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Abstract This paper introduces a low-order discontinuous Petrov-Galerkin (dPG)
finite element method (FEM) for the Stokes equations. The ultra-weak formula-
tion utilizes piecewise constant and affine ansatz functions and piecewise affine and
discontinuous lowest-order Raviart–Thomas test search functions. This low-order dis-
cretization for the Stokes equations allows for a direct proof of the discrete inf-sup
condition with explicit constants. The general framework of Carstensen et al. (SIAM J
Numer Anal 52(3):1335–1353, 2014) then implies a complete a priori and a posteriori
error analysis of the dPGFEM in the natural norms.Numerical experiments investigate
the performance of the method and underline its quasi-optimal convergence.

Keywords Stokes · Discontinuous Petrov Galerkin · Low-order discretization ·
A priori · A posteriori · Adaptive mesh refinement

Mathematics Subject Classification 65N12 · 65N15 · 65N30 · 65Y05 · 65Y20

1 Introduction

The initial motivation for the discontinuous Petrov-Galerkin (dPG) methodology in
[18–20] was the design of the optimal test function space in applications of fluid
mechanics, when a stabilization appears obligatory for many standard finite element
methods (FEMs). Since important examples of this class follow as linearizations of
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2 C. Carstensen, S. Puttkammer

the Navier–Stokes equations, the understanding of simple low-order dPG schemes for
the Stokes equations appears to be a necessary step. The first dPG FEMs for the Stokes
equations in [25] and [10] utilize polynomials of much higher degrees in the trial and
test search space. This paper introduces a much simpler lowest-order dPG FEM with
an emphasis on a direct estimation of the discrete inf-sup constant and the discussion
of the associated Fortin-type operators for a reliable a posteriori analysis to generalize
[10] for low-order test functions. Popular alternative simulation tools for the Stokes
equations with optimal convergence rates for adaptive mesh-refining algorithm are the
nonconforming (restricted to first-order in 3D) and the pseudostress FEMwith a more
complicated a posteriori error analysis [8,16].

The dGP methodology is roughly described as a minimum residual method with
discontinuous ansatz and test functions. This leads to piecewise (also called broken)
Sobolev spaces with related trace spaces on element boundaries and so requires a
careful definition and analysis on the independence of the underlying partition. In
return, this results in a local and parallel computation of the underlying dual norms
and a simple implementation and allows rather general geometries of the element
domains; both regarded as obligatory in particular in higher space dimensions. The
detailed description of the ultraweak formulation with piecewise smooth functions
and several flux variables on the boundaries of the element domain is cumbersome
and follows in Sect. 3. For the sake of this introduction it may suffice to acknowledge
that this leads to a continuous formulation in Lebesgue and broken Sobolev spaces
X and Y such that the continuous problem of the standard Stokes equation leads to a
right-hand side F ∈ Y ∗ and an exact solution x ∈ X of the (well-posed) equation

b(x, y) = F(y) for all y ∈ Y. (1)

The bounded bilinear form b : X × Y → R models the equivalent ultraweak formu-
lation of the Stokes equation as in [10]. This equation is well posed if that b satisfies
an inf-sup condition on the continuous level,

0 < β := inf
x∈X\{0} sup

y∈Y\{0}
b(x, y)

‖x‖X
∥
∥y
∥
∥
Y

. (2)

With a few and well-spotted exceptions, the least-squares FEMs start with the mini-
mization of the residual F − b(xh, •) in subspaces of L2. For the bilinear form b at
hand, this is impossible as Y does not solely contain Lebesgue functions. The dPG
schemes first approximate the dual norm in Y ∗ of the residual by the dual norm Y ∗h
over a finite-dimensional subspace Yh ⊂ Y of Y and second minimize the residual
F − b(xh, •) for ansatz functions xh in a finite-dimensional subspace Xh ⊂ X of X .
In other words, the dPG approximation is the minimizer xh in

xh = argmin
ξh∈Xh

∥
∥F − b(ξh, •)

∥
∥
Y ∗h
= min

ξh∈Xh
max

yh∈Yh\{0}
(F − b(ξh, yh))/‖yh‖Y . (3)

The computational costs are related to the total number N + M of unknowns with
the dimensions N := dim(Xh) for the ansatz function space and M := dim(Yh) for
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A low-order dPG method for Stokes 3

the test search space. The minimal residual method is not a mixed finite element
scheme in that it allows N ≤ M with significantly larger M . The benefit is that the
test search space Yh can be much richer and approximate Y well so that the crucial
discrete inf-sup condition

0 < βh := inf
xh∈Xh\{0}

sup
yh∈Yh\{0}

b(xh, yh)

‖xh‖X
∥
∥yh

∥
∥
Y

(4)

can be made larger to approximate the idealized inf-sup constant β∗h ,

βh ≤ β∗h := inf
xh∈Xh\{0}

sup
y∈Y\{0}

b(xh, y)

‖xh‖X
∥
∥y
∥
∥
Y

,

which may even be larger than the global inf-sup constant β. Hence a sufficiently
large test search space Yh may stabilize a situation, when a stable pairing does not
exist or is at least unknown and a mixed finite element scheme is not available with
M = N . It is known that the dPG scheme is equivalent to a mixed scheme with an
extended bilinear form B : (X ×Y )× (X ×Y ) → R, when Y is a Hilbert space [from
L. Demkovicz in personal communication]. Moreover, it can even be reduced to the
computation of some subspace Mh ⊂ Yh with dim(Mh) = N such that xh is a solution
to a quadratic mixed FEM with b reduced to Xh × Yh [20]. This is all related to the
numerical linear algebra of the dPG schemes and the computational costs grow with
N +M . It is therefore practically relevant to minimize the test search space Yh and so
M ≥ N , while βh > 0 is still uniformly bounded away from zero as the underlying
partitions become finer and finer. The first proofs of a stability result of this type [22]
involve some linear and bounded Fortin operator Π : Y → Yh with operator norm
‖Π‖ and the annulation property

b(xh, y −Πy) = 0 for all xh ∈ Xh and y ∈ Y. (5)

Given such an operator Π , the analysis in [22] leads to β/‖Π‖ ≤ βh [6, Proposition
5.4.2] and so is a sufficient condition for stability. Conversely, the stability leads to the
existence of some Fortin interpolation operator Π with‖Π‖ ≤‖b‖ /βh [14, Lemma
2.10].

The examples in [10,22] typically involve piecewise polynomials of degree k (and
one variable with k + 1) in Xh and piecewise polynomials of degree k + n in Yh of
the underlying partition with J element domains in Rn with n space dimensions. This
leads to N = O(J (k + 1)) and M = O(J (k + n + 1)), which results in overall
computational costs which grow with J (2k + n + 2). The subsequent discussion
concerns the same fixed ansatz space Xh and so N is fixed. The overall costs are then
expected to be of a monoton function in M and the precise dependence is less clear
for an optimized numerical linear algebra with parallel computation. This paper is
motivated in the extreme case k = 0 because then the current dPG schemes require
M = O(J (1+ n)) which is n + 1 times higher than the costs for a (unknown) mixed
FEM with M = N = O(J ) for the space dimension n = 2, 3. This paper introduces
a stable choice of Yh with piecewise polynomial degree at most 1 rather than n from
[10,22] for k = 0.
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4 C. Carstensen, S. Puttkammer

The mentioned ultraweak formulation of the well-known Stokes equation with a
volume term f ∈ L2(Ω;Rn) on the right-hand side leads on the discrete level to the
residual F(yh)− b(xh, yh). Throughout this paper, dev denotes the deviatoric part of
a matrix, D NC is the piecewise functional matrix, · (resp. :) denotes the scalar product
of two vectors (resp. matrices), cf. Sect. 2 for more details. For some particular xh and
yh in the Stokes equations below, the aforementioned residual reads as

∫

Ω

f · v1 dx −
∫

Ω

σ 0 : (DNC v1 + dev τ RT) dx

−
∫

Ω

u0 · div NC τ RT dx +
∑

T∈T

∫

∂T
(t0 · v1 + s1 · τ RTν) ds

up to modifications for the Dirichlet boundary conditions. Therein, σ 0 and u0 are
piecewise constant functions, while v1 and τ RT are piecewise affine with respect to
a triangulation T . On the skeleton with respect to the sides E in T , t0 is piecewise
constant but, s1 is piecewise affine and globally continuous.

This paper bounds the inf-sup constants (2) and (4) for arbitrary dimension n explic-
itly in terms of the Friedrichs, the tr-div-dev constant, and the inf-sup constant of the
H(div,Ω;Rn×n)/R× L2(Ω;Rn) mixed FEM for Stokes equations. This implies the
quasi optimal convergence

‖x − xh‖X ≤
‖Π‖‖b‖

β
min

ξh∈Xh

∥
∥x − ξh

∥
∥
X (6)

for the novel low-order dPG FEM. The general a posteriori error analysis of [10] leads
to the a posteriori error control for any approximation ξh ∈ Xh (so it allows an inexact
solve of the discrete minimization problem)

β
∥
∥x − ξh

∥
∥
X ≤‖Π‖

∥
∥
∥F − b

(

ξh, •
)
∥
∥
∥
Y ∗h
+∥∥F ◦ (1−Π)

∥
∥
Y ∗

≤‖b‖ (‖Π‖ +‖1−Π‖)∥∥x − ξh
∥
∥
X . (7)

The residual term
∥
∥
∥F − b

(

ξh, •
)
∥
∥
∥
Y ∗h

is computable and the remaining data approxi-

mation term
∥
∥F ◦ (1−Π)

∥
∥
Y ∗ involves the Fortin interpolationΠ . In all the examples

of [10] with the aforementioned larger test search spaces, this term is an oscillation
and hence the data approximation term may be regarded as a higher-order term and in
fact is neglected in many practical calculations.

In the novel low-order dPG scheme, this is not the case and the Fortin inter-
polation operator is characterized in Theorem 5.2 below. It turns out that the data
approximation term is of first order and so, for quasi-uniform meshes and a sin-
gular solution possibly of higher-order. For adaptive mesh-refining, this argument
is no longer valid and the a posterior error control may fail to be efficient. This
leads to the extension Ŷh of the trial search space Yh ⊂ Ŷh ⊂ Y by three piece-
wise enrichments by additional cubic bubble functions, piecewise affines or first-order
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A low-order dPG method for Stokes 5

Raviart-Thomas functions in the first component. The resulting overall strategy for
guaranteed and effective a posteriori error control assumes an approximation xh ∈ Xh

computed by the proposed dPG scheme even with inexact solve from an iterative
numerical linear algebra with the test search space Yh . The a posteriori error control
applies to Ŷh and computes the residual ‖F − b(xh, •)‖Ŷ ∗h in the dual norm Ŷ ∗h and

allows for the reduced data approximation term ‖F ◦ (1− Π̂)‖Y ∗ with respect to the
Fortin interpolation Π̂ : Y → Ŷh . Notice that the inf-sup constant β̂h ≥ βh , where
β̂h = inf xh∈Xh supŷh∈Ŷh b(xh, ŷh)/(‖xh‖X

∥
∥ŷh

∥
∥
Y ). This leads to ‖F ◦ (1− Π̂)‖Y ∗ as

oscillations, which may be negligible at least for piecewise smooth data. The analysis
of this strategy and affirmative numerical examples conclude the paper.

