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Abstract We study a finite element computational model for solving the coupled
problem arising in the interaction between a free fluid and a fluid in a poroelastic
medium. The free fluid is governed by the Stokes equations, while the flow in the
poroelastic medium is modeled using the Biot poroelasticity system. Equilibrium
and kinematic conditions are imposed on the interface. A mixed Darcy formulation
is employed, resulting in continuity of flux condition of essential type. A Lagrange
multiplier method is employed to impose weakly this condition. A stability and error
analysis is performed for the semi-discrete continuous-in-time and the fully discrete
formulations. A series of numerical experiments is presented to confirm the theoretical
convergence rates and to study the applicability of the method to modeling physical
phenomena and the robustness of the model with respect to its parameters.
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1 Introduction

In this paper we study the interaction of a free incompressible viscous Newtonian fluid
with a fluid within a poroelastic medium. This is a challenging multiphysics problem
with applications to predicting and controlling processes arising in groundwater flow
in fractured aquifers, oil and gas extraction, arterial flows, and industrial filters. In
these applications, it is important to model properly the interaction between the free
fluid with the fluid within the porous medium, and to take into account the effect of the
deformation of the medium. For example, geomechanical effects play an important
role in hydraulic fracturing, as well as in modeling phenomena such as subsidence
and compaction.

We adopt the Stokes equations to model the free fluid and the Biot system [7] for the
fluid in the poroelastic media. In the latter, the volumetric deformation of the elastic
porous matrix is complemented with the Darcy equation that describes the average
velocity of the fluid in the pores. The model features two different kinds of coupling
across the interface: Stokes—Darcy coupling [20,30,36,45,51,52] and fluid—structure
interaction (FSI) [4,5,13,23,27,44].

The well-posedness of the mathematical model based on the Stokes—Biot system for
the coupling between a fluid and a poroelastic structure is studied in [48]. A numerical
study of the problem, using the Navier—Stokes equations for the fluid, is presented in
[3], utilizing a variational multiscale approach to stabilize the finite element spaces.
The problem is solved using both a monolithic and a partitioned approach, with the
latter requiring subiterations between the two problems. The reader is also referred
to [11], where a non-iterative operator-splitting method for a coupled Navier—Stokes—
Biot model is developed.

An alternative partitioned approach for the coupled Stokes—Biot problem based on
the Nitsche’s method is developed in [10]. The resulting method is loosely coupled
and non-iterative with conditional stability. Unlike the method in [11], which is suit-
able for the pressure formulation of Darcy flow, the Nitsche’s method can handle the
mixed Darcy formulation. It does, however, suffer from a reduced convergence, due to
the splitting across the interface. This is typical for Nitsche’s splittings, see e.g. [14]
for modeling of FSI. Possible approaches to alleviate this problem include iterative
correction [15] and the use of the split method as a preconditioner for the monolithic
scheme [10].

In applications to flow in fractured poroelastic media, an alternative modeling
approach is based on a reduced-dimension fracture model. We mention recent work
using the Reynolds lubrication equation [32,40] as well as an averaged Brinkman equa-
tion [12]. Earlier works that do not account for elastic deformation of the media include
averaged Darcy models [18,24,26,38,41], Forchheimer models [25], and Brinkman
models [37], as well as an averaged Stokes flow that results in a Brinkman model for
the fracture flow [42].

In this work we focus on the monolithic scheme for the full-dimensional Stokes—
Biot problem with the approximation of the continuity of normal velocity condition
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through the use of a Lagrange multiplier. We consider the mixed formulation for Darcy
flow in the Biot system, which provides a locally mass conservative flow approxima-
tion and an accurate Darcy velocity. However, this formulation results in the continuity
of normal velocity condition being of essential type, which requires weak enforcement
through either a penalty or a Lagrange multiplier formulation. Here we study the latter,
as an alternative to the previously developed Nitsche formulation [10]. The advantage
of the Lagrange multiplier method is that it does not involve a penalty parameter
and it can enforce the continuity of normal velocity with machine precision accuracy
on matching grids [1]. The method is also convergent on non-matching grids. After
deriving a finite element based numerical approximation scheme for the Stokes—Biot
problem, we provide a detailed theoretical analysis of stability and error estimates. A
critical component of the analysis is the construction of a finite element interpolant in
the space of velocities with weakly continuous normal components. This interpolant
is shown to have optimal approximation properties, even for grids that do not match
across the interface. The numerical tests confirm the theoretical convergence rates and
illustrate that the method is applicable for simulating real world phenomena with a
wide range of realistic physical parameters.

An additional advantage of the Lagrange multiplier formulation is that it is suitable
for efficient parallel domain decomposition algorithms for the solution of the coupled
problem, via its reduction to an interface problem, see, e.g. [51] for the Stokes—Darcy
problem. It can also lead to multiscale approximations through the use of a coarse-
scale Lagrange multiplier or mortar space [2,29,31]. However, this topic is beyond
the scope of the paper and it will be investigated in the future.

The remainder of the manuscript is organized as follows. In Sect. 2 we present
the mathematical model. Section 3 is devoted to the semi-discrete continuous-in-time
numerical scheme and the uniqueness and existence of its solution, followed by its
stability analysis in Sect. 4. A detailed error analysis is presented in Sect. 5, which gives
insight on the expected convergence rates with different choice of finite element spaces.
Section 6 and “Appendix” present the analysis for the fully discrete scheme. Extensive
numerical experiments are discussed in Sect. 7, while Sect. 8 sums up our findings.

2 Stokes—Biot model problem

We consider a multiphysics model problem for free fluid’s interaction with a flow in a
deformable porous media, where the simulation domain 2 C RY, d = 2, 3,is aunion
of non-overlapping polygonal regions €2y and £2,,. Here Q2 1 is a free fluid region with
flow governed by the Stokes equations and €2, is a poroelastic material governed by the
Biot system. For simplicity of notation, we assume that each region is connected. The
extension to non-connected regions is straightforward. Let I'r,, = 92 N 92, Let
(u., p.) be the velocity-pressure pair in 2,, * = f, p, and let 5 P be the displacement
in ,. Let > 0 be the fluid viscosity, let f, be the body force terms, and let g, be
external source or sink terms. Let D(uy) and o r(uy, pr) denote, respectively, the
deformation rate tensor and the stress tensor:

1
D(uy) = 5 (Vus +vul). ory, pp) =—pI+2uDGy). @.1)
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In the free fluid region Q ¢, (uy, pr) satisfy the Stokes equations

—V.osQur, pp)=1fy inQp x(0,T] 2.2)
Veoup=gqp inQsx(0,T], (2.3)

where T' > 0 is the final time. Leto . ( p) ando , (7 Pz p) be the elastic and poroelastic
stress tensors, respectively:

oe(y) = hp(V -1 )L +20,D(,), 0,1, pp) =0cm,) —apyl,  (2.4)

where 0 < Apin < Ap(X) < Apax and O < ppin < pUp(X) < Wmayx are the Lamé
parameters and 0 < a < 1 is the Biot-Willis constant. The poroelasticity region €2,
is governed by the quasi-static Biot system [7]

~V 0,0, pp) =, wK 'u,+Vp,=0, inQ,x0,T], (2.5

d .
= (sopp +aV-n,)+V-u,=gq, inQ,x0,T], (2.6)

where sop > 0 is a storage coefficient and K the symmetric and uniformly positive
definite rock permeability tensor, satisfying, for some constants 0 < kjin < kimax,

VEER!, knink & <ETK(XE < knax'E, VX €Q).
Following [3,48], the interface conditions on the fluid—poroelasticity interface I ),

are mass conservation, balance of stresses, and the Beavers—Joseph—Saffman (BJS)
condition [6,46] modeling slip with friction:

on
uf.nf+<3—t”+up>.np=0 onTy, x (0,71, (2.7)
—(ofny)-nyp = p,, omy+o,n, =0 onl'y, x(0,T], (2.8)

. an
—(omy) 75 =papysy /K (uf - a—t”> t7; only, x(0,T], (2.9)

where ny and n,, are the outward unit normal vectors to 02 s, and 92, respectively,
Ty, 1 < j <d—1,is an orthogonal system of unit tangent vectors on I'7,, K; =
(Ktyj) tyj,andapgys > 0is an experimentally determined friction coefficient. We
note that the continuity of flux constrains the normal velocity of the solid skeleton,
while the BJS condition accounts for its tangential velocity. The first equation in (2.8),
along with the definition of o ¢ in (2.1), implies the jump in pressure condition

pr—2uDUpng) -ng = p,. (2.10)

We note that a different pressure jump condition is obtained in [ 16,34] using asymptotic
analysis. The study of this condition is beyond the scope of this paper.
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The above system of equations needs to be complemented by a set of boundary and
initial conditions. Let 'y = 0Q¢ N9Qand T, = 9Q, N dQ. Let T, =Y UT).
We assume for simplicity homogeneous boundary conditions:

ur =0 onIyx(0,T], n, =0 onl, x(0,T],
pp=0onT) x(0.T], u,-n, =0 onT) x (0,T].

To avoid the issue with restricting the mean value of the pressure, we assume that
|F£| > 0. We also assume that FIL,) is not adjacent to the interface I'fp, i.e.,
dist(F? ,I'sp) = s > 0. Non-homogeneous displacement and velocity conditions
can be handled in a standard way by adding suitable extensions of the boundary data.
The pressure boundary condition is natural in the mixed Darcy formulation, so non-
homogeneous pressure data would lead to an additional boundary term. We further set
the initial conditions

Pp(X,0) = ppox), n,(x,0)=mn,0x) in2,.

