resolves a C1 element due to Zienkiewicz, whereas in our case we resolve
the Clough-Tocher element. See Remarks 5 and 12 for further considerations.

There is a vast literature on the construction of stable Stokes pairs. The most nat-
ural candidate seems to be the C0Pp−Pp−1 pair, where the velocity is discretised by
Lagrange elements of degree p, and the pressure with discontinuous polynomials of
degree p − 1. This is called the Scott–Vogelius element [33], which is easy to imple-
ment and leads to strong divergence-free discretisations ; actually div Vh ⊆ Qh , for
velocity space Vh and pressure space Qh . However the surjectivity and inf-sup condi-
tions are subtle. The divergence operator div : C0Pp → Pp−1 is onto when there are
no “singular vertices”. The definition of singular vertex is clearcut in 2D ; in [33] it is
shown that in 2D, when there is no singular vertex and p ≥ 4, the inf-sup condition
holds (with respect to H1−L2 norms). In 3D, it remains open to define all singular
vertices and edges, and find the minimal polynomial degree p, see [38].

Instead of trying to identify singular vertices and edges, people also identify refine-
ments of simplicial meshes, where the inf-sup condition holds:

– In 2D, on triangleswithClough-Tocher splits, stability ofC0P2−P1 andC0P3−P2

approximations was shown in the thesis of Qin [31], see also [5]. In 2D, the stability
of quadratic velocity and linear pressure on crisscross triangulations can be found in
[5]. On two dimensional Powell–Sabin splits, the C0P1−P0 pair is stable [39].

– The 3D case is more involved. When we subdivide a tetrahedra into four, by the
Alfeld split that connects one internal point with the four vertices, the inf-sup condition
was shown in [38]. The lowest degree in this case is C0P4 − P3. On Powell–Sabin
splits, C0P2−P1 is stable [40].

The main technique of proof in the above cases seems to be the macroelement
technique of [34]. Here we rely instead on (often exact) sequences connected by
cochain morphisms. In 2D we introduce sequences based on the Clough-Tocher C1

element, so that naturallywe are led to the C0P2−P1 pair for Stokes, but not C0P1−P0.
To be more specific on our contributions, we consider an n-dimensional domain

S, say in the Euclidean space R
n . The space of alternating k-linear forms on R

n is
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denoted Altk(Rn). For r ≥ 0 we denote by HrΛk(S) the spaces of k-forms on S with
partial derivatives up to order r in L2(S) ⊗ Altk(Rn). We denote by Hr

dΛ
k(S) the

following space:

Hr
dΛ

k(S) = {u ∈ HrΛk(S) : du ∈ HrΛk+1(S)}. (1)

We are interested in the complexes:

. . . Hr
dΛ

k−1(S) Hr
dΛ

k(S) Hr
dΛ

k+1(S) . . . (2)

We are also interested in letting r decrease in the complex, at some index, as follows:

. . . Hr
dΛ

k−1(S) HrΛk(S) Hr−1
d Λk+1(S) . . . (3)

If we restrict attention to dimension n = 2 and r = 0, 1 this leaves us with three
possibilities:

H1Λ0(S) H0
dΛ

1(S) H0Λ2(S) (4)

H2Λ0(S) H1Λ1(S) H0Λ2(S) (5)

H2Λ0(S) H1
dΛ

1(S) H1Λ2(S) (6)

We refer to these sequences as de Rham sequences with regulartity (1, 0+, 0), (2, 1, 0)
and (2, 1+, 1) respectively. The two last spaces in the two last sequences are of interest
for conforming discretizations of the Stokes equation. It should be pointed out that
some reformulations of the Stokes equation with auxilliary variables, can be handled
with the first type of sequence (e.g. [28]). There are also examples of non-conforming
methods that have been successfull, such as the Crouzeix–Raviart element [7]. As we
see it, these methods have been developed because H1-conforming methods, such as
those we introduce here, were not known.

We are interested in constructing finite element spaceswhich provide subcomplexes
of the above three complexes. These subcomplexes should be equipped with commut-
ing interpolation operators. For this purpose a framework of FES has been developed
for the first type of complex, starting in [9]. It is summarized in [13]. In this paper,
we extend the framework so that it can encompass the other two types of complexes,
and more generally, we believe, arbitrary r ≥ 0 as well as switches between different
r as sketched above. For small r we provide examples that illustrate that high order
polynomials can be included in the finite element spaces, to achieve arbitrarily high
approximation order. In arbitrary dimension we also illustrate that it can be useful to
consider different simplicial refinements at different indices of the differential com-
plex. A key tool in our construction is the use of the Poincaré operators, as has already
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been used to construct complexes of regularity (1, 0+, 0), and generalizations to arbi-
trary dimension, [4,24]. Many more examples than those provided here, should fit in
the proposed framework.

The paper can be seen as a step towards a general theory of discretization of highly
continuous fields (sections of vector bundles), in terms of inverse systems of complexes
of jets. From this point of view, the present paper provides examples of r -jets of order
r = 0 and r = 1. This already seems adequate for many of the PDEs we have in mind,
since they are at most second order.

The paper is organized as follows. In Sect. 2 we relate the regularity of differen-
tial forms to their inter-element continuity, expressed with three different restriction
operators. In Sect. 3 we recall methods for proving sequence exactness under the exte-
rior derivative, using the Poincare operator and we sketch how it intervenes in finite
element constructions. In Sect. 4 we provide four examples of low order composite
finite element sequences in space dimension 2. This motivates the framework of gen-
eralized finite element systems and gets the machinery started, with respect to higher
order polynomials. In Sect. 5 we provide the appropriate notions on generalized FES,
leading up to the notion of harmonic interpolator. In Sect. 6 we provide, in dimension
2, examples of composite finite element de Rham sequences with enhanced continuity
and arbitrarily high degree of polynomials. In Sect. 7 we provide some tools for defin-
ing composite finite elements in arbitrary space dimension. In particular we define
different simplicial refinements and study some continuous piecewise affine forms
on them. In Sect. 8 we provide a composite finite element de Rham sequence with
enhanced continuity and low order polynomials (at most degree two). We also show
how such sequences can be branched into Whitney forms at some index. We conclude
with some topics for further research.

2 Restrictions and regularity of differential forms

Restriction operators adapted to different regularities Consider a simplicial complex
T on a domain S in a vector space V of dimension n. For differential forms which are
piecewise smooth with respect to T we have:

– u ∈ H0
dΛ

k(S) iff the pullbacks to faces are singlevalued. If T ∈ T is a simplex,
pullback means here pullback in the sense of differential forms by the injection
T → S. It remembers the action of u only on vectors which are tangent to T [see
the paragraph leading to (22)].
In terms of vector proxies H1

dΛ
k(S) corresponds to L2(S) vectorfields with curl in

L2(S), for which the pullback corresponds to taking the tangential component of
the vectorfield. On the other hand H0

dΛ
n−1(S) corresponds to L2(S) vectorfields

with div in L2(S), for which the pullback to codimension 1 faces corresponds to
taking the normal component of the vectorfield.

– u ∈ H1Λk(S) iff the traces on faces are singlevalued. Here tracemeans restriction
in the usual sense, remembering the action of u on all tangent vectors in S (not
only T ).
For vector proxies this trace operator corresponds to keeping all the compnents of
the vectorfields on the faces.
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– u ∈ H1
dΛ

k(S) iff the traces on faces of both u and du are singlevalued on faces.
Here the word trace is used with the same meaning as above.

It will be convenient to denote by CrΛk(S) the space of k-forms on S of class Cr and
by Cr

dΛ
k(S) the space of u ∈ CrΛk(S) such that du ∈ CrΛk+1(S).

We interpret the above conditions ensuring various kinds of regularity, by saying
that we have defined three types of restriction operators. Explicitely, according to
context, the restriction of a differential form u ∈ Cr

dΛ
k(S) to a face T of S will be:

– the pullback of u, denoted puT u, which is in Cr
dΛ

k(T ).
– the trace of u, denoted trT u, which is in Cr (T ) ⊗ Altk(V).
– the double-trace of u, written (trT u, trT du), which is in Cr (T ) ⊗ Altk(V) ⊕
Cr (T ) ⊗ Altk+1(V).

The framework of FES, introduced in [9] and developed further in [10–13] was
designed to handle restrictions of the first type, whereas now we are interested in
the other cases as well. More generally, we will consider a cellular complex T and
restrictions from T to T ′ where T, T ′ are cells in T and T ′ ⊆ T .

Admissibility condition When we start with a k-form u ∈ Cr
dΛ

k(S), the trace of
(u, du) on a cell T , also called the double-trace of u, is in Cr (T )⊗Altk(V)⊕Cr (T )⊗
Altk+1(V), but all elements of the latter sum cannot occur. In other words there are
admissibility conditions. In this paragraph we determine them.

First we introduce some notations:
– When v ∈ Cr (T )⊗Altk(V) we denote by puT v ∈ CrΛk(T ) the induced k-form

on T , that remembers the action of u only on vectors in V that are tangential to T .
– When u is a k-form on S and X is a vectorfield on S, we denote by u L X the

contraction of u by X , which is the (k − 1)-form defined at x ∈ S by:

(u L X)x (ξ2, . . . , ξk) = ux (X (x), ξ2, . . . , ξk). (7)

Lemma 1 Let V be a finite dimensional vector space. Let (ei ) be a basis of V and let
( fi ) be the dual basis. Then for u ∈ Altk(V), k ≥ 1, we have:

∑

i

fi ∧ (u L ei ) = k u. (8)

Proof By induction on k. 
�

We may consider that this identity is true also for k = 0, the left hand side being 0 by
definition of contraction of 0-forms.

Proposition 1 Fix r ≥ 0. Let V be a vector space and let T be a subspace. Let
v0 ∈ Cr+1(T )⊗Altk(V) and v1 ∈ Cr (T )⊗Altk+1(V). The following are equivalent:

– There exists u ∈ Cr+1Λk(V) such that trT u = v0 and trT du = v1.
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– The induced forms puT v0 ∈ Cr+1Λk(T ) and puT v1 ∈ CrΛk+1(T ) (obtained by
remembering only the action on tangent vectors to T ), are related by:

d puT v0 = puT v1. (9)

Proof (i) The first condition implies the second, because the exterior derivative com-
mutes with pullback.
(ii) We prove that the second condition implies the first. We write V = T ⊕ U . We
introduce a vector field X on V, defined by, for any x ∈ T and any y ∈ U :

X (x + y) = y. (10)

We choose a basis (ei )i∈I of T and (e j ) j∈J of U . We impose I ∩ J = ∅, so they
combine to a basis of V and we let ( fi )i∈I∪J denote the corresponding dual basis of
V. We let ∂i denote the directional derivative with respect to ei .
(iii) We first extend v0 to an element u of Cr+1Λk(V) by putting u(x + y) = v0(x)
for x ∈ T and y ∈ U . Substracting this extension we are left with the the case v0 = 0
and puT v1 = 0. To avoid clutter we denote v = v1.
(iv) Suppose v is of the form: v = w wT ∧ wU with wU = f j1 ∧ · · · ∧ f jl (with l ≥ 1
distinct indices in J ), wT = fi1 ∧ · · · ∧ fik+1−l (with k + 1 − l distinct indices in I )
and w a scalar function on T .

