
Numer. Math. (2018) 140:191–237
https://doi.org/10.1007/s00211-018-0961-7

Numerische
Mathematik

An optimal adaptive wavelet method for first order
system least squares

Nikolaos Rekatsinas1 · Rob Stevenson1

Received: 10 December 2016 / Published online: 24 March 2018
© The Author(s) 2018

Abstract In this paper, it is shown that any well-posed 2nd order PDE can be refor-
mulated as a well-posed first order least squares system. This system will be solved by
an adaptive wavelet solver in optimal computational complexity. The applications that
are considered are second order elliptic PDEs with general inhomogeneous boundary
conditions, and the stationary Navier–Stokes equations.
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1 Introduction

In this paper, a wavelet method is constructed for the optimal adaptive solution of sta-
tionary PDEs.We develop a general procedure to write anywell-posed 2nd order PDE
as a well-posed first order least squares system. The (natural) least squares formula-
tions contain dual norms, that, however, impose no difficulties for a wavelet solver.
The advantages of the first order least squares system formulation are twofold.

Firstly, regardless of the original problem, the least squares problem is symmet-
ric and positive definite, which opens the possibility to develop an optimal adaptive
solver. The obvious use of the least-squares functional as an a posteriori error esti-
mator, however, is not known to yield a convergent method (see, however, [16] for
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an alternative for Poisson’s problem). As we will see, the use of the (approximate)
residual in wavelet coordinates as an a posteriori error estimator does give rise to an
optimal adaptive solver.

Secondly, as wewill discuss inmore detail in the following subsections, the optimal
application of a wavelet solver to a first order system reformulation allows for a
simpler, andquantitativelymore efficient approximate residual evaluation thanwith the
standard formulation of second order. Moreover, it applies equally well to semi-linear
equations, as e.g. the stationary Navier–Stokes equations, and it applies to wavelets
that have only one vanishing moment.

The approach to apply the wavelet solver to a well-posed first order least squares
system reformulation also applies to time-dependent PDEs in simultaneous space-time
variational formulations, as parabolic problems or instationary Navier–Stokes equa-
tions. With those problems, the wavelet bases consist of tensor products of temporal
and spatial wavelets. Consequently, they require a different procedure for the approx-
imate evaluation of the residual in wavelet coordinates, which will be the topic of a
forthcoming work.

1.1 Adaptive wavelet schemes, and the approximate residual evaluation

Adaptive wavelet schemes can solve well-posed linear and nonlinear operator
equations at the best possible rate allowed by the basis in linear complexity [7–
9,29,31,32,34]. Schemes with those properties will be called optimal. The schemes
can be applied to PDEs, which we study in this work, as well as to integral equations
[18].

There are two kinds of adaptive wavelet schemes. One approach is to apply some
convergent iterativemethod to the infinite system inwavelet coordinates, with decreas-
ing tolerances for the inexact evaluations of residuals [8,9]. These schemes rely on
the application of coarsening to achieve optimal rates.

The other approach is to solve a sequence of Galerkin approximations from spans
of nested sets of wavelets. The (approximate) residual in wavelet coordinates of the
current approximation is used as an a posteriori error estimator to make an optimal
selection of the wavelets to be added to form the next set [7]. With this scheme, that
is studied in the current work, the application of coarsening can be avoided [23,34],
and it turns out to be quantitatively more efficient. This approach is restricted to PDOs
whose Fréchet derivatives are symmetric and positive definite (compact perturbations
can be added though, see [22]).

A key computational ingredient of both schemes is the approximate evaluation of
the residual in wavelet coordinates. Let us discuss this for a linear operator equation
Au = f , with, for some separable Hilbert spaces H and K , for convenience over
R, f ∈ K ′ and A ∈ Lis(H ,K ′) (i.e., A ∈ L(H ,K ′) and A−1 ∈ L(K ′,H )).

Equipping H and K with Riesz bases �H , �K , formally viewed as column
vectors, Au = f can be equivalently written as a bi-infinite system of coupled scalar
equationsAu = f , where f = f (�K ) is the infinite ‘load vector’,A = (A�H )(�K )

is the infinite ‘stiffness’ or system matrix, and u = u��H .
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Adaptive wavelet method for first order system least… 193

Here we made use of following notations:

Notation 1.1 For countable collections of functions � and ϒ , we write g(�) =
[g(σ )]σ∈� , M(�)(ϒ) = [M(σ )(υ)]υ∈ϒ,σ∈� , and 〈ϒ,�〉 = [〈υ, σ 〉]υ∈ϒ,σ∈� ,
assuming g, M , and 〈 , 〉 are such that the expressions at the right-hand sides are
well-defined.

The space of square summable vectors of reals indexed over a countable index set
∨ will be denoted as �2(∨) or simply as �2. The norm on this space will be simply
denoted as ‖ · ‖.

As a consequence of A ∈ Lis(H ,K ′), we have that A ∈ Lis(�2, �2). For the
moment, let us additionally assume thatA is symmetric and positive definite, as when
K = H , (Au)(v) = (Av)(u) and (Au)(u) � ‖u‖2H (u, v ∈ H ). If this is not the
case, then the following can be applied to the normal equations A�Au = A�f .

For the finitely supported approximations ũ to u that are generated inside the
adaptive wavelet scheme, the residual r = f − Aũ has to be approximated within a
sufficiently small relative tolerance. The resulting scheme has been shown to converge
with the best possible rate: Whenever u can be approximated at rate s, i.e. u ∈ As ,
meaning that for any N ∈ N there exists a vector of length N that approximates u
within toleranceO(N−s), the approximations produced by the scheme converge with
this rate s. Moreover, the scheme has linear computational complexity under the cost
condition that

the approximate residual evaluation within an (absolute) tolerance ε � ‖r‖
requires not more than O(ε−1/s + # supp ũ) operations. (1.1)

The lower bound on ε reflects the fact that inside the adaptive scheme, it is never
needed to approximate a residual more accurately than within a sufficiently small, but
fixed relative tolerance. The validity of (1.1) will require additional properties of�H

and �K in addition to being Riesz bases. For that reason we consider wavelet bases.
The standard way to approximate the residual within tolerance ε is to approximate

both f and Aũ separately within tolerance ε/2. Under reasonable assumptions, f can
be approximated within tolerance ε/2 by a vector of length O(ε−1/s).

For the approximation ofAũ, it is used that, thanks to the properties of the wavelets
as having vanishing moments, each column of A, although generally infinitely sup-
ported, can be well approximated by finitely supported vectors. In the approximate
matrix-vector multiplication routine introduced in [7], known as the APPLY-routine,
the accuracy with which a column is approximated is judiciously chosen depending on
the size of the corresponding entry in the input vector ũ. It has been shown to realise
a tolerance ε/2 at cost O(ε−1/s |ũ|1/sAs + # supp ũ), for any s in some range (0, s∗].
For wavelets that have sufficiently many vanishing moments, this range was shown
to include the range of s ∈ (0, smax] for which, in view of the order of the wavelets,
u ∈ As can possibly be expected (cf. [28]). Using that for the approximations ũ to
u that are generated inside the adaptive wavelet scheme, it holds that |ũ|As � |u|As ,
in those cases the cost condition is satisfied, and so the adaptive wavelet scheme is
optimal.
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The APPLY-routine, however, is quite difficult to implement. Note, in particular,
that its outcome depends nonlinearly on the input vector ũ. Furthermore, in exper-
iments, the routine turns out to be quantitatively expensive. Finally, although it has
been generalized to certain classes of semi-linear PDEs, in those cases it has not been
shown that s∗ ≥ smax, meaning that for nonlinear problems the issue of optimality is
actually open.

1.2 An alternative for the APPLY routine

A main goal of this paper is to develop a quantitatively efficient alternative for
the APPLY-routine, that, moreover, gives rise to provable optimal adaptive wavelet
schemes for classes of semi-linear PDEs, and applies towavelets with only one vanish-
ing moment. As an introduction, we consider the model problem of Poisson’s equation

in one space dimension

{− u′′ = f on (0, 1),
u = 0 at {0, 1}, that, in standard variational form,

reads as finding u ∈H := H1
0 (0, 1) such that

〈u′, v′〉L2(0,1) = 〈 f, v〉L2(0,1), (v ∈ K := H1
0 (0, 1)),

where, by identifying L2(0, 1)′ with L2(0, 1) and using that H1
0 (0, 1) ↪→ L2(0, 1) is

dense, 〈 , 〉L2(0,1) is also used to denote the duality pairing on H−1(0, 1)× H1
0 (0, 1).

We consider piecewise polynomial, locally supported wavelet Riesz bases �H and
�K for H1

0 (0, 1). Let us exclusively consider admissible approximations ũ to u
in the sense that their finite supports form trees, meaning that if λ ∈ supp ũ, then
then there exists a μ ∈ supp ũ, whose level is one less than the level of λ, and
meas(suppψH

λ ∩ suppψH
μ ) > 0. It is known that the approximation classes As

become only ‘slightly’ smaller by this restriction to tree approximation compared to
unconstrained approximation (cf. [11]). What is more, the restriction to tree approx-
imation seems mandatory anyway to construct an optimal algorithm for nonlinear
operators. The benefit of tree approximation is that ũ := ũ��H has an alternative,
‘single-scale’ representation as a piecewise polynomial w.r.t. a partition T1 of (0, 1)
with #T1 � #supp ũ.

For the moment, let us make the additional assumption that �H is selected inside
H2(0, 1). Then, for an admissible ũ, with its support denoted as �H , integration-by-
parts shows that

r := f − Aũ = 〈�K , f + ũ′′〉L2(0,1),

where ũ′′ is piecewise polynomial w.r.t. T1. If u ∈ As , then for any ε > 0 there exists
a piecewise polynomial fε w.r.t. a partition T2 of (0,1) into O(ε−1/s) subintervals
such that ‖ f − fε‖H−1(0,1) ≤ ε.1 The term f − fε is commonly referred to as data
oscillation.

1 Indeed, for an admissible ū with ‖u − ū‖ ≤ ε and # supp ū � ε−1/s , take fε = −ū′′ and use ‖ f +
ū′′‖H−1(
) � ‖u − ū‖H1(0,1) � ‖u− ū‖.
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Adaptive wavelet method for first order system least… 195

The function fε+ũ′′ is piecewise polynomialw.r.t. the smallest common refinement
T of T1 and T2. Thanks to this piecewise smoothness of fε + ũ′′ w.r.t. T , and the
property of ψK

λ having one vanishing moment, |〈ψK
λ , fε + ũ′′〉L2(0,1)| is decreasing

as function of the minimal difference of the level ofψK
λ and that of any subinterval in

T that has non-empty intersection with suppψK
λ . Here with the level ofψK

λ or that of
an interval ω, we mean an � ∈ N0 such that 2−�

� diam(suppψK
λ ) or 2−�

� diamω,
respectively. In particular, given a constant ς > 0, there exists a constant k, such that
by dropping all λ for which the aforementioned minimal level difference exceeds k,
the remaining indices form a tree�K with #�K � #T � ε−1/s+#�H (dependent
on k), and (see Proposition A.1)

‖fε − Aũ− (fε − Aũ)|�K ‖ ≤ ς‖ fε + ũ′′‖H−1(0,1) ≤ ς‖ f + ũ′′‖H−1(0,1) + ςε

� ς‖u − ũ‖H1(0,1) + ςε,

and so, using ‖r‖ � ‖u − ũ‖H1(0,1) and ‖f − fε‖ � ‖ f − fε‖H−1(0,1),

‖r − r|�K ‖ � ς‖r‖ + ε.

Note that for ς being sufficiently small, and so k sufficiently large, by taking ε suitably
the approximate residual will meet any accuracy that is required in the cost Condition
(1.1).

By selecting ‘single scale’ collections�H and�K with span�H ⊇span�H |�H

and span�K ⊇ span�K |�K , and #�H � #�H and #�K � #�K , this
approximate residual r|�K can be computed in O(�K ) operations as follows: First
express ũ in terms of �H by applying a multi-to-single scale transformation to ũ,
then apply to this representation the sparse stiffness matrix 〈(�K )′, (�H )′〉L2(0,1),
subtract 〈�K , f 〉L2(0,1), and finally apply the transpose of the multi-to-single scale
transformation involving �K |�K and �K . This approximate residual evaluation
thus satisfies the cost condition for optimality, it is relatively easy to implement, and
it is observed to be quantitatively much more efficient.

It furthermore generalizes to semi-linear operators, in any case for nonlinear terms
that are multivariate polynomials in u and derivatives of u. Indeed, as an example,
suppose that instead of −u′′ = f the equation reads as −u′′ + u3 = f . Then the
residual is given by 〈�K , f + ũ′′ − ũ3〉L2(0,1). Since fε + ũ′′ − ũ3 is a piecewise
polynomial w.r.t. T , the same arguments shows that 〈�K , f + ũ′′ − ũ3〉L2(0,1)

∣∣
�K

is a valid approximate residual.
The essential idea behind our approximate residual evaluation is that, after the

replacement of f by fε, the different terms that constitute the residual are expressed
in a common dictionary, before the residual, as a whole, is integrated against �K . In
our simple one-dimensional example this was possible by selecting �H ⊂ H2(0, 1),
so that the operator could be applied to the wavelets in strong, or more precisely,
mild sense, meaning that the result of the application lands in L2(0, 1). It required
piecewise smooth, globallyC1-wavelets. Although the same approach applies in more
dimensions, there, except on product domains, the construction of C1-wavelet bases
is cumbersome. For that reason, our approach will be to write a PDE of second order
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as a system of PDEs of first order. It will turn out that there are several possibilities to
do so.

1.3 A common first order system least squares formulation

To introduce ideas, let us again consider the model problem of Poisson’s equation in
one dimension. By introducing the additional unknown θ = u′, for given f ∈ L2(0, 1)
this PDEcanbewritten as thefirst order systemoffinding (u, θ) ∈ H1

0 (0, 1)×H1(0, 1)
such that

�H(u, θ) := (−θ ′ − f,−u′ + θ) = �0 in L2(0, 1)× L2(0, 1).

The corresponding homogeneous operator2 �Hh := (v, η) �→ (−η′,−v′ + η) is in
Lis(H1

0 (0, 1)×H1(0, 1), L2(0, 1)×L2(0, 1)) (cf. [30, (proof of) Thm. 3.1]). To arrive
at a symmetric and positive definite system, we consider the least squares problem of
solving

argmin
(u,θ)∈H1

0 (0,1)×H1(0,1)

‖ �H(u, θ)‖2L2(0,1)×L2(0,1).