The remaining parts of the paper are organized as follows. Section 2 recalls the
necessary notation on triangulation and function spaces. Section 3 and 4 investigate
the continuous and discontinuous formulation (1)–(3) related to (7) and prove the
inf-sup conditions (2) and (4). Section 5 discusses the data approximation error in the
two-dimensional case which contains the Fortin interpolator. Numerical experiments
for benchmark problems are presented in Sect. 6. The supplement contains some
remarks on the Fortin operator and on the implementation.

Standard notation applies to Lebesgue and Sobolev spaces throughout this paper,
H1(T ) abbreviates H1(int(T )) for a set T with nonempty interior int(T ). Furthermore,
a � b abbreviates, that there exists a generic constant C with a ≤ Cb, while a ≈
b abbreviates a � b � a. Given a normed linear space (X, ‖•‖X ), let S(X) :=
{

x ∈ X : ‖•‖X = 1
}

be its unit sphere.

2 Notation

2.1 Vector and matrix notation

This subsection clarifies details on the overall notation of vectors and matrices. For
two vectors a, b ∈ R

m , the dot denotes the scalar product a · b = ∑m
j=1 a jb j ∈ R,

while the scalar product A : B of m × m matrices A, B ∈ R
m×m reads A : B =

∑m
j,k=1 A jk B jk ∈ R. The dyadic product of a, b ∈ R

m reads a⊗b := abT ∈ R
m×m .

Notice that |a ⊗ b| = |a||b|. The identity mapping is denoted by •. The notation
|•| is dependent on context, the norm induced by · (resp. :) on R

n (resp. Rn×n),
the cardinality of a finite set, the n- or (n − 1)-dimensional Lebesgue measure of a
subspace ofRn . The linear operators deviator, dev A = A−1/n (tr A) In×n , and trace,
tr A = A11 + · · · + Ann , of any matrix A ∈ R

n×n , lead to tr dev A = 0 and

‖τ‖2L2(Ω)
= 1/n‖tr τ‖2L2(Ω)

+‖dev τ‖2L2(Ω)
for all τ ∈ L2(Ω;Rn×n). (8)

(This is the theorem of Pythagoras |A|2 = A : A = | dev A|2 + 1/n(tr A)2 for a
matrix A ∈ R

n×n based on the orthogonality of the unit matrix In×n and the deviatoric
part dev.) Let Rn×n

dev := dev(Rn×n) denote the deviatoric (also called trace-free) n× n
matrices and note dev A : dev B = dev A : B = A : dev B for all A, B ∈ R

n×n .
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6 C. Carstensen, S. Puttkammer

Fig. 1 Edge patch
ωE := T+ ∪ T− for an edge
E ∈ E(Ω)

νE

E

T+

T−

P+

P−

2.2 Triangulation

Given a regular triangulation T of Ω ⊆ R
n into closed n-simplices T ∈ T , E(T )

denotes the set of all n + 1 sides ((n − 1)-simplices like edges for n = 2 and faces
for n = 3) of T and N (T ) the set of all n + 1 vertices of T . The set of all sides and
nodes read

E :=
⋃

T∈T
E(T ) and N :=

⋃

T∈T
N (T );

the set of all interior (resp. boundary) sides reads E(Ω) (resp. E(∂Ω)) as well as
N (Ω) (resp. N (∂Ω)) is the set of all interior (resp. boundary) nodes. The skeleton
∂T := ⋃

T∈T ∂T is the union of all boundaries of simplices T ∈ T . Throughout
this paper, hT abbreviates the piecewise constant function with hT |T := hT :=
diam(T ) = maxx,y∈T

∣
∣x − y

∣
∣ the diameter of a simplex T ∈ T and h max := max hT

its maximum.
Let νT denote the outer unit normal vector field along the boundary ∂T on a fixed

element T ∈ T . Each side E ∈ E has an assigned orientation of the unit normal νE . For
exterior sides E ∈ E(∂Ω), νE = νΩ points outwards. For an interior side E = ∂T+ ∩
∂T− ∈ E(Ω) one orientation of the unit normal νE is fixed throughout this paper. The
neighbouring triangles are named such that νE points from T+ to T− as in Fig. 1. In this
context the following sign-function is defined sgn(T, E) := νE ·νT ∈ {±1} for all T ∈
T , E ∈ E(T ). Furthermore, for a function v ∈ L2(Ω;Rm×n) the jump along an
interior side E ∈ E(Ω) is denoted by [v]E := (v|T+ − v|T−)

∣
∣
E ∈ L2(E;Rm×n) and

along an boundary side E ∈ E(∂Ω) by [v]E := v|E ∈ L2(E;Rm×n).
For each simplex T ∈ T , mid(T ) := −

∫

T x dx = |T |−1 ∫T x dx = 1/(n +
1)
∑

z∈N (T ) z denotes the center of gravity and the function•−mid(T ) ∈ L∞(Ω;Rn)

has the value x −mid(T ) for x ∈ T ∈ T and satisfies for all T ∈ T
∫

T
x −mid(T ) dx = 0 and

∥
∥• −mid(T )

∥
∥
L∞(Ω)

≤ h maxn/(n + 1). (9)
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A low-order dPG method for Stokes 7

2.3 Function spaces

Standard notation applies to L2(Ω), H1(Ω), H(div,Ω) and their vector- or matrix-
valued relatives such as L2(Ω;Rn), L2(Ω;Rn×n), H1(Ω;Rn), H(div,Ω; Rn×n).
Let T be a regular triangulation of Ω . The test search space only exhibits certain
piecewise regularity properties on T ∈ T ,

H(div, T ;Rn×n) :=
{

τ ∈ L2(Ω;Rn×n) : ∀T ∈ T , 1 ≤ j ≤ n, τ j |T ∈ H(div, T )
}

,

H1(T ;Rn) :=
{

v ∈ L2(Ω;Rn) : ∀ T ∈ T , v|T ∈ H1(T ;Rn)
}

,

where τ j denotes the j-th row of τ . The piecewise application of the divergence
operator div and the derivative D read div NC and DNC and give rise to

‖τ‖2H(div,T ) :=‖τ‖2H(div,T ;Rn×n) :=‖τ‖2L2(Ω)
+‖div NC τ‖2L2(Ω)

,

‖v‖2H1(T )
:=‖v‖2H1(T ;Rn)

:=‖v‖2L2(Ω)
+‖DNC v‖2L2(Ω)

.

The following essential facts about trace spaces are proven in [2,21]. For any open,
bounded Lipschitz domain U ⊆ R

n , there exists exactly one continuous linear map-
ping γ0 : H1(U ) → L2 (∂U ) with γ0w = w|∂U for all w ∈ H1(U ) ∩ C0(U ). Let
H1/2(∂U ) := γ0(H1 (U )) and let H−1/2(∂U ) = (H1/2(∂U ))∗ be its dual space. Then
there exists exactly one continuous linear mapping γν : H(div,U ) → H−1/2 (∂U )

with γνq = (q|∂U ) · ν for all q ∈ H(div,U ). Moreover, for all q ∈ H(div,U ) and
w ∈ H1(U ) it holds

〈

γνq, γ0w
〉

∂U =
∫

U
q · Dw dx +

∫

U
w div q dx . (10)

The extension of the L2-scalar product on the skeleton is for all t = (tT )T∈T ∈
∏

T∈T H−1/2 (∂T ;Rn
)

and s = (sT )T∈T ∈∏T∈T H1/2
(

∂T ;Rn
)

denoted by

〈t, s〉∂T :=
∑

T∈T
〈tT , sT 〉∂T .

Define the trace operators

γ T
0 : H1 (T ;Rn)→

∏

T∈T
H1/2 (∂T ;Rn) ,

γ T
ν : H

(

div, T ;Rn×n)→
∏

T∈T
H−1/2 (∂T ;Rn)

on the skeleton ∂T by γ T
0 w := (sT )T∈T with sT := γ0

(

w|T
)

and γ T
ν q :=

(tT )T∈T with tT := γν

(

q|T
)

for all T ∈ T . The associated trace spaces read

H1/2
0

(

∂T ;Rn) := γ T
0

(

H1
0

(

Ω;Rn)
)

, (11)
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8 C. Carstensen, S. Puttkammer

H−1/2 (∂T ;Rn) := γ T
ν

(

H
(

div,Ω;Rn×n)
)

. (12)

These spaces are equipped with the following minimal extension norms

‖s‖
H1/2
0 (∂T )

:=‖s‖
H1/2
0 (∂T ;Rn)

:= inf
w ∈ H1

0 (Ω;Rn )

γT
0 w = s

‖w‖H1(Ω) ,

‖t‖H−1/2(∂T ) :=‖t‖H−1/2(∂T ;Rn) := inf
q ∈ H(div, Ω;Rn×n )

γT
ν q = t

∥
∥q
∥
∥
H(div,Ω)

.

The spaces H1/2
0

(

∂T ;Rn
)

and H−1/2 (∂T ;Rn
)

are subspaces of product spaces and
not dual to each other in general.

Lemma 2.1 (Duality Lemma) It holds

‖s‖
H1/2
0 (∂T )

= sup
τ∈S(H(div,T ;Rn×n)/R)

〈

γ T
ν τ , s

〉

∂T
for all s ∈ H1/2

0

(

∂T ;Rn) ,

‖t‖H−1/2(∂T ) = sup
v∈S(H1(T ;Rn))

〈

t, γ T
0 v

〉

∂T
for all t ∈ H−1/2 (∂T ;Rn) .

Proof This is contained in [11, Lemma 2.2]. ��

2.4 Discrete function spaces

The finite-dimensional subspaces of the trial space Xh ⊂ X and the test search space
Yh ⊂ Y are piecewise polynomials. For any k ∈ N0, let Pk(T ;Rm×n) denote polyno-
mials of total degree at most k in each component as functions in L2(T ;Rm×n) and
set

Pk(T ,Rm×n) :=
{

qk ∈ L∞(Ω;Rm×n) : ∀T ∈ T , qk |T ∈ Pk(T ;Rm×n)
}

.

Analogous definitions apply on the skeleton, i.e.,

Pk(E;Rm×n) := {

qk ∈ L∞(
⋃

E;Rm×n) :∀T ∈ T , ∀E ∈ E(T ),

qk |E ∈ Pk(E;Rm×n)
}

.

Let Π0 be the L2 projection onto P0(T ) defined for f ∈ L2(Ω;Rm×n) by Π0 f |T :=
|T |−1 ∫T f dx = −

∫

T f dx . The continuous and piecewise finite element functions Pk
on T read

Sk(T ;Rm×n) := Pk(T ;Rm×n) ∩ C(Ω̄),

Sk0 (T ;Rm×n) := Sk(T ;Rm×n) ∩ C0(Ω)
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A low-order dPG method for Stokes 9

and on the skeleton

Sk(E;Rm×n) := Pk(E;Rm×n) ∩ C
( ⋃

T∈T
∂T
)

,

Sk0 (E;Rm×n) :=
{

v ∈ Sk(E;Rm×n) : v|∂Ω ≡ 0
}

.