We trivially extend w to V, which yields an extension of v to a (k + 1)-form on V,
which we still denote by v. We put u = v L X . We write:

d(v L X) =
∑

i

fi ∧ ∂i (v L X), (11)

=
∑

i∈I
fi ∧ ((∂iv)L X) +

∑

j∈J

f j ∧ (v L e j ). (12)

The first term here, when restricted to T , is zero. For the second term we have:

∑

j∈J

f j ∧ (v L e j ) =
∑

j∈J

f j ∧ ((−1)k+1−lwwT ∧ (wU L e j )) (13)

= wwT ∧
∑

j∈J

f j ∧ (wU L e j ), (14)

= l v. (15)

We also remark that v L X is zero on T . Dividing v L X by l, we have a suitable
extension of (0, v).
(v)Now, in general, the condition puT v1 = 0 guarantees that v1 is a linear combination
of forms w wT ∧ wU of the above type, all for some l ≥ 1. 
�

This result motivates the following definition.
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Definition 1 Let v0 ∈ C0(T ) ⊗ Altk(V) and v1 ∈ C0(T ) ⊗ Altk+1(V). We say that
the pair (v0, v1) is admissible if d puT v0 = puT v1, where d puT v0 is defined a priori
in the sense of distributions.

On the necessity of composite elements Consider the line T = R × {0} sitting in
V = R

2. The preceding paragraph shows that in order to extend data on T , consisting
of a pair (v0, v1) ∈ Cr+1(T ) ⊕ Cr (T ) ⊗ Alt1(V), to a function in Cr+1(V), there is
the compatibility condition dv0 = puT v1. We now illustrate that if several lines meet
at a vertex (which will be the case in simplicial complexes), additional compatibility
conditions could appear at the vertex, if we require the extension to be at least C2(V).

Suppose we have two coordinates (x, y). We have data consisting of functions p0,
p1 on the x-axis which are C1(R) and C0(R) respectively and as well as functions q0,
q1 on the y-axis that are C1(R) and C0(R) respectively.

We want to find a function u on R
2 of class C1(R2) such that (u, ∂yu) restricts

to (p0, p1) on the x-axis and (u, ∂xu) restricts to (q0, q1) on the y-axis. There are
compatibily conditions at the origin:

(p0(0), ṗ0(0), p1(0)) = (q0(0), q1(0), q̇0(0)). (16)

These are sufficient for the existence of a C1(R2) extension.
However, for extensions of class C2(R2) of the same data, there is an additional

constraint, expressing that ∂x∂yu = ∂y∂xu at the origin, namely:

ṗ1(0) = q̇1(0). (17)

This remark applies in particular to polynomials. Comparewith the fact that theArgyris
element is C2 at vertices, even though one only wants to obtain C1 functions.

In this paper we are not interested in constructing functions that are globally C2.
We want C1 functions, glued together from data on subsimplices that only involve
derivatives up to order 1.

This explains whywe prefer to construct spaces in terms of composite polynomials:
we can then hope to satisfy first order constraints (that guarantee C1 continuity),
without adding second order constraints (corresponding for instance to symmetry of
mixed derivatives as above). Another choice could have been to use rational functions
that are C1 on the simplices but not C2.

A differential acting on admissible pairs Let T be a flat cell in a vectorspace V.
Suppose that we have subspaces Bk(T ) of C0(T ) ⊗ Altk(V), such that the exterior
derivative on T maps puT Bk(T ) into puT Bk+1(T ). Then we define the following
spaces of admissible pairs:

Ak(T ) = {(v0, v1) ∈ Bk(T ) ⊕ Bk+1(T ) : d puT v0 = puT v1}. (18)
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We define the following differential:

dk :
{

Ak(T ) → Ak+1(T ),

(v0, v1) �→ (v1, 0).
(19)

It is well defined, because if (v0, v1) is admissible then d puT (v1) = d2 puT v0 = 0,
so (v1, 0) is admissible. Moreover we see that dk+1 ◦ dk = 0.

Lemma 2 The sequence:

Ak(T ) → Ak+1(T ) → Ak+2(T ), (20)

is exact if and only if the sequence:

puT Bk(T ) → puT Bk+1(T ) → puT Bk+2(T ), (21)

is exact.

Proof (i) Suppose the second sequence is exact.
Given an admissible (v1, 0) ∈ Ak+1(T ) we have d puT v1 = 0. Choose v′

0 ∈
puT Bk(T ) such that dv′

0 = v1 and then v0 ∈ Bk(T ) such that puT v0 = v′
0. Then

(v0, v1) is admissible and maps to (v1, 0).
(ii) Suppose the first sequence is exact.

Suppose v′
1 ∈ puT Bk+1(T ) satisfies dv′

1 = 0. Choose v1 ∈ Bk+1(T ) such that
puT v1 = v′

1. Then (v1, 0) ∈ Bk+1(T ) and d(v1, 0) = 0. Writing (v1, 0) = d(v0, v1)

we get v0 ∈ Bk(T ) such that (v0, v1) is admissible. Then v′
0 = puT v0 ∈ puT Bk(T )

satisfies dv′
0 = v′

1. 
�

3 Poincaré and Koszul operators

Poincaré operators We recall some properties of the so-called Poincaré and Koszul
operators, used for constructing finite element differential forms in [4,24] respectively.
For the former,we refer to [26], especially chapterV, but recall themain steps of interest
to us.

Recall that when S and S′ are domains and Φ : S → S′ is differentiable, the
pullback of a k-form u on S′, by Φ, is the k-form Φ�u on S defined at x ∈ S by:

(Φ�u)x (ξ1, . . . , ξk) = uΦ(x)(DΦ(x)ξ1, . . . ,DΦ(x)ξk). (22)

Suppose now that S is a domain. We consider a smooth map F : [0, 1] × S → S,
and interpret it as a family of maps Ft = F(t, ·) : S → S, for t ∈ [0, 1], defining a
homotopy between F0 and F1. We write:

F�
1 u − F�

0 u =
∫ 1

0
∂t (F

�
t u)dt. (23)
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For most t ∈ [0, 1], we suppose we have a vector field Gt on S such that, for x ∈ S:

Gt (Ft (x)) = ∂t Ft (x). (24)

This uniquely defines Gt on S when Ft : S → S is a diffeomorphism, and expresses
that any curve F•(x) flows with G•.

When u is a k-form we have:

∂t (F
�
t u) = F�

t LGt u, (25)

= F�
t ((du)LGt + d(u LGt )), (26)

using Cartan’s formula for the Lie derivative.
The Poincaré operator associated with F (and G), acting on differential k-forms,

is denoted p[F] or, when the choice of F is clear, as p. It can be written succintly:

p[F]u =
∫ 1

0
F�
t (u LGt )dt. (27)

More explicitely, if u is a k-form:

(p[F]u)x (ξ2, . . . , ξk) =
∫ 1

0
uFt (x)(∂t Ft (x),DFt (x)ξ2, . . . ,DFt (x)ξk)dt. (28)

With these considerations in mind, (23) can be expressed with the Poincaré operator
as follows:

F�
1 u − F�

0 u = p[F] d u + d p[F]u. (29)

Suppose that F1 is the identity on S and that F0 is constant. Then the formula gives,
for p = p[F] acting on k-forms with k ≥ 1:

id = p d+ d p, (30)

whereas if u is a function, considered as a 0-form, and the value of F0 is W , we get:

u − u(W ) = p d u. (31)

If now S is a domain in an affine space, which is starshaped with respect to, say W ,
we may choose F to be defined by:

Ft (x) = t x + (1 − t)W. (32)

Then we may substitute in the above formulas:

∂t Ft (x) = x − W, Gt (y) = 1

t
(y − W ), and DFt (x)(ξ) = tξ. (33)
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We denote the associated Poincaré operator as pW . It is defined explicitely on k-forms
u by:

(pW u)x (ξ2 . . . , ξk) =
∫ 1

0
tk−1uW+t (x−W )(x − W, ξ2, . . . , ξk)dt. (34)

Koszul operators In an affine space, given a choice of a point W , we may also define
directly a vector field XW by:

XW : x �→ x − W. (35)

The contraction of a differential form by XW is called the Koszul operator associated
with W and denoted:

κW : u �→ κW u = u L XW . (36)

If the choice of W is clear from the context, we may sometimes omit it from the
notation.

If u is a k-form which, with respect to some choice of origin W and basis, has
components which are homogeneous polynomials of degree r , then from (34) we get:

pW u = 1

k + r
κW u, (37)

which is polynomial and whose components are homogeneous of degree r + 1.
We are mainly interested in identitites (30,31) and knowing that the Poincaré oper-

ator maps polynomials to polynomials, increasing degree by only one. Sometimes
explicit computations are more handy with the Koszul operator. For composite ele-
ments it will be important where we locate W , so as to respect the refinement used.

Remark 1 From the above discussion of Poincaré operators, we can derive the identity,
on k-forms which are homogeneous polynomials of degree r :

(d κW + κW d)u = (r + k) d pW u + (r − 1 + k + 1) pW d u, (38)

= (r + k)u. (39)

It is obtained by two somewhat different techniques in section 3.2 of [4].

Complexes constructed with Poincaré and Koszul operators We suppose we have a
complex U • (of perhaps infinite dimensional spaces):

. . .
dk−2

Uk−1 dk−1
Uk dk

Uk+1 dk+1
. . . (40)

We also suppose that we have operators pk : Uk → Uk−1 such that:

pk+1 dk + dk−1 pk = λk idUk , (41)

where λk is a non-zero scalar. It follows that the complex U • is exact.
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We suppose furthermore that:

pk−1 pk = 0. (42)

In this situation we suppose that we have subspaces V • that form a complex:

. . .
dk−2

V k−1 dk−1
V k dk

V k+1 dk+1
. . . (43)

We then define:

Wk = V k + pk+1 V
k+1. (44)

Proposition 2 The spaces W • form an exact complex. We have:

Wk = dk−1W
k−1 ⊕ pk+1 W

k+1. (45)

Proof (i) We notice that for u ∈ V k+1 we have:

dk pk+1 u = λku − pk+2 dk+1 u, (46)

∈ V k+1 + pk+2 V
k+2 = Wk+1. (47)

Therefore dk maps Wk to Wk+1.
(ii) We also see that pk maps Wk to Wk−1, using (42). Therefore identity (41) also
holds for the complex W •. It follows that it is exact and that we have:

Wk = dk−1W
k−1 + pk+1 W

k+1. (48)

Finally, if u ∈ dk−1Wk−1 ∩ pk+1 W
k+1, then dku = 0 and pk u = 0 so that u = 0,

also from (41). 
�
Remark 2 The spaces W • form a cochain complex with respect to d•, but they also
form a chain complex with respect to p•, and it is exact.

Examples We can take V k = PpΛk(Rn). Then we get the exact complex of spaces:

Wk = Pp+1
− Λk(Rn) = PpΛk(Rn) + p PpΛk(Rn). (49)

This generalizes the first family of Nédélec–Raviart–Thomas, and p = 0 corresponds
to Whitney forms.

We can also take V k = Pp−kΛk(Rn). Since it is stable under p it is exact. This
generalizes the second family of Nédélec–Brezzi–Douglas–Marini.