Its solution solves the Euler–Lagrange equations

〈 �Hh(v, η), �H(u, θ)〉L2(0,1)×L2(0,1) = 0 ((v, η) ∈ H1
0 (0, 1)× H1(0, 1)).

which in this setting are known as the normal equations.
To these equations we apply the adaptive wavelet scheme, so with ‘H ’=‘K ’=

H1
0 (0, 1) × H1(0, 1), (‘A’(u, θ))(v, η) := 〈 �Hh(v, η), �Hh(u, θ)〉L2(0,1)×L2(0,1) and

right-hand side ‘ f ’(v, η) := 〈 f,−η′〉L2(0,1). From �Hh being a homeomorphism with
its range, i.e.,

‖ �Hh(v, η)‖L2(0,1)×L2(0,1) � ‖(v, η)‖H1
0 (0,1)×H1(0,1),

being a consequence of �Hh being even boundedly invertible between the full spaces,
it follows that the bilinear form is bounded, symmetric, and coercive. After equipping
H1
0 (0, 1) and H1(0, 1) with wavelet Riesz bases �H1

0 and �H1
, for admissible ũ and

θ̃ , with ũ := ũ��H1
0 and θ̃ := θ̃

�
�H1

the residual reads as

r =
[
r1
r2

]
=
[
〈(�H1

0 )′, ũ′ − θ̃〉L2(0,1)

〈(�H1
)′, θ̃ ′ + f 〉L2(0,1) + 〈�H1

, θ̃ − ũ′〉L2(0,1)

]
. (1.2)

2 For general non-affine �H , �Hh should be read as the Fréchet derivative D �H(u, θ).
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Adaptive wavelet method for first order system least… 197

The construction of an approximate residual follows the same lines as described
before for the standard variational formulation.3 The functions ũ′, θ̃ , θ̃ ′ are piecewise
polynomials w.r.t. a partition T1 of (0, 1) into O(# supp ũ+ # supp θ̃) subintervals. If
(u, θ) ∈ As , then there exists a piecewise polynomial fε w.r.t. a partition T2 of (0, 1)
into O(ε−1/s) subintervals such that ‖ f − fε‖L2(0,1) ≤ ε. Thanks to the piecewise

smoothness of ũ′−θ̃ and θ̃ ′+ fε, there exist trees�H1
0 and�H1

, with #�H1
0 +#�H1 �

#T1 + #T2 (dependent on ς ), such that

∥∥∥∥∥r −
[
r1|

�
H1
0

r2|�H1

]∥∥∥∥∥ � ς(‖ũ′ − θ̃‖L2(0,1) + ‖θ̃ ′ + fε‖L2(0,1))+ ε � ς‖r‖ + ε.

Since the approximate residual can be evaluated in O(#�H1
0 ∪ �H1

) operations, we
conclude that it satisfies the cost Condition (1.1) for optimality of the adaptive wavelet
scheme.

Remark 1.2 Recall that, as alwayswith least squares formulations, the same results are
valid when lower order, possibly non-symmetric terms are added to the second order
PDE, as long as the standard variational formulation remainswell-posed. Furthermore,
as we will discuss, least squares formulations allows to handle inhomogeneous bound-
ary conditions. Finally, as we will see, the approach of reformulating a 2nd order PDE
as a first order least squares problem, and then optimally solving the normal equations
applies to any well-posed PDE, not necessarily being elliptic.

In [17] we applied the adaptive wavelet scheme to a least squares formulation of
the current, common type. Disadvantages of this formulation are that (i) it requires
that f ∈ L2(0, 1), instead of f ∈ H−1(0, 1) as allowed in the standard variational
formulation. Related to that, and more importantly, for a semi-linear equation −u′′ +
N (u) = f , (ii) it is needed that N maps H1

0 (0, 1) into L2(0, 1), instead of into
H−1(0, 1). Finally, with the generalization of this least squares formulation to more
than one space dimensions, (iii) the space H1(0, 1) for θ reads as H(div;
). In [17],
for two-dimensional connected polygonal domains 
, we managed to construct a
wavelet Riesz basis for H(div;
). This construction, however, relied on the fact that,
in two dimensions, any divergence-free function is the curl of an H1-function. To the
best of our knowledge, wavelet Riesz bases for H(div;
) for non-product domains
in three and more dimensions have not been constructed.

In the next subsection, we describe a prototype of a least-squares formulation with
which these disadvantages (i)–(iii) are avoided.

1.4 A seemingly unpractical least squares formulation

The first order system least squares formulation that will be studied in this paper reads,
for the model problem, as follows: again we introduce θ = u′, but now consider the
first order system of finding (u, θ) ∈ H1

0 (0, 1)× L2(0, 1) such that

3 Actually, in the current setting its analysis is more straightforward, because the residuals are measured
in L2(0, 1) instead of in H−1(0, 1).
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�H(u, θ) := (D′θ + f,−u′ + θ) = �0 in H−1(0, 1)× L2(0, 1).

where (D′θ)(v) := −〈θ, v′〉L2(0,1), i.e., D
′θ is the distributional derivative of θ .

In ‘primal’ mixed form, this system reads as

〈θ, v′〉L2(0,1) + 〈θ − u′, η〉L2(0,1) = 〈 f, v〉L2(0,1) ((v, η) ∈ H1
0 (0, 1)× L2(0, 1)).

The corresponding homogeneous operator �Hh is in Lis(H1
0 (0, 1) × L2(0, 1),

H−1(0, 1)× L2(0, 1)), and the least squares problem reads as solving

argmin
(u,θ)∈H1

0 (0,1)×L2(0,1)

‖ �H(u, θ)‖2H−1(0,1)×L2(0,1)
, (1.3)

with normal equations reading as

0 = 〈 �Hh(v, η), �H(u, θ)〉H−1(0,1)×L2(0,1)

= 〈D′η, D′θ − f 〉H−1(0,1) + 〈−v′ + θ,−u′ + θ〉L2(0,1)
(1.4)

((v, η) ∈ H1
0 (0, 1)× L2(0, 1)).

In the terminology from [3], our current least squares problem is identified as
being unpractical because of the appearance of the dual norm. To deal with this,

as in [19], we select some wavelet Riesz basis � Ĥ1
0 for H1

0 (0, 1), and replace the

norm on H−1(0, 1) in (1.3) by the equivalent norm defined by ‖g(� Ĥ1
0 )‖ for g ∈

H−1(
). Correspondingly, in (1.4) we replace the inner product 〈g, h〉H−1(0,1) by

g(� Ĥ1
0 )�h(� Ĥ1

0 ), so that the resulting normal equations read as finding (u, θ) ∈
H1
0 (0, 1)× L2(0, 1) such that

〈η, (� Ĥ1
0 )′〉L2(0,1)

{〈(� Ĥ1
0 )′, θ〉L2(0,1) − 〈� Ĥ1

0 , f 〉L2(0,1)
}

+〈−v′ + η,−u′ + θ〉L2(0,1) = 0

for all (v, η) ∈ H1
0 (0, 1)× L2(0, 1).

To apply the adaptive wavelet scheme to these normal equations, we equip H1
0 (0, 1)

and L2(0, 1) with wavelet Riesz bases �H1
0 and �L2 , respectively. When these bases

have order p + 1 and p, the best possible convergence rate smax will be equal to p

(p/n on an n-dimensional domain). Note that the order of the basis � Ĥ1
0 is irrelevant.

For approximations (ũ, θ̃ ) = (ũ��H1
, θ̃
�
�L2) for admissible ũ and θ̃ , the residual

r of (ũ, η̃) reads as

[
〈(�H1

0 )′, ũ′ − θ̃〉L2(0,1)

〈�L2 , (� Ĥ1
0 )′〉L2(0,1)

{〈(� Ĥ1
0 )′, θ̃〉L2(0,1) − 〈� Ĥ1

0 , f 〉L2(0,1)
}+ 〈�L2 , θ̃ − ũ′〉L2(0,1)

]
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Adaptive wavelet method for first order system least… 199

that, under the additional condition that �L2 ⊂ H1(0, 1), and thus θ̃ ∈ H1(0, 1), is
equal to

[
r1
r2

]
=
[
〈(�H1

0 )′, ũ′ − θ̃〉L2(0,1)

−〈�L2 , (� Ĥ1
0 )′〉L2(0,1)〈� Ĥ1

0 , θ̃ ′ + f 〉L2(0,1) + 〈�L2 , θ̃ − ũ′〉L2(0,1)

]
.

(1.5)
This last step is essential because it allows us, after the replacement of f by a piecewise
polynomial fε, to express θ̃ ′ + fε in a common dictionary. The additional condition is
satisfied by piecewise polynomial, globally continuous wavelets, which are available
on general domains in multiple dimensions.

In view of the previous discussions, to describe the approximate residual evaluation,

it suffices to consider the term 〈�L2 , z�(� Ĥ1
0 )′〉L2(0,1) with z := 〈� Ĥ1

0 , f +θ̃ ′〉L2(0,1).
The by now familiar approach is applied twice: the function θ̃ ′ is piecewise polynomial
w.r.t. a partition T1 into O(# supp θ̃) subintervals. If (u, θ) ∈ As , then there exists a
piecewise polynomial fε w.r.t. a partition T2 of (0,1) into O(ε−1/s) subintervals such
that ‖ f − fε‖H−1(0,1) ≤ ε. Consequently, there exists a tree �Ĥ1

0 with #�Ĥ1
0 �

# supp θ̃ + ε−1/s (dependent on ς ) such that ‖z− z|
�

Ĥ1
0
‖ � ς‖ f + θ̃ ′‖H−1(0,1) + ε.

The function z̃ := z|�
�

Ĥ1
0
� Ĥ1

0 is piecewise polynomial w.r.t. a partition T2 of (0,1)

into O(#�Ĥ1
0 ) subintervals. Consequently, exists a tree �

L2
1 with #�L2

1 � #�Ĥ1
0

(dependent on ς ) such that ‖〈�L2 , z̃′〉L2(0,1)−〈�L2 , z̃′〉L2(0,1)
∣∣
�

L2
1
‖ ≤ ς‖z̃‖H1(0,1) �

ς(‖z‖ + ‖z− z|
�

Ĥ1
0
‖) � ς(‖ f + θ̃ ′‖H−1(0,1) + ε). Combining this with the approx-

imations for the other two terms that constitute the residual, we infer that there exist
trees �H1

0 and �L2 with #�H1
0 + #�L2 � # supp #ũ + # supp θ̃ + ε−1/s (dependent

on ς ), such that

∥∥∥∥∥r −
[
r1|

�
H1
0

r̃2|�L2

]∥∥∥∥∥ � ς(‖ũ′ − θ̃‖L2(0,1) + ‖θ̃ ′ + fε‖H−1(0,1))+ ε � ς‖r‖ + ε,

where r̃2 is constructed from r2 by replacing z by z|
�

Ĥ1
0
. This approximate residual

evaluation satisfies the cost Condition (1.1) for optimality.
As we will see in Sect. 2, the advantage of the current construction of a first order

system least squares problem is that it applies to any well-posed (semi-linear) second
order PDE. The two instances of the spaces H1

0 (0, 1) represent the trial and test spaces
in the standard variational formulation, and well-posedness of the latter implies well-
posedness of the least squares formulation. The additional space L2(0, 1) reads in
general as an L2-type space. So, in particular, with this formulation, H(div)-spaces
do not enter. The price to be paid is that (1.5) is somewhat more complicated than
(1.2), and that therefore its approximation is somewhat more costly to compute.

Remark 1.3 The more popular ‘dual’ mixed formulation of our model problem reads
as finding (u, θ) ∈ L2(0, 1) × H1(0, 1) such that 〈−θ ′, v〉L2(0,1) + 〈θ, η〉L2(0,1) +
〈u, η′〉L2(0,1) = 〈 f, v〉L2(0,1) ((v, η) ∈ L2(0, 1) × H1(0, 1)). The resulting least
squares formulation has the combined disadvantages of both other formulations that
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we considered. It requires f ∈ L2(0, 1), possibly nonlinear terms should map into
L2(0, 1), in more than one dimension the space H1(0, 1) reads as an H(div)-space,
and one of the norms involved in the least squares minimalisation is a dual norm.

Remark 1.4 With the aim to avoid both a dual norm in the least squaresminimalisation,
and H(div) or other vectorial Sobolev spaces as trial spaces, in our first investigations
of this least squares approach in [31], we considered the ‘extended div-grad’ first
order system least squares formulation studied in [14]. A sufficient and necessary [30],
but restrictive condition for its well-posedness is H2-regularity of the homogeneous
boundary value problem.

1.5 Layout of the paper

In Sect. 2, a general procedure is given to reformulate any well-posed semi-linear
2nd order PDE as a well-posed first order least squares problem. As we will see,
this procedure gives an effortless derivation of well-posed first order least squares
formulations of elliptic 2nd order PDEs, and that of the stationary Navier–Stokes
equations. The arising dual norm can be replaced by the equivalent �2-norm of a
functional in wavelet coordinates.

In Sect. 3, we recall properties of the adaptive wavelet Galerkin method (awgm).
Operator equations of the form F(z) = 0, where, for some Hilbert space H , F :
H →H ′ and DF(z) is symmetric and positive definite, are solved by the awgm at
the best possible rate from a Riesz basis forH . Furthermore, under a condition on the
cost of the approximate residual evaluations, the method has optimal computational
complexity.

In the short Sect. 4, it is shown that the awgm applies to the normal equations that
result from the first order least squares problems as derived in Sect. 2.

In Sect. 5, we apply the awgm to a first order least squares formulation of a semi-
linear 2nd order elliptic PDEwith general inhomogeneous boundary conditions.Under
a mild condition on the wavelet basis for the trial space, the efficient approximate
residual evaluation that was outlined in Sect. 1.4 applies, and it satisfies the cost
condition, so that the awgm is optimal. Wavelet bases that satisfy the assumptions
are available on general polygonal domains. Some technical results needed for this
section are given in “Appendix A”.

In Sect. 6 the findings from Sect. 5 are illustrated by numerical results.
In Sect. 7, we consider the so-called velocity–pressure–velocity gradient and the

velocity–pressure–vorticity first order system formulations of the stationary Navier–
Stokes equations. Results analogously to those demonstrated for the elliptic problem
will be shown to be valid here as well.