The solvability of the Stokes—Biot system (2.2)—(2.9) was discussed in [48], see also
[49]. In the following we derive a Lagrange multiplier type weak formulation of
the system, which will be the basis for our finite element approximation. Let (-, -)s,
S c RY, be the L2(S) inner product and let (-, -)r, F C R?~!, be the L2(F) inner
product or duality pairing. We will use the standard notation for Sobolev spaces, see,
e.g. [17]. Let

Vi={vien'@p’ivi=0onr,}, Wi = L2(S2)).
vV, ={v, € H@iv: 2,) v, my =0on T} ], W, = LX(Q,),
X, ={&, e H'@)": g, =0onT,}, @.11)

where H (div; 2)) is the space of L3(Q p)d -vectors with divergence in L3( p) with
a norm

IV @ivse,y = V1220, + 1V Vil g, -
We define the global velocity and pressure spaces as
V={v=(0rvpy) eV xV,}, W={w=(wr,wy € Wrx Wy},
with norms
VIS = 1V I3 a,) + Vo Wh@ive,) 10l = Twiljag,) + lwplliag, -
The weak formulation is obtained by multiplying the equations in each region by suit-

able test functions, integrating by parts the second order terms in space, and utilizing
the interface and boundary conditions. Let
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arur,ve) = CuD@ug), D(ve))a,,
al(u,,vy) = (K 'u,, vy,
a;("pf gp) = (ZI’LPD(np)» D(Ep))Qp + ()va ! ﬂp! & sp)Qp

be the bilinear forms related to Stokes, Darcy and the elasticity operators, respectively.
Let

by(v,w)=—=(V-v,w)q,.
Integration by parts in (2.2) and the two equations in (2.5) leads to the interface term
Iry, = —(o s, Vilry, —(0p0p. 8,01, + (Pp. Vp - Mp)ry,.
Using the first condition for balance of normal stress in (2.8) we set
A=—(omy)-ny=p, only,,
which will be used as a Lagrange multiplier to impose the mass conservation interface
condition (2.7). Utilizing the BJS condition (2.9) and the second condition for balance

of stresses in (2.8), we obtain

Ir,, = apssuy,0m,; vy, §,) +br(vy, vp, &, 0),

where
d-1

agysup,n,; vy, §p,) = Z(lthJs Kj_l(llf —n,) Trj, (vp—&p)- Tf,./')rfl,’
j=1

br(vVi, vp, &pi ) = (Ve -mg+(§,+Vp) Np, w)ry,.

For the well-posedness of b we require that A € A = (V) - mp|r fp)’ . According to
the normal trace theorem, since v, € V,, C H(div; ), thenv,-n, € H~1/2(3Q,).
Itis shown in [28] that, if v), -m), = on 02, \ 'y, thenv, -n, € H_l/z(l"fp). The
argument there uses that, forany ¢ € H'/2(I's,), (v, -n,, O)r;, = (Vp-1p, E@)agq,,
where E¢ € H!/2(3Q,) is a continuous extension. In our case, since v, - n, =
0 on F;,V and dist(I" 1? ,I'gp) = s > 0, the argument can be modified by first extending
¢ continuously to Hol({ 2(l“fp ur g ), and then by zero to H'/2(3Q2,,), again concluding
that v, -n, € H~'/2(I"f,). We note that ||v,, - n,, Il =121 ;) depends on s. Therefore
we can take A = Hl/z(Ffp).

The Lagrange multiplier variational formulationis: forz € (0, T'],findus(t) € Vy,
prt) € Wroup(t) € Vp, pp(t) € Wp, np(t) € X,, and A(t) € A, such that
Pp0) = ppo,n,0) =9, andforallvy € Vi, wg € Wy, v, €V, w, € Wy,
§p € Xp,and u € A,
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apup,vp) +al@,. vy) +a%m,.§,) +apssuy, 9, vy &)
+br(Vy, pr) +bp(vp. pp) + by, pp)
+br(ve,vp. &, 0) = Er, v, + £ §)a,. (2.12)
(s09: P, wp)gzp —aby (3m, wp) —bpp, wp) —by(up, wy)

=@r.-wrle, +(qp. wpe,. (2.13)
br (uy,up, 9, ) =0, (2.14)

where we used the notation 9; = % We note that the balance of normal stress, BJS,

and conservation of momentum interface conditions (2.8)—(2.9) are natural and have
been utilized in the derivation of the weak formulation, while the conservation of mass
condition (2.7) is essential and it is imposed weakly in (2.14). The weak formulation
(2.12)—(2.14) is suitable for multiscale numerical approximations and efficient parallel
domain decomposition algorithms [2,29,31,51].

3 Semi-discrete formulation

Let ’Z;lf and 7;5’ be shape-regular and quasi-uniform partitions [17] of €7 and €,
respectively, both consisting of affine elements with maximal element diameter 4.
The two partitions may be non-matching at the interface I' 7. For the discretization
of the fluid velocity and pressure we choose finite element spaces V¢, C Vy and
Wyn C Wy, which are assumed to be inf—sup stable. Examples of such spaces include
the MINI elements, the Taylor—-Hood elements and the conforming Crouzeix—Raviart
elements. For the discretization of the porous medium problem we choose V, , C 'V,
and W, , C W, to be any of well-known inf-sup stable mixed finite element spaces,
such as the Raviart—-Thomas or the Brezzi—-Douglas—Marini spaces. The reader is
referred to [8] for an overview of stable Stokes and Darcy mixed finite element spaces.
The global spaces are

Vi =1{vih=gn Vpn) € Vin X Vpil,
Wi =A{wn = (wgn, wpn) € Wen x Wyl

We employ a conforming Lagrangian finite element space X, , C X, to approximate
the structure displacement. Note that the finite element spaces V,,, V, p,, and X, 5
satisfy the prescribed homogeneous boundary conditions on the external boundaries.
For the discrete Lagrange multiplier space we take

Ap=Vpp- Ilp|rfp.

The semi-discrete continuous-in-time problem reads: given p, ;(0) and 5 ». 1 (0), for
t € (0, T], finduyp(t) € Vi, pra(t) € Wep,upp(t) € Vpp, ppn®) € Wy,
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np,h(t) € X, p,and Ap(t) € Ap suchthatforall vy, € Vg, wrn € Wep, v €
Vp,h, Wph € Wp,h, Ep,h S Xp,h, and up € Ay,

apQupn, Vin) +ab@pn. vpn) +am, &) +apss@pn. 0, 45V e & p)
+br (Vi prn) +bp(Vpns ppan) +abp& s ppn) For(Vin, Vous &, pi An)

= {Er, vena, + Ep. &, )0, (3.1
(500t Pp,hs Wp,n), — @bp(0en s Wpn) — bp(Up p, wp ) —br(agn, wen)

= (s> wrna, +(qp, wpne,, (3.2)
br(ugp,wpp, ey 43 pn) = 0. (3.3)

We will take pj, 1, (0) and 1, 5, (0) to be suitable projections of the initial data p, ¢ and
n p,0-

The assumptions on the fluid viscosity u and the material coefficients K, A ,, and 1,
imply that the bilinear forms a s (-, -), ai (-, ), and a;(-, -) are coercive and continuous
in the appropriate norms. In particular, there exist positive constants cf,el, e, C/t,
CP, C¢ such that

ANVs G, S arrvp),

apvp.ap) < ClIvelm@eplarlme,).  YrareVe G4
P IVpll72q,) < ap(p.Vp),

al(vp, 4p) < CP IVl 120, 195l 120, Yy, 4p €V, 3.5
€, I q,) < apEp &),

at (€, ¢,) < ClE o e ol g, VE,. ¢, € X, (3.6)

where (3.4) and (3.6) hold true thanks to Poincare inequality and (3.6) also relies on
Korn’s inequality, see [17] or [21] for more details. We further define, for vy € V,
§,€X),

vy =&l =asss(Vp &,V &)

d—1

= Y anss [ 0p =) v,
s BJS || ! p S N
j:

We next state a discrete inf—sup condition, which will be utilized to control the pressure
in the two regions and the Lagrange multiplier. Following [28], we define a seminorm
in Ay,

il = a (w5 Gun). W) () 3.7

where (u; n (), p;h(,uh)) € Vpn x W, j, is the mixed finite element solution to
the Darcy problem with Dirichlet data ptj, on I -
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(05 ), V) + by (Vs PRD) = =(Vp B )T s V¥ € Vi,
by (u;,h(//«h)» wp,h) =0, Ywppe Wy

2

LZ(F fp)
considered as a discrete version of the H'/ 2(1"f,,)-norm [28]. For convenience of
notation we define the composite norms

We equip Aj with the norm ||uh||f\h = |lunll + Whﬁ\h' This norm can be

2 2 2
1V & ) cx, = VA IR+ 1€l 1 e

2 2 2
1w )y, = lwnlly + lially,

as well as

b(vi, & p s wn) =br(Ven wrn) +bp(Vpn, wpn) +abp&, 5 wpn),
bI‘ (Vh, sp,h; /'l/h) = bI‘ (vf,hv vp,ha gp,h; I’Lh)
The next result establishes the Ladyzhenskaya—Babuska—Brezzi (LBB) condition for

the mixed Stokes—Darcy problem, where it is understood that the zero functions are
excluded from the inf—sup.

Lemma 3.1 There exists a constant 8 > 0 independent of h such that

inf sup by (Vs wrn) +bp(Vpns Wpn) + (Vin Mg+ Vpp - Mp, i) -8
(o) EWn X A vy eV, IVallv I Cwns n) llwxa,

(3.8)

Proof The result is proven in [28] in the case of velocity boundary conditions on 92
by restricting the mean value of Wp,. It can be easily verified that, since |F5 | > 0, the
result holds with no restriction on Wj,. O

This result implies the inf—sup condition for the formulation (3.1)—(3.3).

Corollary 3.1 There exists a constant B > 0 independent of h such that

b(vi, &, s wn) +br(vi, &, 55 1n) -

inf sup > (39
(wh, p1n)EWp X Ay Vi.&p )€V XX IS7% Ep,h)”VXXp lCwn, i) llwx Ay,
Proof The statement follows from Lemma 3.1 by simply taking &, , = 0. O

3.1 Existence and uniqueness of the solution

In this section we show that the Stokes—Biot system is well-posed. For the existence
of the solution we adopt the theory of differential-algebraic equations (DAEs) [9].

Let {pu; i} (B, ih 18y i} (0p,.i), 9p,.i} and {¢5 ;) be bases of Vi, Vi,
Xy Wen, Wy and Ap, respectively. Let M), Ay, Ap, A,, B;f, B;[, and BeTp

@ Springer
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denote the matrices whose (i, j)-entries are, respectively, (¢, 0o Pppide,af (Pu It

¢uf,i)’ag(¢up,jv bu,,i)s @y ( Dy, s by, i) Lr (Vb s bppi)sbp(V by, s bp,.i)s
afld'bp(V.- qS”p!j, ¢pp,i).. We also introduce matrices A?]{S, A?!S and AiJS whose
(i, j)-entries are, respectively, aps(@y, ;. 0: Py, i 0). apss(y, ;. 0; 0, gb,,p’i), and
apys(0, ¢np,j; 0, ¢np,j)' Finally, let B;F, B;,r and BZF stand for the matri-
ces with (i, j)-entries defined by br(qﬁuf,j,O, 0; ¢2.i), br(0, (bup’j,O; ¢.i), and
br(0,0.9, ;:¢.i), respectively.