We now consider the construction of composite elements on a simplicial complex.
For instance, on a triangulation, the Cloch-Tocher split consists in adding one point to
each triangle, and join it with the three vertices, so that each triangle is divided into
three smaller triangles.
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More generally one can consider a simplicial complex where each simplex is
included in an n-dimensional simplex. We suppose that we add an inpoint to each
n-dimensional simplex and join it to the vertices, and possibly inpoints of boundary
simplices. More precisely we suppose here that a simplicial refinement of the (n−1)-
skeleton is chosen. For each n-dimensional simplex T the inpointW is coned with the
refinement of the boundary of T . In this paragraph we denote such a refinement by S.

It is then natural to define finite element spaces on T consisting of piecewise poly-
nomials with respect to S, using the Poincaré operator associated with W .

We can then take V k(T ) = C0dPp−kΛk(S), consisting of k-forms which are piece-
wise polynomials of degree p − k, that are continuous and with continuous exterior
derivative. The Poincaré operator associated with the inpoint maps V k(T ) to V k−1(T )

so that we get an exact complex. This construction resembles that of to the second
family above. We carry out this construction in dimension n = 2 in Sect. 6.

Another construction allows to have different simplicial refinements of T for each
index k, and resembles that of the first family above. Let’s call the refinements of T ,
Sk . We can define:

Kk(T ) = {u ∈ C0PpΛk(Sk) : du = 0}. (50)

These spaces form a complex which is not exact. We can then define the augmented
spaces:

Ak(T ) = Kk(T ) + pW Kk+1(T ). (51)

Notice that Ak(T ) contains PpΛk(T ). We carry out a construction of this type in
arbitrary dimension n, with p = 1, in Sect. 8.

We also show how one can branch such spaces into standard Whitney forms, by
augmenting the complex:

. . .
dk−2

Kk−1 dk−1
Kk dk

Λk+1 dk+1
. . . (52)

See in (171) how this leads to a new space at index k.

4 Low order finite element complexes in 2D

We proceed to define four complexes based on the Clough-Tocher element.

A complex of regularity (2, 1+, 1). Let T be a triangle with vertices V0, V1 and V2.
Choose a pointW in the interior of T , and subdivide T into three triangles, by drawing
edges from W to V0, V1 and V2. This equips T with a simplicial refinement, which
we denote by R.

The Clough-Tocher element involves a degree of freedom on the edges, which can
be taken as the normal derivative at the midpoint. More generally, for each edge E ,
we consider a linear form on one-forms, which evaluates the one-form in a transverse
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curl

divdiv

div div

div

Fig. 1 Clough-Tocher complex with continuous pressure described in Proposition 3

direction νE , at an interior point WE of the edge. We denote this degree of freedom
on 1-forms as μE .

For the following proposition we also refer to Fig. 1.

Proposition 3 We have an exact sequence:

0 R C1P3Λ0(R) C0dP2Λ1(R) C0P1Λ2(R) 0

(53)

The spaces are, more explicitely, the following:

– C1P3Λ0(R) consists of piecewise P3 functions, which are of class C1(T ).
– C0dP2Λ1(R) consists of piecewise P2 one-forms which are C0(T ) with exterior
derivative in C0(T ).

– C0P1Λ2(R) consists of piecewise P1 two-forms, which are C0(T ).

Moreover these spaces have the following properties:

– C1P3Λ0(R) has dimension 12. Any element u is determined by the following data:
– vertices V : one DoF for u(V ) and two DoFs for du(V ).
– edges E: one DoF, say μE (du).

– C0dP2Λ1(R) has dimension 15. Any element u is determined by:
– vertices V : two DoFs for u(V ) and one DoF for du(V ).
– edges E: two DoFs, tranverse and tangential: μE (u) and

∫
E u.

– C0P1Λ2(R) has dimension 4. Any element u is determined by:
– vertices V : one DoF for u(V ).
– interior T : one DoF, namely the integral

∫
T u.

The above degrees of freedom provide commuting interpolators.

Proof (i) Exactness of the complex can be deduced from the Poincaré operator asso-
ciated with the inpoint W . It maps the spaces one to the other.
Notice by the way that we get the identity:

C0dP2Λ1(R) = dC1P3Λ0(R) ⊕ pW C0P1Λ2(R), (54)

≈ curl C1P3(R) ⊕ XWC0P1(R). (55)
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(ii) Counting constraints on the space of piecewise polynomials of degree 3 on R,
shows that the dimension of the first space is at least 30−18 = 12. That the dimension
is exactly 12 follows from proving unisolvence of theDoFs, which is done in particular
in [15,30].

It amounts to showing that if both u and its derivatives are 0 on ∂T , then u = 0. Such
a u can be written λ2W v where v ∈ C0P1(R), where λW is the barycentric coordinate
map of R associated with the inpoint W . We have that:

du = 2λW vdλW + λ2Wdv. (56)

Since u ∈ C1(T ) we get that the following form is continuous on T :

2vdλW + λWdv. (57)

Since dλW is discontinuous at the vertices, the three vertex values of v are 0, so that
v is proportional to λW . Since dλW is discontinuous at W we deduce u = 0.
(iii) The last space has dimension 4 and the given degrees of freedom are unisolvent.
(iv) Counting constraints on the spaces of piecewise polynomial one-forms, shows
that the dimension of the second space is at least 36 − 21 = 15. If u ∈ C0dP2Λ1(R)

has degrees of freedom 0 we write:

u = pW d u + d pW u. (58)

We notice that du ∈ C0P1Λ2(R) and has degrees of freedom 0 so du = 0. We also
notice that v = pW u satisfies dv = u. Its degrees of freedom are 0 except perhaps
the vertex values v(V ). They must be the same, because

∫
E dv = 0 for each edge E .

Hence v is constant, so u = dv = 0.
This proves unisolvence and that the dimension count is exact[the dimension can

also be deduced from (54)].
(v) It is straightforward to check that the interpolator associated with these DoFs
commutes with the exterior derivative. 
�

What remains in order to prove that this is a good finite element, is that inter-
element continuity behaves as expected. On edges the spaces of restrictions from
adjacent triangles should be the same.

Remark 3 The space C0dP2Λ1(R) is also described in [2], where it is analysed with
Bernstein-Bezier techniques. Their definition incorporates the fact that an element of
C0dP2Λ1(R) is automatically C1 at the inpoint W .

Aminimal complex of regularity (2, 1+, 1). It is also possible, in the previous example,
to eliminate the edge degrees of freedom in C1P3Λ0(R), by requiring du L νE to be
affine on edge E . Usually one imposes the normal derivative on edges to be affine.
This is called the reduced HCT element. The transverse edge degree of freedom in
C0dP2Λ1(R) is then also eliminated by requiring u L νE to be affine. See Fig. 2.

The natural degrees of freedom provide a commuting interpolator.
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curl

vid vid

div div

div

Fig. 2 Minimal Clough-Tocher complex with continuous pressure

curl div

+3

+3 +3

Fig. 3 Clough-Tocher complex with discontinuous pressure. The figure shows the lowest order case: the
first space is piecewise cubic, the second is continuous piecewise quadratic and the third is piecewise linear

Remark 4 Wesee thatwehave asmanydegrees of freedom left for the space of 0-forms
(namely three times the number of vertices) as for the space of 2-forms (namely the
number of vertices plus number of triangles), up to the Euler–Poincaré characteristic of
the surface. This can be interpreted as a balancing of the degrees of freedom describing
the curl and the divergence of the vector fields.

This complex is minimal, among complexes with this regularity, in a sense which
can be made precise in the framework of finite element systems. This is described
below, in the last paragraph of Sect. 5.

A complex of regularity (2, 1, 0). We may also consider the sequence:

0 R C1P3Λ0(R) C0P2Λ1(R) P1Λ2(R) 0

(59)

The spaces are, more explicitely, the following:

– C1P3Λ0(R) consists of piecewise P3 functions, which are of class C1(T ).
– C0P2Λ1(R) consists of piecewise P2 one-forms which are C0(T ).
– P1Λ2(R) consists of piecewise P1 two-forms.

The second space has dimension 20. The last one has dimension 9. Exactness follows
from using the Poincaré operator at the inpointW . A preliminary reasoning shows that
C0P2Λ1(R) should have 2 degrees of freedomper vertex, 2 per edge and 8 interior ones
see Fig. 3. However it is not clear what they should be, if one wants the interpolator to
commute with the exterior derivative (the harmonic dergrees of freedom of the FES
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curl div

Fig. 4 Minimal Clough-Tocher complex with discontinuous pressure

framework provide a possible choice). A part from a choice of degrees of freedom
adapted to Stokes, these spaces are well known (e.g. last paragraph of [5]).

A minimal complex of regularity (2, 1, 0). In the last example, the spaces are bigger
than necessary. A smaller complex of the form:

0 R A0(T ) A1(T ) A2(T ) 0 (60)

may be defined as follows. The spaces are:

– A0(T ) is reduced HCT, of dimension 9.
The DoFs are vertex values and vertex values of the exterior derivative.

– A1(T ) = dA0(T ) ⊕ pW A2(T ) ≈ curl A0(T ) ⊕ RXW , of dimension 9.
The degrees of freedom are, at vertices two for the value of the 1-form, and at
edges one for the integral.

– A2(T ) = P0Λ2(T ) consists of constant 2-forms on T , of dimension 1.
The degree of freedom is the integral.

These degrees of freedom provide a commuting interpolator see Fig. 4. This com-
plex is minimal, among complexes with this regularity, by the remarks that will be
made in the last paragraph of Sect. 5.

Remark 5 In [23] a complex of regularity (2, 1, 0) equipped with commuting interpo-
lators is also defined. Instead of resolving the Clough-Tocher element (full or reduced)
like ours, their complex resolves aC1 element due to Zienkiewicz that contains rational
functions. The dimensions of their three spaces is (12, 12, 1), which is intermediate
between our minimal complex, with dimensions (9, 9, 1) and the previous complex,
with dimensions (12, 20, 9).

They also define high order versions of their complex.

5 Generalized finite element systems

Motivation for finite element systems To study the examples of the preceding section,
some general theorems make the task easier. Moreover, specifying the degrees of
freedom a priori can be difficult when one wants to go to higher order polynomials.

If we are given spaces Ak(T ) of k-forms on a cell T , we can actually forget about
degrees of freedom and just consider the spaces Ak(T ′) obtained by restriction to the
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faces T ′ of T , with the appropriate definition of restriction, adapted to a particular
regularity. Two properties turn out to be sufficient, in order to get a nice finite element:

– dim Ak(T ) = ∑
T ′�T dim Ak

0(T
′). Here, aswill be detailed below, T ′�T signifies

that T ′ is a subcell of T and Ak
0(T

′) denotes the subset of Ak(T ′) consisting of
k-forms whose restrictions to boundary subcells of T ′ are 0.

– The sequence A•(T ′) is exact on each subcell T ′ of T , except at index 0, where
the cohomology group has dimensions 1, essentially consisting of the constant
functions.

When these properties are satisfied we will show that the sequences A•
0(T

′) are exact
except at index dim T ′, where the cohomology group has dimension 1. Then one can
define a commuting interpolator by using the so-called harmonic degrees of freedom,
described below.