The lowest-order Raviart-Thomas functions read

RT pw
0 (T ;Rn×n) := {

q RT ∈ L∞(Ω;Rn×n) : ∃A ∈ P0(T ;Rn×n),
∃b ∈ P0(T ;Rn), q RT = A + b ⊗ (• −mid(T )

) }

,

RT0(T ;Rn×n) := RT pw
0 (T ;Rn×n) ∩ H(div,Ω;Rn×n).

On each simplex T ∈ T any q RT ∈ RT pw
0 (T ;Rn×n) can be written as q RT|T =

A + 1/n div q RT ⊗
(• −mid(T )

)

for some A ∈ R
n×n . Then it holds by (9)

(1−Π0) q RT = 1/n div q RT ⊗
(• −mid(T )

) ⊥ P0(T ;Rn×n). (13)

It is useful to regard P0(E;Rn) as a subspace of H−1/2(∂T ;Rn) via the embedding

P0
(

E;Rn) ↪→ H−1/2 (∂T ;Rn) , t0 �→ t = (tT )T∈T with tT = q RTνT |∂T ,

where q RT ∈ RT0(T ;Rn×n) satisfies q RT|EνE = t0|E for all E ∈ E . Notice the norm
equivalence

‖t0‖H−1/2(Ω) ≤
∥
∥q RT

∥
∥
H(div,Ω)

≤ (1+
√

1+ 4h2max/π
2
)‖t0‖H−1/2(Ω)

from [13, Lemma 3.2].

3 Continuous problem

Given some f ∈ L2(Ω;Rn) on some n-dimensional, bounded Lipschitz domain Ω

with polyhedral boundary ∂Ω and Dirichlet boundary data g ∈ H1(∂Ω;Rn) with
∫

∂Ω
g · ν ds = 0, the Stokes pseudostress formulation seeks σ ∈ H(div,Ω;Rn×n)

and u ∈ H1
(

Ω;Rn
)

with

dev σ = D u, f + div σ = 0 in Ω, u = g along ∂Ω. (14)

There exists a unique solution (σ , u) to (14) up to a constant multiple of the n × n
unit matrix In×n fixed by

∫

Ω
tr σ dx = 0 written σ ∈ H(div,Ω;Rn×n)/R. The

discontinuous Petrov-Galerkin formulation (dPG) is based on a regular triangulation
T of Ω from Sect. 2.2. On each simplex T ∈ T , a multiplication of (14) with the test
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10 C. Carstensen, S. Puttkammer

functions τ ∈ H(div, T ;Rn×n) and v ∈ H1(T ;Rn) followed by an integration by
parts leads to

∫

T
dev σ : τ dx +

∫

T
u · div τ dx = 〈

γντ , γ0u
〉

∂T ,

∫

T
σ : D v dx − 〈γνσ , γ0v

〉

∂T =
∫

T
f · v dx .

The summation over all T ∈ T results in traces on the skeleton γ T
0 u and γ T

ν σ . Let
g ∈ H1(Ω;Rn) extend the Dirichlet boundary data g ∈ H1(∂Ω;Rn). The interface
variables s := γ T

0 (u − g) and t := γ T
ν σ circumvent the continuity conditions for σ

and u. The sum of the two equations leads to the dPG formulation (on the continuous
level). In abstract notation, the dPG formulation seeks x ∈ X with

b(x, y) = F(y) for all y ∈ Y. (15)

For any x = (σ , u, s, t) ∈ X and y = (τ , v) ∈ Y with

X := L2(Ω;Rn×n)/R× L2(Ω;Rn)× H1/2
0 (∂T ;Rn)× H−1/2(∂T ;Rn), (16)

Y := H(div, T ;Rn×n)/R× H1(T ;Rn), (17)

the bilinear form b : X × Y → R and the functional F ∈ Y ∗ read

b(x, y) :=
∫

Ω

σ : DNC v dx +
∫

Ω

dev σ : τ dx +
∫

Ω

u · div NC τ dx (18)

−
〈

t, γ T
0 v

〉

∂T
−
〈

γ T
ν τ , s

〉

∂T
,

F(y) :=
∫

Ω

f · v dx +
〈

γ T
ν τ , γ T

0 g
〉

∂T
. (19)

The remaining parts of this section establish the boundedness of b, its non-degeneracy,
and the inf-sup condition (2). The weak formulation of (14) leads with Z :=
H
(

div,Ω;Rn×n) /R × L2
(

Ω;Rn
)

to a bilinear form b̃ : Z × Z → R defined
for (τ , v), (ρ, w) ∈ Z by

b̃((τ , v), (ρ, w)) :=
∫

Ω

dev τ : ρ dx +
∫

Ω

v · div ρ dx +
∫

Ω

div τ · w dx . (20)

The well-posedness of (14) leads to a positive inf-sup constant [9, Thm.2.3]

0 < γ := inf
a∈S(Z)

sup
b∈S(Z)

b̃(a, b), (21)
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A low-order dPG method for Stokes 11

which allows to describe the dependence of the inf-sup constant β below. The bilinear
form b of the ultraweak formulation is a broken form of the established bilinear form
b̃ with the term broken used in the sense of [11].

Theorem 3.1 The bilinear form b from (18) is bounded with

∣
∣b(x, y)

∣
∣ ≤ √3 ‖x‖X

∥
∥y
∥
∥
Y for all x ∈ X, y ∈ Y

and satisfies N =
{

y ∈ Y : b
(•, y) = 0 ∈ X∗

}

= {0} as well as

0 < 1/

√

15/γ 2 + 6+
√

32+ 168/γ 2 + 225/γ 4 ≤ β := inf
x∈S(X)

sup
y∈S(Y )

b(x, y).

The constant γ involves the Ladyshenskaya constant [7, (11.2.3)] or the constant Ctdd
from the following tr-dev-div lemma.

Lemma 3.2 [6, Thm.9.1.1] There exists a constant Ctdd < ∞ (solely depending on
Ω) such that any τ ∈ H(div,Ω;Rn×n)/R satisfies

‖tr τ‖L2(Ω) ≤ Ctdd

(

‖dev τ‖L2(Ω) +‖div τ‖L2(Ω)

)

.

The proof of Theorem 3.1 requires the following splitting argument from [11].

Theorem 3.3 (splitting lemma) Let X and Y be (real) Hilbert spaces with X =
X1×X2. Let b1 : X1×Y → R and b2 : X2×Y → R, suppose the continuous bilinear
form b : X×Y → R is their sum, in the sense that for all x = (x1, x2) ∈ X1×X2 = X
and all y ∈ Y ,

b(x, y) = b1(x1, y)+ b2(x2, y).

Set Y1 :=
{

y ∈ Y : b2(x2, y) = 0 for all x2 ∈ X2
}

and suppose, that

0 < β1 := inf
x1∈S(X1)

sup
y1∈S(Y1)

b1(x1, y1), (22)

0 < β2 := inf
x2∈S(X2)

sup
y∈S(Y )

b2(x2, y), (23)

N1 :=
{

y1 ∈ Y1 : b1(x1, y1) = 0 for all x1 ∈ X1
} = {0} . (24)

Then it follows N := {

y ∈ Y : b(x, y) = 0 for all x ∈ X
} = {0} and

0 <

√
2β1β2

√

β2
1 + β2

2 +‖b1‖2 +
√

(β2
1 + β2

2 +‖b1‖2)2 − 4β2
1β

2
2

≤ inf
x∈S(X)

sup
y∈S(Y )

b(x, y).

123



12 C. Carstensen, S. Puttkammer

Proof This is essentially [11, Thm.3.1] in different notation, but the constant here is

slightly better than β = β1β2/
(

β2
1 + β2

2 +‖b1‖2 + 2β1‖b1‖
)−1/2

and this requires

the additional condition (24). Set Y2 := Y⊥1 for an orthogonal split Y = Y1⊕Y2. Then
β2 from (23) is positive and b2|X2×Y2 is non-degenerate in the sense that b2(•, y2) �≡
0 in X∗2 for all y2 ∈ Y2 \ {0}. The general theory on bilinear forms [4, Thm.2.1]
guarantees, that given any x = (x1, x2) ∈ X , there exists y2 ∈ Y2 with b2(•, y2) =
(x2, •)X2 in X∗2 . Hence β2

∥
∥y2

∥
∥
Y ≤‖x2‖X2 . Since β1 > 0 and N1 = {0}, there exists

a unique y1 ∈ Y1 such that b1(•, y1) = (•, x1)X1 − b1(•, y2) in X∗1 and β1
∥
∥y1

∥
∥
Y ≤

‖x1‖X1 +‖b1‖
∥
∥y2

∥
∥
Y . Then

b(x, y1 + y2) =‖x1‖2X +‖x2‖2X =‖x‖2X .

Moreover, y = y1 + y2 ∈ Y satisfies

∥
∥y
∥
∥2
Y =

∥
∥y1

∥
∥
2
Y +

∥
∥y2

∥
∥
2
Y ≤ β−21

(

‖x1‖X1 + β−12 ‖b1‖‖x2‖X2

)2

+ β−22 ‖x2‖2X2
.

The upper bound is recast as

(

‖x1‖X1 ,‖x2‖X2

)
(

β−21 β−21 β−12 ‖b1‖
β−21 β−12 ‖b1‖ β−21 β−22 ‖b1‖2 + β−22

)(

‖x1‖X1‖x2‖X2

)

≤ Λ‖x‖2X

for the maximal eigenvalue

Λ =
β2
1 + β2

2 +‖b1‖2 +
√

(β2
1 + β2

2 +‖b1‖2)2 − 4β2
1β

2
2

2β2
1β

2
2

of the displayed symmetric 2× 2 coefficient matrix. This concludes the proof. ��
Proof of Theorem 3.1 In the setting of Theorem 3.3, let (equipped with the natural
norms)

X1 := L2(Ω;Rn×n)/R× L2(Ω;Rn), (25)

X2 := H1/2
0 (∂T ;Rn)× H−1/2(∂T ;Rn), (26)

Y1 := H(div,Ω;Rn×n)/R× H1
0 (Ω;Rn) ⊆ Y. (27)

For all x1 = (σ , u) ∈ X1, x2 = (s, t) ∈ X2 and y = (τ , v) ∈ Y set

b1(x1, y) :=
∫

Ω

σ : DNC v dx +
∫

Ω

dev σ : τ dx +
∫

Ω

u · div NC τ dx, (28)

b2(x2, y) := −
〈

t, γ T
0 v

〉

∂T
−
〈

γ T
ν τ , s

〉

∂T
. (29)
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A low-order dPG method for Stokes 13

For all x1 = (σ , u) ∈ X1 and y = (τ , v) ∈ Y , the Cauchy–Schwarz inequality proves

∣
∣b1(x1, y)

∣
∣ ≤‖σ‖L2(Ω) (‖DNC v‖L2(Ω) +‖τ‖L2(Ω))+‖u‖L2(Ω)‖div NC τ‖L2(Ω)

≤ √2‖x1‖X1

∥
∥y
∥
∥
Y .