Taking in (3.1-(3.3) w6, %) = Y i (Du, s Wp (1. %) = 3, i (D, i,
Mp (%) =32 0pi (OB, is Prat,X) =3 pri®@ppis Ppun(t,X) =32, ppit)
Dp,i and A5 (t, X) = Y _; A; ()¢, ; with (time-dependent) coefficients Uy, Up, 7, Py,

ﬁp, 2, leads to the matrix-vector system

Aftp+ AU, + AT, + ARSu, + AR5 09, + B, Py + (ij +"‘Berp)ﬁ1’

+(Blr+ Blr+ Blr) R = Fu, + 7, (3.10)
Mp 3Py —aBep 9Ny — BppUp — Byp Uy + A?ejs’T uy
+ Afejs Ny, =Fp, +Fp,, (3.11)
Byruy + Bpru, + B, rdn, =0, (3.12)
which can be written in the DAE system form
E9, X (1) + HX (1) = L(1), (3.13)
where
uy(t) Fuy 00 AZ5 0o 0 0
u, (1) 0 00 0 0 0 0
n,() F, ABIS
xo= """ to=""] E=|0 0 A 0O 0 O
Py Fpy 00 0 0 0 0
Pp(0) Fpp 0 0 —aB, 0 soM, 0
) 0 00 —Ber 0 0 0
(3.14)
BJS T T
Ap+ A% o o BY, o Bl
0 Ap 0 0 B, Bl
BJS,T T T
H: Aff O Ae O OlBep Be,F ) (315)
—Byy 0 0 0 0 0
0 ~B,, 0 0 0 0
—Byr —-B,r 0 0 0 0
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A Lagrange multiplier method for a Stokes—Biot fluid. . . 523

We note that the matrix

Af‘+ABJS ABJS BT

f7 0 fe rr fir
T T
0 Ay 0 0 Bpp Bp,r
BJS,T BJS T T
E+H= Afe 0 Ac+ AL 0 oaBep Bc,r
—Byy 0 0 0 0 0
0 —Bp, —a By 0 soM, 0
—Bfr —Bpr —B.r 0 0 0
can be written as a block 2 x 2 matrix
A BT
eoum (4 V),
where
BJS BJS T T
Af+ Aff 0 Afe Bff 0 Bf,I‘
_ T _ T T
A= 0 Ap 0 , B' = 0 Bpp Bp,r ,
AT 0 A+ ABS 0 aBl Bl
0 0 0
C=|0 soM, O
0 0 0

The following result can be found in [53].

Lemma 3.2 If A and C are positive semi-definite and ker(A) N ker(B) = ker(C) N
ker(BT) = {0}, then E + H is invertible.

It is convenient to associate with matrices A, B, and C the bilinear forms
PAC,2), ¢B(-,-) and @c (-, -) on (Vi X Xp) X (Vi X Xp), (Vi x Xp) x (W x Ap)
and (W, x Ap) x (Wi x Ap), respectively:

SA(n, 0y ), (Vo & 1)) =ar(pn, Ven) + ai(up,h, Vo) +anp 5. & p0)
+apss@pn, Ny ps Vois § 5 5)
eB((p, 0y, 5), (Why 1n)) =bg@pn, wrp) +bp@pp, wpp)
+abp(Mp s Wpn) +brWpn, Wp py Ny 45 An)
éc((phs An), (Why h)) = (S0P p,hs Wp,h)Q, -

By identifying functions in the finite element spaces with algebraic vectors of their

degrees of freedom, we note that ker(¢pp) = ker(A), ker(¢pp) = ker(B), and

ker(¢c) = ker(C). Also, for ¢gr (wn, wn), (Va, &, 1)) = ¢B((Vh, &, 1), (Wi, i),

we have that ker(¢gr) = ker (BT). We next show that the conditions of the Lemma 3.2
are satisfied.
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524 I. Ambartsumyan et al.

Lemma 3.3 The bilinear forms ¢a, ¢ and ¢c satisfy

ker(¢a) Nker(¢p) = {(0, 0)},
ker(¢c) Nker(gpr) = {(0,0)}.

Moreover, pp and ¢c are positive definite and semi-definite, respectively.

Proof The coercivity of ay(-,-), a;f(~, -), and a§(~, ), (3.4)—(3.6), and the non-
negativity of apys(-,-) imply that ¢a (-, -) is coercive and ker(¢pp) = 0, hence
the first statement of the lemma follows. We next note that ker(¢gr) consists of
(wp, up) € Wi x Ay, such that

¢BT ((wha I'Lh)a (Vh7 Sp,h)) - 07 V(Vh, gp,h) S Vh X X[J,h7

therefore the inf—sup condition (3.9) implies that ker (¢gr) = {(0, 0)}, which gives the
second statement of the lemma. The positive semi-definiteness of ¢¢ (-, -) is straight-
forward. O

To state the desired result, we will first introduce Bochner spaces equipped with norms:

T 1/2
ol 20,7 %) = (/0 ||¢(r>||%(ds) ,

@1l L 0,7:x) := ess sup;¢jo, 11l () Il x
@llwico,7:x) = ess sup;ero, 71 () lIx, 10: ¢ (D)l x}. (3.16)

Theorem 3.1 Forfy € L*(0, T; V};h), f, e L*(0, T; X/p,h)’ qreL™(0,T; W}.’h),
qp € L0, T; W;,,h), and pp n(0) € Wy, ), 4(0) € Xp 5, there exists a unique
solution (Wgp, Pfh> Wphs Pp.hs Np.hs Ap) in L*°(0, T; Vin)x L, T, Wen) x
L>®0,T;V,p) x wheoo, T; Wpn) x wleo, T; Xpn) x L=, T; Ap) of the
weak formulation (3.1)—(3.3).

Proof According to the DAE theory, see Theorem 2.3.1 in [9], if the matrix pencil
sE 4 H is nonsingular for some s # 0 and the initial data is consistent, then (3.13) has
a solution. Lemma 3.3 guarantees that in our case the pencil with s = 1 is invertible.
Also, the initial data pp;(0) and 5, ,(0) does not lead to consistency issues. In
particular, the only algebraic constraints in the DAE system (3.13) are the second
and fourth equations, see the definition of E in (3.14). The second equation is the
discretized Darcy’s law, and the initial value u, 5 (0) can be chosen to satisfy it for any
given p, 5 (0), while the fourth equation is the discretized incompressibility constraint
for Stokes, which does not involve the initial data. Furthermore, the initial data can be
assumed to satisfy the boundary conditions. As a result, Theorem 2.3.1 in [9] implies
existence of a solution of the weak semi-discrete formulation (3.1)—(3.3).

To show uniqueness, we assume that there are two solutions satisfying these equa-
tions with the same initial conditions. Then their difference (Wyn, pfn, Up.n, Pp.is
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ﬁp,h, Xh) satisfies (3.1)—(3.3) with zero data. By taking (Vy,, Wfh, Vp,hs Wp,hs Ep,h,
Wn) = @fn, PfasQp s Pp.is 0l p js An) in (3.1)=(3.3), we obtain the energy equal-

ity
af@pp, 8pn) +ap@pn 0pn) +ab (7,5 0 ,8)
+ (500: Pp. Ppon) + [0pn — 3,71, h\

agss

Using the algebraic identity

[ 05 = 3l (3.17)

we write the energy equality as
1 S 2 e = S
Eat (50||Pp,h||L2(Qp) + ap(”p h» np h)) + af(uf,ha uf,h)
+ai(ﬁp,h,ﬁp,h)+ [0y, — i1, h| =0

apJs

Integrating in time over [0, ] for arbitrary ¢ € (0, T'], we obtain

1 ~ N -
S GG P AC ON G))

t
+/O [}ﬁf,h a,n,,,,\aB TapQipn g +ag(ﬁp,h,ﬁp,h)] ds = 0.
(3.18)

Due to the coercivity of bilinear forms, we conclude that iy, (1) = 0, G, (1) =
0, ﬁp’h(t) =0, vVt € [0,T]. If so # 0, we also have that p, ;(t) = 0, but we can
also obtain uniqueness for both pressure variables and the Lagrange multiplier simul-
taneously and independently of parameters. In particular, from the inf—sup condition
(3.9) and (3.1), we have for (p, A1)

B )llwsca,
bf(Vf.hv I;fh) + bp(vp,hs 131),11) + Olbp(sp,h, I;p,h) + br (Vf,hs Vp.hs EI;JI; ;-h)

< sup
V& p )€V xXp VR, EDllvxx,
wp |:*ﬂf(ﬁf,h, Vin) = @@y, Vo) = ab Gy e &p ) — aBrs@pn, iy i Vi, Epjz)} 0
= Su = U.
Vnop )V XX Cva, &) llvxx,

Therefore, we conclude that pr (1) = 0, ppn(t) =0, An() =0, Vi € (0, T] and
the solution of (3.1)—(3.3) is unique. O

The next two sections are devoted to the stability and error analysis of the semi-
discrete problem.
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4 Stability analysis of the semi-discrete formulation

We will make use of the following well-known inequalities:
e (Cauchy—Schwarz) For any u, v € L?(S),

(u,v)s < llullp2esllvlizecs), 4.1)
e (Trace) For any v € H'(S),
lvllz2as) < Cllvligs)s (4.2)
e (Young’s) For any real numbers a, b and € > 0,
2 2
€a b
b< — 4+ —, 4.3
W=t “3)
o (Gronwall’s) Let g(t) > O and u(t) < f(t) + f; g(t)u(r)dr, then
t t
un = 10+ [ F@g@exp ( / g(r)dr) dr. (44
S T

For the sake of simplicity, throughout the analysis, C will denote a generic positive
constant independent of the mesh size. We will also abuse notation by denoting € as
an arbitrary constant with different values at different occurrences, arising from the

usage of inequality (4.3).