In a cellular complex the spaces Ak(T ′) defined on faces should be well defined, in
the sense that if they are obtained as the spaces of restrictions from a cell T (containing
T ′) to T ′, then they should be independent of T .

Definitions related to finite element systems Let T be a cellular complex. If T, T ′ are
cells in T we write T ′ � T to signify that T ′ is a subcell of T (we consider that T is
a subcell of T ). Given two cells T and T ′ in T , their relative orientation is denoted
o(T, T ′). It is 0 unless T ′ is a codimension one subcell of T , in which case it is ± 1.
Cellular cochain complex is denoted C•(T ). Its differential, also called the coboundary
map, is denoted δ : Ck(T ) → Ck+1(T ). Its matrix in the canonical basis is given by
relative orientations.

All complexes considered in this paper are cochain complexes in the sense that the
differential increases the index.

Definition 2 A finite element system on T consists of the following data, which
includes both spaces and operators:

– We suppose that for each T ∈ T , and each k ∈ Z we are given a vector space
Ak(T ). For k < 0 we suppose Ak(T ) = 0.

– For every T ∈ T and k ∈ Z, we have an operator dkT : Ak(T ) → Ak+1(T ) called
differential. Often we will denote it just as d. We require dk+1

T ◦ dkT = 0. This
makes A•(T ) into a complex.

– Given T, T ′ in T with T ′ � T we suppose we have restriction maps:

rkT ′T : Ak(T ) → Ak(T ′), (61)

subject to:
– rk+1

T ′T d
k
T = dkT ′ rkT ′T .

– rkT ′′T = rkT ′′T ′ rkT ′T .
This makes the family A•(T ), for T ∈ T , into an inverse system of complexes.

– We suppose we have a map cT : R → A0(T ). It mimicks inclusion of constant
scalar functions. We require:
– For T ∈ T , d0T cT = 0.
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– If T ′ � T are cells in T , rT ′T cT = cT ′ .
– For T a k-dimensional cell in T we suppose we have an evaluation map e :

Ak(T ) → R. It mimicks integration of k-forms on a k-cell. We suppose that the
following formula holds, for u ∈ Ak−1(T ):

eTdT u =
∑

T ′∈∂T

o(T, T ′)eT ′ rT ′T u. (62)

It’s an analogue of Stokes theorem on T .

If T ′ is a cellular subcomplex of T , the spaces Ak(T ) with T ∈ T ′ constitute an
inverse system. The inverse limits can be identified as:

lim←−T∈T ′ A
k(T ) = {(uT )T∈T ′ ∈

⊕

T∈T ′
Ak(T ) : T ′ � T ⇒ uT ′ = rT ′T uT } (63)

In other words lim←−T∈T ′ A
k(T ) consists of families (uT )T∈T ′ , such that for each cell

T ∈ T ′ (of all dimensions) uT ∈ Ak(T ), and the family is stable under restrictions
to subcells. One can consider that such a family is given by a choice of uT ∈ Ak(T )

on top-dimensional cells T ∈ T ′, together with their restrictions to subcells, provided
that these are single-valued, i.e. the restrictions to a subcell are the same from all
top-dimensional neighboring cells.

We notice that, if T is a cell and S(T ) denotes the cellular complex consisting of
all the subcells of T in T , then the restriction maps provide an isomorphism:

r : A•(T ) → lim←−T ′∈S(T )
A•(T ′). (64)

For this reason it seems safe to use the notation:

A•(T ′) = lim←−T∈T ′ A
•(T ). (65)

This will be used in particular when T ′ is the boundary of a cell T ∈ T . In that case
∂T denotes the cellular complex consisting of the strict subcells of T , and Ak(∂T )

can be interpreted as consisting of families of elements uT ′ ∈ Ak(T ′) for T ′ ∈ ∂T
that are single-valued along interfaces inside the boundary.

Another way of formulating (62) is that for any cellular subcomplex T ′, the evalu-
ation provides a cochain morphism:

e : A•(T ′) → C•(T ′). (66)

Wewill later provide conditions under which it induces isomorphisms on cohomology
groups, which would be an analogue of de Rham’s theorem.

We denote by Ak
0(T ) the kernel of the induced map rk : Ak(T ) → Ak(∂T ). We

consider that the boundary of a point is empty, so that if T is a point Ak
0(T ) = Ak(T ).
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Definition 3 We say that A admits extensions on T ∈ T , if the restrictionmap induces
a surjection:

rk : Ak(T ) → Ak(∂T ), (67)

for each k. We say that A admit extensions on T , if it admits extensions on each
T ∈ T .

This notion corresponds to that of flabby sheaves (faisceaux flasques in French
[21]), due to the following.

Proposition 4 The FES A admits extensions on T if an only if, for any cellular
complexes T ′′, T ′ such that T ′′ ⊆ T ′ ⊆ T , the restriction A•(T ′) → A•(T ′′) is onto.

In particular if A admits extensions, then, when T ′ is a subcell of T , the restriction
A•(T ) → A•(T ′) is onto. However this is in general a strictly weaker condition than
the extension property. To see this, consider for instance the finite element spaces
A0(T ) consisting of P1 functions on a quadrilateral S, on its edges E and on its
vertices V . Then the restriction from A0(S) to each edge A0(E) is onto, as are the
other restrictions from faces to subfaces, but the restriction from A0(S) to A0(∂S) is
not onto, since the latter has dimension 4 but the former had dimension only 3.

Definition 4 We say that A• is exact on T when the following sequences are exact:

0 R
c

A0(T )
d

A1(T )
d

. . . (68)

We say that A• is locally exact on T when A• is exact on each T ∈ T .

Definition 5 We say that A is compatible when it admits extensions and is locally
exact.

de Rham type theorems The following theorem extends Proposition 5.16 in [12]:

Theorem 1 Suppose that the element system A is compatible. Then the evaluation
maps e : A•(T ) → C•(T ) induces isomorphisms on cohomology groups.

Proof The proof of Proposition 5.16 in [12] works verbatim. 
�
We also have the following extension of Proposition 5.17 in [12]:

Theorem 2 Suppose that A has extensions. Then A is compatible if and only if the
following two conditions hold:

– For each T ∈ T the (”inclusion of constants”) map c : R → A0(T ) is injective.
– For each T ∈ T the sequence A•

0(T ) has nontrivial cohomology only at index
k = dim T , and there the induced map:

e : Hk A•
0(T ) → R, (69)

is an isomorphism [it is well defined by (62)].
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Proof We suppose m > 0 and that the equivalence has been proved for cellular
complexes consisting of cells of dimension n < m.

Let T ∈ T be a cell of dimension m. We suppose that A is compatible on the
boundary of T . Since the boundary is (m − 1) dimensional we may apply the above
de Rham theorem there.

We write the following diagram:

0 A•
0(T )

e

A•(T )

e

A•(∂T )

e

0

0 C•
0(T ) C•(T ) C•(∂T ) 0

(70)

On the rows, the second map is inclusion and the third arrow restriction. Both rows
are short exact sequences of complexes. The vertical map is the de Rham map. The
diagram commutes.

We write the two long exact sequences corresponding to the two rows, and connect
them by the map induced by the de Rham map.

Hk−1A•(T ) Hk−1A•(∂T ) Hk A•
0(T ) Hk A•(T ) Hk A•(∂T )

Hk−1C•(T ) Hk−1C•(∂T ) HkC•
0(T ) HkC•(T ) HkC•(∂T )

(71)

Suppose that (68) is exact. Then the first and fourth vertical maps are isomorphisms.
By the induction hypothesis the second and fifth are isomorphisms. By the five lemma,
the third one is an isomorphism. This can be stated as announced.

Suppose that the two stated conditions hold. One applies the five lemma to the long
exact sequence, and obtains that A•(T ) is exact, except at index 0. The cohomology
group of index 0 is one dimensional, and must consist of the constants, by injectivity
of their inclusion. 
�

Extensions, dimension counts and harmonic interpolation The following proposition
almost exactly reproduces Proposition in [13].

Proposition 5 Suppose that Ak is an element system and that T ∈ T . Suppose that,
for each cell U ∈ ∂T , each element v of Ak

0(U ) can be extended to an element u
of Ak(T ) in such a way that, rUT u = v and for each cell U ′ ∈ ∂T with the same
dimension as U, but different from U, we have rU ′T u = 0. Then Ak admits extensions
on T .

Proof In the situation described in the proposition we denote by extU v = u a chosen
extension of v (from U to T ).

Pick v ∈ Ak(∂T ). Define u−1 = 0 ∈ Ak(T ).
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Pick l ≥ −1 and suppose that we have a ul ∈ Ak(T ) such that v and ul have the
same restrictions on all l-dimensional cells in ∂T . Put wl = v − r∂T T ul ∈ Ak(∂T ).
For each (l + 1)-dimensional cell U in ∂T , remark that rU∂Twl ∈ Ak

0(U ), so we may
extend it to the element extU rU∂Twl ∈ Ak(T ). Then put:

ul+1 = ul +
∑

U : dimU=l+1

extU rU∂Twl . (72)

Then v and ul+1 have the same restrictions on all (l + 1)-dimensional cells in ∂T .
We may repeat until l + 1 = dim T and then ul+1 is the required extension of v. 
�

Proposition 6 Let A be a FES on a cellular complex T . Then:

– We have:

dim Ak(T ) ≤
∑

T∈T
dim Ak

0(T ). (73)

– Equality holds in (73) if and only if Ak admits extensions on each T ∈ T .

Proof The proof in [13] works verbatim. 
�
Suppose now that we are discretizing differential forms, say the sequence H1

dΛ
•(S)

or, more precisely, C0dΛk(S). For each cell T , equip each space of double traces of
C0dΛk(S), with a continuous scalar product 〈·|·〉, typically a variant of the L2 product
on forms. For a given finite element system A (equipped with double traces for the
restrictions), define spaces Fk(T ) of degrees of freedom as follows. For k = dim T :

Fk(T ) = {〈·|v〉 : v ∈ ker d|Ak
0(T )} ⊕ {R ∫ ·}, (74)

and for k �= dim T :

Fk(T ) = {〈·|v〉 : v ∈ ker d|Ak
0(T )} ⊕ {〈d · |v〉 : v ∈ dAk

0(T )}. (75)

This is the natural generalization, to the adopted setting, of so-called projection based
interpolation, as defined in [17,18]. We call these the harmonic degrees of freedom.
For compatible finite element systems these degrees of freedom are unisolvent and
yield a commuting interpolator C0dΛ•(S) → A•(T ), which we call the harmonic
interpolator. This topic is detailed in Sect. 2.4 of [13], see in particular Proposition
2.8 of that paper.

Minimality Consider a FES A on a cellular complex T where the topdimensional
cells are domains in a fixed vectorspace V of dimension n. Suppose furthermore that
each certex lies in an n-dimensional cell. Suppose that, when T is a top-dimensional
cell, Ak(T ) is a space of k-forms, containing the constant ones. If A is compatible
then in particular for each vertex V ∈ T , the restriction from Ak(T ) to Ak(V ) is onto.
Depending on the nature of restriction we deduce:
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– If restriction is the pullback, then Ak(V ) = 0, except for k = 0, in which case it
has dimension 1.