Thus,‖b1‖ ≤
√
2. Given x2 = (s, t) ∈ X2 and y = (τ , v) ∈ Y . The substitution of

s = γ T
0 w with w ∈ H1

0

(

Ω;Rn
)

and‖w‖H1(Ω) =‖s‖H1/2(∂T ) as well as t = γ T
ν q

with q ∈ H
(

div,Ω;Rn×n) and
∥
∥q
∥
∥
H(div) = ‖t‖H−1/2(∂T ) allow an integration by

parts. Hence,

b2(x2, y) = −
∫

Ω

div NC τ · w dx −
∫

Ω

τ : Dw dx −
∫

Ω

div q · v dx

−
∫

Ω

q : DNC v dx ≤‖x2‖X2

∥
∥y
∥
∥
Y .

It follows,‖b2‖ ≤ 1 and so‖b‖ ≤ √3.
For an arbitrary 0 �= x1 = (σ , u) ∈ X1, define F̃ ∈ Z∗ by

F̃
(

ρ, w
) :=

∫

Ω

(

σ : ρ + u · w) dx for all
(

ρ, w
) ∈ Z . (30)

The Cauchy–Schwarz inequality implies ‖F̃‖Z∗ ≤
√
2‖x1‖X1 . Since the formulation

(20) for the Stokes equations has unique solutions [9, Thm.2.3], there exists (τ ,−v) ∈
Z such that b̃

(

(τ ,−v) , •) = F̃ in Z∗. For any
(

ρ, w
) ∈ Z , this reads

0 =
∫

Ω

(σ − dev τ ) : ρ dx +
∫

Ω

div ρ · v dx +
∫

Ω

(u − div τ ) · w dx . (31)

Since w ∈ L2(Ω;Rn) and ρ is arbitrary in H(div,Ω;Rn×n)/R, div τ = u and (31)
implies v ∈ H1

0 (Ω;Rn) with D v = σ − dev τ . This test function y1 := (τ , v) ∈ Y1
allows for

b1(x1, y1) =‖x1‖2X1
.

Recall γ from (21) the inf-sup constant for b̃. Then

γ
∥
∥y1

∥
∥
Z = γ

∥
∥(τ ,−v)

∥
∥
Z ≤ ‖b̃

(

(τ ,−v) , •) ‖Z∗
= ‖F̃‖Z∗ ≤

√
2‖x1‖X1 .

The triangle inequality implies‖D v‖2L2(Ω)
≤ 2‖σ‖2L2(Ω)

+ 2‖τ‖2L2(Ω)
. The previous

two displayed inequalities prove

∥
∥y1

∥
∥2
Y ≤ (6γ−2 + 2)‖x1‖2X1

.

Hence, for all x1 = (σ , u) ∈ X1 and y1 := (τ , v) ∈ Y1 as above,
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14 C. Carstensen, S. Puttkammer

(6γ−2 + 2)−1/2 ‖x1‖X1 ≤ b1(x1, y1)/
∥
∥y1

∥
∥
Y ≤ sup

y1∈S(Y1)
b1(x1, y1).

This proves (22) with (6γ−2 + 2)−1/2 ≤ β1.
The duality Lemma 2.1 shows, that any x2 = (s, t) ∈ X2 satisfies

‖x2‖X2 ≤‖s‖H1/2(∂T ) +‖t‖H−1/2(∂T )

= sup
q∈S(H(div,T ;Rn×n)/R

)

〈

γ T
ν q, s

〉

∂T
+ sup

w∈S(H1(T ;Rn)
)

〈

t, γ T
0 w

〉

∂T

≤ sup
q∈S

(

H
(

div,T ;Rn×n)/R
)

w∈S
(

H1(T ;Rn)
)

b2(x2, (q, w)) ≤ √2 sup
y∈S(Y )

b2(x2, y).

Hence, (23) holds with 2−1/2 ≤ β2.

Given any y = (τ , v) ∈ Y with b2(x2, y) = −
〈

γ T
ν τ , s

〉

∂T
−
〈

t, γ T
0 v

〉

∂T
= 0 for

all x2 = (s, t) ∈ X2. This means that all jumps of v and (normal components) of τ

disappear. Hence, y ∈ Y1 as demanded in Theorem 3.3.
Let y1 = (τ , v) ∈ N1. With x1 = (0, u) ∈ X1 for any u ∈ C∞0

(

Ω;Rn
) ⊆

L2
(

Ω;Rn
)

, y1 ∈ N1 implies div τ ≡ 0. The boundary conditions and continuity in
Y1 prove

0 =
∫

∂Ω

v · τν ds =
∫

Ω

v · div τ dx +
∫

Ω

D v : τ dx =
∫

Ω

D v : τ dx .

Furthermore, the choice x1 = (τ , 0) ∈ X1 results in

0 =
∫

Ω

τ : D v dx +
∫

Ω

dev τ : τ dx =
∫

Ω

dev τ : τ dx =‖dev τ‖2L2(Ω)
;

whence dev τ = 0. Lemma 3.2 proves τ ≡ 0. Further, for all σ ∈ C∞0 (Ω;Rn×n) set
σ̃ := σ − 1/n

(
−
∫

Ω
tr σ dx

)

In×n and x1 = (σ̃ , 0) ∈ X1. Then

∫

Ω

σ : D v dx =
∫

Ω

σ̃ : D v dx + 1

n

(

−
∫

Ω

tr σ dx

)∫

Ω

div v dx = b1(x1, y1) = 0.

Hence, D v ≡ 0 for v ∈ H1
0 (Ω;Rn) and so v ≡ 0. This concludes the proof. ��

4 Discrete problem

The low-order discrete trial and test search space of the introduced method read

Xh := P0(T ;Rn×n)/R× P0(T ;Rn)× S10(E;Rn)× P0(E;Rn), (32)

Yh := RT pw
0 (T ;Rn×n)/R× P1(T ;Rn). (33)
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A low-order dPG method for Stokes 15

Given b from (18) and F from (19), the discrete problem seeks xh ∈ Xh with (3).
This section establishes the discrete inf-sup condition (4) with a constant βh , which
depends on the Friedrichs constantCF (with || • ||L2(Ω) ≤ CF ||D • ||L2(Ω) in H1

0 (Ω))
and the tr-div-dev constant Ctdd.

Theorem 4.1 (inf-sup) The discrete spaces (32)–(33) and the bilinear form b from
(18) satisfy

1 � βh := inf
xh∈Xh\{0}

sup
yh∈Yh

b(xh, yh)

‖xh‖X
∥
∥yh

∥
∥
Y

.

Proof Step 1. Discrete test functions. The discrete traces in S10(E;Rn) (resp.
P0(E;Rn)) admit a unique extension by S10(T ;Rn) (resp. RT0(T ;Rn×n)). Thus,
given xh = (σ 0, u0, s1, t0) ∈ Xh chose wc ∈ S10(T ;Rn) with γ T

0 wc = s1 and
q RT ∈ RT0(T ;Rn×n) with γ T

ν q RT = t0. The norm for the trace space in Sect. 2.3
by minimal extension fulfils

‖xh‖2X =‖σ 0‖2L2(Ω)
+‖u0‖2L2(Ω)

+ ‖γ T
0 wc‖2H1/2(∂T )

+ ‖γ T
ν q RT‖2H−1/2(∂T )

≤‖σ 0‖2L2(Ω)
+‖u0‖2L2(Ω)

+‖wc‖2H1(Ω)
+∥∥q RT

∥
∥2
H(div,Ω)

. (34)

For xh = (σ 0, u0, γ T
0 wc, γ

T
ν q RT) ∈ Xh \ {0}, set yh = (τ RT, v1) ∈ Yh

τ RT := dev σ 0 − Dwc + 1/n (u0 −Π0wc)⊗
(• −mid(T )

)

,

v1 := − div q RT +
(

σ 0 −Π0q RT

) (• −mid(T )
)

.

Notice, that div NC τ RT = u0−Π0wc,DNC v1 = σ 0−Π0q RT andΠ0v1 = − div q RT.
The side restriction

∫

Ω
tr σ 0 dx = 0 implies

∫

Ω
tr τ RT dx = 0.

Furthermore, the substitution of s1 by γ T
0 wc and t0 by γ T

ν q RT allows an integration
by parts. Hence, xh = (σ 0, u0, γ T

0 wc, γ
T
ν q RT) and the above test function yh =

(τ RT, v1) satisfy

b
(

xh, yh
) =

∫

Ω

σ 0 : DNC v1 dx +
∫

Ω

dev σ 0 : τ RT dx +
∫

Ω

u0 · div NC τ RT dx

−
∫

Ω

(

v1 · div q RT + q RT : DNC v1
)

dx

−
∫

Ω

(τ RT : Dwc + wc · div NC τ RT) dx

=∥∥σ 0 −Π0q RT

∥
∥
2
L2(Ω)

+‖dev σ 0 − Dwc‖2L2(Ω)

+‖u0 −Π0wc‖2L2(Ω)
+∥∥div q RT

∥
∥2
L2(Ω)

. (35)

Step 2. Key estimates. The test function from Step 1. and (9) prove

∥
∥yh

∥
∥2
Y =‖τ RT‖2H(div,T ) +‖v1‖2H1(T )
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16 C. Carstensen, S. Puttkammer

≤‖dev σ 0 − Dwc‖2L2(Ω)
+
(

h2max/(n + 1)2 + 1
)

‖u0 −Π0wc‖2L2(Ω)

+∥∥div q RT

∥
∥
2
L2(Ω)

+
(

h2maxn
2/(n + 1)2 + 1

)∥
∥σ 0 −Π0q RT

∥
∥
2
L2(Ω)

.

The combination with (35) shows for Cyh := 1+ h2maxn
2/(n + 1)2 holds

∥
∥yh

∥
∥
2
Y ≤

Cyh b
(

xh, yh
)

. The proof of‖xh‖X � b
(

xh, yh
)

requires the computation of Cwc

with‖Dwc‖L2(Ω) =: |||wc|||2 ≤ Cwcb
(

xh, yh
)

. The function

q̃ RT := q RT − 1/n

(

−
∫

Ω

tr q RT dx

)

In×n ∈ H
(

div,Ω;Rn×n) /R (36)

allows an application of Lemma 3.2. Moreover,
(i)
∥
∥dev q RT

∥
∥
L2(Ω)

=∥∥dev q̃ RT

∥
∥
L2(Ω)

and
∥
∥div q RT

∥
∥
L2(Ω)

=∥∥div q̃ RT

∥
∥
L2(Ω)

,

(ii) for σ 0 ∈ L2(Ω;Rn×n)/R holds
∥
∥σ 0 − q̃ RT

∥
∥
L2(Ω)

≤∥∥σ 0 − q RT

∥
∥
L2(Ω)

,

(iii) for f ∈ L2(Ω;R) with
∫

Ω
f dx = 0 holds

∫

Ω
f tr q RT dx = ∫

Ω
f tr q̃ RT dx .