By taking (Vf.i, W Vo Wpois & p ps 1) = (Wes P fis Wp ks Ppois 30 p > M)
in (3.1)—(3.3) and proceeding as in the uniqueness proof, Theorem 3.1, we obtain

1 0
5 (500Pp s 1 2(q,, + a0 1 (0. 7,0)

t
2
+[ [}“f,h —0mpul, ar@pnugs) +ag@,, up,h)] ds
0

apijs

1
= (sou Prs OO}z + a0, 4(0), ,,p,h(o)))

t
+/ F(t;upp, 0N p > Pfohs Pp.i) ds,
0

(4.5)

where F (t; uy, B,np’h, Dfhs pp,h) denotes the total forcing term:

F(t:upn. 0mpp. Prns Ppi) =Epoupn)a, + (£ 3:’7,;,/1)9!)

+ . pr)e; + qp. Ppne,
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Using integration by parts in time, we write the forcing term as

F(t:0pn, 0y ps Pris Ppn) = Epoupn)a, + 0 (£, "th)sz,, — (9,fp, np,h)gzp
+(qr, pr)ey + (Gp, Pp.a)e,-

Therefore, for any €; > 0, we have

t
/ F(t:upn. 80y ps s Ppi) ds
0
1 2 1 5
=< _””p,h(o)”LZ(Qp) + szP(O)”LZ(QP)
1 ! 2 2
+ 5/(; (”’7p,h||L2(Qp) + ” dfp ||L2(Qp)> ds
€1 2 ! 2
+ E(”ﬂp,h(t)HLZ(Qp) +/0 (”uf,h”LZ(Qf)
P2, + 1Ppala,, ) ds
’ L (Qf) PRl (Qp)

! 2 ! 2 2 2
+2—q(||fp<t>|!m<gp>+ /0 (1871220, + a0, + 0220, ) s ) -
4.6)

Combining (4.5), (4.6) and (3.4)—(3.6), and taking €; small enough, we obtain
2 2
SO”pp,h(l) ”LZ(QP) + “np,h(t)”Hl(Qp)
! 2 2 2
+ /(; (|uf,h - 8tnp,h|aBjS + ”uf,h'Hl(Qf) + ”up,hllLZ(Qp)) ds

t t
< Ce fo (1P il2aq,, + 1Ppalag, ) ) ds +C /0 19120,

+C (sonpp,h(())niz(gp) 11,1 O 51, + IO

! 2
+/o |9t ||L2(sz,,) ds)

t
—1 2 2 112 2
+ CE[ (”fp(t)”LZ(Qp) + ,/0 (”ff”LZ(Qf) + ||Clj ”LZ(Qf) + ”qp”LZ(Qp)) dS> .
4.7

Finally, from the inf—sup condition (3.9) and (3.1), we have

1(phs A llwxa, = C sup
i€ p )EVRXXp i

br(Vin, prn) +bp(vpns Ppn) +abp&p py pp.n) +br(Vin, Vo, & pps An)
(Vhs & p ) lvxx,
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=C sup

Vi p ) EVRXXp

N —agysgn, 0y ps Vin, Epn) + &, ven) + Ep. &, )
10V € ) IV, ’

—af(gp, Vin) — ag(up,h, Vo) = ay(Mp . &, 0)
Vi, & p ) llvxx,

which, combined with (3.4)—(3.6), gives

t
& /O (1120, + 1Ppall2agg,, + IR, ) ds
t
2 2 2
=ca [ (lumlinay + wnaliq, + 17405,
g = 0y aly s+ 1172, + ||fp||iz(9p)) ds. (4.8)
Adding (4.7) and (4.8) and taking €, small enough, and then €; small enough, implies

t
2
SO“pp,h(t)“%)(Qp) + ”np,h(t)“ill(gp) +A <|uf»/’l - 8t"p’h|a3_/s

+lIAallR, + |Ipf,h||iz(9f) + ||pp,h||iz(9p) + IquIIle(Qf) + ||u,,||iz(9p)) ds
13
<c ( /0 101151 g, 5 +501PpnON7 20 )+, s O3 o) +IE O 2 )

t
2 2 2 2
+ /0 (16 2egqy, + W12 )+ 08 o, + a1

+lapl3aq, ) ds) - 4.9)

The use of Gronwall’s inequality (4.4) implies the following stability result.

Theorem 4.1 The solution of the semi-discrete problem (3.1)—(3.3) satisfies

Vsollpp.nlli Lo, :2@,)) + 1Mpall Lo, @)
sl mi@ + 1Wpllor2w,)
Hlprnlizor2@m +1Ppallzo.r2@,) + 12020740
+ ‘llf,h - a’”[’»h‘Lz(O,T;aBJS)
< C/exp(T) (\/%”pp’h(o)”LZ(Qp) + 11,1l 2, + | ||L°°(0,T;L2(Qp))

8 120752200, s 2075226020

+Hokp | 20,7020, T 191120, 75220000 + |qu||L2<o,T;L2<s2p>>) - (410)
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5 Error analysis

In this section, we analyze the error arising due to discretization in space. We denote
by ks and s the degrees of polynomials in the spaces V; and Wy, respectively.
Let k, and s, be the degrees of polynomials in the spaces V, ;, and W), , respectively.
Finally, let k; be the polynomial degree in X, .

5.1 Approximation error

Let O, Op.n» and Qj j be the L2-pr0jecti0n operators onto Wy, Wy, 1, and Ay
respectively, satisfying:

(pr—Qrnpy, wf,h)Qf =0, Ywyen € Wep 5.1
(pp — Op.hpp> wp,h)Qp =0, Ywpn € Wy 5.2)
(A = Qanh, h)ry, =0, Y un € Ay (5.3)

These operators satisfy the approximation properties [17]:

”Pf_ Qf,hl’f”Lz(Qf) =< Chrsf ||pf||H"5f(Qf)a OSrSf sz+17 (54)
1Py — Cpappllizg, < CH Iyl g, 0=, <sp+1 (55
||)\, — Q)\,h)L”LZ(Ffp) < Cl’lrkp ”)"HHFI‘[? (Ffp), O < ;kp < kp + 1 (56)

Since the discrete Lagrange multiplier space is chosen as Ay, = V) 5 - mplr,,, we
have

(A= Qanh,Vpn -mp)r,, =0, Vv, €V,

We note that the discrete seminorm (3.7) in Ay, is well defined for any function in
Lz(Ffp). It is easy to see that |A — Oy ,A|a, = 0, hence

1A= Qanlla, = Ix = Quntlliar,). 5.7)

Next, we consider a Stokes-like projection operator (S¢,n, Rgp) : Vi — Vin X Wyp,
defined forall vy € V¢ by

ar(Senve, Vin) —br(Ven, Rppve) =ar(Ve, Vi),  YVpn € Vi, (5.8)
byr(Sgnve,wrn) =br(Ve, wrn), Vwrn € Wen.  (5.9)

The operator S, satisfies the approximation property [22]:

”Vf - Sf,th”Hl(Qf) <Ch ky ”Vf”Hrka(SZf)’ 0< Tky < kf. (5.10)
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Let 1, , be the MFE interpolant onto V, ; satisfying for any 6 > 0 and for all
v, €V, NHY(Q)),

(V- pVp, wpp) =(V-vp, wpyp), Ywpn € Wyp, (5.11)

(HpaVp “Mp, Vpu - Mp)ry, = (Vp - Mp, Vo - Mp)ry,,  YWph € Vpu.  (5.12)
We will make use of the following bounds on IT,, 5 [17,39]:

Vo = Mooz, < CHS INpl iy )0 1= 7, < hp+1, (5.13)

Iyl aaay = € (Wpllag, + 1V - ¥olli2,)) (5.14)
Finally, let Sy j, be the Scott—Zhang interpolant from X, onto X, ;, satisfying [47]:

1€, — Ssnépllrzq,) +hl&, = Ssnpluiq,) = CH™ 18, ams @)
1 <r <k + 1. (5.15)

5.1.1 Construction of a weakly-continuous interpolant

In this section we use the operators defined above to build an operator onto the space
that satisfies the weak continuity of normal velocity condition (3.3). Let

U={(Vf,vp,Ep)er prﬂHe(Qp) xXp:vf~nf+vp-np+§p-np=0}.
Consider its discrete analog

U, = {(Vf’h, Vp,h,gp’h) e Vf,h X V,,,h X Xp’h :

br (Vins Voo & pps in) =0, Yy € Ap} .
We will construct an interpolation operator [, : U — Uj, as a triple
vy vp &) = (Irnve. IpnVp. Isnk )

with the following properties:

br (Lgnve. IpnVp, Isnk pi ) =0, Yun € Ap, (5.16)
brppvy — vy, wrp) =0, Ywyin € Wep, .17
bpyUpnVp —Vp, wpp) =0, Ywpn € Wy p. (5.18)
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Welet Iy := Sy, and Iy, := Sy ;. To construct 1), 5, we first consider an auxiliary
problem:

V-V =0 in Q,,
_ D
»=0 only (5.19)
V¢ -n, =0 onl"ﬁ,v,
Vo -np =y —Igpvy) -ng+ &, —Lp§,) mnp onlyy
Let z = V¢ and define w = z + v,,. From (5.19) we have
V.-w=V.z24+V.v,=V.v, inQ,, (5.20)

and

W-Np, =Z, -Np+V, -Np=Vy-Nf—IfpVy-ny +§p~np—ls,h£p~np+vponp
=—If’th-nf—IS‘h§p'np onTg,. (5.21)

We now let
Ippvy =10, pw. (5.22)

Next, we verify that the operator I, = (I 5, Ip . I, 1,) satisfies (5.16)—(5.18). Property
(5.17) follows immediately from (5.9), while, using (5.11) and (5.20), property (5.18)
follows from

(Vdpnvp,wpne, = (V- -Hppw, wpnle, = (V-W,wp g,
= (V- vp, u)pﬁh)Qp, Ywpn € Wphp.

Using (5.21) and (5.12), we have for all uj, € Ay,
(Up.nVp - Mp, Mh)f‘fp = (Ippw-mp, Mh)l“fp = (W-n, Mh)l"fp
= (—Irnvy -ng — I p, -np, wndr,,,

which implies (5.16).
The approximation properties of the components of [ are the following.