2 Reformulation of a semi-linear second order PDE as a first order
system least squares problem

In an abstract framework, we give a procedure to write semi-linear second order
PDEs, that have well-posed standard variational formulations, as a well-posed first
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order system least squares problems. A particular instance of this approach has been
discussed in Sect. 1.4.

For some separable Hilbert spaces U and V , for convenience over R, consider a
differentiable mapping

G : U ⊃ dom(G)→ V ′.

Remark 2.1 In applications G is the operator associated to a variational formulation
of a PDO with trial space U and test space V .

For T being another separable Hilbert space, let

G = G0 + G1G2, where G1 ∈ L(T ,V ′), G2 ∈ L(U ,T ), (2.1)

i.e., G1 and G2 are bounded linear operators.

Remark 2.2 In applications, as those discussed in Sects. 5 and 7, G1G2 will be a
factorization of the leading second order part of the PDO (possibly modulo terms that
vanish at the solution, cf. Sect. 7.2) into a product of first order PDOs.

Obviously, u solves G(u) = 0 if and only if it is the first component of the solution
(u, θ) of

�H(u, θ) := (G0(u)+ G1θ, θ − G2u) = �0,

where �H : U ×T ⊃ dom(G)×T = dom( �H) → V ′ ×T .
The following lemma shows that well-posedness of the original formulation implies

that of the reformulation as a system.

Lemma 2.3 Let DG(u) ∈ L(U ,V ′) be a homeomorphism with its range, i.e.,
‖DG(u)v‖V ′ � ‖v‖U (v ∈ U ). Then

D �H(u, θ) =
[
DG0(u) G1
−G2 I

]
∈ L(U ×T ,V ′ ×T )

is a homeomorphismwith its range, being {( f, g) ∈ V ′×T : f −G1g ∈ ran DG(u)}.
In particular, with r, R > 0 such that r‖v‖U ≤ ‖DG(u)(v)‖V ′ ≤ R‖v‖U , it holds
that
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‖(v, η)‖2U ×T ≤
[(

1+‖G2‖
r

)2 + (1+ 1+‖G1‖(1+‖G2‖)
r

)2]∥∥∥D �H(u, θ)

[
v

η

] ∥∥∥2
V ′×T ,

(2.2)∥∥∥D �H(u, θ)

[
v

η

] ∥∥∥2
V ′×T ≤

(
(R + (1+ ‖G1‖)‖G2‖)2 + (1+ ‖G1‖)2

)‖(v, η)‖2U ×T .

(2.3)

Remark 2.4 Since ran DG(u) = V ′ iff ran D �H(u, θ) = V ′ × T , in particular we
have that DG(u) ∈ Lis(U ,V ′) implies that D �H(u, θ) ∈ Lis(U ×T ,V ′ ×T ).

Proof We have D �H(u, θ)

[
v

η

]
=
[
DG0(u)v + G1η

η − G2v

]
=
[
DG(u)v + G1(η − G2v)

η − G2v

]

by DG0(·) = DG(·)− G1G2. So

ran D �H(u, θ) ⊆ {( f, g) ∈ V ′ ×T : f − G1g ∈ ran DG(u)}. (2.4)

By estimating ‖D �H(u, θ)

[
v

η

]
‖V ′×T ≤ ‖DG(u)v+G1(η−G2v)‖V ′+‖η−G2v‖T ,

one easily arrives at (2.3).
For ( f, g) being in the set at the right-hand side in (2.4), consider the system

D �H(u, θ)

[
v

η

]
=
[
f
g

]
⇐⇒

{
DG0(u)v + G1η = f

η − G2v = g
⇐⇒

{
DG(u)v = f − G1g

η = g + G2v
.

This system has a unique solution, so that the ⊆-symbol in (2.4) reads as an equality
sign, and r‖v‖U ≤ ‖ f ‖V ′ + ‖G1‖‖g‖T and ‖η‖T ≤ ‖g‖T + ‖G2‖‖v‖U . By
estimating ‖(v, η)‖U ×T ≤ ‖v‖U + ‖η‖T one easily arrives at (2.2). ��

In the following, we will always assume that

(i) there exists a solution u of G(u) = 0;
(ii) G is two times continuously Fréchet differentiable in a neighborhood of u;
(iii) DG(u) ∈ L(U ,V ′) is a homeomorphism with its range.

Then

(a) (u, θ) = (u,G2u) solves �H(u, θ) = �0;
(b) �H is two times continuously Fréchet differentiable in a neighborhood of (u, θ);
(c) D �H(u, θ) ∈ L(U ×T ,V ′ ×T ) is a homeomorphism with its range,

the latter by Lemma 2.3. In summary, when the equation G(u) = 0 is well-posed [(i)–
(iii) are valid], then so is �H(u, θ) = �0 [(a)–(c) are valid], and solving one equation is
equivalent to solving the other.

Remark 2.5 Actually, one might dispute whether these equations should be called
well-posed when ran DG(u) � V ′ and so ran D �H(u, θ) � V ′ × T . In any case,
under conditions (i)–(iii), and so (a)–(c), the corresponding least-squares problems
and resulting (nonlinear) normal equations are well-posed, as we will see next.
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A solution (u, θ) of �H(u, θ) = �0 is a minimizer of the least squares functional

Q(u, θ) := 1
2‖ �H(u, θ)‖2V ′×T .

In particular, it holds that

Lemma 2.6 For �H : U ×T ⊃ dom( �H)→ V ′ ×T , and �H being Fréchet differen-
tiable at a root (u, θ), property (c) is equivalent to the property that for (ũ, θ̃ ) ∈ U ×V
in a neighbourhood of (u, θ),

Q(ũ, θ̃ ) � ‖u − ũ‖2U + ‖θ − θ̃‖2T .

Proof This is a consequence of �H(ũ, θ̃ ) = D �H(u, θ)(ũ− u, θ̃ − θ)+ o(‖ũ− u‖U +
‖θ̃ − θ‖T ). ��

A minimizer (u, θ) of Q is a solution of the Euler-Lagrange equations

DQ(u, θ)(v, η) = 〈D �H(u, θ)

[
v

η

]
, �H(u, θ)

〉
V ′×T = 0 ((v, η) ∈ (U ×T )),

(2.5)

that, in this setting, are usually called (nonlinear) normal equations. Using (a)–(b),
one computes that

D2Q(u, θ)(v1, η1)(v2, η2) =
〈
D �H(u, θ)

[
v1
η1

]
, D �H(u, θ)

[
v2
η2

] 〉
V ′×T .

We conclude the following: Under the assumptions (a)–(c), it holds that

(1) DQ is a mapping from a subset of a separable Hilbert space, viz. U ×T , to its
dual;

(2) there exists a solution of DQ(u, θ) = 0 (viz. any solution of �H(u, θ) = 0);
(3) DQ is continuously Fréchet differentiable in a neighborhood of (u, θ);
(4) 0 < D2Q(u, θ) = D2Q(u, θ)′ ∈ Lis(U ×T , (U ×T )′).

As a consequence of the last property, one infers that in a neighborhood of (u, θ),
DQ(u, θ) = 0 has exactly one solution.

In view of the above findings, in order to solve G(u) = 0, for a G that satisfies
(i)–(iii), we are going to solve the (nonlinear) normal equations DQ(u, θ) = 0. A
major advantage of DQ over G is that its derivative is symmetric and coercive.

A concern, however, is whether, for given (u, θ), (v, η) ∈ U ×T , DQ(u, θ)(v, η)

as given by (2.5) is evaluable. We will think of the inner product on T as being
evaluable. In our applications, T will be of the form L2(
)N . To deal with the dual
norm on V ′, we equip V with a Riesz basis

�V = {ψV
λ : λ ∈ ∨V },
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meaning that the analysis operator

FV : g �→ [g(ψV
λ )]λ∈∨V ∈ Lis(V ′, �2(∨V )),

and so its adjoint, known as the synthesis operator,

F ′V : v �→ v��V :=
∑

λ∈∨V

vλψ
V
λ ∈ Lis(�2(∨V ),V ).

In the definition of the least squares functional Q, and consequently in that of DQ,
we now replace the standard dual norm on V ′ by the equivalent norm ‖FV · ‖�2(∨V ).
Then in view of the definition of �H and the expression for D �H , we obtain that

DQ(u, θ)(v, η)

= (DG0(u)v + G1η)(�V )�(G0(u)+ G1θ)(�V )+ 〈η − G2v, θ − G2u〉T ,

(2.6)

where (1)–(4) are still valid.

Remark 2.7 We refer to [4] for an alternative approach to solve least square problems
that involves dual norms.

To solve the obtained (nonlinear) normal equations DQ(u, θ) = 0 we are going
to apply the adaptive wavelet Galerkin method (awgm). Note that the definition of
DQ(u, θ)(v, η) still involves an infinite sum over ∨V that later, inside the solution
process, is going to be replaced by a finite one.

3 The adaptive wavelet Galerkin method (awgm)

In this section, we summarize findings about the awgm from [17,31]. Let

(I) F :H ⊃ dom(F)→H ′, withH being a separable Hilbert space;
(II) F(z) = 0;
(III) F be continuously differentiable in a neighborhood of z;
(IV) 0 < DF(z) = DF(z)′ ∈ Lis(H ,H ′).

In our applications, the triple (F,H , z) will read as (DQ,U × T , (u, θ)), so that
(I)–(IV) are guaranteed by (1)–(4).

Let � = {ψλ : λ ∈ ∨} be a Riesz basis for H , with analysis operator F :
g �→ [g(ψλ)]λ∈∨ ∈ Lis(H , �2(∨)), and so synthesis operator F ′ : v �→ v�� :=∑

λ∈∨ vλψλ ∈ Lis(�2(∨),H ′). For any � ⊂ ∨, we set

�2(�) := {v ∈ �2(∨) : supp v ⊂ �}.

For satisfying the forthcoming Condition 3.5 that concerns the computational cost, it
will be relevant that � is a basis of wavelet type.
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Writing z = F ′z, and with

F := FFF ′ : �2(∨)→ �2(∨),

an equivalent formulation of F(z) = 0 is given by

F(z) = 0.

We are going to approximate z, and so z, by a sequence of Galerkin approximations
from the spans of increasingly larger sets of wavelets, which sets are created by an
adaptive process. Given � ⊂ ∨, the Galerkin approximation z�, or equivalently,
z� := z���, are the solutions of 〈F(z�), v�〉�2(∨) = 0 (v� ∈ �2(�)), i.e., F(z�)|� =
0, and F(z�)(v�) = 0 (v� ∈ span{ψλ : λ ∈ �}), respectively. These solutions exist
uniquely when inf z̃�∈�2(�) ‖z− z̃�‖ is sufficiently small [26,31].

In order to be able to construct efficient algorithms, in particular when F is non-
affine, it will be needed to consider only sets � from a certain subset of all finite
subsets of∨. In our applications, this collection of so-called admissible�will consist
of (Cartesian products of) finite trees. For the moment, it suffices when the collection
of admissible sets is such that the union of any two admissible sets is again admissible.

To provide a benchmark to evaluate our adaptive algorithm, for s > 0, we define
the nonlinear approximation class

As :=
{
z ∈ �2(∨) : ‖z‖As

:= sup
ε>0

ε ×min
{
(#�)s : � is admissible, inf

z̃∈�2(�)
‖z− z̃‖ ≤ ε

}
<∞

}
.

(3.1)

A vector z is in As if and only if there exists a sequence of admissible (�i )i , with
limi→∞ #�i = ∞, such that supi infzi∈�2(�i )(#�i )

s‖z − zi‖ < ∞. This means
that z can be approximated in �2(∨) at rate s by vectors supported on admissible
sets, or, equivalently, z can be approximated in H at rate s from spaces of type
span{ψλ : λ ∈ �, � is admissible}.

The adaptive wavelet Galerkin method (awgm) defined below produces a sequence
of increasinglymore accurate Galerkin approximations z� to z. The, generally, infinite
residual F(z�) is used as an a posteriori error estimator. A motivation for the latter is
given by the following result.

Lemma 3.1 For ‖z− z̃‖ sufficiently small, it holds that ‖F(z̃)‖ � ‖z− z̃‖.
Proof With z̃ = z̃��, it holds that ‖F(z̃)‖ � ‖F(z̃)‖H ′ . From (II)–(III), we have
F(z̃) = DF(z)(z̃−z)+o(‖z̃−z‖H ). The proof is completed by ‖DF(z)(z̃−z)‖H ′ �

‖z̃ − z‖H by (IV). ��
This a posteriori error estimator guides an appropriate enlargement of the current

set � using a bulk chasing strategy, so that the sequence of approximations converge
with the best possible rate to z. To arrive at an implementable method, that is even
of optimal computational complexity, both the Galerkin solution and its residual are
allowed to be computed inexactly within sufficiently small relative tolerances.
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Algorithm 3.2 (awgm)

% Let 0 < μ0 ≤ μ1 < 1, δ, γ > 0 be constants, �0 ⊂ ∨ be admissible,
% and z�0 ∈ �2(�0). Let Z be a neighborhood of z ∈ �2(∨).

for i = 0, 1, . . . do

(R) ζ := 2δ
1+δ
‖ri−1‖. % (Read ‖r−1‖ as some scalar � ‖z‖.)

do ζ := ζ/2; Compute ri ∈ �2(∨) such that ‖ri − F(z�i )‖ ≤ ζ .
until ζ ≤ δ

1+δ
‖ri‖.

(B) Determine an admissible �i+1 ⊃ �i with ‖ri |�i+1‖ ≥ μ0‖ri‖ such that
#(�i+1\�i ) � #(�̃\�i ) for any admissible �̃ ⊃ �i with ‖ri |�̃‖ ≥ μ1‖ri‖.
(G) Compute z�i+1 ∈ �2(�i+1) ∩ Z with ‖F(z�i+1)|�i+1‖ ≤ γ ‖ri‖.

endfor

In step (R), by means of a loop in which an absolute tolerance is decreased, the true
residual F(z�i ) is approximated within a relative tolerance δ. In step (B), bulk chasing
is performed on the approximate residual. The idea is to find a smallest admissible
�i+1 ⊃ �i with ‖ri |�i+1‖ ≥ μ0‖ri‖. In order to be able to find an implementation
that is of linear complexity, the condition of having a truly smallest �i+1 has been
relaxed. Finally, in step (G), a sufficiently accurate approximation of the Galerkin
solution w.r.t. the new set �i+1 is determined.