This verifies

C−1tdd

∥
∥tr q̃ RT

∥
∥
L2(Ω)

≤∥∥dev q RT

∥
∥
L2(Ω)

+∥∥div q RT

∥
∥
L2(Ω)

. (37)

It holds
∥
∥dev q RT

∥
∥
L2(Ω)

≤∥∥dev(σ 0 − q RT)
∥
∥
L2(Ω)

+∥∥dev(σ 0 − Dwc)
∥
∥
L2(Ω)

+‖devDwc‖L2(Ω) .

From (13) and (9) it follows

∥
∥dev(σ 0 − q RT)

∥
∥
L2(Ω)

≤∥∥dev(σ 0 −Π0q RT)
∥
∥
L2(Ω)

+ h max

n + 1

∥
∥div q RT

∥
∥
L2(Ω)

.

This proves

Ctdd
−1∥∥tr q̃ RT

∥
∥
L2(Ω)

≤∥∥σ 0 −Π0q RT

∥
∥
L2(Ω)

+∥∥dev(σ 0 − Dwc)
∥
∥
L2(Ω)

+‖devDwc‖L2(Ω)+ (1+ h max/(n + 1))
∥
∥div q RT

∥
∥
L2(Ω)

.

On the other hand,

‖devDwc‖2L2(Ω)
=
∫

Ω

(

Π0(σ 0 − q RT)− dev(σ 0 − Dwc)+ q RT

) : devDwc dx

≤
(∥
∥σ 0 −Π0q RT

∥
∥
L2(Ω)

+∥∥dev(σ 0 − Dwc)
∥
∥
L2(Ω)

)

‖devDwc‖L2(Ω)

+
∫

Ω

q̃ RT : devDwc dx .
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A low-order dPG method for Stokes 17

The decomposition of the deviator followed by an integration by parts shows

∫

Ω

dev q̃ RT : Dwc dx =
∫

Ω

q̃ RT : Dwc dx − 1/n
∫

Ω

(tr q̃ RT) divwc dx

≤ −
∫

Ω

wc · div q RT dx + 1/n
∥
∥tr q̃ RT

∥
∥
L2(Ω)

‖divwc‖L2(Ω)

≤ CF |||wc|||
∥
∥div q RT

∥
∥
L2(Ω)

+ 1/n
∥
∥tr q̃ RT

∥
∥
L2(Ω)

‖divwc‖L2(Ω) .

The combination of the aforementioned estimates leads with

a := ∥
∥σ 0 −Π0q RT

∥
∥
L2(Ω)

+∥∥dev(σ 0 − Dwc)
∥
∥
L2(Ω)

+ Ctdd/n ‖divwc‖L2(Ω) ,

b := Ctdd

(∥
∥σ 0 −Π0q RT

∥
∥
L2(Ω)

+∥∥dev(σ 0 − Dwc)
∥
∥
L2(Ω)

)

+‖divwc‖L2(Ω)

+ Ctdd(1+ h max/(n + 1))
∥
∥div q RT

∥
∥
L2(Ω)

, and c := CF
∥
∥div q RT

∥
∥
L2(Ω)

to |||wc|||2 ≤ a‖devDwc‖L2(Ω) + b/n‖divwc‖L2(Ω) + c|||wc|||.

This upper bound is the scalar product in R
3 of the vector (a, b/

√
n, c) with

(‖devDwc‖L2(Ω) , ‖divwc‖L2(Ω) /
√
n, |||wc|||). The Cauchy-Schwarz inequality

leads to

|||wc|||2 ≤
√

‖devDwc‖2L2(Ω)
+ 1/n‖divwc‖2L2(Ω)

+ |||wc|||2
√

a2 + b2/n + c2

= |||wc|||
√
2
√

a2 + b2/n + c2 =: C1 |||wc|||.

The Cauchy-Schwarz inequality, (8), and the abbrevations g := ∥∥div q RT

∥
∥
L2(Ω)

,

f := ‖Dwc − dev σ 0‖L2(Ω) and e := ∥∥σ 0 −Π0q RT

∥
∥
L2(Ω)

allow to rewrite the
pre-factors a, b, and c as

a ≤
√

2+ C2
tdd/n

√

e2 + f 2,

b ≤
√

e2 + f 2 + g2
√

n + C2
tdd(2+ (1+ h max/(n + 1))2) and c = CF g.

Since by (35), e2 + f 2 + g2 ≤ b(xh, yh), it follows

C2
1 ≤ 2

⎛

⎝max

{

C2
F , 2+ C2

tdd

n

}

+ 1+ C2
tdd

n

(

2+
(

1+ h max

n + 1

)2
)⎞

⎠ b(xh, yh).

Therefore, the constant Cwc with |||wc|||2 ≤ Cwcb(xh, yh) satisfies

Cwc ≤ 2

(

max
{

C2
F , 2+ C2

tdd/n
}

+ 1+ C2
tdd/n(2+ (1+ h max/(n + 1))2)

)

.
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18 C. Carstensen, S. Puttkammer

It remains to prove‖xh‖2X � b
(

xh, yh
)

. For q RT ∈ RT0(T ;Rn×n), (13) and (9)
imply

∥
∥q RT

∥
∥2
L2(Ω)

≤ h2max

(n + 1)2
∥
∥div q RT

∥
∥2
L2(Ω)

+ 2
∥
∥σ 0 −Π0q RT

∥
∥2
L2(Ω)

+ 2‖σ 0‖2L2(Ω)
.

On the other hand, the auxiliary function q̃ RT from (36)–(37) allows for

‖σ 0‖L2(Ω) ≤
∥
∥σ 0 − q̃ RT

∥
∥
L2(Ω)

+ Ctdd√
n

∥
∥div q̃ RT

∥
∥
L2(Ω)

+
(

1+ Ctdd√
n

)

∥
∥dev q̃ RT

∥
∥
L2(Ω)

≤ (2+ Ctdd/
√
n)
∥
∥σ 0 − q RT

∥
∥
L2(Ω)

+ Ctdd/
√
n
∥
∥div q RT

∥
∥
L2(Ω)

+ (1+ Ctdd/
√
n)‖dev σ 0‖L2(Ω) .

Furthermore, it holds

∥
∥σ 0 − q RT

∥
∥
L2(Ω)

≤∥∥σ 0 −Π0q RT

∥
∥
L2(Ω)

+ h max/(n + 1)
∥
∥div q RT

∥
∥
L2(Ω)

and

‖dev σ 0‖L2(Ω) ≤‖dev σ 0 − Dwc‖L2(Ω) + |||wc|||.

Therefore, all terms in the decomposition of‖xh‖X as in (34) are under control,

‖xh‖2X ≤‖σ 0‖2L2(Ω)
+‖u0‖2L2(Ω)

+∥∥q RT

∥
∥2
H(div,Ω)

+‖wc‖2H1(Ω)

≤‖σ 0‖2L2(Ω)
+ (1+ C2

F )‖u0 −Π0wc‖2L2(Ω)

+ (2+ 2C2
F )|||wc|||2 +

∥
∥q RT

∥
∥
2
H(div,Ω)

.

Careful bookkeeping reveals that

C3 := 3h2max

(n + 1)2

(

Ctdd√
n
+ 2

)2

+ 6h max

n + 1

(

C2
tdd

n
+ 2

Ctdd√
n

)

+ 12

(

Ctdd√
n
+ 1

)2

+ 6

satisfies

‖xh‖2X ≤
(

1+ C2
F

)

‖u0 −Π0wc‖2L2(Ω)
+ C3‖dev σ 0 − Dwc‖2L2(Ω)

+ (2+ C3)
∥
∥σ 0 −Π0q RT

∥
∥
2
L2(Ω)

+ (2+ 2C2
F + C3)|||wc|||2

+ (1+ h2max/(n + 1)2 + C3)
∥
∥div q RT

∥
∥
2
L2(Ω)

.
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A low-order dPG method for Stokes 19

Therefore,‖xh‖2X ≤ Cxhb(xh, yh) holds for

Cxh := max
{

1+ C2
F , C3 +max

{

2, 1+ h2max

(n + 1)2

}}

+
(

C3 + 2C2
F + 2

)

Cwc .

Step 3. Alltogether, for all xh = (σ 0, u0, γ T
0 wc, γ

T
ν q RT) ∈ Xh \ {0} and yh ∈ Yh

as in Step 1 , it holds

‖xh‖X ≤
√

Cxh Cyh b
(

xh, yh
)

/
∥
∥yh

∥
∥
Y .

This concludes the proof of 0 <
(

Cxh Cyh

)−1/2 ≤ βh with βh from (4).
��

5 Data approximation error

The Fortin interpolator (5) is explicitly constructed in [10,19,22] with higher-order
test search functions. The low order spaces in [13,14] require a direct verification of
the discrete inf-sup condition and allow explicit constants ‖b‖ , βh in the a posteri-
ori error bound (7). The upper error bound involves the computable residual error
‖F − b(ξh, •)‖Y ∗h and the remaining data approximation error ‖F ◦ (1−Π)‖Y ∗ . The
latter is not of higher-order in general as shown inSect. 5.1. Thismotivates an extension
of the test search space in Sect. 5.2.

5.1 Fortin interpolation

The description of the operator Π : Y → Yh with (5) in 2D with a shape-regular
triangulation T of the simply-connected bounded polygonal domain Ω ⊂ R

2 into
triangles requires further notation. For β ∈ C1(Ω;R2), set

Curl β :=
(

−∂β1/∂x2 ∂β1/∂x1
−∂β2/∂x2 ∂β2/∂x1

)

, curl β := tr(Curl β) = ∂β2/∂x1 − ∂β1/∂x2

with the piecewise version Curl NC and curl NC (piecewise with respect to T ). Define

Xcurl :=
{

vC ∈ S1(T ;R2) :
∫

Ω

vC dx = 0,
∫

Ω

curl vC dx = 0
}

≡ S1(T ;R2)/R3.

The nonconforming Crouzeix-Raviart functions space reads

CR1(T ;R2) := {v ∈ P1(T ,R2) : v is continous in mid(E) for all E ∈ E(Ω)},
CR1

0(T ;R2) := {v ∈ CR1(T ;R2) : v(mid(E)) = 0 for all E ∈ E(∂Ω)},
CR1(T ,R2)/R2 := {v ∈ CR1(T ,R2) :

∫

Ω

v dx = 0}.
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20 C. Carstensen, S. Puttkammer

The discrete divergence-free Crouzeix-Raviart functions

Z CR := {v ∈ CR1
0(T ;R2) : div NC v = 0} ⊆ CR1

0(T ;R2)

are well known from the the nonconforming finite element analysis of the Stokes
equations. Any w CR ∈ CR1

0(T ;R2) satisfies
∫

E [w CR]E ds = 0 along any edge E ∈
E . The local nonconforming interpolant I pwNC guarantees a similar property: Define
I pwNC v ∈ P1(T ;R2) for v ∈ H1(T ;R2) on any T ∈ T via

(

I pwNC v
) |T

(

mid(E)
) = −

∫

E
v|T ds :=|E |−1

∫

E
v|T ds. (38)

For all T ∈ T and E ∈ E(T ) holds
∫

E I pwNC v|T = ∫

E v|T ds, whence Π0 DNC v =
DNC I

pw
NC v.