Lemma 5.1 For all sufficiently smooth V¢, Vp, and & ,,

Tk
Ve = 1rnvsllgia,) < Ch ks ||Vf||Hrkf+1(Qf), 0 <rk, <ky, (5.23)
”81) - I]:lysp”[,z(ﬂp) +h|§p - I]pr'Hl(Qp) S Chrkx ”Ep”Hrkx (Qp)v lfrks S ks‘+1v
(5.24)
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Vo = Ipnvplli2e,)
<C <hrkp ||Vp||Hrkp @) + h'*r ||Vf||Hrkf+I(Qf) + h'ks |I§p||kay+‘(Qp)> )

L<nm, <kp+1, 0<ri, <ky, 0 <rg, <ki. (5.25)

Proof The bounds (5.23) and (5.24) follow immediately from (5.10) and (5.15). Next,
using (5.22), we have

”Vp - p,th”LZ(Q,,) = ”Vp =y nvp — I—Ip,hZ”L2(Q,,)
<|vp— Hp,thHLz(Qp) + ”Hp,hZ”LZ(SZp)' (5.26)

Elliptic regularity for (5.19) [19] implies, for some 0 < 6 < 1/2,

Izl o, < C <||(vf — 1V gl g,
+ ” (gp - Is,hgp) : np ” H@—l/Z(r],p)) . (527)
Since V - z = 0 by construction, using (5.14), (5.27), and (4.2), we get

IMpazll 2, < Clizl o,
= C(Ivy = Lrav) sl o,
+ (€)= Linkp) -mp ”He—l/z(rfp))

= (Ivy = Lnvillaniay + 18, — Lkyllme,) - (5:28)

A combination of (5.26), (5.28), (5.13), (5.23), and (5.24) implies (5.25). O

5.2 Error estimates

In this section we derive a priori error estimate for the semi-discrete formulation (3.1)—
(3.3). Werecall that, due to (2.14), (u s, u,, 9y np) € U and we can apply the interpolant
In(uy,ap, 8t17p) = U yspuyp, Ip pup, 1X,hamp) € Uy, forany ¢ € (0, T']. We introduce
the errors for all variables and split them into approximation and discretization errors:

er:=uyr—uyp, =Wy —Igpur)+Uppuy —uypy) = Xr +¢f,h’
ep:=uy —uy; =Wy —Ippup)+ Uppup —wpp) = x,+ ¢,

e =1, =N, =0, Lsan,) + Usnlp —Np5) = X + b5 1>
efp:=pf —prh=pPr—Qrnpf) +(Qrups— Prhn) = Xfp + Psp.h>
epp :=Pp—Pph = (Pp — QpaPp) + (QprPp — Pp.h) = Xpp + Ppp.h>

e =r—ip= A= Onnr) + (Qunr —An) == Yo+ don- (5.29)
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Subtracting (3.1)—(3.2) from (2.12)—(2.13) and summing the two equations, we obtain
the error equation

aper,vn)+as(ep. vpn)+ases. &, ) +apsses, des: Vin &, ) +br (Vi efp)
+bp(Vpnsepp) +abp(§, s epp) +br(Ven, Vo, &, s €) + (so depp, wp,h)
—aby(des, wp p) —bp(ep, wpp) —brler, wyrp) =0, (5.30)
Setting Vi = @4 Voo = Gpp§ppn = 0PgpsWrn = Pppn, and wpp = ¢pp s
we have
ar(Xp @) +ar@pn b)) +asXp bpp) +a(pn.bps)
+a, (Xs» 0r0s5.1) + a, (b5 01bs0)
+agJs (va X PDrns dbs.p) +asss ((bf,h» Py ps b > 0195 1)
+or(Drns xpp) +or(Dpns Drpi)
+Dp @ s Xow) + D@ i pp) + @by (3B 1> Xpp) + @by (31> Spp.n)
+br (¢f,h, Dp.ns 0Py s XA) +br (¢f,hv Dpns 0Py ps ¢A,h)
+ (SO 9 Xpp> ¢pp,h) + (50 9 Ppp.h ¢ppyh)
—aby (31)(‘“ d)PP’h) —ab, (8t¢s,hs ¢pp’h) —bp(Xps Ppp.k) = bp(@p 1, Ppp.i)
—bf(vafibfp,h) _bf(¢f,hv¢fp,h) =0. (5.31)

The following terms simplify, due to the properties of projection operators (5.2), (5.3),
(5.17), and (5.18):

bf(va ¢fp,h) = bp(le ¢pp,h) = bp(¢p,ha pr) =0,
(50 9 X pp> ¢pp»h) =(Pp.n-Mp, x2)ry, =0, (5:32)
where we also used that A, =V, ;- n,|r . for the last equality. We also have
br (¢f,h’ ¢p’h, 3t¢s,h§ ¢A,h) =0,

br (¢ pns b pn 0ibspi x0) = (b s -0y 4 01, -, XA)Ffp ,

where we have used (5.16) and (3.3) for the first equality and the last equality in (5.32)
for the second equality. Using (3.17), we write

1
(50 01 0pp.1: @op.n) = 550 0 pp a2 g, )

1
as, (s n 0dsp) = 53#1; (D> Do) -

Rearranging terms and using the results above, the error equation (5.31) becomes
ar(@ndrn) + ag(fﬁp,h, Sp.n)

@ Springer



534 I. Ambartsumyan et al.

2
apyjs

1
50 (@ @y bs) + 50100 l2(q)) + 610 — 0

=ar(Xr bpn)+ ai(Xpa bpn) +a, (Xs 0i05.1)

d—1
+ Z<IMYBJS\/ Kj_l(Xf =0 Xs) Trjs Dpp— 0Py p) - Tf,j>

j=1 Ff],
+ bf(¢f,hv Xfp) + abp(8t¢s,hv Xpp) + Olbp(atxs’ Ppp.h)
+(Dsn My + 0 Mp, XA)Ty,- (5.33)

We proceed with bounding the terms on the right-hand side in (5.33). Using the
continuity of the bilinear forms (3.4) and (3.5) and inequalities (4.1) and (4.3), we
have

ar(X s bpn) +ay(Xp $pi) < Cep! (uxfu%,lmf) + ||x,,||iz(9p))

e (191210, + 19,4l1320,)) - (5:34)

Similarly, using inequalities (4.1), (4.2) and (4.3), we obtain

-1
<lwlBJs Kj_l(Xf —0Xs) T Dpp— s ) Tf,j>

=1 Ffl’

2 _
<eldpn—aboll,, + e (X110, + 103, (539

apjs

~

Finally, using (4.1),(4.2) and (4.3), we bound the rest of the terms that do not involve
8t ¢s,h:

by(brn Xip) +bp (3 Xs» Bppn) + (D pn g, xa)ry,
= et (Isnl3agay, + 1V - 00l 2,y + 106, )
+er (IV b aldag,, +Idpmaliag, + 1004 0l )
= Cfl_1 (”Xfp”i%szf) + ”8sz”12ql(Q,,) + ”XA"iZ(rfp))

+e1 (1914130, + 1pmal2,)) - (5.36)

Combining (5.33)—(5.36), integrating over [0, ¢], where 0 < ¢ < T, using the coer-
civity of the bilinear forms (3.4)—(3.6), and taking €| small enough, we obtain
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1650 O3110,) + 5018ppn O 720, + 19 111720 1112

180132002200, + 1970 = 5Bl 200,m 5
< 1l iz, + Cer (10000120 1m0, + 112201200
1 1201 + X122 00220y T 161220120, 0)
t
+C [ (000 00) + @by @by ) + Qim0 ) ds

+C (1954 OB g, + 5011 Olag ) ) (5.37)

For the initial conditions, we set pp 4(0) = Q) npp.0 and n, ,(0) = Is 47, o, imply-
ing

¢51,(0) =0, ¢ppn(0)=0 (5.38)

We next bound the terms on the right involving d;¢; ;. Using integration by parts in
time, (4.1), (4.3), (3.6) and (5.38), we obtain

t t
/(; a; (Xs’ at¢s,h) ds = a;(Xs’ ¢s,h)|€) - [) a; (ale ¢s,h) ds

-1 2 2
=< C (G] ”Xs(t)llHl(Qp) + ” atXS ||L2(0,I;H1(Qp)))
+ 61”¢s,h(t)”i1l(gzp) + ||¢Ssh”iz(0,t;H1(Qp))' (539)

Similarly, using (4.1), (4.2), (4.3) and (5.38), we have

t

t
/() <at¢s,h ‘Np, X?»)l"fp ds +/0 Olbp (3t¢s,h7 pr) ds
t
= (@, - Mp, Xx)rf,,|:) —/0 (s, - mp, 3zXA)rf.p ds

t
+abp (b4, 3 Xpp) |E) - /0 abp (¢ 3 xpp) ds

2 2
<€ ||¢S,h(t) L ”LZ(rfp) + “¢S,h -1y, ||L2(0,t;L2(F_fp))

+ellV b1 Oli2q,) T 1V b illi20.11200,))

-1 2 2
+ C<61 ”X)‘(I)HLZ(Ffp) + ||8IX)‘||L2(0,I;L2(Ff],))

—1 2 2
+ 61 ”XI’P(t)”LZ(Qp) + ||8tpr”L2(0,t;L2(Qp))>

2 2
<€ ”¢s,h(t)”Hl(Qp) + ”¢s,h ||L2(0,t;H1(Qp))
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-1 2 2
+ C<6] ”X)‘(I)HLZ(Ffp) + ||8tX)‘||L2(0,t;L2(rf,,))

+ 6]71 ”pr (t) “%‘Z(Ql)) + ”81pr “iQ(O,I;Lz(Qp))) . (540)
Using (5.38)—(5.40) and taking €; small enough, we obtain from (5.37),

16,4 D510, + 5016ppnOI20 ) + 19 £all 720011102,
1613 200,:2200, + 1870 = 5Bl 200.10ms
< €l ppnlizz 2, + 19517200, 1100
+Cer (1013201202, + 1X 12201 + 10012200220

O, + 1Xep D72, + 1007200, 1200,,) + ||xs(r>||§,l(9p))

2 2 2
+ C (”atXS”LZ(O,t;HI(Qp)) + ||an)~||L2(0,t;L2(Ffp)) + ||atpr”L2(0,t;L2(Qp))> .
(5.41)

Next, we use the inf-sup condition (3.9) with the choice (wp, un) = (P p.is Ppp.i)s
@) and the error equation obtained by subtracting (3.1) from (2.12):

”((d’fp,hv ¢pp,h)v ¢A,h)||W><A;, <C sup

V& p ) EVRXXp
by(Vsnbrpn) +bpVpns dpp.n) + abp(& e bppn) + b0 (Vi Vpuo &y dan)
Iva. &p ) llvxx,