– If restriction is the trace, then Ak(V ) = Altk(V).
– If restriction is the double trace then Ak(V ) = Altk(V) ⊕ Altk+1(V).

Moreover, if A is compatible, then we must have, for any k-dimensional cell,
dim Ak

0(T ) ≥ 1, by Theorem 2.
These considerations provide a lower bound on dim Ak(T ) in view of Proposition

6. We will see examples where this lower bound is attained. These examples are then
minimal FES.

This paper defines four minimal FES: two in 2D and two in 3D. In each dimension
we distinguish between continuous and discontinuous divergence.

The topic of minimal FES is studied in more detail in [11], in the case where the
restriction is the pullback. General recipies for constructing small compatible FES
within a big compatible FES are provided.

6 High order composite elements in 2D

Definition of finite element spaces. On a triangle T , we define a complex of regu-
larity (2, 1+, 1) depending on a parameter p ≥ 3. The choice p = 3 was described
previously, in Proposition 3, except for the characterization of spaces attached to faces.

We define the following spaces:

– A0(T ) = C1PpΛ0(R).
It consists of the functions which are R-piecewise in Pp, and which are of class
C1(T ).

– A1(T ) = C0dPp−1Λ1(R).
It consists of the 1-forms which are R-piecewise in Pp−1, and which are of class
C0(T ) with exterior derivative in C0(T ).

– A2(T ) = C0Pp−2Λ2(R).
It consists of the 2-forms which are R-piecewise in Pp−2, and which are of class
C0(T ).

We analyse this complex as follows. First we notice:

Proposition 7 The following sequence is exact:

0 R A0(T ) A1(T ) A2(T ) 0, (76)

The dimensions are:

dim A0(T ) = (3/2)p(p − 1) + 3, (77)

dim A1(T ) = 3p(p − 2), (78)

dim A2(T ) = (3/2)(p − 1)(p − 2) − 2. (79)
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Proof (i) Exactness follows from an application of the Poincaré operator associated
with the inpoint W .
(ii) For A0(T ), the dimension is given in [19].
(iii) For A2(T ) the space consists of continuous piecewise Pr functions, on a mesh
with 4 vertices, 6 edges and 3 triangles, so with r = p − 2. Adding the dimensions of
the bubblespaces we get:

dim A2(T ) = 4 + 6(r − 1) + 3

(
(r − 1)(r − 2)

2

)
= 3

2
r(r + 1) + 1. (80)

(iv) The dimension of A1(T ) can then be deduced from the exactness of (76):

dim A1(T ) = −1 + dim A0(T ) + A2(T ). (81)

This completes the proof. 
�
Remark 6 The dimensions are those one obtains by the perhaps naïve approach of
counting constraints on piecewise-polynomial differential forms.

For instance, for A0(T ) one starts with the space of R-piecewise polynomials of
degree p. It has dimension (3/2)(p + 2)(p + 1). To be C1 at W one imposes two
equalities of first order jets, which amounts to 6 conditions. Then, on the edges joining
W to the vertices, one expresses continuity, knowing we already have continuity at
W as well as continuity of the directional derivative at W along the edge. This gives
3(p− 1) conditions. Finally one expresses continuity of a transverse derivative on the
interior edges, knowing that we already have continuity of it at W . This also gives
3(p − 1) conditions.

This gives a lower bound on the dimension, since we are not certain at this point
that the imposed conditions are linearly independent.

Having examined the spaces Ak(T ), we now look at what happens on the faces of
T :
Case 1 Vertices. We define, at a vertex V :

– A0(V ) = R ⊕ Alt1(V) interpreted as a value and a value of the differential. Its
dimension is 3.

– A1(V ) = Alt1(V) ⊕ Alt2(V) interpreted as a value and a value of its exterior
derivative. Its dimension is 3.

– A2(V ) = Alt2(V). Its dimension is 1.

Notice, in view of Lemma 2, that we have a well defined complex:

0 R A0(V ) A1(V ) A2(V ) 0, (82)

where the second arrow v0 �→ (v0, 0), the third is (v0, v1) �→ (v1, 0) and the fourth
one is (v0, v1) �→ v1. Remark that the complex is exact.
Case 2 Edges. At an edge E we define:
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– A0(E) is the subspace of Pp(E) ⊕ Pp−1(E) ⊗ Alt1(V) consisting of admissible
pairs (v0, v1). Its dimension is p + 1 + p = 2p + 1.

– A1(E) = Pp−1(E)⊗Alt1(V)⊕Pp−2(E)⊗Alt2(V). Its dimension is 2p+ p−1 =
3p − 1.

– A2(E) = Pp−2(E) ⊗ Alt2(V). Its dimension is p − 1.

Again, in view of Lemma 2, we notice that we have a well defined complex:

0 R A0(E) A1(E) A2(E) 0, (83)

and that it is exact.
We remark that A defines a finite element systemonS(T ), with respect to restriction

operators defined by taking double-traces. The crucial missing point is the extension
property (flabbyness).

The following result is immediate.

Proposition 8 For any edge E of T , A admits extensions from ∂E to E. Moreover:

dim A0
0(E) = 2p + 1 − 2 · 3 = 2p − 5, (84)

dim A1
0(E) = 3p − 1 − 2 · 3 = 3p − 7, (85)

dim A2
0(E) = p − 1 − 2 · 1 = p − 3. (86)

And there is nontrivial cohomology only at index k = 1, where it has dimension 1.

Theorem 3 The finite element system A admits extensions from ∂T to T . Hence it is
compatible.

Proof We use Proposition 5. What is required is to prove some extension properties
from vertices to edges and triangles, and from edges to triangles. These required
properties are proved in the two next paragraphs. 
�

We use the term jet informally. An r -jet corresponds to a Taylor expansion of order
r in some vector bundle, which will here be a vector bundle of differential forms.
However for the highest order partial derivatives, only a certain combination of them,
corresponding to the exterior derivative, will be used. Moreover the jet exists even
when a section it should be the expansion of, is not known a priori.

Extension of 1-jets from vertices In this section we consider elements in dimension 2
but our construction of extension from vertices is valid in any dimension. Let then V

be a vector space of finite dimension and let V be a point in V.
We are interested in complexes at V of the form:

Ak(V ) = Altk(V) ⊕ Altk+1(V). (87)

Suppose we are given (v0, v1) ∈ Altk(V) ⊕ Altk+1(V) at vertex V . Suppose T is
a simplex, of arbitrary dimension, containing V . We want to find a k-form u0 on T
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whose double trace is (v0, v1). In other words we want an admissible pair (u0, u1)
whose traces are (v0, v1).

Let λ be the barycentric coordinate on T with respect to vertex V , and let X be the
canonical vectorfield X : x �→ x − V . Notice that for any w ∈ Altk+1(V) considered
as a constant (k + 1)-form, we have d(w L X) = (k + 1)w.

The admissible pair (λ2v0, 2λdλ ∧ v0) on T restricts to (v0, 2dλ ∧ v0) at V . We
therefore put w1 = v1 − 2dλ ∧ v0, and we want to find an extension of (0, w1). We
notice that the following pair on T is both admissible and restricts to (0, w1) at V :

(
1

k + 1
λ2w1 L X,

2

k + 1
λdλ ∧ (w1 L X) + λ2w1

)
(88)

All in all, we extend the data at V to T by the formula:

(u0, u1) = (λ2v0, 2λdλ ∧ v0) (89)

+
(

1

k + 1
λ2w1 L X,

2

k + 1
λdλ ∧ (w1 L X) + λ2w1

)
. (90)

Notice that u0 is a differential k-form of polynomial degree 3, that u1 is a (k+1)-form
of degree 2, that the pair (u0, u1) is admissible, and that its restriction to the other
vertices of T is 0, in the sense of double-traces. More stongly, the restriction to the face
opposite to V in T is 0. This construction can be used to obtain basisvectors attached
to the vertices of the global spaces.

Remark 7 If T is a triangle, Proposition 3 guarantees that we have extensions from
the vertices of T to T , as required in Proposition 5, simply by matching degrees of
freedom.

Extension of polynomial 1-jets from edges to triangles Now suppose E is an edge of
a triangle T , living in a vector space V of dimension 2. We wish to extend data on E
to T , so as to be able to apply Proposition 5 .

Fix p such that p ≥ 3. We consider the following spaces, for 0 ≤ k ≤ dimV.

Ak(E) = {(v0, v1) ∈ Pp−k(E) ⊗ Altk(V) ⊕ Pp−k−1(E) ⊗ Altk+1(V) :
(v0, v1) is admissible}. (91)

The admissibility condition is non-trivial only for k = 0.
We label the vertices of E with 0 and 1, and the third vertex of T is labelled with

2. The barycentric coordinates on T are, accordingly, denoted λ0, λ1, λ2.
We suppose we have chosen an inpointW on T , and we divide T into three triangles

by joining W to the vertices of T . The simplicial complex so obtained is denoted R.

Lemma 3 There is a function Φ ∈ C1P3(R) such that:

tr∂T (Φ) = 0, (92)

tr∂T (dΦ) = tr∂T (λ0λ1dλ2). (93)
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Proof Follows from Proposition 3 by matching degrees of freedom. 
�
Lemma 4 There is a 1-form Ψ ∈ C0dP2Λ1(R) such that:

tr∂T (Ψ ) = tr∂T (λ0λ1dλ1), (94)

tr∂T (dΨ ) = 0. (95)

Proof Follows from Proposition 3 by matching degrees of freedom. 
�
Suppose we are given (v0, v1) ∈ Ak

0(E) and that we wish to extend it to T . We may
extend this data by 0 to all of ∂T .
Case 3 Case k = 0. First we remark that v0 is of the form:

v0 = w0(λ1)λ
2
0λ

2
1, (96)

where w0 ∈ Pp−4(E). In this form v0 is trivially extendable to T , as a function
u0 ∈ Pp(T ). Substracting (trE u0, trE du0) from (v0, v1) leaves us with data where
v0 = 0. Assuming now that v0 = 0, admissibility shows that v1 is of the form:

v1 = w1(λ1)λ0λ1dλ2, (97)

where w1 ∈ Pp−3(E). Then we extend (0, v1) to T as the admissible pair:

(u0, u1) = (u0, du0), (98)

= (w1(λ1)Φ, ẇ1(λ1)dλ1Φ + w1(λ1)dΦ). (99)

In our setup it is only u0 which is of interest on T , but we need the traces of both u0
and du0 on ∂T .

Notice also that the constructed extension satisfies u0 ∈ C1PpΛ0(R).
Case 4 Case k = 1. We remark that the data is of the form:

v0 = w0(λ1)λ0λ1dλ1 + w1(λ1)λ0λ1dλ2, (100)

v1 = w2(λ1)λ0λ1dλ1 ∧ dλ2. (101)

With w0 ∈ Pp−3(E), w1 ∈ Pp−3(E) and w2 ∈ Pp−4(E). We essentially extend the
three different components separately, but in a precise order.