Lemma 5.1 (discrete Helmholtz decompositions)For a simply-connected domainΩ ,
the following decompositions are orthogonal in L2(Ω;R2×2)

P0(T ;R2×2
dev ) = D NC Z CR ⊕ dev Curl Xcurl, (39)

P0(T ;R2×2) = D S10(T ;R2)⊕ Curl NC CR
1(T ,R2)/R2. (40)

Proof The paper [17] includes a proof of (39) and (40) is known from [3]. ��
Based on those preliminaries, the Fortin interpolation is characterized in the sequel.
Given a simply-connected domainΩ and y = (τ , v) ∈ Y . Let α CR ∈ CR1(T ;R2)/R2

satisfy
∫

Ω
α CR dx = 0 and

∫

Ω

(DNC α CR −Π0τ ) : DNC w CR dx =
∫

Ω

w CR · (1−Π0) div NC τ dx (41)

for all w CR ∈ CR1(T ;R2). (This follows from one solve of the Crouzeix-Raviart
FEM and

∫

Ω
(1 − Π0) div NC τ dx = 0.) Let α0 := −1/2 −

∫

Ω
div NC α CR. The discrete

Helmholtz decomposition (39) guarantees the existence of z CR ∈ Z CR and βc ∈ Xcurl,
such that

dev (Π0τ − DNC α CR) = DNC z CR + dev Curl βc. (42)

Theorem 5.2 Given (τ , v) ∈ Y and α CR ∈ CR1(T ;R2)/R2, z CR ∈ Z CR, βc ∈
Xcurl, α0 ∈ R

2 as above with (41)–(42), set

τ RT := D NC α CR + Curl βc + α0I2×2 +
(

Π0 div NC τ/2
)⊗ (• −mid(T )),

v1 := I pwNC v + z CR.

The mapping Π : Y → Yh, (τ , v) �→ (τ RT, v1) is linear, bounded, idempotent and
fulfils (5). The discrete kernel Nh :=

{

yh ∈ Yh : b(xh, yh) = 0 ∀xh ∈ Xh
}

of B2,h :
Yh → X∗h, yh �→ b(•, yh)|Yh has dimension dim(Nh) = 2(

∣
∣T
∣
∣− 1) and is equal to

123



A low-order dPG method for Stokes 21

Nh =
{

(Curl NC β CR, v CR) ∈ Curl NC CR
1(T ,R2)/R2 × Z CR :

− D NC v CR = dev Curl NC β CR

}

.

Proof The design of α0 leads to
∫

Ω
tr τ RT dx = 0. For all σ 0 ∈ P0(T ;R2×2)/R, the

split (42) and Π0 DNC v = DNC I
pw
NC v prove

b((σ 0, 0, 0, 0), y − yh) =
∫

Ω

σ 0 : DNC(v − v1) dx +
∫

Ω

dev σ 0 : (τ − τ RT) dx

=
∫

Ω

σ 0 :
(

Π0 DNC(v − v1)+ devΠ0(τ − τ RT)
)

dx

=
∫

Ω

σ 0 :
(−DNC z CR + dev(Π0τ − DNC α CR − Curl βc)

)

dx

= 0.

Since div NC τ RT = Π0 div NC τ , any u0 ∈ P0(T ;R2) satisfies

b((0, u0, 0, 0), y − yh) =
∫

Ω

u0 · div NC(τ − τ RT) dx

=
∫

Ω

u0 ·Π0 div NC(τ − τ RT) dx = 0.

For all s1 ∈ S10(E;R2) on the skeleton ∂T , consider the linear extension wc ∈
S10(T ;R2) ⊆ CR1(T ,R2) with γ T

0 wc = s1 to allow an integration by parts. Thus,
∫

Ω
Dwc dx = 0, (40)–(41), and div NC τ RT = Π0 div NC τ prove

−b((0, 0, s1, 0), y − yh) =
∫

Ω

Dwc : Π0(τ − τ RT) dx

+
∫

Ω

wc · div NC (τ − τ RT) dx

=
∫

Ω

Dwc :
(

Π0τ dx − DNC α CR − Curl βc − α0I2×2
)

dx

+
∫

Ω

wc · (1−Π0) div NC τ dx = 0.

The properties of the Crouzeix-Raviart-functions and I pwNC (38) prove for all t0 ∈
P0(E;R2),

− b((0, 0, 0, t0), y − yh)

=
∑

E∈E
t0|E ·

(∫

E

[

v − I pwNC v
]

E ds −
∫

E
[z CR]E ds

)

= 0.

For the proof, that Π is idempotent (hence a projection), suppose that (τ , v) ∈
RT pw

0 (T ;R2×2)/R×P1(T ;R2) and decomposeΠ0τ = DNC a CR+Curl bc for unique

123



22 C. Carstensen, S. Puttkammer

a CR ∈ CR1(T ;R2)/R2 and bc ∈ S10(T ;R2). Since (1 −Π0) div NC τ = 0 a.e. in Ω ,
(41) shows a CR = α CR. Since bc = 0 along ∂Ω and bc−−

∫

Ω
bc dx ∈ Xcurl, (42) reveals

that βc = bc − −
∫

Ω
bc dx and z CR = 0. Notice that 0 = ∫

Ω
tr τ dx = ∫

Ω
trΠ0τ dx =

∫

Ω
div NC α CR dx = 0 implies α0 = 0. Altogether, it follows that τ RT = τ and v1 = v,

i.e., Π2 = Π .
The discrete Friedrichs and Poincaré inequality [7, Thm.10.6.12], Lemma 3.2, and

[12, Thm.4] show that the proposed mapping Π is bounded. A lengthy but straight

forward calculation with C := 2max
{

1+ C2
tdd, 2+ 2C2

dF

}

reveals

‖Π‖2 ≤ (1+ C)(1+ C2
dP)+max

{

C, 1+ h2max/9
}

.

It remains to characterize Nh . For all ỹh = (τ̃ RT, ṽ1) ∈ Nh , the condition

0 = b((0, 0, 0, t0), ỹh) = −
∑

E∈E
t0|E

∫

E

[

ṽ1
]

E ds for all t0 ∈ P0(E;R2)

implies ṽ1 ∈ CR1
0(T ;R2). Since

0 = b((0, u0, 0, 0), ỹh) =
∫

Ω

u0 · div NC τ̃ RT dx for all u0 ∈ P0(T ;R2),

it follows div NC τ̃ RT = 0 and Π0τ̃ RT = τ̃ RT. The linear extension of s1 ∈ S10(E;R2) to
wc ∈ S10(T ;R2) with γ T

0 wc = s1 and an integration by parts result in

0 = b((0, 0, s1, 0), ỹh) = −
∫

Ω

Dwc : τ̃ RT dx for all wc ∈ S10(T ;R2).

This and the Helmholtz decomposition (40) reveal τ̃ RT = Curl NC β CR for β CR ∈
CR1(T ;R2)/R2. For all σ 0 ∈ P0(T ;R2×2)/R,

0 = b((σ 0, 0, 0, 0), ỹh)) =
∫

Ω

(

σ 0 : DNC ṽ1 + dev σ 0 : τ̃ RT

)

dx .

Hence, dev τ̃ RT = −DNC ṽ1 and so v1 ∈ Z CR. This proves the asserted representation
of Nh . Let Mh := N⊥h ⊆ Yh denote the orthogonal compliment of Nh in Yh with
respect to the scalar product in Y . Then the dPG FEM is equivalent to the mixed FEM
with xh ∈ Xh and b(xh, •) = F in M∗

h [13,14]. Its solvability guarantees dim(Mh) =
dim(Xh) = 6

∣
∣T
∣
∣ + 2

∣
∣N (Ω)

∣
∣ + 2

∣
∣E
∣
∣ − 1. This and dim(Yh) = 12

∣
∣T
∣
∣ − 1 leads to

dim(Nh) = 2(
∣
∣T
∣
∣− 1). ��

Given an extension g ∈ H1(Ω;R2) of the Dirichlet data g ∈ H1(∂Ω;R2) the data
approximation error contribution reads
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A low-order dPG method for Stokes 23

∥
∥F ◦ (1−Π)

∥
∥
Y ∗ = sup

(v,τ )∈S(Y )

(∫

Ω

f · (v −Πv) dx +
〈

γ T
0 g, γ T

ν (1−Π)τ
〉

∂T

)

.

In addition, assume that g ∈ H1(Ω;R2)∩H2(T ;R2) is piecewise divergence free in

that Π0 div g = 0 in Ω . Let κ :=
√

1/48+ j−21,1 = 0.298234942888 for the first root
j1,1 of the first Bessel function and the discrete Friedrichs constant CdF [7, 10.6.14].

Theorem 5.3 The projection Π from Theorem 5.2 satisfies

∥
∥F ◦ (1−Π)

∥
∥
Y ∗ ≤ κ

∥
∥hT f

∥
∥
L2(Ω)

+ h max

j1,1

(

CdF
∥
∥ f
∥
∥
L2(Ω)

+
(

2+
√

1+ κ2h2max ‖Π‖
)

|||g|||
)

.

Proof First investigate the volume contributions, i.e., the data approximation error in
case g ≡ 0. The Cauchy-Schwarz and the discrete Friedrichs inequality [7, 10.6.14]
with constant CdF prove, for all y = (τ , v) ∈ Y , that

∫

Ω

f · (v −Πv) dx =
∫

Ω

f · (v − I pwNC v) dx −
∫

Ω

f · z CR dx

≤∥∥hT f
∥
∥
L2(Ω)

∥
∥
∥h−1T (v − I pwNC v)

∥
∥
∥
L2(Ω)

+ CdF
∥
∥ f
∥
∥
L2(Ω)

|||z CR||| NC.

The first term is bounded as in [12, Thm.4] by

∥
∥
∥h−1T (v − I pwNC v)

∥
∥
∥
L2(Ω)

≤ κ|||v − I pwNC v||| NC ≤ κ|||v||| NC. (43)

The choice of z CR in the Helmholtz decomposition (42), (41) and the Poincaré inequal-
ity, prove for the second term

|||z CR|||2NC =
∫

Ω

DNC z CR : (Π0τ − DNC α CR) dx

= −
∫

Ω

z CR · (1−Π0) div NC τ dx

≤ h max/j1,1|||z CR||| NC
∥
∥(1−Π0) div NC τ

∥
∥
L2(Ω)

. (44)

Altogether,

sup
(τ ,v)∈S(Y )

∫

Ω

f · (v −Πv) dx ≤ h maxCdF/j1,1
∥
∥ f
∥
∥
L2(Ω)

+ κ
∥
∥hT f

∥
∥
L2(Ω)

.