= sup
V& p )EVRXXp,h

—ag(er, Vyn) —ad(e, vpn) —as(es. &, ) —aps(es, o€ Vin, &, y)
( Vi, &, Ivsx,
N =br (Ve Xfp) —bp(Vpns Xpp) — abp & p s Xpp) —Or(Vin, Vpni & i Xx)>‘
1(vas &, VX,

Dueto (5.2) and (5.3), by (Vp, i, Xpp) = (Vp,i -Mp, Xa)r;, = 0. Then, integrating over
[0, #] and using the continuity of the bilinear forms (3.4)—(3.6) and the trace inequality
(4.2), we get

2 2 2
€2 (“¢fp,h ||L2(O,I;L2(Q_f)) + ||¢pp,h ”LZ(O,t;LZ(QP)) + ”(b)»,h ”Lz(O,t;LZ(F_/I,)))
2 2
< CEZ <||¢f,h ||L2(0,I;H|(Qf)) + ||¢p,h ”LZ(O,I;LZ(QP))

2 2
+ ||¢s,h ”LZ(O,Z;HI(QP)) + |¢f,h - at¢s,h |L2(O,T§GBJS)
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2 2 2
TUX 120,01 @py T IXp 20,0220, T Hatxx||L2(o,z;H1(Qp))

2 2
+||Xfp I LZ(O,I;Lz(Qf)) + Xpp ”Lz(O,l;Lz(Qp)) + X2 ”LZ(O,z;LZ(Ffp))) . (5.42)
Adding (5.41) and (5.42) and taking ¢, small enough, and then €| small enough, gives

2 2 2 2
||¢s,h(t) ”HI(QP) + S0||¢[7[7,h (t) ”LZ(QP) + ||¢f,h ”LZ(O,I;HI (Qf)) + ”¢p,h ”LZ(O,I;LZ(QP))
2 2
+ |¢f,h - 81¢S,h |L2(0J;I/IBJS) + ||¢fp,h ||L2(0,t;L2(Szf))

2 2
+ ||¢pp,/1 ||L2(OJQL2(Q,;)) + ”qb)u,h ||L2(0,t;Ah)

2 2 2
= C <||¢s,h ”Lz(O,t;Hl(QP)) + ”3th ”Lz((),t;Hl(Qp)) + ”Xfp”LZ(()J;LZ(Q/))
2 2 2
+ ”Xf ”Lz((),t;Hl(Qf)) + “XP”LZ(O,I;Lz(Qp)) + ”X)»(t) ||L2(Ffp)

2 2 2
+ ”pr (t)”Lz(Qp) + ||X)\- ||L2(O,I;L2(Ffp)) + ”anA”LZ(O,t;LZ(Ff,,))

+ ”thpp”iz(O,t;Lz(Qp)) + ||3th(t)||§.11(Qp)) (543)

Applying Gronwall’s inequality (4.4) and using the triangle inequality and the approxi-
mation properties (5.4)—(5.6), (5.7) and (5.23)—(5.25), results in the following theorem.

Theorem 5.1 Assuming sufficient smoothness for the solution of (2.12)—(2.14), then
the solution of the semi-discrete problem (3.1)—(3.3) with pp ,(0) = Qp ppp.o and
0,4(0) = Is nm o satisfies

My = npnlleoo.rm1(0,)) T VS0llPp = PpallLeo.r:22,))
oy —ugnli2or:m1@p) + 1y —Wpallizor: 2@,
+ |(uf - 8t1’p) - (uf,h - atnp,h)|L2(0’T;aBjs)
+lpr = prnll2o 2@ T IPp = Ppaliizo 2,y + 12 = 2nll20,7;8,

< kg .
<C exp(T)(h ||uf||L2(0‘T;ka+l(Qf))

Is
+h ||pf'||L2(O’T;Hr,sf @) + hp ”uP“LZ(O,T;HrkP (@)
+ W't (nxu

+ 1] L+ 32

L20.7;H'™* (T ) Loo(0.7;H'*r (I, L20.7:H*» (rfp)))
+ (||Pp||Loc(0,T;H’fp @) + ||Pp||L2((),T;H’Sp ) + ||31Pp||L2(o,T;H’Sp (Q[,)))

rkl‘,
+h (”’717”LO@(O,T;H’k.v“(Q,,)) +| Np ”L2(0,T;H’ks+‘(sz,,))

+ o, HL2(0,T;H’/<.\'“(S2p))) )
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0<r, <kp, 0<rs, <sp+1, 1 <A{rk,, i,} <kp+1,

0§rsp§sp+l, Ofrksfky

6 Fully discrete formulation

For the time discretization we employ the backward Euler method. Let t be the time
step, T = Nt,and lett, = nt,0 <n < N. Letd,u" := r_l(u" — u”_l) be the
first order (backward) discrete time derivative, where u" := u(t,). Then the fully
: © ol 0o _ 0o _
dlnscrete model fleads. given pr’z”h = pp,h(O)nand Nyn = np,hElO), find u.’;-’h € Vyp,
Py € Wi, ul, € Vo.hs Py € Won, ), € Xpn,and Ay € Ay, 1 <n <N,
such that forall vy, € Vip, wrn € Wen, Voo € Vo, wpn € Wy, £,,,h € Xp.ns
and up € Ay,

ay (“,’;',h’ Vf,h)—f-aﬁ (“’;,h’ V,,,h)—}-af, (n’;yh, Sp,h)
+agys (u’}’h, dey 3 Vs S,,,h> + by (Vf,h, P?,h)

+bp (Vp,/w Ph) +aby (sp,hv pZ,h) +br (Y Voo §pps M)

= (FFvin) o + (6 8) 6.1
(Fpvin)g, + (85 80n) (6.1)
(sod,p’;,’h, wp,h)Q —aby (dr”;,h» wﬁﬁ) —byp (“’;,h’ w,,,h) —by <“.r/l’,h’ wf?h)
P
=g} w ,h) + <q”,w ,h) : (6.2)
( PR, PPt g,
br (W) wh o e ) = 0. (63)

We introduce the discrete-in-time norms

N 1/2
2 . 2 2 .
18150 7.x) = (r > le" ||x> + 19l r;x) = jmax 11" l1x.
n=1 -

Next, we state the main results for the formulation (6.1)—(6.3). The proofs follow the
framework in the semi-discrete case. Details can be found in “Appendix”.

Theorem 6.1 The solution of fully discrete problem (6.1)—(6.3) satisfies

Vsollpp.nllieo.7: 222, + 1Mp.nlli0.7:11(2,)
T llugnllzor:mi@pm + palizor.c2@,)
+upn —deny nl2o,1:a5,5 + 1Ppllo.r:020,)

Flpralleoriz@m + 1Aalleora

+1 («/SOHder,h||12(0,T;L2(Qp)) + ||drﬂp,h||12(0,T;H1(szp>))

@ Springer



A Lagrange multiplier method for a Stokes—Biot fluid. . . 539

= CVexp() (V5o allizcey) + 154l o)
+ ||fp||zoc(o,T;L2(Q],)) + ”8tfp||L2(0,T;L2(Qp))
+ I rll20. .22 T Narlzo. 2@,
+laplleo.r;12@,) + ||fp||12(0,T;L2(f2p)))'

Theorem 6.2 Assuming sufficient smoothness for the solution of (2.12)—(2.14), then
the solution of the fully discrete problem (6.1)—(6.3) satisfies

Vol pp = Ppalico.:222,) + 11 = 0pnllico.r;m1@,))
+ ﬁ(«/%”flr(l?p —pp)lzorii2,) + ld-(n, — ﬂp,h)”ﬂ(o,T;Hl(QP)))

+ (Iluf —Usnllpo,rav @ T 1Up = Upnllizor; 2@,
+lup —den, — Wen —dep 1), 7:a5,5)

+lpr— Pf,h||12(o,T;L2(Qf)) +lpp — pp,h”lz(O’T;Lz(Qp)) + A — )\h||12(o,T;Ah))

rkf
<C exp(T)(h ||uf||IZ(O’T;Hrka(Qf))

s Tk ,
THINP el 0,077 @) TR0l 0, 7. 5% (@,

+ h't (nxn + A + (13,2l

2.T:H™ (T 1)) 1260, T:H'*7 (I ) L20.7:H"% <Ffp>>>

+h (”pl’”lw(o,T;H’w @ T1Pplleormmr @,y + ”"’tl’p”LZ(o,T;H’SP(Qp»)
+ h'ks (”np ||100(0,T;Hrk5+1(9p)) + || np ||12(0,T;Hrk5+] @)
+ o, HL2(0,T;H’ks+'<Q,,)>)

+7 (m“atﬂ’p||L2(0,T;L2(Q,,)) + ||3tt’7p||L2(0,T;H'(Qp))> )

O0<ri, <kp, 0=<rg, <sp+1, 1 <A, 7x,} <kp+1,

Ofrspfsp+l, 0 <rp, <k.

7 Numerical results

In this section, we present results from several computational experiments in two
dimensions. The fully discrete method (6.1)—(6.3) has been implemented using the
finite element package FreeFem++ [33]. The first test confirms the theoretical con-
vergence rates for the problem using an analytical solution. The second and third
examples show the applicability of the method to modeling fluid flow in an irregularly
shaped fractured reservoir with physical parameters, while the last one performs a
robustness analysis for the method with respect to various parameters.
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(a) (b) (c)

Fig. 1 Simulation domains. a Computational domain €2 in Example 1, non-matching grids. b Reference
domain €2 in Examples 2, 3, and 4. ¢ Physical domain €2 in Examples 2 and 4

7.1 Convergence test

In this test we study the convergence for the space discretization using an analytical
solution. The domain is Q2 = [0, 1] x [—1, 1], see Fig. 1a. We associate the upper half
with the Stokes flow, while the lower half represents the flow in the poroelastic structure
governed by the Biot system. The appropriate interface conditions are enforced along
the interface y = 0. The solution in the Stokes region is

—3x 4 cos(y)

v 1 ) , py =€ sin(mx)cos (%) + 27 cos(mt).

uy =7 cos(mt) (

The Biot solution is chosen accordingly to satisfy the interface conditions (2.7)—(2.9):

cos(mx) cos (& . 7

up =7 (% e sin((’z%))) Py = sinrn cos (55)
1, = sin(rt) < 3xy++0(l)s(y)> .
The right hand side functions fr, g, £, and g, are computed from (2.2)—(2.6) using
the above solution. The model problem is then complemented with the appropriate
Dirichlet boundary conditions and initial data. The total simulation time for this test
case is 7 = 0.01 s and the time step is Az = 107> s. The time step is sufficiently
small, so that the time discretization error does not affect the convergence rates.