First, let w̃2 ∈ Pp−3(E) denote an antiderivative of w2. Put:

u0 = w̃2(λ1)dΦ ∈ C0dPp−1Λ1(R). (102)

Then:

du0 = w2(λ1)dλ1 ∧ dΦ, (103)

whose trace is v1. This leaves us with the problem of extending data where w2 = 0.
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Second, define:

u0 = w1(λ1)dΦ + ẇ1(λ)dλ1Φ ∈ C0dPp−1Λ1(R). (104)

Then du0 = 0, so in particular tr∂T u0 = 0. Moreover:

tr∂T u0 = w1(λ1)λ0λ1dλ2. (105)

This leaves us with the problem of extending data where w2 = 0 and w1 = 0.
Third, define:

u0 = w0(λ1)Ψ ∈ C0dPp−1Λ1(R). (106)

Then:

tr∂T u0 = w0(λ1)λ0λ1dλ1. (107)

and moreover:

tr∂T (du0) = tr∂T (ẇ0(λ1)dλ1 ∧ Ψ ) + tr∂T (w0(λ1)dΨ ), (108)

= 0. (109)

This completes the extension procedure.
Case 5 Case k = 2. Then v1 = 0 and v0 is of the form:

v0 = w0(λ1)λ0λ1dλ0 ∧ dλ1, (110)

for some w0 ∈ Pp−4(E). We extend v0 to T as:

u0 = w0(λ1)dλ0 ∧ Ψ ∈ C0Pp−2Λ2(R). (111)

7 Tools for composite finite elements

Wedevelop some tools thatwill be used to definefinite element sequences in dimension
n ≥ 3.

Various refinements of simplices A simplex is a finite non-empty set. Its subsimplices
are the non-empty subsets. The geometric realization of a simplex T in a vector space
containing the vertices, is its convex hull, denoted |T |. Geometric realizations are
examples of cells. If T is a simplex with vertices V0, . . . , Vk we also write T =
[V0, . . . , Vk].

If T is a cell in a cellular complex T , we denote by ST (T ) the set of subcells of T
in T , which is also a cellular complex. We denote by Sk

T (T ) the set of those subcells
of T which have dimension k. When no confusion is possible we omit the subscript
T . In particular, if T is a simplex the associated simplicial complex is denoted S(T ).

For each simplex T we choose an interior point WT , called the inpoint of T .
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Definition 6 Given a simplex T we denote by Rm(T ) the simplicial complex con-
sisting of simplices of the form:

[WTk ,WTk−1 , . . . ,WT0 , V0, . . . , Vl ], (112)

such that:

– T ′ = [V0, . . . , Vl ] is a subsimplex of T of dimension l ≤ m,
– T0, . . . , Tk−1, Tk are subsimplices of T of dimension at least m + 1,
– The simplices are nested as follows, with strict inclusions:

T ′ � T0 � . . . � Tk−1 � Tk . (113)

We call Rm(T ) the m-refinement of T .

In particularR0(T ) is the barycentric refinement of T , at least when the inpoints are
chosen to be the isobarycenters.We see thatRm(T ) only uses inpoints of subsimplices
of T of dimension at least m + 1 ; subsimplices of T of dimension at most m are not
refined. Another way of saying this is that S(T ) andRm(T ) have the samem-skeleton
(the m-skeleton of a cellular complex is the cellular complex consisting of those cells
that have dimension at most m). For m ≥ dim T we have Rm(T ) = S(T ).

When choosing the inpoints, one is interested in satisfying special properties for
adjacent simplices in some simplicial complex, as reviewed in [25]:

– In dimension 2, R1(T ) is known as a Clough-Tocher split. One is also interested
in splits where the inpoints of edges lie on the lines joining the inpoints of the
adjacent triangles. Then R0(T ) is known as a Powell–Sabin split.

– In dimension 3, one is interested in splits where the inpoints on faces lie on the
lines joining the inpoints of the two adjacent tetrahedra. Then R1(T ) is known
as a Worsey-Farin split, after [36]. If, in addition, the inpoint on edges lie on a
plane cointaining all the inpoints of the adjacent tetrahedra (i.e. those containing
the edge), then R0(T ) is called a Worsey–Piper split, after [37].

– Actually [36] definesR1(T ) in arbitrary dimension n and refer to it as generalized
Clough-Tocher split. On n-dimensional simplices one chooses arbitrary inpoints.
On (n−1)-dimensional simplices the inpoint is the intersection point with the line
joining the inpoints of the two adjacent topdimensional simplices.

– Worsey–Piper splitsmay be difficult to construct. One examplewould be to choose,
as inpoints, the circumcenters of all subsimplices. A sufficient condition for this
choice to yield points in the interior of the simplices, is that simplices are strictly
acute. This is quite restrictive.

– We also note that for m = dim T − 1,Rm(T ), which consists in adding the single
inpoint WT to T and cone it with the boundary simplices of T , is known as the
Alfeld split of T , at least when dim T = 3, see [1].

The different types of refinements of a tetrahedron are illustrated in Fig. 5. Not all
subsimplices are represented, just those corresponding to one face of the tetrahedron.

We note the following:
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Fig. 5 Refinements of a tetrahedron relative to one face: R0 (Worsey–Piper), R1 (Worsey-Farin), R2
(Alfeld),R3 (no split)

Lemma 5 We have:

– For any m,Rm(T ) is a refinement of Rm+1(T ).
– If U is a subsimplex of T then:

Rm(U ) = {T ′ ∈ Rm(T ) : |T ′| ⊆ |U |}. (114)

Alignments in meshes Already on a triangular mesh in dimension 2, continuity
requirements involving derivatives, enforced on piecewise polynomials, may produce
complicated spaces. The dimension will in general depend for instance on alignments
of edges arriving at vertices. The following result pertains to one such situation.

Suppose S is a two-dimensional vectorspace with a basis (e1, e2). The basis vectors
divide S into four sectors, as follows. For the four possibilities of choices of signs
a, b ∈ {+,−} we consider the sectors:

Tab = {x1e1 + x2e2 : ax1 ≥ 0 and bx2 ≥ 0}. (115)

We consider differential forms, which are piecewise polynomials with respect to this
subdivision, with various continuity requirements across interfaces.

Proposition 9 We have an exact sequence on S:

0 R C1P2Λ0 C0P1Λ1 P0Λ2
R 0 (116)

where, more precisely:

– C1P2Λ0, the space of continuously differentiable piecewise polynomials of degree
2, has dimension 8. The arrow arriving from R is inclusion of constants. Any
element u will be uniquely determined by the values of the following data:
– the 1-jet at 0, consisting of the function value u(0) and the differential Du(0).
– the directional second order derivatives at 0, in the four directions ±e1 and

±e2, which, by the way, are well defined.
– the value of the second order derivative ∂1∂2u, which, it turns out, must be the
same in the four sectors.

– C0P1Λ1 has dimension 10. The arrows arriving to and from this space are exterior
derivatives.
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– P0Λ2 has dimension 4. The arrow to R is the following map:

u �→ u(++) − u(−+) + u(−−) − u(+−). (117)

Here u(ab) stands for the value of the two-form u on Tab, or more precisely
u[ae1 + be2](e1, e2).

Remark 8 It seems that, if we have just four sectors, without alignments of the edges
then the sequence:

0 R C1P2Λ0 C0P1Λ1 P0Λ2 0 (118)

is exact and C1P2Λ0 has dimension only 7.
The situation is reminiscent of [33], which is interested in the last part of the

complex, for polynomials of higher order.

Some spaces of piecewise polynomials on simplexes We first recall:

Proposition 10 Suppose T = [V0, . . . , Vn] is an oriented simplex of dimension n.
Suppose that u is a constant n-form on T . Then:

∫

T
u = 1

n!u(V1 − V0, V2 − V0, . . . , Vn − V0). (119)

Suppose that u is affine on T and 0 at the vertices V1, . . . , Vn. Then:

∫

T
u = 1

(n + 1)!u[V0](V1 − V0, V2 − V0, . . . , Vn − V0). (120)

Let S be a simplex of dimension n. All faces T of S are supposed equipped with
an orientation and a chosen inpoint WT .

We shall prove some results of which the following constitute a first case:

Proposition 11 We have the following:

– Suppose u ∈ C1P2Λ0(R0(S)), that du is 0 at the vertices of S, and that u has the
same value at all vertices of S. Then u is constant on S.

– Suppose u ∈ C0P1Λ1(R0(S)) and that du = 0. If u is 0 at the vertices of S and
the pullback of u to 1-dimensional faces of S has integral 0, then u = 0.

Proof By induction on dim S. For dim S = 0 there is nothing to prove. Supposing
now n ≥ 1 and that the result has been proved for simplexes S with dim S < n we
proceed as follows, supposing dim S = n.

(i) Choose u ∈ C1P2Λ0(R0(S)) and suppose that du = 0 at the vertices. On any
(n−1)-face of S the pullback of u is constant by the induction step. Hence u is constant
on ∂T . Substracting this constant, we may suppose that tr∂T u = 0. Let λS be the
barycentric coordinate on S attached to the inpoint, so that λS ∈ C0P1Λ0(Rn−1(S)).
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We can write u = λSv for some v ∈ C0P1Λ0(R0(S)). The condition that u ∈ C1(S)

then gives v ∈ C0P1Λ0(Rn−1(S)). We write du = λSdv + vdλS and deduce that
v is zero at the vertices of S. Hence v is proportional to λS : v = cλS . We get
du = 2cλSdλS . Since dλS is discontinuous at the inpoint of S, we deduce that c = 0,
hence u = 0.
(ii) Choose u ∈ C0P1Λ1(R0(S)) such that du = 0 on S, u is 0 at the vertices of
S and the pullback of u to 1-dimensional faces of S has integral 0. Write u = dv
with v ∈ C1P2Λ0(R0(S)). We have that dv is zero at vertices. Moreover v has the
same values at all vertices, by the one-dimensional Stokes. By the preceding result v
is constant, so u = 0. 
�

The purpose of the next three propositions is to extend these results to k-forms for
higher k. Eventually we want to show that if certain degrees of freedom are 0 then the
k-form is 0.

Our first result is of the type that if certain degrees of freedom are 0 then the k-form
is 0 at the center of the simplex.

Proposition 12 Le S be a simplex with dim S ≥ 1. Choose k ≥ 1. Suppose u ∈
C0P1Λk(Rk−1(S)) and that du = 0. If u is 0 at the vertices of S and the pullback of
u to k-dimensional faces of S has integral 0, then u(WS) = 0.

Proof (i) If k = 1 the result was proved in the preceding two propositions.
We suppose now that k ≥ 2. The strategy is to prove that the pullback of u to

the k-simplices joining WS to the (k − 1) faces of S is zero. The integrals of these
pullbacks constitute a (k − 1)-cochain on S, and we show that its coboundary is zero
and that its (weighted) boundary is also 0.
(ii) For any (k − 1)-face U of S define (the real number):

cU =
∫

[WS ,U ]
u. (121)

This defines a cochain c• ∈ Ck−1(S).
– Suppose first k < n. We let T be a k-face of S and write, using du = 0 and

Stokes:

0 =
∫

[WS ,T ]
du, (122)

=
∑

U∈Sk−1(T )

o([WS, T ], [WS,U ])
∫

[WS ,U ]
u, (123)

=
∑

U∈Sk−1(T )

o(T,U )

∫

[WS ,U ]
u, (124)

because the k-faces of [WS, T ] are those containing WS , in addition to T , where the
integral of u is 0 by hypothesis.
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This identity can be rewritten, in terms of the simplicial coboundary operator:

δc• = 0 ∈ Ck(S). (125)

– For k = n this identity also holds, and just expresses that
∫
S u = 0.