Convergence of the adaptive wavelet Galerkin method, with the best possible rate,
is stated in the following theorem.

Theorem 3.3 [31, Thm. 3.9] Let μ1, γ, δ, infv�0∈�2(�0) ‖z−v�0‖, ‖F(z�0)|�0‖, and
the neighborhood Z of the solution z all be sufficiently small. Then, for some α =
α[μ0] < 1, the sequence (z�i )i produced by awgm satisfies

‖z− z�i ‖ � αi‖z− z�0‖.

If, for whatever s > 0, z ∈ As , then #(�i+1\�0) � ‖z− z�i ‖−1/s .
The computation of the approximate Galerkin solution z�i+1 can be implemented

by performing the simple fixed point iteration

z( j+1)
�i+1 = z( j)

�i+1 − ωF(z( j)
�i+1)|�i+1 . (3.2)

Taking ω > 0 to be a sufficiently small constant and starting with z(0)
�i+1 = z�i , a fixed

number of iterations suffices to meet the condition ‖F(z( j+1)
�i+1 )|�i+1‖ ≤ γ ‖ri‖. This

holds also true when each of the F()|�i+1 evaluations is performed within an absolute
tolerance that is a sufficiently small fixed multiple of ‖ri‖.

Optimal computational complexity of the awgm—meaning that the work to obtain
an approximation within a given tolerance ε > 0 can be bounded on some constant
multiple of the bound on its support length fromTheorem 3.3—is guaranteed under the
following two conditions concerning the cost of the “bulk chasing” process, and that
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of the approximate residual evaluation, respectively. Indeed, apart from some obvious
computations, these are the only two tasks that have to be performed in awgm.

Condition 3.4 The determination of �i+1 in Algorithm 3.2 is performed in
O(# supp ri + #�i ) operations.

In case of unconstrained approximation, i.e., any finite � ⊂ ∨ is admissible, this
condition is satisfied by collecting the largest entries inmodulus of ri , where, to avoid a
suboptimal complexity, an exact sorting should be replaced by an approximate sorting
based on binning.With tree approximation, the condition is satisfied by the application
of the so-called Thresholding Second Algorithm from [2]. We refer to [31, §3.4] for a
discussion.

To understand the second condition, that in the introduction was referred to as the
cost Condition (1.1), note that inside the awgm it is never needed to approximate a
residual more accurately than within a sufficiently small, but fixed relative tolerance.

Condition 3.5 For a sufficiently small, fixed ς > 0, there exists a neighborhood Z of
the solution z of F(z) = 0, such that for all admissible � ⊂ ∨, z̃ ∈ �2(�) ∩ Z, and
any ε > 0, there exists an r ∈ �2(∨) with

‖F(z̃)− r‖ ≤ ς‖F(z̃)‖ + ε,

that one can compute in O(ε−1/s + #�) operations. Here s > 0 is such that z ∈ As .

Under both conditions, the awgm has optimal computational complexity:

Theorem 3.6 In the setting of Theorem 3.3, and under Conditions 3.4 and 3.5, not
only #z�i , but also the number of arithmetic operations required by awgm for the
computation of z�i is O(‖z− z�i ‖−1/s).

4 Application to normal equations

As discussed in Sect. 2, we will apply the awgm to the (nonlinear) normal equations
DQ(u, θ) = 0, with DQ from (2.6). That is, we apply the findings collected in the
previous section for the general triple (F,H , z) now reading as (DQ,U ×T , (u, θ)).

For �U = {ψU
λ : λ ∈ ∨U } and �T = {ψT

λ : λ ∈ ∨T } being Riesz bases for U
and T , respectively, we equip U ×T with Riesz basis

� = {ψλ : λ ∈ ∨ := ∨U ∪ ∨T } := (�U , 0T ) ∪ (0U , �T ) (4.1)

(w.l.o.g. we assume that ∨U ∩ ∨T = ∅). With F ∈ Lis(U × T , �2(∨)) being the

corresponding analysis operator, and DQ := FDQF ′, for [ũ�, θ̃
�]� ∈ �2(∨), and

with (ũ, θ̃ ) := [ũ�, θ̃
�]�, we have

DQ([ũ�, θ̃
�]�) =

[
DG0(ũ)(�U )(�V )�
G1(�

T )(�V )�
] (

G0(ũ)+ G1θ̃
)
(�V )

+
〈[−G2(�

U )

�T

]
, θ̃ − G2ũ

〉
T

.

(4.2)
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In this setting, using Lemma 3.1, Condition 3.5 can be reformulated as follows:

Condition 3.5* For a sufficiently small, fixed ς > 0, there exists a neighborhood
of the solution (u, θ) of DQ(u, θ) = 0, such that for all admissible � ⊂ ∨, all
[ũ�, θ̃

�]� ∈ �2(�), with (ũ, θ̃ ) := [ũ�, θ̃
�]� being in this neighborhood, and any

ε > 0, there exists an r ∈ �2(∨) with

‖DQ([ũ�, θ̃
�]�)− r‖ ≤ ς(‖u − ũ‖U + ‖θ − θ̃‖T )+ ε,

that one can compute in O(ε−1/s + #�) operations, where s > 0 is such that
[u�, θ�]� ∈ As .

To verify this condition, we will use the additional property, i.e. on top of (1)–(4),
that ‖u− ũ‖U +‖θ − θ̃‖T � ‖G0(ũ)−G1θ̃‖V ′ + ‖θ̃ −G2ũ‖T , which is provided
by Lemma 2.6.

5 Semi-linear 2nd order elliptic PDE

We apply the solution method outlined in Sects. 2, 3 and 4 to the example of a semi-
linear 2nd order elliptic PDEwith general (inhomogeneous) boundary conditions. The
main task will be to verify Condition 3.5*.

5.1 Reformulation as a first order system least squares problem

Let 
 ⊂ R
n be a bounded domain, �N ∪ �D = ∂
 with meas(�N ∩ �D) = 0,

meas(�D) > 0 when �D �= ∅, and A : 
 → R
n×n
symm with ξ�A(·)ξ � ‖ξ‖2 (ξ ∈ R

n ,
a.e.). We set

U := H1(
) or, in case meas(�D) = 0, possibly U := H1(
)/R ,

and

V = V1 × V2 := {u ∈ U : u|�D = 0} × H− 1
2 (�D) .

For N : U ⊃ dom(N ) → V ′
1 , f ∈ V ′

1 , g ∈ H
1
2 (�D), and h ∈ H− 1

2 (�N ), we
consider the semi-linear boundary value problem⎧⎨

⎩
− div A∇u + N (u) = f on 
,

u = g on �D,

A∇u · n = h on �N ,

(5.1)

that in standard variational form reads as finding u ∈ U such that

(Gu)(v) :=
∫




A∇u · ∇v1+(N (u)− f )v1dx−
∫

�N

hv1 ds +
∫

�D

(u − g)v2 ds = 0

(v = (v1, v2) ∈ V ).
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We assume that this variational problem has a solution u, and that G, i.e., N , is
two times continuously Fréchet differentiable in a neighborhood of u, and DG(u) ∈
L(U ,V ′) is a homeomorphism with its range, i.e., we assume that

G : U ⊃ dom(G) → V ′ satisfies (i)− (iii)

formulated in Sect. 2.

Remarks 5.1 Because U → H
1
2 (�D) : u �→ u|∂
 is surjective, from [30, Thm. 2.1]

it follows that condition (iii) is satisfied when

L := w �→
(
v1 �→

∫



A∇w · ∇v1 + DN (u)(w)v1 dx
)
∈ Lis(V1,V

′
1 )

(actually, L being a homeomorphism with its range is already sufficient).
By writing g = u0|�D for some u0 ∈ U , one infers that for linear N , existence of a

(unique) solution u, i.e. (i), follows from L ∈ Lis(V1,V
′
1 ). For g = 0, the conditions

of N beingmonotone and locally Lipschitz are sufficient for having a (unique) solution
u. Relaxed conditions on N suffice to have a (locally unique) solution. We refer to [5].

Using the framework outlined in Sect. 2, we write this second order elliptic PDE
as a first order system least squares problem. Putting T = L2(
)n , we define

G1 ∈ L(T ,V ′), G2 ∈ L(U ,T ),

by

G2u = A∇u, (G1 �θ)(v1, v2) =
∫




�θ · ∇v1 dx .

The results from Sect. 2 show that the solution u can be found as the first component
of the minimizer (u, �θ) ∈ U ×T of

Q(u, �θ) := 1
2

(∥∥v1 �→
∫




�θ · ∇v1 + (N (u)− f )v1 dx −
∫

�N

v1h ds
∥∥2
V ′
1

+ ‖�θ − A∇u‖2L2(
)n + ‖u − g‖2V ′
2

)
,

(5.2)

being the solution of the normal equations DQ(u, �θ) = 0, and furthermore, that these
normal equations are well-posed in the sense that they satisfy (1)–(4).

To deal with the ‘unpractical’ norm on V ′, as in Sect. 1.4, at the end of Sect. 2, and
in Sect. 4, we equip V1 and V2 with wavelet Riesz bases

�V1 = {ψV1
λ : λ ∈ ∨V1}, �V2 = {ψV2

λ : λ ∈ ∨V2},

and replace, in the definition of Q, the norms on their duals by the equivalent norms
defined by ‖g(�V1)‖ or ‖g(�V2)‖, for g ∈ V ′

1 or g ∈ V ′
2 , respectively.
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Next, after equiping U and T with Riesz bases

�U = {ψU
λ : λ ∈ ∨U }, �T = {ψT

λ : λ ∈ ∨T },

and soU ×T with� = (�U , 0T )∪(0U , �T ), we apply the awgm to the resulting
system

DQ([u�, θ�]�) =
〈[

A∇�U

−�T

]
, A∇u − �θ

〉
L2(
)n

+
[〈�U , �V2〉L2(�D)

0∨T

]
〈�V2 , u − g〉L2(�D)

+
[〈DN (u)�U , �V1〉L2(
)

〈�T ,∇�V1〉L2(
)n

]
{〈

�V1 , N (u)− f
〉
L2(
)

− 〈�V1 , h
〉
L2(�N )

+ 〈∇�V1 , �θ〉L2(
)n

}
= 0,

where (u, �θ) := [u�, θ�]�.
To express the three terms in v �→ 〈v, N (u) − f 〉L2(
) − 〈v, h〉L2(�N ) +

〈∇v, �θ〉L2(
)n ∈ V ′
1 w.r.t. one dictionary of functions on 
 and one dictionary of

functions on �N , similarly to Sect. 1.4 we impose the additional, but in applications
easily realisable condition that

�T ⊂ H(div;
). (5.3)

Then for finitely supported approximations [ũ�, θ̃
�]� to [u�, θ�]�, for (ũ,

�̃
θ) :=

[ũ�, θ̃
�]� ∈ U × H(div;
), we have

DQ([ũ�, θ̃
�]�) =

〈 [A∇�U

−�T

]
, A∇ũ − �̃θ

〉
L2(
)n

+
[〈�U , �V 2 〉L2(�D)

0∨T

]
〈�V 2 , ũ − g〉L2(�D)

+
[〈DN (ũ)�U , �V 1 〉L2(
)

〈�T ,∇�V 1 〉L2(
)n

] {〈
�V 1 , N (ũ)− f − div �̃θ 〉L2(
)

+ 〈�V 1 ,
�̃
θ · n − h

〉
L2(�N )

}
,

(5.4)

where we used the vanishing traces of v ∈ V1 at �D , to write 〈∇v,
�̃
θ〉L2(
)n as

〈v,− div �̃θ〉L2(
) + 〈v,
�̃
θ · n〉L2(�N ).

Each of the terms A∇ũ − �̃θ , ũ − g, N (ũ)− f − div �̃θ , and �̃θ · n − h correspond,
in strong form, to a term of the least squares functional, and therefore their norms
can be bounded by a multiple of the norm of the residual, which is the basis of our
approximate residual evaluation. In order to verify Condition 3.5*, we have to collect
some assumptions on the wavelets, which will be done in the next subsection.

Remark 5.2 If �D = ∅, then obviously (5.4) should be read without the second
term involving �V2 . If �D �= ∅ and homogeneous Dirichlet boundary conditions are
prescribed on �D , i.e., g = 0, it is simpler to selectU = V1 = {u ∈ H1(
) : u|�D =
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0}, and to omit integral over �D in the definition of G, so that again (5.4) should be
read without the second term involving �V2 .

5.2 Wavelet assumptions and definitions

We formulate conditions on�V1 ,�V2 ,�U , and�T , in addition to being Riesz bases
for V1, V2, U , and T , respectively.

Recalling that T = T1 × · · · ×Tn , we select �T of canonical form

(�T1 , 0T2 , . . . , 0Tn ) ∪ · · · ∪ (0T1 , . . . , 0Tn−1 , �
Tn ),

where �Tq = {ψTq
λ : λ ∈ ∨Tq } is a Riesz basis for Tq (with ∨Tq′ ∩ ∨Tq′′ = ∅ when

q ′ �= q ′′).
For ∗ ∈ {U ,T1, . . . ,Tn,V1}, we collect a number of (standard) assumptions,

(w1)–(w4), on the scalar-valued wavelet collections �∗ = {ψ∗λ : λ ∈ ∨∗} on 
.
Corresponding assumptions on the wavelets �V2 on �D will be formulated at the end
of this subsection. To each λ ∈ ∨∗, we associate a value |λ| ∈ N0, which is called
the level of λ. We will assume that the elements of �∗ have one vanishing moment,
and are locally supported, piecewise polynomial of some degree m, w.r.t. dyadically
nested partitions in the following sense:

(w1) There exists a collection O
 := {ω : ω ∈ O
} of closed polytopes, such that,
with |ω| ∈ N0 being the level of ω, meas(ω ∩ ω′) = 0 when |ω| = |ω′| and
ω �= ω′; for any � ∈ N0, 
̄ = ∪|ω|=�ω; diamω � 2−|ω|; and ω is the union
of ω′ for some ω′ with |ω′| = |ω| + 1. We call ω the parent of its children ω′.
Moreover, we assume that theω ∈ O
 are uniformly shape regular, in the sense

that they satisfy a uniform Lipschitz condition, and meas(Fω) � meas(ω)
n−1
n

for Fω being any facet of ω.
(w2) suppψ∗λ is contained in a connected union of a uniformly bounded number of

ω’s with |ω| = |λ|, and restricted to each of these ω’s is ψ∗λ a polynomial of
degree m.