We study the convergence for two choices of finite element spaces. The lower order
choice is the MINI elements P{’ — Py for Stokes, the Raviart-Thomas R7 o — Py
and continuous Lagrangian P; elements for the Biot system, and piecewise constant
Lagrange multiplier Py. In thiscase ky = 1,5y = 1,k, = 0,5, = 0, and k; = 1,
so Theorem 6.2 implies first order of convergence for all variables. The higher order
choice is the Taylor—-Hood P, — P for Stokes, the Raviart-Thomas R7 | — ’P{ic and
‘P, for Biot, and Pfic for the Lagrange multiplier, with ky = 2, sy = 1, k), = 1,
sp = 1, and kg = 2, in which case second order convergence rate for all variables
is expected. These theoretical results are verified by the rates shown in the Table 1,

@ Springer



A Lagrange multiplier method for a Stokes—Biot fluid. . . 541

Table 1 Example 1: relative numerical errors and convergence rates on matching grids

h HefHIZ(HI(Qf)) ”efp”ﬂ(LZ(Qf)) ”ep”lZ(LZ(Qp)) ”eppHIOO(LZ(QP)) ”es||[°°(H1(Qp))

Error Rate Error Rate Error Rate Error Rate Error Rate

P — Py, RTo —Po. Py and Py

1/8 8.96E—03 - 2.61E-03 - 1.0SE-01 - 1.03E-01 - 5.09E-02 -

1/16  447E-03 1.0 833E-04 1.6 523E-02 10 5.17E-02 1.0 1.34E-02 1.9
1732 224E-03 1.0 276E-04 16 261E-02 1.0 259E-02 1.0 3.94E-03 1.8
1/64 1.12E-03 1.0 943E-05 1.6 131E-02 10 129E-02 1.0 143E-03 1.5
17128 5.59E—04 1.0 3.28E-05 1.5 6.53E-03 1.0 647E—03 1.0 6.32E-04 1.2

Py —P1. RT| — P, Py and P¢

178 1.25E-04 - 1.31E-03 - 1.82E-02 - 1.60E-02 - 1.54E-01 -

1/16  290E-05 2.1 3.25E—04 2.0 438E-03 2.1 4.01E-03 2.0 3.82E-02 2.0
1/32 7.06E-06 2.0 8.07E—-05 2.0 1.08E-03 2.0 1.00E-03 2.0 9.51E-03 2.0
1/64 1.77E-06 2.0 197E-05 20 2.67E-04 2.0 251E-04 2.0 237E-03 2.0
17128 4.73E—-07 19 451E-06 2.1 647E-05 2.0 6.23E-05 2.0 5.89E-04 2.0

Table 2 Example 1: relative numerical errors and convergence rates on non-matching grids

hBiot ”ef”lz(Hl(Qf)) lle sp ||12(L2(Qf)) ”ep”lZ(LZ(Qp)) ”epp”lOO(LZ(Qp)) lles “l’x’(Hl(Qp))

Error Rate  Error Rate  Error Rate Error Rate Error Rate

P — Py, RTo —Po. Py and Py

1/8  1.43E—02 — 6.06E—03 — 1.0SE-01 - 1.03E-01 - 5.09E-02 -
1/16  7.16E-03 1.0 1.79E-03 1.8 5.23E-02 1.0 5.17E-02 1.0 1.34E-02 1.9
1732 3.58E—03 1.0  5.81E-04 1.6 2.61E-02 1.0 2.59E-02 1.0 3.94E—-03 1.8
1/64 1.79E-03 1.0 1.95E-04 1.6 1.31E-02 1.0 1.29E-02 1.0 1.43E-03 1.5
1/128 8.94E—04 1.0  6.77E-05 1.5 6.53E—-03 1.0 647E—-03 1.0 6.32E—04 1.2

where the errors were computed on a sequence of refined meshes, which are matching
along the interface.

We also perform a convergence test with the lower order choice of finite elements
on non-matching grids along the interface. We prescribe the ratio between mesh char-
acteristic sizes to be hssokes = %h Bior as shown in Fig. la. According to the results
shown in Table 2, first order convergence is observed for all variables, which agrees
with Theorem 6.2.

7.2 Application to flow through fractured reservoirs

For the rest of the cases, we introduce the reference domain given by the rectan-
gle [0, 1] m x [—1, 1] m, see Fig. 1b. A fracture, which represents the reference fluid
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domain 7 1s then positioned in the middle of the rectangle, with the boundary defined
by

%% =200(0.05 — $)(0.05+ ), § € [-0.05,0.05].

Furthermore, the physical domain €2, see Fig. Ic, with more realistic geometry, is
defined as a transformation of the reference domain €2 by the mapping [10]

A

X X
[ ] = ity 249\ L om0 210
y |:5005 <m>cos< 100 ) +y/2—x/10:|
The external boundary of €2 ¢ is denoted as I 7,;;, r/ow, While the external boundary of
Q@ is splitinto I, ., where x € {left, right, top, bottom}.
The next example is focused on modeling the interaction between a stationary
fracture filled with fluid and the surrounding poroelastic reservoir. We are interested

in the solution on the physical domain 2. The physical units are meters for length,
seconds for time, and kPa for pressure. The boundary conditions are chosen to be

Injection: up-ny =10, uy-7y=0 onT finfiow,

No flow: u,-n,=0 onT'pjerr,

Pressure: pp = 1000 on 'y portom Y T p right UT p rop,
Normal displacement: 7, -n, =0 on Iy 1op UTp right YT p botroms
Shear traction: (opny) -7, =0 on Iy rop ULy right YT p bortoms
Normal stress: opn, =0 on 'y refs.

The initial conditions are set accordingly to n p(O) =0mand p,(0) = 103 kPa. The
total simulation time is 7 = 300 s and the time step is A# = 1 s. The model parameters
are given in Table 3. These parameters are realistic for hydraulic fracturing and are
similar to the ones used in [32]. The Lamé coefficients are determined from the Young’s
modulus E and the Poisson’s ratio v via the relationships A, = Ev/[(1+v)(1—2v)],
mp = E/[2(1 4+ v)]. We note that this is a challenging computational test due to the
large variation in parameter values.

For this and the rest of the test cases we use the Taylor—Hood P, — P [50] elements
for the fluid velocity and pressure in the fracture region, the Raviart—-Thomas R7 | —
Pflc elements for the Darcy velocity and pressure, the continuous Lagrangian P
elements for the displacement, and the Pflc elements for the Lagrange multiplier.

Figure 2 shows the computed solution in the reservoir (top and middle) and fracture
(bottom) regions at the final time 7 = 300 s. The grayscale velocity legend in Fig. 2a is
included to show the range of the Darcy velocity magnitude. We observe channel-like
flow in the fracture region, which concentrates at the tip. There is also leak-off into the
reservoir. The fluid pressure in the reservoir has increased in the vicinity of the fracture
from the initial value of 1000 KPa to approximately 2450 KPa, which is close to the
pressure in the fracture. A relatively small pressure jump is observed, consistent with
(2.10). In particular, the magnitude of D(uy) is in the order of 10*, which, together
with & = 1079, results in a pressure jump of order 10~'~10~2 KPa. The pressure drop
in the reservoir in the direction away from the fracture is significant, but the resulting
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Table 3 Poroelasticity and fluid parameters in Example 2

Parameter Symbol Units Values
Young’s modulus E (kPa) 107
Poisson’s ratio v 0.2

Lamé coefficient Ap (kPa) 5/18 x 107
Lamé coefficient Wp (kPa) 5/12 x 107
Dynamic viscosity " (kPa s) 1070
Permeability K (m?) diag(200, 50) x 10~12
Mass storativity S0 (kPa—1) 6.89 x 1072
Biot—Willis constant o 1.0
Beavers—Joseph—Saffman coefficient apJs 1.0

Total time T (s) 300

Darcy velocity is relatively small, due to the very low permeability. The displacement
field shows that the fracture tends to open as the fluid is being injected, with the
deformation of the rock being largest around the fracture and quickly approaching
zero away from the it, which is expected due to large stiffness of the rock. The stress,
which is computed by postprocessing from the displacement, exhibits singularity at
the tip of the fracture and some of the corners of the poroelastic domain. This example
demonstrates the ability of the proposed method to handle irregularly shaped domains
with a computationally challenging set of parameters, which are realistic for hydraulic
fracturing in tight rock formations.

7.3 Flow through fractured reservoir with heterogeneous permeability

In this example we illustrate the ability of the method to handle heterogeneous per-
meability and Young’s modulus. For this simulation we use the reference domain Q,
see Fig. 1b. The same boundary and initial conditions as in the previous test case are
specified, and the same physical parameters from Table 3 are used, except for the per-
meability K and the Young’s modulus E. The permeability and porosity data is taken
from a two-dimensional cross-section of the data provided by the Society of Petroleum
Engineers (SPE) Comparative Solution Project.! The SPE data, which is given on a
rectangular 60 x 220 grid is projected onto the triangular grid on the reference domain
€2, and visualized in Fig. 3. We note that the permeability tensor is isotropic in this
example. Given the porosity ¢ the Young’s modulus is determined from the law

2.1
E =10’ (1—9) ,
C

1 www.spe.org/web/csp.
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Pressure
-2453.6

Displacement

-~ 2090.5
3 -2.36e-04
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-7.55e+00
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-2500.0 -5000.0
1893.0 = 3795.0
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< 1385.0
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Pressure Velocity
924532
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;2453.0
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Fig.2 Computed solution in Example 2, fluid flow in a fractured reservoir, # = 300 s. a Darcy velocity field
(m/s) over pressure (kPa). b Displacement field (m). ¢ Poroelastic stress, x-component (kPa). d Poroelastic
stress, y-component (KPa). e Fluid pressure (KPa) in the fracture. f Fluid velocity field (m/s) in the fracture

where the constant ¢ = 0.5 refers to the porosity at which the effective Young’s
modulus becomes zero. This constant is chosen in general based on the properties of
the porous medium. The justification for this law can be found in [35].