(iii) For each vertex V of S, let αV denote the barycentric coordinate of WS in S.
Let T be a (k − 2)-face of S and denote its vertices V0, . . . , Vk−2. We write, using

that u is 0 at vertices of S, and summing over vertices V in S not in T :

∑

V /∈T
αV

∫

[WS ,T,V ]
u (126)

= 1

n!
∑

V /∈T
αV u[WS](V0 − WS, . . . , Vk−2 − WS, V − WS), (127)

= 1

n!u[WS](V0 − WS, . . . , Vk−2 − WS,
∑

V /∈T
αV (V − WS)). (128)

Then we may substitute:

∑

V /∈T
αV (V − WS) = −

∑

V∈T
αV (V − WS), (129)

which gives:

∑

V /∈T
αV

∫

[WS ,T,V ]
u = 0. (130)

This identity can be written:

∑

U∈Sk−1(S)

αU\T o(U, T )cU = 0. (131)

(iv) If it weren’t for the weights αU\T , this identity would be δ′c• = 0, where δ′ :
Ck−1(S) → Ck−2(S) is the boundary operator, whose matrix in the canonical basis is
the transpose of the matrix of δ. Since δc• = 0 and C•(S) is exact (at index k−1 ≥ 1),
we would conclude immediately that c• = 0.

To account for the weights defined by α, we define, on any subsimplex T of S:

αT =
∏

V∈S0(T )

αV , (132)

and rewrite (131) as:

∑

U∈Sk−1(S)

(αU/αT ) o(U, T )cU = 0. (133)
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Let αl be the operator Cl(S) → Cl(S), whose matrix in the canonical basis is diagonal,
with entry αT at index (T, T ), T ∈ Sl(S). We obtain:

(αk−2)
−1δ′αk−1c• = 0, (134)

hence:

δ′αk−1c• = 0. (135)

(v) Now, since δc• = 0, we can choose d• ∈ Ck−2(S) such that δd• = c•. We have
δ′αk−1δd• = 0. Since αk−1 is positive definite, we conclude c• = 0.

(vi) Since u is 0 at vertices, for any (k − 1)-simplex U = [V1, . . . Vk] we have:

0 = cU = (k + 1)!u[WS](V1 − WS, . . . , Vk − WS). (136)

There are sufficiently many such (k − 1)-simplexes to conclude that u[WS] = 0. 
�
The above result can also be applied to boundary simplexes. However in that case it

will not give information about transverse components on the boundary (only the pull-
back to the boundary). Our second result will fill this gap. That is why the refinement
used here isRk(S) not Rk−1(S).

Proposition 13 Suppose u ∈ C0P1Λk(Rk(S)) and that du is constant on S. If u is 0
at the vertices of S then u is 0 everywhere.

Proof (i) For k = 0 the claim is just that an affine function is determined by its vertex
values. So we suppose k ≥ 1 from now on.
(ii) We proceed by induction on dim S. Choose n ≥ 1 and suppose that the proposition
has been proved for simplices S with dim S < n. We call this the outer induction
hypothesis. Let S be a simplex of dimension dim S = n.
(iii) For any l-face T of S with l ≤ k, the trace of u on T is in C0P1(Rk(T ))⊗Altk(V)

and since T is not refined, u is affine on T . Therefore the trace of u is 0.
In particular the pullback of u to any k-face is 0. Therefore, for any (k + 1)-face T

of S the pullback v of u satisfies
∫
T dv = 0. The constant du on S has integral 0 on

all (k + 1)-faces of S. Therefore du = 0 on S.
(iv) Suppose we have proved that the pullback of u to l-faces of S is 0, for some l with
n > l ≥ k. We call this the inner induction hypothesis. Let T be an (l + 1)-face of S,
and let v be the pullback of u to T . From Proposition 12 we conclude that v(WT ) = 0.
If l = k then we conclude that v = 0.
For l > k we need to check that v(WT ′) = 0 for faces T ′ of T of dimension m with
k < m ≤ l.

– Case m = l: Let T ′ be an l-face of T . Let w be the pullback to T ′ of the
(k − 1)-form v L (WT − WT ′). We have w ∈ C0P1Λk−1(Rk(T ′)). We also notice
that dw is piecewise constant on T ′. Cartan’s formula shows that dw is the derivative
of v in direction (WT − WT ′), which is continuous. Therefore dw is constant. By
the outer induction hypothesis, w = 0. Now we are in the situation that both v and
v L (WT − WT ′) have pullback 0 to T ′. Therefore v(WT ′) = 0.

123



Generalized finite element systems for smooth differential… 361

– Case k < m < l: If T ′′ is an m-face of T , for some k < m < l, T ′′ is included
in at least two distinct l-faces of T . Since the pullback to these of v is 0, we deduce
v(WT ′′) = 0.

We deduce that v = 0 on T . This completes the inner induction (on l), which may
be followed up to the case l = n−1. There the conclusion is u = 0, and this completes
the outer induction step (on n). 
�
Remark 9 In other words the proposition says that if u ∈ C0P1Λk(Rk(S)) and du is
constant, then u is affine on S. The reciprocal is trivial.

Finally we combine the preceding two propositions to prove the following.

Proposition 14 Suppose u ∈ C0P1Λk(Rk−1(S)), and that du = 0. If u is zero at the
vertices of S and for any k-face T of S,

∫
T u = 0, then u = 0.

Proof We proceed by induction. We suppose that the proposition has been proved for
any S of dimension n − 1, and let S be a simplex of dimension n.

From Proposition 12, we deduce that u(WS) = 0.
For k = n this is enough to conclude that u = 0.
Suppose k < n. We want to check that u(WT ) = 0 for any m-face T of S with

k ≤ m < n. We distinguish two cases for m = dim T :
– Casem = n−1:We know that the pullback of u to T is 0 by the induction hypoth-

esis. Letw be the pullback of u L (WS −WT ) to T . Thenw is in C0P1Λk−1(Rk−1(T ))

and dw is constant. From Proposition 13 it follows that w is zero. We conclude that
u(WT ) = 0.

– Case k ≤ m < n − 1: Then T is included in two distinct (n − 1)-faces of S, on
which the pullback of u is zero. We deduce that u(WT ) = 0. 
�

8 Finite element spaces in high dimension

A continuous finite element complex We consider the following spaces, on a simplex
S, for k ≥ 1:

Kk(S) = {u ∈ C0P1Λk(Rk−1(S)) : du = 0}. (137)

For k = 0 we put:

K 0(S) = {u ∈ C0P1Λ0(R0(S)) : du = 0}, (138)

= {u : S → R : u is constant}. (139)

We let pS denote the Poincaré operator associated with the inpoint of S. We define
the space of k-forms:

Ak(S) = Kk(S) + pS K
k+1(S). (140)

We want to prove that this choice provides a good finite element complex, in the sense
that it defines a compatible finite element system.

We first notice:
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Proposition 15 We have that:
– The sum (140) is direct.
– The following sequence is exact:

0 R A0(S) A1(S) . . . An(S) 0. (141)

Proof Using essentially that the elements of Kk(S) and Kk+1(S) have 0 exterior
derivative. 
�
Proposition 16 On Ak(S) the degrees of freedom consisting of:
– values at vertices,
– values of the exterior derivative at vertices,
– integrals on k-dimensional faces of S (for k ≥ 1),
overdetermine an element.

Proof Suppose u is an element and that all these degrees of freedom are 0. Applying
Proposition 14 first to du and then to u, one first gets that du = 0 and then that u = 0.


�
For n = dim S and k ≥ 1, this gives the upper bounds:

dim Ak(S) ≤ (n + 1)(

(
n

k

)
+

(
n

k + 1

)
) +

(
n + 1

k + 1

)
= (n + 2)

(
n + 1

k + 1

)
, (142)

and:

dim A0(S) ≤ (n + 1)2. (143)

To get unisolvence of the degrees of freedom, we would like to prove the converse
bounds on dimension.

We do this for the case of a generalized Powell–Sabin split in dimension n = 3.
We want to prove:

dim A3(S) = 5, (144)

dim A2(S) = 20, (145)

dim A1(S) = 30, (146)

dim A0(S) = 16. (147)

This amounts to:

dim K 3(S) = 5, (148)

dim K 2(S) = 15, (149)

dim K 1(S) = 15, (150)

dim K 0(S) = 1. (151)
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Proposition 17 The above dimension counts, in dimension n = 3, are correct.

Proof (i) For K 3(S) and K 0(S) it is clear.
(ii) For K 2(S)we can get the lower bound as follows: The tetrahedron and its faces are
each equipped with an inpoint. So C0P1Λ2(R1(S)) has dimension (1+4+4)·3 = 27.
On the other hand there are 12 subtetrahedra on which we enforce one condition. So
dim K 2(S) ≥ 27 − 12 = 15.
(iii) For K 1(S) all faces and edges are refined, so C0P1Λ1(R0(S)) has dimension
45. To enforce on an element u of C0P1Λ1(R0(S)), that du = 0, we use that du
is constant on each of the 24 small tetrahedra of R0(S). Therefore it is enough to
enforce the pullback to be zero on a set of triangular faces in R0(S), such that each
litte tetrahedron has three of them in its boundary.We choose these triangles as follows:

– We impose that the pullback of du to the triangles joining the inpoint of the
tetrahedron, the inpoint of a face and a vertex should be zero. These are 3 conditions
per face, and there are 4 faces.

– For each edge, the inpoints of the tetrahedron, the two adjacent triangular faces,
and the edge itself are coplanar, by the choice of split. So we may use Proposition 9
to impose only 3 conditions, rather than 4. There are 6 edges.

This gives dim K 1(S) ≥ 45 − 4 · 3 − 6 · 3 = 15. 
�
In arbitrary dimension n we can still be precise about the last two spaces in the

complex, which are those relevant for Stokes.

Proposition 18 The given degrees of freedom on An−1(S) and An(S) are unisolvent.
The dimensions are dim An−1(S) = (n + 1)(n + 2) and dim An(S) = n + 2.

The associated interpolator commutes with the divergence operator.
This gives aminimal good element for continous vectorfields with continuous diver-

gence.

Proof (i) We have dim An(S) = n+2, since there are n+1 vertices in S and we have
added the inpoint of S.
(ii) For Kn−1(S)wemay estimate its dimension as follows. In the refinementRn−2(S)

there are the n + 1 vertices of S, the n + 1 inpoints attached to (n − 1)-faces, and one
inpoint in S. This gives:

dim C0P1Λn−1(Rn−2(S)) = n(2(n + 1) + 1), (152)

There are also (n+ 1)n small n-simplexes, on which we express du = 0 as one scalar
constraint. This gives:

dim Kn−1(S) ≥ n(2(n + 1) + 1) − (n + 1)n = n2 + 2n. (153)

(iii) We conclude:

dim An−1(S) ≥ n2 + 2n + n + 2 = (n + 1)(n + 2). (154)

(iv) Since these lower bounds coincide with the number of degrees of freedom, and
these are overdetermining, the degrees of freedom are unisolvent, and the dimension
count follows. 
�
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For general n, the analysis of the complex at lower indices seems more complicated,
say for the space A1(S).