(w3) Each ω is intersected by the supports of a uniformly bounded number of ψ∗λ ’s
with |λ| = |ω|.

(w4)
∫



ψ∗λ dx = 0, possibly with the exception of those λwith dist(suppψ∗λ , �D) �
2−|λ|, or with |λ| = 0.

Generally, the polynomial degree m will be different for the different bases, but oth-
erwise fixed. The collection O
 is shared among all bases. Note that the conditions
of �U being a basis for U , and to consist of piecewise polynomials, implies that
U ⊂ C(
̄). Wavelets of in principle arbitrary order that satisfy these assumptions
can be found in e.g. [20,25].

Definition 5.3 A collection T ⊂ O
 such that 
 = ∪ω∈T ω, and for ω1 �= ω2 ∈ T ,
meas(ω1 ∩ ω2) = 0 will be called a tiling. With Pm(T ), we denote the space of
piecewise polynomials of degree m w.r.t. T . The smallest common refinement of
tilings T1 and T2 is denoted as T1 ⊕ T2.
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To be able to find, in linear complexity, a representation of a function, given as
linear combination of wavelets, as a piecewise polynomial w.r.t. a tiling—mandatory
for an efficient evaluation of nonlinear terms, we will impose a tree constraint on
the underlying set of wavelet indices. A similar approach was followed earlier in
[6,10,21,33,35].

Definition 5.4 To each λ ∈ ∨∗ with |λ| > 0, we associate one μ ∈ ∨∗ with |μ| =
|λ|− 1 and meas(suppψ∗λ ∩ suppψ∗μ) > 0. We call μ the parent of λ, and so λ a child
of μ.

To each λ ∈ ∨∗, we associate some neighbourhood S(ψ∗λ ) of suppψ∗λ , with diam-
eter � 2−|λ|, such that S(ψ∗λ ) ⊂ S(ψ∗μ) when λ is a child of μ.

We call a finite � ⊂ ∨∗ a tree, if it contains all λ ∈ ∨∗ with |λ| = 0, as well as the
parent of any λ ∈ � with |λ| > 0.

Note that we now have tree structures on the setO
 of polytopes, and as well as on
the wavelet index sets ∨∗. We trust that no confusion will arise when we speak about
parents or children.

For some collections ofwavelets, as theHaar ormore generally, Alpert wavelets [1],
it suffices to take S(ψ∗λ ) := suppψ∗λ . The next result shows that, thanks to (w1)-(w2),
a suitable neighbourhood S(ψ∗λ ) as meant in Definition 5.4 always exists.

Lemma 5.5 With C := supλ∈∨∗ 2
|λ| diam suppψ∗λ , a valid choice of S(ψ∗λ ) is given

by {x ∈ 
 : dist(x, suppψ∗λ ) ≤ C2−|λ|}.
Proof Forμ, λ ∈ ∨∗with |μ| = |λ|−1 andmeas(suppψ∗λ∩suppψ∗μ) > 0, and x ∈ 


with dist(x, suppψ∗λ ) ≤ C2−|λ|, it holds that dist(x, suppψ∗μ) ≤ dist(x, suppψ∗λ ) +
diam(suppψ∗λ ) ≤ C2−|μ|. ��

A proof of the following proposition, as well as an algorithm to apply the multi-to-
single-scale transformation that is mentioned, is given in [31, §4.3].

Proposition 5.6 Given a tree � ⊂ ∨∗, there exists a tiling T (�) ⊂ O
 with
#T (�) � #� such that span{ψ∗λ : λ ∈ �} ⊂ Pm(T (�)). Moreover, equipping
Pm(T (�)) with a basis of functions, each of which supported in ω for one ω ∈ T (�),
the representation of this embedding, known as the multi- to single-scale transform,
can be applied in O(#�) operations.

The benefit of the definition of S(ψ∗λ ) appears from the following lemma.

Lemma 5.7 Let 
 = �0 ⊇ �1 ⊇ · · · . Then

�∗ := {λ ∈ ∨∗ : meas(S(ψ∗λ ) ∩�|λ|) > 0
}

is a tree.

Proof The set �∗ contains all λ ∈ ∨∗ with |λ| = 0, as well as, by definition of S(·),
the parent of any λ ∈ �∗ with |λ| > 0. ��
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In Proposition 5.6 we saw that for each tree � there exists a tiling T (�), with
#T (�) � #�, such that span{ψ∗λ : λ ∈ �} ⊂ Pm(T (�)). Conversely, in the fol-
lowing, given a tiling T , and a constant k ∈ N0, we construct a tree �∗(T , k) with
#�∗(T , k) � #T (dependent on k) such that a kind of reversed statements hold: In

“Appendix A”, statements of type limk→∞ sup0 �=g∈Pm (T )

‖〈�∗,g〉L2(
)|∨∗\�∗(T ,k)‖
‖g‖∗′ = 0

will be shown, meaning that for any tolerance there exist a k such that for any
g ∈ Pm(T ) the relative error in dual norm in the best approximation from the span of
the corresponding dual wavelets with indices in �∗(T , k) is less than this tolerance.

Definition 5.8 Given a tiling T ⊂ O
, let t (T ) ⊂ O
 be its enlargement by adding
all ancestors of all ω ∈ T . Given a k ∈ N0, we set

�∗(T , k) :=
{
λ ∈ ∨∗ : meas

⎛
⎝S(ψ∗λ ) ∩

⋃
{ω∈t (T ) : |ω|=max(|λ|−k,0)}

ω

⎞
⎠ > 0

}
.

Proposition 5.9 The set �∗(T , k) is a tree, and #�∗(T , k) � #T (dependent on
k ∈ N0).

Proof The first statement follows from Lemma 5.7. Since the number of children of
anyω ∈ O
 is uniformly bounded, it holds that #t (T ) � #T , and so #�∗(T , k) � #T
as a consequence of the wavelets being locally supported. ��
Example 5.10 Let� = {ψλ : λ ∈ ∨}be the collection ofHaarwavelets on
 = (0, 1),
i.e., the union of the function ψ0,0 ≡ 1, and, for � ∈ N and k = 0, . . . , 2�−1 − 1,

the functions ψ�,k := 2
�−1
2 ψ(2�−1 · −k), where ψ ≡ 1 on [0, 1

2 ] and ψ ≡ −1 on
( 12 , 1]. Writing λ = (�, k), we set |λ| = �. The parent of λ with |λ| > 0 is μ with
|μ| = |λ| − 1 and suppψλ ⊂ suppψμ, and S(ψλ) := suppψλ.

LetO
 be the union, for � ∈ N0 and k = 0, . . . , 2�−1, of the intervals 2�[k, k+1]
to which we assign the level �.

Now as an example let � ⊂ ∨ be the set {(0, 0), (1, 0), (2, 0), (3, 0)}, which is a
tree in the sense of Definition 5.4. It corresponds to the solid parts in the left picture
in Fig. 1.

The (minimal) tiling T (�) as defined in Proposition 5.6 is given by {[0, 1
8 ], [ 18 , 1

4 ],
[ 14 , 1

2 ], [ 12 , 1]}.

(3, 1)

(0, 0)

(1, 0)

(2, 0)

(3, 0)

(0, 0)

(1, 0)

(2, 0)

(3, 0)

(4, 0) (4, 1)

(2, 1)

Fig. 1 The index set of the Haar basis given as an infinite binary tree, and its subsets � =
{(0, 0), (1, 0), (2, 0), (3, 0)} (left) and �(T (�), 1) (right)
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Conversely, taking T := T (�), the set �(T , 1) ⊂ ∨ as defined in Definition 5.8
is given by {(0, 0), (1, 0), (2, 0), (2, 1), (3, 0), (3, 1), (4, 0), (4, 1)} and is illustrated
in the right picture in Fig. 1.

Definition 5.11 Recalling from (4.1) and the first lines of this subsection that the
Riesz basis � for U ×T is of canonical form

� = (�U , 0T1 , . . . , 0Tn ) ∪ (0U , �T1 , 0T2 , . . . , 0Tn ) ∪ · · ·
∪(0U , 0T1 , . . . , 0Tn−1 , �

Tn ),

with index set ∨ := ∨U ∪∨T1 ∪ · · · ∪ ∨Tn , we call � ⊂ ∨ admissible when each of
�∩∨U ,�∩∨T1 , . . . , �∩∨Tn are trees. The tiling T (�) is defined as the smallest
common refinement T (� ∩ ∨U )⊕ T (� ∩ ∨T1)⊕ · · · ⊕ T (� ∩ ∨Tn ). Conversely,
given a tiling T ⊂ O
 and a k ∈ N0, we define the admissible set �(T , k) ⊂ ∨ by
�U (T , k) ∪�T1(T , k) ∪ · · · ∪�Tn (T , k).

Remark 5.12 Let �U be a wavelet basis for U of order dU > 1 (i.e., all wavelets
ψU

λ up to level � span all piecewise polynomials in U of degree dU − 1 w.r.t.
{ω : ω ∈ O
, |ω| = �}), and similarly, for 1 ≤ q ≤ n, let �Tq be a wavelet basis
for Tq of order dT > 0. Recalling the definition of an approximation class given in
(3.1), a sufficiently smooth solution (u, �θ) is inAs for s = smax := min( dU −1

n ,
dT
n ),

whereas on the other hand membership of As for s > smax cannot be expected under
whatever smoothness condition.

For s ≤ smax, a sufficient and ‘nearly’ necessary condition for (u, �θ) ∈ As is that
(u, �θ) ∈ Bsn+1

p,τ (
) × Bsn
p,τ (
)n for 1

p < s + 1
2 and arbitrary τ > 0, see [11]. This

mild smoothness condition in the ‘Besov scale’ has to be compared to the condition
(u, �θ) ∈ Hsn+1(
)×Hsn(
)n that is necessary to obtain a rate s with approximation

from the spaces of type span{ψU
λ : |λ| ≤ L} ×∏n

q=1 span{ψTq
λ : |λ| ≤ L}.

We pause to add three more assumptions on our PDE: We assume that w.r.t. the
coarsest possible tiling {ω : ω ∈ O
, |ω| = 0} of 
̄,

A is piecewise polynomial, (5.5)

N (u) is a partial differential operator of at most first order, with coefficients that

are piecewise polynomials in u and x, and (5.6)

�N , and so �D, is the union of facets of ω ∈ O
 with |ω| = 0. (5.7)

Remark 5.13 The subsequent analysis can easily be generalized to A being piecewise
smooth. With some more efforts other nonlinear terms N can be handled as well. For
example, for N (u) of the form n1(u)u, it will be needed that for somem ∈ N, for each
ω ∈ O
, there exists a subspace Vω ⊂ H1

0 (ω) with ‖ · ‖H1(ω) � 2|ω|‖ · ‖L2(ω) on Vω,
and

‖N (p1)+ p2‖L2(ω) � sup
0 �=v∈Vω

〈N (p1)+ p2, v〉L2(ω)

‖v‖L2(ω)

(p1, p2 ∈ Pm(ω))

(cf. proof of Lemma A.2).
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Finally in this subsection we formulate our assumptions on the wavelet Riesz basis

�V2 = {ψV2
λ : λ ∈ ∨V2} for H−

1
2 (�D). We assume that it satisfies the assumptions

(w2) and (w3) with O
 reading as

O�D = {ω ∩ �D : ω ∈ O
, measn−1(ω ∩ �D) > 0}.

Furthermore, we impose that

‖ψV2
λ ‖H−1(�D) � 2−|λ|/2. (5.8)

which, for biorthogonal wavelets, is essentially is (w4) (cf. [20, lines following (A.2)]).
(To relax the smoothness conditions on �D needed for the definition of H−1(�D), one
can replace (5.8) by ‖ψV2

λ ‖Hs (�D) � 2|λ|(s+ 1
2 ) for some s ∈ [−1,− 1

2 )).
The definition of a boundary tiling T�D ⊂ O�D is similar to Definition 5.3. Also

similar to the corresponding preceding definitions are that of a tree � ⊂ ∨V2 , and
of the boundary tiling T�D (�) ⊂ O�D for � ⊂ ∨V2 being a tree. Conversely, for a
boundary tiling T�D ⊂ O�D and k ∈ N0, for ∗ ∈ {U ,V2} we define the tree

�∗(T�D , k) :=
{
λ ∈ ∨∗ : measn−1

⎛
⎜⎝S(ψ∗λ ) ∩

⋃
{ω∈T̄�D : |ω|=max(|λ|−k,0)}

ω

⎞
⎟⎠ > 0

}
.

5.3 An appropriate approximate residual evaluation

Given an admissible � ⊂ ∨, [ũ�, θ̃
�]� ∈ �2(�) with (ũ,

�̃
θ) := [ũ�, θ̃

�]� suffi-

ciently close to (u, �θ), and an ε > 0, our approximate evaluation of DQ([ũ�, θ̃
�]�),

given in (5.4), is built in the following steps, where k ∈ N0 is a sufficiently large
constant:

(s1) Find a tiling T (ε) ⊂ O
, such that

inf
(gε, fε,�hε)∈Pm (T (ε)∩�D)∩C(�D)×Pm (T (ε))×Pm (T (ε))n

(
‖g − gε‖

H
1
2 (�D)

+‖v1 �→
∫




( f − fε)v1 dx +
∫

�N

(h − �hε · n)v1 ds‖V ′
1

)
≤ ε.

Set T (�, ε) := T (�)⊕ T (ε).
(s2) (a) Approximate

r
( 12 )

1 := 〈�V1 , N (ũ)− f − div �̃θ〉L2(
) + 〈�V1 ,
�̃
θ · n − h〉L2(�N )

by

r̃

(
1
2

)
1 := r

(
1
2

)
1 |�V 1 (T (�,ε),k).

123



216 N. Rekatsinas, R. Stevenson

(b) With r̃
( 12 )

1 := (r̃
( 12 )

1 )��V1 , approximate

r1 =
[
r11
r12

]
:=
⎡
⎣〈DN (ũ)�U , r̃

( 12 )

1 〉L2(
)

〈�T ,∇r̃ ( 12 )

1 〉L2(
)n

⎤
⎦

by r̃1 =
[
r̃11
r̃12

]
:= r1|�(T (�V 1 (T (�,ε),k)),k).