Let g ∈ H1(Ω;R2) ∩ H2(T ;R2) be as above and define the nonconforming inter-
polant I NCg ∈ CR1(T ;R2) by I NCg(mid E) := −

∫

E g ds for all E ∈ E .
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24 C. Carstensen, S. Puttkammer

〈

γ T
0 g, γ T

ν (τ − τ RT)
〉

∂T
=
〈

γ T
0 (g − I NCg), γ

T
ν (τ − τ RT)

〉

∂T

+
〈

γ T
0 I NCg, γ

T
ν (τ − τ RT)

〉

∂T
.

The definition of τ RT, (9), div NC g = 0, and (41) lead to

〈

γ T
0 I NCg, γ

T
ν (τ − τ RT)

〉

∂T
=
∫

Ω

DNC I NCg :
(

Π0τ − DNC α CR − Curl βc
)

dx

+
∫

Ω

I NCg · (1−Π0) div NC τ dx

= −
∫

Ω

DNC I NCg : Curl βc dx .

Equation (42), the Cauchy-Schwarz inequality, and (41) lead to

−
∫

Ω

DNC I NCg : Curl βc dx

=
∫

Ω

DNC I NCg :
(

DNC z CR + dev(DNC α CR −Π0τ )
)

dx

≤ |||I NCg||| NC|||z CR||| NC +
∫

Ω

DNC I NCg : (DNC α CR −Π0τ ) dx

= |||I NCg||| NC|||z CR||| NC +
∫

Ω

h−1T (I NCg −Π0 I NCg) · h+1T (1−Π0) div NC τ dx .

The application of the Poincaré inequality and (44) prove

sup
(τ ,v)∈S(Y )

〈

γ T
0 I NCg, γ

T
ν (τ − τ RT)

〉

∂T
≤ 2h max

j1,1

∥
∥(1−Π0) div NC τ

∥
∥
L2(Ω)

|||I NCg||| NC

≤ 2h max

j1,1
|||g|||.

Finally, for all (τ , v) ∈ S(Yh), it holds

〈

γ T
0 (g − I NCg), γ

T
ν (τ − τ RT)

〉

∂T
≤∥∥g − I NCg

∥
∥
H1(T )

‖τ − τ RT‖H(div,T )

≤
√

1+ κ2h2max |||g− I NCg||| NC ‖1−Π‖‖τ‖H(div,T )

≤
√

1+ κ2h2max
‖Π‖ h max/j1,1|||g|||.

The equality‖1−Π‖ =‖Π‖ follows from Kato’s lemma [23, Lemma 4]. ��

In conclusion, the data approximation term is not necessarily of higher-order, but at
least controlled by h max even for non homogeneous boundary data.
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5.2 Extensions of test spaces

The discrete inf-sup condition (4) also holds for an enlarged discrete test search space.
Three examples for an enlarged test search space Ŷh = Yh, j for j = 1, 2, 3 allow for
a decoupling of the Fortin interpolation operator Π and higher-order data approxima-
tion error. Here, B3(T ) := {

v ∈ P3(T ) : v = 0 along ∂T
}

denotes the cubic bubble
functions, and

(i) Yh,1 := Yh ⊕
(

B3(T )R2×2
dev × {0}

)

,

(ii) Yh,2 := P1(T ;R2×2)/R× P1(T ;R2),
(iii) Yh,3 := RT pw

1 (T ;R2×2)/R× P1(T ;R2).

Given τ ∈ H(div, T ;R2×2)/R, there exists (τ̂ RT, 0) ∈ Ŷh := Yh, j for j = 1, 2, 3
with

Π0 dev τ̂ RT = Π0 dev τ , (45)
〈

(τ̂ RT − τ )ν,wc
〉

∂T = 0 for all T ∈ T and wc ∈ P1(T ;R2). (46)

In particular (46) impliesΠ0 div τ̂ RT = Π0 div τ . Altogether, the definition Π̂(τ , v) :=
(τ̂ RT, I

pw
NC v) with (45)–(46) guarantees b(xh, (1− Π̂)y) = 0 for all xh ∈ Xh . In case

Ŷh = Yh,2 and Ŷh = Yh,3, (45)–(46) allow multiple choices of τ̂ RT.

Lemma 5.4 In case Ŷh = Yh,1, Π̂(y) = (τ̂ RT, I
pw
NC v) ∈ RT pw

0 (T ;R2)/R ⊕
B3(T )R2×2

dev × P1(T ;R2) is unique and defines a projection. A bound of ‖Π̂‖ ≤
(2 + 15.5

√
cot(αmin)h max + (3.22 + 60 cot(αmin))h2max)

1/2 depends on h max and the
smallest angle of the triangulation αmin.

Proof The proof of Lemma 5.4 is given in the appendix. ��
The representation Π̂(τ , v) := (τ̂ RT, I

pw
NC v) of the operator Π̂ and (43) prove

sup
(v,τ )∈S(Y )

∫

Ω

f · (v − I pwNC v) dx ≤ κ
∥
∥hT f

∥
∥
L2(Ω)

. (47)

In case of inhomogeneous boundary data, let g ∈ H1(Ω,R2) be an extension of
g ∈ H1(∂Ω;R2)with g|E ∈ P1(E) for all E ∈ E(Ω). Let Ig ∈ S1(E;Rn) denote the
conforming interpolation defined by linear interpolation of the nodal values, Ig(z) =
g(z) for all z ∈ N . Hence, g and Ig coincide along any interior edge E ∈ E(Ω). This
choice and (46) lead to

〈

γ T
0 g, γ T

ν (τ − τ̂ RT)
〉

∂T
= 〈γ0(g − Ig), (τ − τ̂ RT)ν

〉

∂Ω
.

Let g′ := ∂g/∂s denote the arc-length derivative of g ∈ H1(∂Ω;R2) along the
boundary, ΠE

0 g
′ the L2(∂Ω)-orthogonal projection of g′ onto P0(E(∂Ω);R2), and
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hE ∈ P0(E) the piecewise constant functionwith hE |E = diam(ωE ) = diam(T+∪T−)

for every E ∈ E as in Fig. 1. This allows to define the Dirichlet data oscillation

osc(g′, E(∂Ω)) := ‖h1/2E (1−ΠE
0 )g′‖L2(∂Ω).

According to [8, Proof of Lemma 2.1], [5] there exists w ∈ H1(Ω;R2) with w|∂Ω =
(1− I )g|∂Ω and‖w‖H1(Ω) � osc(g′, E(∂Ω)). Hence,

〈

γ0g, γ
T
ν (τ − τ̂ RT)

〉

∂T
= 〈

γ0w, (τ − τ̂ RT)ν
〉

∂Ω

=
∫

Ω

w · div NC(τ − τ̂ RT) dx +
∫

Ω

Dw : (τ − τ̂ RT) dx

≤‖w‖H1(Ω) ‖(1− Π̂)τ‖H(div,T ). (48)

Therefore, for each Ŷh := Yh, j for j = 1, 2, 3, it follows

sup
(v,τ )∈S(Y )

〈

γ T
0 g, γ T

ν (τ − τ RT)
〉

∂T
� ‖1− Π̂‖ osc(g′, E(∂Ω)).

Hence, a slight enlargement of the test search space guarantees an higher-order data
approximation error independent of the given Dirichlet data g. For g|E ∈ H2(E) for
all E ∈ E(∂Ω)with edgewise second surface derivative ∂2Eg/∂s

2 a better estimatewith
explicit constants is possible. There existsw ∈ H1(Ω;R2), such thatw|∂Ω = (1− I )g
and

‖w‖H1(Ω) ≤
√

c21 + h2max,∂Ωc22 ‖h3/2E ∂2Eg/∂s
2‖L2(Ω). (49)

The constants are computed in [15, Thm.5.1] and [24, Thm.4.2.2]. They depend only
on the shape of the triangles of T not on themesh-size, e.g., for right isosceles triangles
c1 ≤ 0.4980 and c2 ≤ 0.0654.

Lemma 5.5 Let T consist of right isosceles triangles and g|E ∈ H2(E) for all
E ∈ E(∂Ω). The data approximation error

∥
∥F ◦ (1−Π)

∥
∥
Y ∗ is explicitly bounded

from above by

0.3
∥
∥hT f

∥
∥
L2(Ω)

+
√

0.5+ 3.84h max + 15.9h2max + 0.07h3max + 0.27h4max‖h3/2E ∂2Eg/∂s
2‖L2(∂Ω).

Proof This follows directly from (47)–(49), Kato’s Lemma and Lemma 5.4. ��

6 Numerical examples

Three benchmark examples concern uniform and adaptive mesh-refinement with var-
ious choices of the input bulk parameter θ in the adaptive algorithm displayed in the
convergence history plots.
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Algorithm 1: AFEM
input: regular initial triangulation T0 and bulk parameter 0 < θ ≤ 1
for � = 0, 1, 2, . . . do

solve Compute solution x� for discrete problem (3) on T�

estimate Compute local contributions η2
�
(T ) for all T ∈ T� and global error estimator

η2
�
=∑

T∈T η2
�
(T )

mark ChooseM� ⊆ T� of minimal cardinality with θ
∑

T∈T�
η2
�
(T ) ≤∑T∈M�

η2
�
(T )

refine Generate minimal refinement T�+1 of T� with M� ⊆ T� \ T�+1
output: Series of triangulations T�, discrete solutions x�, and error estimators η�

6.1 Numerical realisation

The implementation has been performed straightforwardly into Matlab and extends
the data structures of [1]. The adaptive finite element mesh-refining runs Algorithm 1
with η2� :=

∥
∥F − b(x�, •)

∥
∥
2
Y ∗�

for the discrete test search space Y� on level � and the

associated discrete solution x�. Let Y�(T ) ⊂ Y� denote the set of all basis functions
with support T ∈ T and use η2�(T ) :=∥∥F − b(x�, •)

∥
∥2
Y�(T )∗ as a refinement indicator.

The extended test space Ŷ� := Y�⊕(B3(T )R2×2
dev ×{0}) fromSect. 5.2 leads to the error

estimator η̂2� :=
∥
∥F − b(x�, •)

∥
∥2
Ŷ ∗�

and η̃2� := η̂2� + osc2(g′, E(∂Ω)). The oscillations

are computedwith the exact derivatives of g ∈ H1(∂Ω;R2) and numerical integration
with 7 Gauss points per edge. In the examples f ≡ 0, so that η̂� is a guaranteed error
estimator upto a multiplicative generic constant. Instead of the exact error‖x − x�‖X
an upper bound is computed and displayed via the unique extensions wc ∈ S10(T ;R2)

(resp. q RT ∈ RT0(T ;R2)) of s1 ∈ S10(E;R2) (resp. t0 ∈ P0(E;R2)) as in (34),

‖x − x�‖2X ≤‖u − u0‖2L2(Ω)
+‖σ − σ 0‖2L2(Ω)

+‖u − wc‖2H1(Ω)
+∥∥σ − q RT

∥
∥2
H(div;Ω)

.