Behavior on faces We are now interested in determining the restrictions to the faces
of S, of the spaces Ak(S). This is important for the inter-element continuity of fields,
to get global fields of the required regularity. It is also inherent to the framework of
finite element system, which encodes the inter-element continuity by taking an inverse
limit.

For this purpose, some alternative characterisations of Ak(S) are sometimes useful.
We let κ S denote the Koszul operator associated with the inpoint of S. We have:

pS K
k+1(S) = κ S K

k+1(S). (155)

It follows that:

Ak(S) = Kk(S) + κ S K
k+1(S). (156)

We also have the alternative characterization:

Proposition 19 We have:

Ak(S) = {u ∈ C0P2Λk(Rk−1(S)) : du ∈ C0P1Λk+1(Rk(S)) and (157)

u − κ S du ∈ C0P1Λk(Rk−1(S))}, (158)

Proof Using (30). 
�
Proposition 20 For any element u of K k(S), if T is face of S, then for any face U of
S with T �U � S, the pullback of u L (WS − WU ) to T is affine.

Proof It suffices to show that the pullback of u L (WS − WU ) to U is affine. Let v be
the pullback of u L (WS − WU ) to the simplex [WS,U ]. We have that dv is piecewise
constant and continuous, as the Lie derivative of u along WS − WU . Hence dv is
contant. We have puU v ∈ C0P1Λk(Rk(U )) and may apply Remark 9. 
�
Proposition 21 For any element u of Ak(S), if T is face of S, then for any face U of
S with T �U � S, the pullback of (u − κT du)L (WS − WU ) to T is affine.

Proof (i) We put v = du. We first examine the pullback of (u − κU v)L (WS − WU )

to U . We have:

(u − κU v)L (WS − WU ) = (u − κ S v + κ S v − κU v)L (WS − WU ),

= (u − κ S v)L (WS − WU )−
(v L (WS − WU ))L (WS − WU ). (159)

The term on the last line is 0. Since u − κ S v ∈ Kk(S) we may apply the preceding
proposition to it. We deduce that the pullback of (u − κU v)L (WS − WU ) to U is
affine.
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(ii) Now on T we write:

u − κT v = u − κU v + v L (WU − WT ). (160)

In the right hand side,we remark that (u−κU v)L (WS−WU )has a pullback to T which
is affine, by the preceding point. Then we considerw = v L (WU −WT )L (WS−WU ).
From the preceding proposition v L (WS−WU ) is affinewhen pulled back onU . Hence
w pulled back to T is also affine. 
�

On lower dimensional subcells T of S we can define first:

Mk(T ) = Kk(T ) + κT K k+1(T ). (161)

We have:

Proposition 22 For any simplexes T �U in S(S), the pullback operator gives a map
puT : Mk(U ) → Mk(T ).

Proof We use the characterization (157) which applies also to Mk(T ).
Choose u ∈ Mk(U ) and put v = puT u. We have:

v − κT dv = v − puT (du L XT ), (162)

= puT (u − κU du) − puT (du L (WU − WT )). (163)

The first term in this difference is in Mk(T ) by the characterization (157) applied to
Mk(U ) and Mk(T ). The second term is affine on T , by applying Proposition 20 to
du ∈ Kk+1(U ), so it’s also in Mk(T ). 
�

Hence M defines a finite element system with respect to pull-backs. However this
is not the restriction operator that interests us for the Stokes equation.

It seems useful to define:

WT = span{WS − WU : U ∈ S(S) and T �U � S}. (164)

Motivated by the above considerations we define, for any simplex T ∈ S(S):

Ak(T ) = {(u, v) ∈ C0P2(Rk−1(T )) ⊗ Altk(V) ⊕ C0P1(Rk(T )) ⊗ Altk+1(V) :
(u, v) is admissible and puT u ∈ Mk(T ) and

∀Y ∈ WT puT (v L Y ) and puT ((u − κT v)L Y ) are affine}. (165)

When T is a vertex V this definition reduces to:

Ak(V ) = Altk(V) ⊕ Altk+1(V). (166)

Proposition 23 The spaces Ak(T ) constitute a finite element system, with respect to
restrictions which are double-traces and differential (19).
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div
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div
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Fig. 6 Finite element complex described in Theorem 4. Gives a Stokes pair with continuous pressure

Proof That restrictions map from Ak(S) to Ak(T ) was proved in the preceding three
propositions.

That they also map from Ak(U ) to Ak(T ) when T � U � S follows from similar
arguments.

Stability under the differential is straightforward. 
�
Proposition 24 Suppose T ∈ S(S) is not a vertex. If k = dim T we have:

dim Ak
0(T ) ≤ 1. (167)

If k �= dim T , Ak
0(T ) = 0.

Proof Suppose (u, v) ∈ Ak
0(T ) and that, in case k = dim T , we have

∫
T puT u = 0.

By Proposition 16 we get puT u = 0 and puT v = 0.
Then we get that, whenever Y ∈ WT , puT (v L Y ) = 0 and puT (u L Y ) = 0, since

they are affine and have trace 0 on ∂T .
Since WT + vect T = V, the two conditions above give u = 0 and v = 0. 
�

Theorem 4 The finite element system A is compatible, when n = 3, and the split is
Powell–Sabin/Worsey–Piper (see Fig. 6).

Proof From Propositions 17 and 24 we get by computing:

dim Ak(S) ≥
∑

T∈S(S)

dim Ak
0(T ). (168)

Then Proposition 6 shows that equality holds and that the finite element system is
flabby. In particular dim Ak

0(T ) = 1 for k = dim T , and the integral provides an
isomorphism to R.

The cohomology of the sequence A•
0(T ) is then trivially determined. One concludes

by Theorem 2. 
�

Remark 10 One could also check:

{puT u : (u, v) ∈ A•(T )} = Mk(T ), (169)

and deduce from there that the sequences A•(T ) resolve R by Lemma 2.
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Remark 11 A crucial question, to address the case of general n, is whether one has
WT ∩ vect T = 0. It seems that the condition that the following sums are direct:

WT ⊕ vect T = V, (170)

captures the sort of alignment conditions one needs to impose. Even thoughWT was
defined in terms of the choices of inpoints in S, when several n-dimensional simplices
meet at T , they should determine the same WT .

Branching into Whithey forms Consider the case of arbitrary dim S = n. Let Λk(S)

denote the space of constant k-forms on S. Fix an index  ∈ [0, n]. Instead of (140)
we define:

Ak(S) =
⎧
⎨

⎩

Kk(S) + pS K
k+1(S), k < ,

Kk(S) + pS Λk+1(S), k = ,

Λk(S) + pS Λk+1(S) k > .

(171)

In this definition we recognize Λk(S) + pS Λk+1(S) as the space of Whitney k-forms
on S, henceforth denotedWk(S). Its canonical choice of degrees of freedom consists
of integrals on k-dimensional faces.

Proposition 25 We have that:
– The sums in (171) are direct.
– The following sequence is exact:

0 R A0(S) A1(S) . . . An(S) 0. (172)

The only new space in the above sequence is the one attached to the index : before
 we have the space studied in the previous paragraph and after  we have Whitney
forms.

Proposition 26 On A(S) the degrees of freedom consisting of:
– evaluation at vertices,
– integrals of pullback to -dimensional faces of T ,
overdetermine an element.

Proof If u ∈ A(S) has all its degrees of freedom equal to 0, then one checks first
that du = 0, from the theory of Whitney forms. Then one deduces that u = 0 from
Proposition 14. 
�

To get a finite element system we define first, for k = :

Nk(T ) ={u ∈ C0P2Λk(Rk−1(T )) : du ∈ Λk+1(T ) and (173)

u − κT du ∈ C0P1Λk(Rk−1(T ))}. (174)
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grad
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curl

curl

curl
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Fig. 7 Regular complex with branching into Whitney forms at index two. Gives a Stokes pair with discon-
tinuous pressure

grad curl div

Fig. 8 Regular complex with branching into Whitney forms at index one

For T ∈ S(S) we then put:

Ak(T ) = {u ∈ C0P2(Rk−1(T )) ⊗ Altk(V) : puT u ∈ Nk(T ) and

∀Y ∈ WT puT (u L Y ) is affine}. (175)

For k <  one uses the previously defined spaces. For k >  one uses Whitney forms.
This gives a finite element system.

Proposition 27 In the case n = 3 the degrees of freedom described in Proposition 26
are unisolvent and we get two new compatible finite element systems for  = 2 and
 = 1.

Proof We use Proposition 17. When we choose to branch at  = 2, we have:

dim A(S) = 15 + 1 = 16 = 4 × 3 + 4. (176)

When we choose to branch at  = 1 we have:

dim A(S) = 15 + 3 = 18 = 4 × 3 + 6. (177)

In both cases this proves unisolvence. 
�
The case  = 2 of this proposition is described in Fig. 7 and the case  = 1 is

decribed in Fig. 8.
For arbitrary n and for  = n − 1, which is perhaps the most interesting case from

the point of view of Stokes equation, we are able to prove unisolvence:

Proposition 28 Consider the spaces defined by (171) and the degrees of freedom
given in particular by Proposition 26, with  = n − 1. The given degrees of freedom
on An−1(S) and An(S) are unisolvent. The dimensions are dim An−1(S) = (n + 1)2

and dim An(S) = 1.
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The associated interpolator commutes with the divergence operator.
This gives a minimal good element for continuous vectorfields with discontinuous

divergence.

Proof (i) We have dim An(S) = 1, since it consists of the constants.
(ii) The proof of Proposition 18 gives the lowerbound:

dim An−1(S) ≥ n(n + 2) + 1 = (n + 1)2. (178)

which is the number of degrees of freedom defined in Proposition 26. 
�
Remark 12 In [22] Stokes pairs (with discontinuous pressure) are defined in dimension
3. Among these, their so-called reduced element has the same degrees of freedom as
the element we consider in Proposition 28. Their vectorfields are defined using certain
rational functions related to a 2D C1-element of Zienkiewicz. They also describe an
element in arbitrary dimension with the same degrees of freedom as we have. In
this generalization, the face-bubbles of Bernardi–Raugel [6] are modified using the
Bogovskii integral operator. The obtained vectorfields are therefore quite different
from ours and perhaps less explicit.

Outlook

We finish with some points that merit further investigation, and which we hope to
address in a not too distant future:

– We have not included error estimates, but, given that we have defined natural
degrees of freedom, we believe these could be obtained by combining techniques
developed for HCT (e.g. [16] Sect. 46) with general techniques developed for FES
(especially in [12]).

– A first natural extension of the present work, would be to define spaces with high
approximation order in arbitrary dimension, in particular high order elements for
Stokes in dimension 3.

– It is also possible to use the framework of (generalized) FES to describe the com-
plex consisting of the Morley element, the Crouzeix–Raviart element and the
piecewise constants (see e.g. [7]). A general framework to discuss many existing
non-conforming complexes is within reach.

– The examples discussed in this paper consist of differential forms on domains in
a vector space. It seems possible also to extend the techniques to manifolds. This
would provide a new method, to solve say the shallow water equations on the
sphere.
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