(s3) Approximate

r2 :=
〈[− A∇�U

�T

]
,
�̃
θ − A∇ũ

〉
L2(
)n

by r̃2 := r2|�(T (�),k).

(s4) (a) Approximate r
( 12 )

3 := 〈�V2 , ũ − g〉L2(�D) by

r̃

(
1
2

)
3 := r

(
1
2

)
3 |�V 2 (T (�,ε)∩�D,k).

(b) With r̃

(
1
2

)
3 := (r̃

( 12 )

3 )��V2 , approximate r3 :=
[
〈�U , r̃

( 12 )

3 〉L2(�D)

0∨T

]
by

r̃3 := r3|�(T�D (�V 2 (T (�,ε)∩�D,k)),k).

Although (s2)–(s4) may look involved at first glance, the same kind of approxima-
tion is used at all instances. Each term in (5.4) consists essentially of a wavelet basis
that is integrated against a piecewise polynomial, or more precisely, a function that
can be sufficiently accurately approximated by a piecewise polynomial thanks to the
control of the data oscillation by the refinement of the partition performed in (s1). In
each of these terms, all wavelets are neglected whose levels exceed locally the level
of the partition plus a constant k.

In the next theorem it is shown that this approximate residual evaluation satisfies
the condition for optimality of the adaptive wavelet Galerkin method.

Theorem 5.14 For an admissible � ⊂ ∨, [ũ�, θ̃
�]� ∈ �2(�) with (ũ,

�̃
θ) :=

[ũ�, θ̃
�]� sufficiently close to (u, �θ), and an ε > 0, consider the steps (s1)–(s4).

With s > 0 such that [u�, θ�]� ∈ As , let T (ε) from (s1) satisfy #T (ε) � ε−1/s .
Then

‖DQ([ũ�, θ̃
�]�)− (r̃1 + r̃2 + r̃3)‖ � 2−k/2(‖u − ũ‖U + ‖�θ − �̃θ‖T )+ ε,

where the computation of r̃1 + r̃2 + r̃3 requires O(#� + ε−1/s) operations. So by
taking k sufficiently large, Condition 3.5* is satisfied.
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Before giving the proof of this theorem, let us discuss matters related to step
(s1). First of all, existence of tilings T (ε) as mentioned in the theorem is guar-
anteed. Indeed, because of [u�, θ�]� ∈ As , given C > 0, for any ε > 0 there

exists a [ũ�ε , θ̃
�
ε ]� ∈ �2(�ε), where �ε is admissible and #�ε � ε−1/s , such that

‖[u�, θ�]�−[ũ�ε , θ̃
�
ε ]�‖ ≤ ε/C . By taking a suitable C , from Lemma 2.6, (5.2) and

(5.3) we infer that with (ũε,
�̃
θε) := [ũ�ε , θ̃

�
ε ]�,

‖ũε − g‖
H

1
2 (�D)

+ ‖v1 �→
∫




(N (ũε)− div �̃θε − f )v1 dx

+
∫

�N

(
�̃
θε · n − h)v1 ds‖V ′

1
≤ ε.

Since ũε ∈ Pm(T (�ε)) ∩ C(
), N (ũε)− div �̃θε ∈ Pm(T (�ε)),
�̃
θε ∈ Pm(T (�ε))

n ,
and #T (�ε) � #�ε, the tiling T (ε) := T (�ε) satisfies the assumptions.

Loosely speaking, this result can be rephrased by saying that if the solution of
DQ([u�, θ�]�) = 0 is in As , then so is the forcing function ( f, g, h). This is not
automatically true, cf. [12] for a discussion in the adaptive finite element context,
but in the current setting it is a consequence of the fact that, thanks to assumption
(5.3), the first order partial differential operators apply to the wavelet bases �∗ for
∗ ∈ {U ,T1, . . . ,Tn,V1,V2} in ‘mild’ sense (the result of the application of each of
these operators lands in L2-space).

Knowing that a suitable T (ε) exists is different from knowing how to construct
it. For our convenience thinking of g = h = 0, and so U = V1 = H1

0 (
),
assuming that f ∈ L2(
) one has inf fε∈Pm (T ) ‖ f − fε‖2H−1(
)

� osc( f, T )2 :=∑
ω∈T diam(ω)2 inf fω∈Pm (ω) ‖ f − fω‖2L2(ω). Ignoring quadrature issues, for any

partition T , osc( f, T ) is computable. A quasi-minimal partition T (ε) such that
osc( f, T (ε)) � ε can be computed using the Thresholding Second Algorithm from
[2]. Now the assumption to be added to Theorem 5.14 is that for such a partition,
#T (ε) � ε−1/s .

Note that it is nowhere needed to explicitly approximate the forcing functions by
approximating their wavelet expansions.

Proof of Theorem 5.14 By construction we have

DQ([ũ�, θ̃
�]�)− (r̃1 + r̃2 + r̃3) =

[〈DN (ũ)�U , �V1〉L2(
)

〈�T ,∇�V1〉L2(
)n

](
r

(
1
2

)
1 − r̃

(
1
2

)
1

)

+ r1 − r̃1 + r2 − r̃2 +
[〈�U , �V2〉L2(�D)

0∨T

](
r

(
1
2

)
3 − r̃

(
1
2

)
3

)
+ r3 − r̃3.

From �U , �T , and �V1 being Riesz bases, and N : U ⊃ dom(N ) → V ′
1

being continuously differentiable at u, one infers that

[〈DN (ũ)�U , �V1〉L2(
)

〈�T ,∇�V1〉L2(
)n

]
∈

123



218 N. Rekatsinas, R. Stevenson

L(�2(∨V1), �2(∨)), with a norm that is bounded uniformly in ũ from a neighbour-

hood of u. Similarly, from u �→ u|�D ∈ L(U , H
1
2 (�D)), and �U and �V2 being

Riesz bases for U and H
1
2 (�D)′, respectively, we infer that

[〈�U , �V2〉L2(�D)

0

]
∈

L(�2(∨V2), �2(∨)). We conclude that

‖DQ([ũ�, θ̃
�]�)− (r̃1 + r̃2 + r̃3)‖

� ‖r
(
1
2

)
1 − r̃

(
1
2

)
1 ‖ + ‖r1 − r̃1‖ + ‖r2 − r̃2‖ + ‖r

(
1
2

)
3 − r̃

(
1
2

)
3 ‖ + ‖r3 − r̃3‖.

(5.9)
We bound all terms at the right-hand side.

With fε, �hε from (s1), using that �V1 is a Riesz basis, we have that

‖r
(
1
2

)
1 − r̃

(
1
2

)
1 ‖ � ε

+
∥∥∥(〈�V1 , N (ũ)− fε − div �̃θ〉L2(
) + 〈�V1 , (

�̃
θ − �hε) · n〉L2(�N )

)∣∣∨V 1 \�V 1 (T (�,ε),k)

∥∥∥.
(5.10)

From N (ũ)− fε−div �̃θ ∈ Pm(T (�, ε)), and �̃θ−�hε ∈ Pm(T (�, ε))n , PropositionA.1

shows that the norm at the right-hand side of (5.10) is � 2−k
∥∥v1 �→ ∫



�̃
θ · ∇v1 +

(N (ũ)− fε)v1 dx −
∫
�N
�hε · nv1 ds

∥∥
V ′
1
. Again by using (s1), we infer that

‖r
(
1
2

)
1 − r̃

(
1
2

)
1 ‖ � ε + 2−k

∥∥v1 �→
∫




�̃
θ · ∇v1 + (N (ũ)− f )v1 dx−

∫
�N

hv1 ds
∥∥
V ′
1
.

(5.11)

Thanks to ∇r̃ ( 12 )

1 ∈ Pm(T (�V1(T (�, ε), k)))n , an application of Proposition A.4
(first estimate) shows that

‖r12 − r̃12‖ � 2−k/2‖r̃
(
1
2

)
1 ‖V1 � 2−k/2‖r̃

(
1
2

)
1 ‖.

Our assumptions on N show that DN (ũ)w is of the form p1(ũ)w + �p2(ũ) · ∇w for
some piecewise polynomials p1 and p2 in ũ and x w.r.t. {ω : ω ∈ O
, |ω| = 0}, where
moreover w �→ p1(ũ)w ∈ L(U ,V ′

1 ), �w �→ �p2(ũ) · �w ∈ L(L2(
)n,V ′
1 ), uniformly

in ũ in a neighborhood of u ∈ U . Consequently, applications of Propositions A.3–A.4
(second estimate) show that

‖r11 − r̃11‖ � 2−k‖p1(ũ)r̃

(
1
2

)
1 ‖U ′ + 2−k/2‖ �p2(ũ)r̃

(
1
2

)
1 ‖L2(
)n

� 2−k/2‖r̃
(
1
2

)
1 ‖V1 � 2−k/2‖r̃

(
1
2

)
1 ‖.

Now use that ‖r̃( 12 )

1 ‖ ≤ ‖r( 12 )

1 − r̃
( 12 )

1 ‖ + ‖r( 12 )

1 ‖, and ‖r( 12 )

1 ‖ �
∥∥v1 �→ ∫



�̃
θ · ∇v1 +

(N (ũ)− f )v1 dx −
∫
�N

hv1 ds
∥∥
V ′
1
, to conclude that
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‖r1 − r̃1‖ � 2−k/2
(
ε + ∥∥v1 �→

∫



�̃
θ · ∇v1 + (N (ũ)− f )v1 dx −

∫
�N

hv1 ds
∥∥
V ′
1

)
.

(5.12)

Thanks to �̃θ − A∇ũ ∈ Pm(T (�))n by (5.5), and A� being piecewise polynomial,
an application of Proposition A.4 shows that

‖r2 − r̃2‖ � 2−k/2‖�̃θ − A∇ũ‖L2(
)n . (5.13)

With gε from (s1), using that �V2 is a Riesz basis for H− 1
2 (�D), we have that

‖r
(
1
2

)
3 − r̃

(
1
2

)
3 ‖ � ε + ‖〈�V2 , ũ − gε〉L2(�D)|∨V 2\�V 2 (T (�,ε)∩�D ,k)‖. (5.14)

From ũ|�D − gε ∈ Pm(T (�, ε)∩�D)∩C(�D), Proposition A.5 shows that the norm
at the right-hand side of (5.14) is � 2−k/2‖ũ − gε‖

H
1
2 (�D)

. Again by using (s1), we

infer that

‖r
(
1
2

)
3 − r̃

(
1
2

)
3 ‖ � ε + 2−k/2‖ũ − g‖

H
1
2 (�D)

. (5.15)

Thanks to r̃
( 12 )

3 ∈ Pm(T�D (�V2(T (�, ε) ∩ �D, k))), Proposition A.6 shows that

‖r3 − r̃3‖ � 2−k/2‖r̃ ( 12 )

3 ‖
H−

1
2 (�D)

� 2−k/2‖r̃( 12 )

3 ‖. Now use that ‖r̃( 12 )

3 ‖ ≤ ‖r( 12 )

3 −
r̃
( 12 )

3 ‖ + ‖r( 12 )

3 ‖, and ‖r( 12 )

3 ‖ � ‖ũ − g‖
H

1
2 (�D)

to conclude that

‖r3 − r̃3‖ � 2−k/2
(
ε + ‖ũ − g‖

H
1
2 (�D)

)
. (5.16)

By collecting the upper bounds (5.11)–(5.16) derived for all five terms at the right-
hand side of (5.9), and by using Lemma 2.6 in combination with the least squares
functional given in (5.2), the proof of the first statement is completed.

To bound the cost of the computations, we consider the computation of r̃
( 12 )

1 . First,

find a representation of N (ũ)−div �̃θ as an element ofPm(T (�, ε)) by applyingmulti-
to single-scale transforms. For each tile ω ∈ T (�V1(T (�, ε), k)), and for φ running

over some basis of Pm(ω), compute 〈φ, N (ũ)− f − div �̃θ〉L2(ω). From this, compute

[〈ψV1
λ , N (ũ) − f − div �̃θ〉L2(
)]λ∈�V 1 (T (�,ε),k) by applying a transpose of a multi-

to single-scale transform. Similar steps yield [〈ψV1
λ ,
�̃
θ · n− h〉L2(�N )]λ∈�V 1 (T (�,ε),k).

The total cost involved in computing r̃
( 12 )

1 is bounded by a multiple of #T (�, ε) �
#�+ ε−1/s operations.

Since fully analogous considerations apply to bounding the cost of the computations

of r̃1, r̃2, r̃
( 12 )

3 , and r̃3, the proof is completed. ��
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6 Numerical results

For 
 ⊂ R
2 being the L-shaped domain (0, 1)2\[ 12 , 1)2, we consider the semi-linear

boundary value problem {−�u + u3 = f on 
,

u = 0 on ∂
,
(6.1)

where, for simplicity, f = 1 (to test our code we also tried some right hand sides
corresponding to some fabricated polynomial solutions u). With U = H1

0 (
) = V ,
T = L2(
)2, we applied the awgm (Algorithm 3.2), with F reading as DQ, for the
adaptive solution of [u�, θ�]� from

DQ([u�, θ�]�) =
⎡
⎣〈∂1�

U , ∂1u − θ1〉L2(
) + 〈∂2�U , ∂2u − θ2〉L2(
)

〈�T1 , θ1 − ∂1u〉L2(
)

〈�T2 , θ2 − ∂2u〉L2(
)

⎤
⎦

+
⎡
⎣〈�

U , 3u2�V 〉L2(
)

〈�T1 , ∂1�
V 〉L2(
)

〈�T2 , ∂2�
V 〉L2(
)

⎤
⎦ 〈�V , u3 − f − div �θ 〉L2(
)

= 0,

where u := u��U , θi := θ�i �Ti .
Here we equipped Ti (i = 1, 2) with the continuous piecewise linear three-point

wavelet basis from [27], the space V with the same basis (obviously scaled differ-
ently, and with homogeneous boundary conditions incorporated), andU with a newly
developed continuous piecewise quadratic wavelet basis. These bases can be applied
on any polygon, and they satisfy all assumptions (w1)–(w4). In particular all wavelets
except possibly those ‘near’ the Dirichlet boundary have one vanishing moment. For
each basis, to each wavelet that is not on the coarsest level we associate one parent on
the next coarsest level according to Definition 5.4. For any � ∈ N0 the subsets of the
bases consisting of all wavelets up to some level span exactly the space of continuous
piecewise linears, continuous piecewise linears zero at ∂
, or continuous piecewise
quadratics zero at ∂
, respectively, w.r.t. the subdivision of 
 as indicated in Fig. 2.