The simulation results at the final time 7 = 300s are shown in Fig. 4. Figure 4a, b
shows that the propagation of the fluid in the Darcy region, as evidenced by the variation
in the velocity and pressure, follows the contours of regions of higher permeability
seen in Fig. 3b). As in the previous test case, the highest velocity in the reservoir is
near the fracture tip. However, the leak-off along the fracture is less uniform, with a
significant leak-off near the middle-top of the fracture due to the region of relatively
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Porosity
4.000e-01

Permeability
1.974e-08

Young's mod.
1.000e+07

o
N
~N

o
@

. uusiD U .
et

0.000e+00 E3.421e+06

(b)

Fig. 3 Heterogeneous material coefficients in Example 3. a Porosity. b Permeabiltiy. ¢ Young’s modulus

Pressure

Velocity 570467

Te+01

Displacement
;—3, 19e-03

20435.03

Y

2.39e-03

; 13623.35 E
1.60e-03

6811.67

PSR

7.98e-04
-1000

Velocity

-4.51e+01 0

—

1.84e-10

(a) (b) (c)

Fig.4 Example 3: fluid flow in a fractured reservoir with heterogeneous permeability and Young’s modulus,
t = 300 s. a Darcy velocity magnitude (m/s). b Velocity over pressure (KPa). ¢ Displacement field (m)

high permeability located there. Figure 4c depicts the nonuniform displacement field
in the reservoir caused by the heterogeneous Young’s modulus. We note that the effect
of heterogeneity of the elastic coefficients is less pronounced due to the large stiffness
of the rock. The general displacement profile is similar to the homogeneous case.

7.4 Robustness analysis

The goal of this section is to investigate how the developed model behaves when
the parameters are modified, moving from mild non-physical values toward more
realistic values that resemble the ones used in the hydraulic fracturing examples. We
progressively update the parameters K, so and E as shown in Table 4, while the rest of
the parameters are taken from Table 3. All test cases in this section are governed by the
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Table 4 Set of parameters for

the robustness analysis in K (m?) 50 (KPa~h) E (KPa)
Example 4 A Ix 1076 1.0 103

B diag(200, 50) x 10~12 1.0 103

C diag(200, 50) x 10~12 1072 103

D diag(200, 50) x 10~12 102 1010

same boundary and initial conditions as in the previous two examples. The simulation
results are shown in Fig. 5.

Case A: The pressure gradient is small as seen from the contour plot, this is due to
the large permeability. Also, from continuity of flux across the interface,
one would expect to see that the magnitude of the Darcy velocity is close
to the magnitude of the Stokes velocity, which we indeed observe in all the
simulations.

Case B: The permeability now is 4 orders of magnitude smaller, resulting in a larger
pressure gradient, which is consistent with Darcy’s law (2.5). Also, more
flow is going toward the tip of the fracture, since its walls are now much
less permeable. The displacement magnitude is also larger, while keeping
the same profile.

Case C: This case shows how the model reacts to decrease in mass storativity—which
is by exhibiting larger pressure gradient and displacement magnitude while
keeping the overall behavior as in case B.

Case D: The last case is to show the effect of a significant change in Young’s modulus.
Increasing it by 7 orders of magnitude, which makes the material much
stiffer, results in the displacement being decreased by 7 orders of magnitude
as expected.

The above results show that the displacement magnitude directly increases with
the magnitude of the pressure, while the profile of the displacement field stays the
same. This is consistent with the dependence of the poroelastic stress on the fluid
pressure, see (2.4). In addition, the displacement magnitude is inversely proportional
to the Youngs modulus, which is consistent with the constitutive law for the elastic
stress in (2.4).

8 Conclusions

We have studied the interaction of a free fluid with a fluid within a poroelastic medium.
After stating the governing equations and discussing the appropriate boundary and
interface conditions we considered a numerical discretization of the problem using
a mixed finite element method. A Lagrange multiplier is used to impose weakly the
continuity of normal velocity interface condition, which is of essential type in the
mixed Darcy formulation. We show that the method is stable and convergent of optimal
order, even in the case of non-matching grids across the interface. Computational
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Fig. 5 Robustness analysis simulations, # = 300 s. Cases A to D are shown from top to bottom. The
left figures show the Darcy velocity (m/s) superimposed with contour plot for the pressure (KPa). The
right figures show the structure displacement field (m) over the displacement magnitude contour plot. The
grayscale velocity legend shows the range of velocity magnitude
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experiments illustrate that this method is an effective approach for simulating fluid—
poroelastic structure interaction with a wide range of physical parameters, including
heterogeneous media. The Lagrange multiplier formulation is suitable for parallel
non-overlapping domain decomposition algorithms and multiscale approximations
via coarse mortar spaces. These topics will be explored in future research.

9 Appendix: Fully discrete analysis

In this section we provide a detailed analysis of the stability and convergence of the
fully discrete method (6.1)—(6.3). We will utilize the following discrete Gronwall
inequality [43].

Lemma 9.1 (Discrete Gronwall lemma) Let t > 0, B > 0, and let a,, b,, ¢, dy,
n > 0, be non-negative sequences such that ay < B and

n n—1 n
an+thl < tZd1a1+chl+B, n>1.
=1 =1 =1

Then,

n n—1 n
an~|—thl §exp<12d[) (thl—i—B), n>1.
I=1 =1

=1

Proof of Theorem 6.1 We choose
(Vs Wehs Vphs Wpis § p s ) = (uf;.’h, Phns Wy s Py Aoty s /\h)
in (6.1)—(6.3) and use the discrete analog of (3.17):
W = B + 2T lde " ©.1)
s T 2 T LZ(S) 2 T LZ(S) .

to obtain the energy equality

ld n 2 + e n n

24 0Pl o,y TP Tp.n> Np.h

T 2 .
#3 (ool + 5 (erhndeni))

2
+ay (W, ) +al (wh o) + [wh, = denl, \ =Ft). 2

n
'L’pp,h‘
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The right-hand side can be bounded as follows, using inequalities (4.1) and (4.3),

F ) = (87 @)y, ) + (£ @) demy ) + (a7 @) 2} ) + (a5 @) P )

<<f(t)dn>+6_1 a P +”,,2 +‘ 2
= \IpUn)sdely 2 L2(Qy) Prn L2 (Qy) L2(2)
1
+ Co (I @ 7agay) + s Wiaa) + lap @ 7a,))-
9.3)

Combining (9.2) and (9.3), summing up over the time index n = 1, ..., N, multiplying
by t and using the coercivity of the bilinear forms (3.4)—(3.6), we obtain

2

N2
L2(2,) + an’hHHl(Qp)

o[y

+rz< HHI(Q) W, n LZ(QP)+‘Uf,h— ™p.n am)
-I—‘L'ZZ so ||d p" ’ + \d:q™ ?
AN I FETER I a2 PTER
n=

=€ (]l sqq, *+ 15l
BN S ETC R R PITE

N 2
+ €t Z <Hu’}h
n=1

2

L2 (%) ))

N
+e' 2 (I8 W aa, + lar W72,y + lar @72,))
n=1

N
+r Y0 (£ @), d,n;j’h)> . 9.4)
n=1

2
L2(2y) pr’ h

2 " |

To bound the last term on the right we use summation by parts:

T 21:; (fp (tn) , dr"?;,h) = <fp (n), ﬂ,ly,h) — (fp 0), ﬂg,h) . N:ll (d o n,;)qh)
Hﬂph iZ(Q ) ||fp (IN)“Lz(Q )+ Z Hﬂph e
A i o) o
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Next using the inf—sup condition (3.9) for ( p?’ n pZy 4 M) we obtain, in a similar way
to (4.8),

[l

Eﬂz(‘ ‘LZ(Q ) LX(Q,) ”AZ HAh)
2
< Cer Z( ‘ff(’n)HLZ(szf) +]fp (t")“LZ(Q ) T ” thHl(Q ) ‘“Z,h‘ 12@,)
1 J
¥ 2 " d.n" ? 9.6
+ ‘ HH‘(QP) * ‘uf’h Gy aB,S)' ©.6)

Combining (9.4)—(9.6), and taking ez small enough, and then €; small enough, and

using Lemma 9.1 with q,, = ||1;p h||Hl(Q x gives
2
N
pr h LZ(Q ) + H"MHHI(Q,,)
+7 Z o, + [ ’ + |, —d b
f.h Hl(Qf) ]7 h LZ(Q,,) f.h tn[’ hlapjs
n=1

2 J n 2
+ et
129, Mol g,

N -
+‘[2Z S0

n=1"%*
N
+rZ

< Cexp(T)(so 23]

drp;l,,h

2

2 12
o 1]

n
pp,h‘

1

L2(p) *

o |? ONE
L2(Q)) an’hHHl(Qp) + [[£ ¢ )”L2<9p)

+7 Z [ ”ff(t'l)”iZ(Q_,) + ”fp(tn)Hiz(Q,,) + ”qf(tn)HiZ(Q/)

n=1

2 2
+lap @3y, + Ity ]).

which implies the statement of the theorem using the appropriate space-time norms.
(]

For the sake of space, we do not present the proof of Theorem 6.2. The error

equations are obtained by subtracting the first two equations of the fully discrete
formulation (6.1)—(6.2) from the their continuous counterparts (2.12)—(2.13):

ay (ef;, vf,h) +al (e;, v,,,h) +al (el €, )
+agys (e'}, d.el; vy, Ep,h>+bf (Vf,h, e’}p)—FbP (Vp,h, 6;,,)

+ab, (Ep,h, eZ,,) +br (Vin Voo & pps€)) + (SO dee,, wp,h)
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—abp (dfe;l, wp,h) — by (e;, wp,h> —by (e'}, wf,h)

= (S()rn (pp) s wp,h) +apys (Ov T'n (”p) s Vfh, sp,h) - abp (rn (”p)v wp,h) P
9.7

where r;,, denotes the difference between the time derivative and its discrete analog:

rn(0) = 0,0(t,) — d.0".

It is easy to see that [11, Lemma 4] for sufficiently smooth 6,

N
T MmO sy < CT2 00T 20,7 i)y

n=1

The proof of Theorem 6.2 follows the structure of the proof of Theorem 5.1, using
discrete-in-time arguments as in the proof of Theorem 6.1.
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