6.2 Colliding flow example

In this benchmark problem f ≡ 0 in Ω = (−1, 1)2 with given boundary data from
the exact solution (u, p) with, for all (x1, x2) ∈ Ω,

u(x1, x2) = 4
(

5x1x
4
2 − x51 , 5x

4
1 x2 − x52

)

,

p(x1, x2) = 120x21 x
2
2 − 20(x41 + x42 )− 16/3.

Figure 2 presents the computed error estimator and upper bound for the exact error for
uniform refinement. The estimator converges with the optimal rate 0.5 for uniform red-
refinement. The exact error is dominated by the error in the pseudostress component.
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Fig. 2 Convergence history plot for uniform red-refinement for the colliding flow example

6.3 Example on L-shaped domain

In this example f ≡ 0 on the L-shaped domain, Ω = (−1, 1)2 \ ([0, 1] × [−1, 0]),
with ω = 3π/2, α = 856399/1572864, and

w(ϕ) = sin((1+ α)ϕ) cos(αω)

1+ α
− cos((1+ α)ϕ)

+ sin((α − 1)ϕ) cos(αω)

1− α
+ cos((α − 1)ϕ).

The exact solution from [26, p.324] reads, in polar coordinates for the implicit bound-
ary data, for all (r, ϕ) ∈ [0,∞)× [0, 3π/2],

u(r, ϕ) = rα
(

(1+ α) sin(ϕ)w(ϕ)+ cos(ϕ)w′(ϕ),

− (1+ α) cos(ϕ)w(ϕ)+ sin(ϕ)w′(ϕ)
)

,

p(r, ϕ) =− rα−1 ((1+ α)2w′(ϕ)+ w′′′(ϕ)
)

/(1− α).

Figure 3 shows the convergence history plot with an adaptive refinement strategy of
optimal empirical convergence rate 0.5. In case of uniform refinement, as expected in a
non-convex domain with singularity in the reentrant corner, the empirical convergence
rate is 0.25. The computed error shows some pre-asymptotic range, which is typical
also for other finite element discretizations (not displayed). The error estimator η̃�,
which includes the boundary oscillation, follows accordingly. The adaptive algorithm
resolves the singularity in the reentrant corner first as depicted in Fig. 4.
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Fig. 3 Convergence history plot for uniform and adaptive refinement with θ = 0.3 for the example on the
L-shaped domain

Fig. 4 Triangulation T� with
3711 degrees of freedom (371
elements) for the example on the
L-shaped domain from adaptive
refinement with θ = 0.3
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6.4 Backward facing step example

This benchmark example with f ≡ 0 on a slightly deformed L-shaped domain Ω =
(

(−2, 8)× (−1, 1))\ ((−2, 0)× (−1, 0)) has the Dirichlet data g for (x1, x2) ∈ ∂Ω

g(x1, x2) =

⎧

⎪⎪⎨

⎪⎪⎩

1/10
(−x2(x2 − 1), 0

)

for x1 = −2,
1/80

(−(x2 − 1)(x2 + 1), 0
)

for x1 = 8,

(0, 0)� else.

Figure 5 presents the error estimator for varying bulk parameter θ . Obviously, a smaller
θ leads to a better convergence rate. On the other hand, more levels are needed to
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Fig. 5 Convergence history plot with varying bulk parameter θ for the backward facing step example
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Fig. 6 Triangulation T� with 15511 degrees of freedom (1551 elements) for the backward facing step
example from adaptive refinement with θ = 0.3

reach a certain number of degrees of freedom and θ = 0.3 leads to the optimal
empirical convergence rate. The choice of different error estimatorsη�, η̂�, η̃� does not
influence the result. The inhomogeneous Dirichlet boundary conditions are resolved
in the triangulation in Fig. 6 before the singularity at the reentrant corner becomes
significant.

6.5 Conclusion

All the numerical experiments confirm the theoretical results and support the conjec-
tured instant stability of the dPG paradigm: The systematic convergence with a clear
empirical convergence rate is visible from the very beginning even for the coarsest
meshes. The extensions of the test search space do not affect the approximation of the
discrete solution significantly. It is not rewarding to compute with bigger test search
spaces. The error estimators η� and η̂� are almost identical thought η̃� leads to a guar-
anteed error bound. It is utterly an empirical observation that the associated adaptive
mesh-refining algorithm improves suboptimal convergence rates in case of singular
solutions.
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Appendix: Fortin interpolation in an extended test search space

Proof of Lemma 5.4 For Ŷh := (RT pw
0 (T ;R2)/R⊕ B3(T )R2×2

dev ) × P1(T ;R2) the
Fortin interpolator Π̂ : Y → Ŷh maps (τ , v) �→ (τ̂ RT, I

pw
NC v) such that (45)–(46) hold.

Recall the edge-based Raviart–Thomas basis ψE for E ∈ E(T ), the opposite vertex
PE ∈ N (T ), and the component κ = 1, 2, let ΨE,κ := eκ ⊗ ψE := eκ ⊗ χ(T )(x −
PE )|E | /(2|T |). The Crouzeix-Raviart basis functions in two components ΦE,κ read
ΦE,κ := φE eκ := χ(T )(1−2ϕPE ) eκ with nodal basis functions ϕz of z ∈ N . Given
T ∈ T , τ ∈ H(div, T ;R2×2), define

IFτ :=
∑

κ=1, 2

∑

E∈E(T )

(
1

|E |
∫

∂T
ΦE,κ · τνT ds ΨE,κ

)

. (50)

Since
(

ψE · νT
) |F = δEF and

∫

F φE ds = δEF |E | for E, F ∈ E(T ), IF = I 2F is
a projection. Moreover,

〈

IFτνT , ΦE,κ

〉

∂T = 〈

τνT , ΦE,κ

〉

∂T for any E ∈ E(T ) and
κ = 1, 2 implies (46). An integration by parts allows to rewrite IFτ . The projection
property implies IFq = q for all q ∈ P0(T ). This and

∑

E∈E(T ) ϕE = 1 reveal

IFτ =
∑

κ=1, 2

∑

E∈E(T )

1

|E |
(∫

T
DΦE,κ : τ dx +

∫

T
ΦE,κ · div τ dx

)

ΨE,κ

= Π0τ +
∑

κ=1, 2

∑

E∈E(T )

1/2 −
∫

T
ΦE,κ · div τ dx eκ ⊗ (x − PE )

= Π0τ + Π0 div τ

2
⊗ (x −mid(T ))+ Q(T ),

where Q(T ) := ∑

κ=1, 2
∑

E∈E(T ) 1/2
(
−
∫

T ΦE,κ · div τ dx
)

eκ ⊗ (mid(T ) − PE ).
Given bT := 60ϕ1ϕ2ϕ3 ∈ B3(T ), for T ∈ T , set

Πττ := IFτ + bT devΠ0(τ − IFτ ) = IFτ − bT dev Q(T ). (51)

Since bT |∂T = 0 and −
∫

T bT = 1, this operator Πτ satisfies (45)–(46). To compute
‖Πτ‖ with

∥
∥Πτ(τ )

∥
∥2
H(div,T )

=∥∥IFτ − bT dev Q(T )
∥
∥2
L2(T )

+∥∥div IFτ − dev Q(T )∇bT
∥
∥2
L2(T )

,

estimate the Frobenius norm
∥
∥Q(T )

∥
∥
F of Q(T ) as follows. Since |mid(T )− PE | ≤

2hT /3 and
∥
∥φE

∥
∥2
L2(T )

=|T | /3, the Cauchy-Schwarz inequality allows
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∥
∥Q(T )

∥
∥2
F =

∑

κ=1, 2

∑

k=1, 2

( ∑

E∈E(T )

1/2 −
∫

T
ΦE,κ · div τ dx (mid(T )− PE ) · ek

)2

≤ 2
∑

κ=1, 2

( ∑

E∈E(T )

1/(2|T |)
∫

T

∣
∣ΦE,κ · div τ

∣
∣ dx

∣
∣mid(T )− PE

∣
∣
)2

≤ 2h2T /9
∑

κ=1, 2

(‖div τ · eκ‖L2(T )

∑

E∈E(T )

|T |−1∥∥φE
∥
∥
L2(T )

)2

≤ 2h2T /(3|T |) ‖div τ‖2L2(T )
.

Moreover,‖bT ‖2L2(T )
= 10|T | /7 and‖∇bT ‖2L2(T )

= 20|T |∥∥G(T )
∥
∥2
F , with

G(T ) :=

⎛

⎜
⎜
⎝

∇ϕ�1
∇ϕ�2
∇ϕ�3

⎞

⎟
⎟
⎠
=
(

1 1 1

P1 P2 P3

)−1
⎛

⎜
⎝

0 0

1 0

0 1

⎞

⎟
⎠

and
∥
∥G(T )

∥
∥2
F = (2|T |)−2∑E∈E(T )|E |2 ≤ 3h2T (2|T |)−2. Let αT denote the smallest

angle in T and recall h2T ≤ 4|T | cot(αT ). Hence,

∥
∥bT dev Q(T )

∥
∥
2
L2(T )

≤∥∥Q(T )
∥
∥2
F‖bT ‖2L2(T )

= 20h2T /21 ‖div τ‖2L2(T )
,

∥
∥dev Q(T ) ∇bT

∥
∥
2
L2(T )

≤∥∥Q(T )
∥
∥2
F‖∇bT ‖2L2(T )

= 15h4T /|T | ‖div τ‖2L2(T )

≤ 60h2T cot(αT )‖div τ‖2L2(T )
.

Alltogether,

∥
∥Πτ(τ )

∥
∥2
H(div,T )

≤
(

‖Π0τ‖L2(T ) +
∥
∥Q(T )

∥
∥
L2(T )

+∥∥bT dev Q(T )
∥
∥
L2(T )

)2

+
(

‖divΠ0τ‖L2(T ) +
∥
∥dev Q(T )∇bT

∥
∥
L2(T )

)2

≤
(

‖τ‖L2(T ) +
(√

2/3+√20/21
)

hT ‖div τ‖L2(T )

)2

+
(

1+ 2
√

15 cot(αT )hT
)2‖div τ‖2L2(T )

≤
(

1+ 3.22h2T + (1+ 7.75
√

cot(α)hT )2
)

‖τ‖2H(div,T )

≤ (2+ 15.5
√

cot(αT )hT + (3.22+ 60 cot(αT ))h2T )‖τ‖2H(div,T ) .

Set Π̂(τ , v)|T := (Πτ (τ |T ), I pwNC v|T ) as in (51). Given y = (τ , v) ∈ Y , the above
computation, the abbreviation αmin for the smallest angle of the triangulation (which
is bounded in a regular triangulation) and [12, Thm. 4] prove
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‖Π̂(y)‖2Y =
∥
∥Πτ(τ )

∥
∥
2
H(div,T )

+ ‖I pwNC v‖2H1(T )

≤(2+ 15.5
√

cot(αmin)h max + (3.22+ 60 cot(αmin))h
2
max)‖τ‖2H(div,T )

+ (2+ 2κ2h2max)‖v‖2H1(T )

≤(2+ 15.5
√

cot(αmin)h max + (3.22+ 60 cot(αmin))h
2
max)
∥
∥y
∥
∥2
Y .

��
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