2−( +2)

Fig. 2 Meshes w.r.t. which the wavelets are piecewise polynomial
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Fig. 3 Condition numbers of 〈∇�U
N ,∇�U

N 〉L2(
)2 , 〈∇�V
N ,∇�V

N 〉L2(
)2 , and 〈�
T i
N , �

T i
N 〉L2(
),

where �∗N is the subset of all wavelets from �∗ up to some level, where N denotes its cardinality

On a bounded domain, the three-point basis has actually not be proven to be stable in
L2(
). Although alternative bases are available whose Riesz basis property has been
proven, we opted for the three-point basis, because of its efficient implementation and
because numerical results indicated that it is stable. In Fig. 3, numerically computed
condition numbers are given of sets of all wavelets up to some level.

The continuous piecewise quadratic wavelets are biorthogonal ones with the ‘dual
multiresolution analysis’ being the sequence of continuous piecewise linears, zero at
the ∂
, w.r.t. one additional level of refinement. Details of this basis construction will
be reported elsewhere.

We performed the approximate evaluation of DQ(·) according to (s1)–(s4) and
Theorem 5.14 in Sect. 5.3 with some simplifications because of the current homoge-
neous Dirichlet boundary conditions and sufficiently smooth right-hand side [(s1) and
(s4) are void, and in (s2) the boundary term is void]. Taking the parameter k = 1, it
turns out that the approximate evaluation is sufficiently accurate to be used in Step
(R) of awgm (so we do not perform a loop), as well in the simple fixed point iter-
ation (3.2) with damping ω = 1

4 that we use for Step (G). We took the parameter
γ in Step (G) equal to 0.15 (more precisely, for stopping the iteration we checked
whether the norm of the approximate residual, restricted to �i+1, is less or equal to
0.15‖ri‖).

For the bulk chasing, i.e. Step (B), we simply collected the indices of the largest
entries of the approximate residual ri until the norm of the residual restricted to those
indices is not less than 0.4‖ri‖ (i.e. μ1 = 0.4), and then, after adding the indices
from the current �i to this set, we expand it to an admissible set (cf. Definition 5.11).
Although this simple procedure is neither guaranteed to satisfy Condition 3.4 nor
(B) for some constant 0 < μ0 ≤ μ1, we observed that it works satisfactory in
practice.

In view of the orders 3 and 2 of the bases forU andT , and the fact the PDE is posed
in n = 2 space dimensions, the best possible convergence rate that can be expected is
min( 3−12 , 2−0

2 ) = 1. In Fig. 4, we show the norm of the approximate residual versus
the total number of wavelets underlying the approximation for (u, �θ).

The norm of the approximate residual is proportional to the U × T -norm of the
error in the approximation for (u, �θ). We conclude that it decays with the best possible
rate. Moreover, we observed that the computing times scale linearly with the number
of unknowns. Throughout the iteration, the number of wavelets for the approximation
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Fig. 4 Norm of the
(approximate) residual,
normalized by the norm of the
initial residual, generated by the
awgm versus the total number of
wavelets. The dotted line
indicates the best possible slope
− 1

Fig. 5 The approximation for u from the span of 202 wavelets

for u is of the same order as the number of wavelets for the approximation for �θ . The
maximum level that is reached at the end of the computations is 26 for u and 28 for �θ .
An approximate solution is illustrated in Fig. 5. Centers of the supports of the wavelets
that were selected for the approximation for u are illustrated in Fig. 6.

Finally, in order to get an impression of the condition number of the bi-infinite
linearized normal equations that eventually we are solving, we consider the Poisson
equation, i.e. (6.1) without the u3 term. We are interested in the spectral condition
number of the ‘system matrix’ given by
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Fig. 6 Centers of the supports of the first 10,366 wavelets for the approximation for u that were selected
by the awgm

⎡
⎣ 〈∇�U ,∇�U 〉L2(
)2 −〈∂1�U , �T1 〉L2(
) −〈∂2�U , �T2 〉L2(
)

−〈�T1 , ∂1�
U 〉L2(
) 〈�T1 , �T1 〉L2(
) 0

−〈�T2 , ∂2�
U 〉L2(
) 0 〈�T1 , �T1 〉L2(
)

⎤
⎦

+
⎡
⎣ 0 0 0
0 〈�T1 , ∂1�

V 〉L2(
)〈∂1�V , �T1 〉L2(
) 〈�T1 , ∂1�
V 〉L2(
)〈∂2�V , �T2 〉L2(
)

0 〈�T2 , ∂2�
V 〉L2(
)〈∂1�V , �T1 〉L2(
) 〈�T2 , ∂2�

V 〉L2(
)〈∂2�V , �T2 〉L2(
)

⎤
⎦

(6.2)

To that endwe numerically approximated the condition numbers of the finite square
blocks of rows and columns with indices in �, with � running over the wavelet index
sets that were created by the awgm. Even such a finite block cannot be evaluated
exactly, because it still involves the infinite collection�V . Given a�, we restricted this
collection to the wavelets with indices in �V (T (�), k) as defined by Proposition 5.6
and Definition 5.8, where, as always, we take k = 1. The resulting matrix is exactly
the one that we approximately invert in Step (G) by the fixed point iteration. The
computed condition numbers are given in Fig. 7. We performed the same computation
also for k = 2, so with an enlarged set of wavelet indices from the basis �V , and
found nearly indistinguishable results. We may conclude that for � →∞, the given
numbers give accurate approximations for the condition number of the matrix in
(6.2).
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Fig. 7 Condition numbers of the (approximate) Galerkin system matrices versus #�

7 Stationary Navier–Stokes equations

For n ∈ {2, 3, 4}, let 
 ⊂ R
n be a bounded Lipschitz domain. The stationary

Navier–Stokes equations in velocity–pressure formulation and with no-slip bound-
ary conditions are given by

⎧⎨
⎩
−ν!�u + (�u · ∇)�u + ∇ p = �f on 


div �u = g on 


�u = 0 on ∂
.

In order to obtain, in any case in the linear Stokes case, results that hold uniformly
in ν > 0, one may equip the spaces for velocities and pressure with ν-dependent
norms. The equivalent, but notationally more convenient approach that we will follow
is to keep the standard norms, but to make the substitutions �̆u = √

ν �u, p̆ = 1√
ν
p,

�̆f = 1√
ν
�f , and ğ = √ν g. For convenience dropping the˘-accents, the equations for

the new unknowns read as
⎧⎨
⎩
−!�u + ν−3/2(�u · ∇)�u + ∇ p = �f on 


div �u = g on 


�u = 0 on ∂
.

In variational form they read as finding (�u, p) ∈ U := H1
0 (
)n × L2(
)/R such

that for some ( �f , g) ∈ U ′,
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G(�u, p)(�v, q) :=
∫




∇�u : ∇�v − p div �v + ν−3/2(�u · ∇)�u · �v + q(div �u − g)

− �f · �v dx = 0

((�v, q) ∈ V := U ).
It is known that G : U → U ′, and that a solution (�u, p) exists (see e.g. [24,

Ch. IV]). Furthermore, G is two times differentiable with its second derivative being
constant. We will assume that DG(�u, p) ∈ L(U ,U ′) is a homeomorphism with its
range, so that each of the conditions (i)–(iii) from Sect. 2 are satisfied. The latter is
known to hold true, with its range being equal to U ′, when �f is sufficiently small,
in which case the solution (�u, p) is also unique (e.g. see [24, Ch. IV]). For the linear
case, so without the term ν−3/2(�u · ∇)�u, thanks to our re-scaling, DG(�u, p) = G ∈
Lis(U ,U ′), and is independent of ν.

Using the framework outlined in Sect. 2, we write this second order elliptic PDE
as a first order system least squares problem. There are different possibilities to do so.

7.1 Velocity–pressure–velocity gradient formulation

With T := L2(
)n
2
, we define

G1 ∈ L(T ,U ′), G2 ∈ L(U ,T ),

by

G2(�u, p) = ∇�u, (G1θ)(�v, q) =
∫




θ : ∇�v dx

The results from Sect. 2 show that the solution (�u, p) can be found as the first com-
ponents of the minimizer (�u, p, θ) ∈ U ×T of

Q(�u, p, θ) := 1
2

(∥∥�v �→
∫




θ : ∇�v − p div �v + ν−3/2(�u · ∇)�u · �v − �f · �v‖2H−1(
)n

+ ‖ div �u − g‖2L2(
) + ‖θ − ∇�u‖2L2(
)n
2

)
,

(7.1)
and so as the solution of the normal equations DQ(�u, p, θ) = 0. Here we have used
that on H1

0 (
)n , ‖ div ·‖(L2(
)/R)′ = ‖ div ·‖L2(
). Following [3], we call θ = ∇�u the
velocity gradient. As follows from Sect. 2, these normal equations are well-posed in
the sense that they satisfy (1)–(4). This gives us an alternative, effortless proof for [15,
Thm. 3.1].

To deal with the ‘unpractical’ norm on H−1(
)n , we equip H1
0 (
)n with some

wavelet Riesz basis

�(Ĥ1
0 )n =

{
ψ

(Ĥ1
0 )n

λ : λ ∈ ∨
(Ĥ1

0 )n

}
,
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and replace, in the definition of Q, the norm on its dual by the equivalent norm defined

by ‖�h(�(Ĥ1
0 )n )‖ for �h ∈ H−1(
)n .

Next, after equipping ∗ ∈ {H1
0 (
)n, L2(
)/R, L2(
)n

2} with a Riesz basis �∗ =
{ψ∗λ : λ ∈ ∨∗}, and so H1

0 (
)n × L2(
)/R× L2(
)n
2
with

� := (�(H1
0 )n , 0L2/R, 0

Ln2
2

) ∪ (0(H1
0 )n , �

L2/R, 0
Ln2
2

) ∪ (0(H1
0 )n , 0L2/R, �Ln2

2 ),

with index set ∨ := ∨(H1
0 )n ∪ ∨L2/R ∪ ∨Ln2

2
, we apply the awgm to the resulting

system

DQ([u�,p�, θ�]�) =
⎡
⎢⎣
〈div�(H1

0 )n , div �u − g〉L2(
)

0∨L2/R

0∨
Ln

2
2

⎤
⎥⎦

+

⎡
⎢⎢⎣
〈∇�(H1

0 )n ,∇�u − θ〉
L2(
)n

2

0∨L2/R

〈�Ln2
2 , θ −∇�u〉

L2(
)n
2

⎤
⎥⎥⎦

+

⎡
⎢⎢⎣
〈 (�u·∇)�

(H1
0 )n+(�

(H1
0 )n ·∇)�u

ν3/2
, �(Ĥ1

0 )n 〉L2(
)n

−〈�L2/R, div�(Ĥ1
0 )n 〉L2(
)

〈�Ln2
2 ,∇�(Ĥ1

0 )n 〉
L2(
)n

2

⎤
⎥⎥⎦
{
〈�(Ĥ1

0 )n ,
(�u·∇)�u
ν3/2

− �f 〉L2(
)n

+〈∇�(Ĥ1
0 )n , θ〉

L2(
)n
2 − 〈div�(Ĥ1

0 )n , p〉L2(
)

}
= 0.

To express the three terms in �v �→ 〈�v, ν−3/2(�u ·∇)�u− �f 〉L2(
)n +〈∇�v, θ〉
L2(
)n

2 −
〈div �v, p〉L2(
) ∈ H−1(
)n w.r.t. one dictionary, similarly to Sect. 1.4 we impose the
additional, but in applications easily realizable conditions that

�L2/R ⊂ H1(
), �Ln2
2 ⊂ H(div;
)n . (7.2)

Then for finitely supported approximations [ũ�, p̃�, θ̃
�]� to [u�,p�, θ�]�, for

(�̃u, p̃, θ̃ ) := [ũ�, p̃�, θ̃
�]� ∈ H1

0 (
)n × H1(
)× H(div;
)n , we have

DQ([ũ�, p̃�, θ̃
�]�) =

⎡
⎢⎣
〈div�(H1

0 )n , div �̃u − g〉L2(
)

0∨L2/R

0∨
Ln

2
2

⎤
⎥⎦+

⎡
⎢⎢⎣
〈∇�(H1

0 )n ,∇�̃u − θ̃〉
L2(
)n

2

0∨L2/R

〈�Ln2
2 , θ̃ −∇�̃u〉

L2(
)n
2

⎤
⎥⎥⎦

+

⎡
⎢⎢⎣
〈 (�̃u·∇)�

(H1
0 )n+(�

(H1
0 )n ·∇)�̃u

ν3/2
, �(Ĥ1

0 )n 〉L2(
)n

−〈�L2/R, div�(Ĥ1
0 )n 〉L2(
)

−〈div�Ln2
2 , �(Ĥ1

0 )n 〉L2(
)n

⎤
⎥⎥⎦ 〈�(Ĥ1

0 )n ,
(�̃u·∇)�̃u
ν3/2

− �f − div θ̃ +∇ p̃〉L2(
)n .

(7.3)
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Each of the terms div �̃u − g, ∇�̃u − θ̃ , ν−3/2(�̃u · ∇)�̃u − �f − div θ̃ +∇ p̃ correspond,
in strong form, to a term of the least squares functional, and therefore their norms
can be bounded by a multiple of the norm of the residual, which is the basis of our
approximate residual evaluation.

This approximate residual evaluation follows the same lines as with the elliptic
problem fromSect. 5.Actually, things are easier here becauseweassumehomogeneous
boundary conditions. Selecting the Riesz bases for the Cartesian products H1

0 (
)n

and L2(
)n
2
of canonical form, we assume that all scalar-valued bases �∗ for ∗ ∈

{Ĥ1
0 , H1

0 , L2/R, L2} satisfy the assumptions that were made in Sect. 5.2, in particular

(w1)–(w4). Let � := supp[ũ�, p̃�, θ̃
�]� be admissible, i.e., � ∩ ∨∗ are trees.

(s1) Find a tiling T (ε) ⊂ O
, such that

inf
�fε∈Pm (T (ε))n , gε∈Pm (T (ε))/R

‖ �f − �fε‖H−1(
)n + ‖g − gε‖L2(
) ≤ ε.

If [u�,p�, θ�]� ∈ As , then such a tiling exists with #T (ε) � ε−1/s . Set
T (�, ε) := T (�)⊕ T (ε).

(s2) (a) Approximate r
( 12 )

1 := 〈�(Ĥ1
0 )n , ν−3/2(�̃u · ∇)�̃u − �f − div θ̃ + ∇ p̃〉L2(
)n by

r̃
( 12 )

1 := r
( 12 )

1 |
�

(Ĥ1
0 )n

(T (�,ε),k)
.

(b) With r̃
( 12 )

1 := (r̃
( 12 )

1 )��(H1
0 )n , approximate

r1 =
⎡
⎣r11r12
r13

⎤
⎦ :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

〈
(�̃u·∇)�

(H1
0 )n+(�

(H1
0 )n ·∇)�̃u

ν3/2
, r̃

( 12 )

1

〉
L2(
)n

−
〈
�L2/R, div r̃

( 12 )

1

〉
L2(
)

−
〈
div�Ln2

2 , r̃
( 12 )

1

〉
L2(
)n

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

by r̃1 := r1|
�(T (�

(H1
0 )n

(T (�,ε),k)),k)
.

(s3) Approximate

r2 =
⎡
⎣r21r22
r23

⎤
⎦ :=

⎡
⎢⎣
〈div�(H1

0 )n , div �̃u − g〉L2(
)

0∨L2/R

0∨
Ln

2
2

⎤
⎥⎦ by r̃2 := r2|�(T (�,ε),k)

(s4) Approximate

r3 =
⎡
⎣r31r32
r33

⎤
⎦ :=

⎡
⎢⎢⎣
〈∇�(H1

0 )n ,∇�̃u − θ̃〉
L2(
)n

2

0∨L2/R

〈�Ln2
2 , θ̃ −∇�̃u〉

L2(
)n
2

⎤
⎥⎥⎦ by r̃3 := r3|�(T (�,ε),k).
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The same arguments (actually a subset) that led to Theorem5.14 show the following
theorem.

Theorem 7.1 For an admissible � ⊂ ∨, [ũ�, p̃�, θ̃
�]� ∈ �2(�) with (�̃u, p̃, θ̃ )

sufficiently close to (�u, p, θ), and an ε > 0, consider the steps (s1)-(s4). With s > 0

such that [ũ�, p̃�, θ̃
�]� ∈ As , it holds that

‖DQ([ũ�, p̃�, θ̃
�]�)− (r̃1 + r̃2 + r̃3)‖

� 2−k/2(‖�u − �̃u‖H1
0 (
)n + ‖p − p̃‖L2(
) + ‖θ − θ̃‖

L2(
)n
2 )+ ε,

where the computation of r̃1 + r̃2 + r̃3 requires O(#� + ε−1/s) operations. So by
taking k sufficiently large, Condition 3.5* is satisfied.

We conclude that the awgm is an optimal solver for the stationary Navier–Stokes
equations in the form DQ([u�,p�, θ�]�) = 0 resulting from the velocity–pressure–
velocity gradient formulation. Obviously, we cannot claim or even expect that this
holds true uniformly in a vanishing viscosity parameter ν. This because in the limit
already well-posedness of DG(�u, p) cannot be expected.

7.2 Velocity–pressure–vorticity formulation

Restricting to n ∈ {2, 3}, we set T := L2(
)2n−3 , and define

G1 ∈ L(T ,U ′), G2 ∈ L(U ,T ),

by

G2(�u, p) = curl �u, (G1 �ω)(�v, q) =
∫




�ω · curl �v dx

where for n = 2, curl should be read as the scalar-valued operator �v �→ ∂xv2 − ∂yv1.
(and so �ω ·curl �u asω curl �u). The (formal) adjoint curl′ equals curl for n = 3, whereas
for n = 2 it is v �→ [∂yv,−∂xv]�.

Since a vector field in the current spaceT has 2n−3 components, instead of n2 as
in the previous subsection, the first order system formulation studied in this subsection
is more attractive. As we will see, later in its derivation it will be needed that g = 0,
i.e., div �u = 0.

Using that on H1
0 (
)n×H1

0 (
)n ,
∫


∇�u : ∇�v−div �u div �v−curl �u ·curl �v dx = 0,

the results fromSect. 2 show that the solution (�u, p) can be found as the first component
of the solution in U ×T of the system

�H1(�u, p, �ω) :=
(
(�v, q) �→

∫



�ω · curl �v + div �u div �v − p div �v + ν−3/2(�u · ∇)�u · �v

+ q(div �u − g)− �f · �v dx, �ω − curl �u
)
= �0
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on U ′ ×T , being a minimizer of

Q1(�u, p, �ω) := 1
2

(∥∥�v �→
∫




�ω · curl �v + div �u div �v − p div �v
+ (�u·∇)�u·�v

ν3/2
− �f · �v dx‖2H−1(
)n

+ ‖ div �u − g‖2L2(
) + ‖�ω − curl �u‖2L2(
)2n−3
)
.

The function �ω = curl �u is known as the vorticity.
Since G satisfies (i)–(iii), �H1 satisfies (a)–(c), and so by Lemma 2.6,

Q1(�̃u, p̃, �̃ω) � ‖(�̃u, p̃, �̃ω)− (�u, p, �ω)‖2U ×T (7.4)

for (�̃u, p̃, �̃ω) in a neighborhood of (�u, p, �ω).
From here on, we assume that

g = 0,

so that the velocities component of the exact solution is divergence-free. This will
allow us to get rid of the second order term ∇ div �u in the definition of �H1. We define

�H2(�u, p, �ω) :=
(
(�v, q) �→

∫



�ω · curl �v − p div �v + (�u·∇)�u·�v
ν3/2

+ q div �u − �f · �v dx, �ω − curl �u
)

with corresponding quadratic functional

Q2(�u, p, �ω) := 1
2

(∥∥�v �→
∫




�ω · curl �v − p div �v + (�u·∇)�u·�v
ν3/2

− �f · �v dx‖2H−1(
)n

+ ‖ div �u‖2L2(
) + ‖�ω − curl �u‖2L2(
)2n−3
)
.

Clearly the solution of �H1(�u, p, �ω) = 0 is a solution of �H2(�u, p, �ω) = 0 (a), and �H2
is two times continuously differentiable (b). From ‖�v �→ ∫



div �u div �v dx‖H−1(
)n

� ‖ div �u‖L2(
), one infers that Q1 � Q2 by the triangle inequality, and analogously
Q2 � Q1. Thanks to (7.4), an application of Lemma 2.6 shows that �H2 satisfies also
(c). We conclude that �H2(�u, p, �ω) is a well-posed first order system formulation of
G(�u, p) = 0, and consequently, that (�u, p, �ω) can be found by solving the normal
equations DQ2(�u, p, �ω) = 0, which are well-posed in the sense that they satisfy
(1)–(4). This gives us an alternative, effortless proof of [13, Thm. 2.1].

As usual, to deal with the ‘unpractical’ norm on H−1(
)n , we equip H1
0 (
)n with

a wavelet Riesz basis

�(Ĥ1
0 )n =

{
ψ

(Ĥ1
0 )n

λ : λ ∈ ∨
(Ĥ1

0 )n

}
,
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and replace, in the definition of Q2, the norm on its dual by the equivalent norm
‖�g(�(H1

0 )n )‖ for �g ∈ H−1(
)n .
Next, after equipping ∗ ∈ {H1

0 (
)n, L2(
)/R, L2(
)2n−3}with Riesz basis�∗ =
{ψ∗λ : λ ∈ ∨∗}, and so H1

0 (
)n × L2(
)/R× L2(
)2n−3 with

� := (�(H1
0 )n , 0L2/R, 0L2n−3

2
) ∪ (0(H1

0 )n , �
L2/R, 0L2n−3

2
) ∪ (0(H1

0 )n , 0L2/R, �L2n−3
2 )

with index set ∨ := ∨(H1
0 )n ∪ ∨L2/R ∪ ∨L2n−3

2
, we apply the awgm to the resulting

system

DQ2([u�,p�,ω�]�) =
⎡
⎢⎣
〈div�(H1

0 )n , div �u〉L2(
)

0∨L2/R

0∨
L2n−32

⎤
⎥⎦

+
⎡
⎢⎣
〈curl�(H1

0 )n , curl �u − �ω〉L2(
)2n−3
0∨L2/R

〈�L2n−3
2 , �ω − curl �u〉L2(
)2n−3

⎤
⎥⎦

+

⎡
⎢⎢⎣
〈 (�u·∇)�

(H1
0 )n+(�

(H1
0 )n ·∇)�u

ν3/2
, �(Ĥ1

0 )n 〉L2(
)n

−〈�L2/R, div�(Ĥ1
0 )n 〉L2(
)

〈�L2n−3
2 , curl�(Ĥ1

0 )n 〉L2(
)2n−3

⎤
⎥⎥⎦
{
〈�(Ĥ1

0 )n ,
(�u·∇)�u
ν3/2

− �f 〉L2(
)n

+ 〈curl�(Ĥ1
0 )n , �ω〉L2(
)2n−3 − 〈div�(Ĥ1

0 )n , p〉L2(
)

}
= 0.

Toexpress the three terms in �v �→ 〈�v, ν−3/2(�u·∇)�u− �f 〉L2(
)n+〈curl �v, �ω〉L2(
)2n−3
−〈div �v, p〉L2(
) w.r.t. one dictionary, we impose the easily realizable conditions that

�L2/R ⊂ H1(
), �L2n−3
2 ⊂ H(curl;
)

Then for finitely supported approximations [ũ�, p̃�, ω̃�]� to [u�,p�,ω�]�, for
(�̃u, p̃, �̃ω) := [ũ�, p̃�, ω̃�]� ∈ H1

0 (
)n × H1(
)× H(curl′;
), we have

DQ2([ũ�, p̃�, ω̃�]�) =
⎡
⎢⎣
〈div�(H1

0 )n , div �̃u〉L2(
)

0∨L2/R

0∨
L2n−32

⎤
⎥⎦+

⎡
⎢⎣
〈curl�(H1

0 )n , curl �̃u − �̃ω〉L2(
)2n−3
0∨L2/R

〈�L2n−3
2 , �̃ω − ∇�̃u〉L2(
)2n−3

⎤
⎥⎦

+

⎡
⎢⎢⎣
〈 (�̃u·∇)�

(H1
0 )n+(�

(H1
0 )n ·∇)�̃u

ν3/2
, �(Ĥ1

0 )n 〉L2(
)n

−〈�L2/R, div�(Ĥ1
0 )n 〉L2(
)

〈�L2n−3
2 , curl�(Ĥ1

0 )n 〉L2(
)2n−3

⎤
⎥⎥⎦ 〈�(Ĥ1

0 )n ,
(�̃u·∇)�̃u
ν3/2

− �f + curl′ �̃ω + ∇ p̃〉L2(
)n .

The design of an approximate residual evaluation follows analogous steps as in
the previous subsection. Equipping Cartesian products with bases of canonical form,
and assuming that the scalar-valued bases �∗ for ∗ ∈ {Ĥ1

0 , H1
0 , L2/R, L2} satisfy
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(w1)–(w4), and that [ũ�, p̃�, ω̃�]� is supported on an admissible set, four steps fully
analogous to (s1)–(s4) in the previous subsection define an approximation scheme
that satisfies Condition 3.5*. We conclude that the awgm is an optimal solver for the
stationary Navier–Stokes equations in the form DQ([u�,p�, θ�]�) = 0 resulting
from the velocity–pressure–vorticity formulation. Again, also here we cannot claim
or even expect that this holds true uniformly in a vanishing viscosity parameter ν.

8 Conclusion

Wehave seen that awell-posed (systemof) 2nd order PDE(s) can always be formulated
as awell-posed 1st order least squares system. The arising dual norm(s) can be replaced
by the equivalent �2-norm(s) of thewavelet coefficients of the functional. The resulting
Euler–Lagrange equations, also known as the (nonlinear) normal equations, can be
solved at the best possible rate by the adaptivewavelet Galerkinmethod.We developed
a new approximate residual evaluation scheme that also for semi-linear problems
satisfies the condition for optimal computational complexity, and that is quantitatively
much more efficient than the usual apply scheme. Moreover, regardless of the order
of the wavelets, it applies already to wavelet bases that have only one vanishing
moment. As applications we discussed optimal solvers for first order least squares
reformulations of 2nd order elliptic PDEs with inhomogeneous boundary conditions,
and that of the stationary Navier–Stokes equations. In a forthcoming work, we will
apply this approach to time-evolution problems.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

Appendix A. Decay estimates

We collect a number of decay estimates that have been used in the proof of The-
orem 5.14. Recall the definition of the spaces U and V given at the beginning of
Sect. 5.1.

The following proposition and subsequent lemma have been used to bound ‖r( 12 )

1 −
r̃
( 12 )

1 ‖. The presence of the boundary integral and the fact that the upper bound that is
given depends on the norm of g as a whole, and not on norms of g1 and g2 requires a
non-standard treatment.

Proposition A.1 For a tiling T ⊂ O
, let g ∈ V ′
1 be of the form

g(v) =
∫




g1v dx +
∫

�N

�g2 · nv ds,
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where g1 ∈ Pm(T ), �g2 ∈ Pm(T )n. Then

∥∥g(�V1)
∣∣∨V 1\�V 1 (T ,k)

∥∥ � 2−k‖g‖V ′
1

(uniform in T and g).

Proof Since by assumption (w4), for λ ∈ ∨V1 with |λ| > 0 either
∫



ψ
V1
λ dx = 0

or dist(suppψV
λ , �D) � 2−|λ|, an application of Friedrich’s or Poincaré’s inequality

shows that ‖ψV1
λ ‖L2(
) � 2−|λ||ψV1

λ |H1(
) � 2−|λ|.
Since by (w1)–(w2), each descendant ω′ ∈ O
 of ω ∈ T with |ω′| > |ω| + k is

intersected by the supports of a uniformly bounded number of λ ∈ ∨V1\�V1(T , k)
with |λ| = |ω′|, we have

∑
λ∈∨V 1\�V 1 (T ,k)

∣∣∣
∫




g1ψ
V1
λ dx

∣∣∣2 ≤ ∑
λ∈∨V 1\�V 1 (T ,k)

∑
ω∈T

4−|λ|‖g1‖2
L2(ω∩suppψ

V 1
λ )

� 4−k
∑
ω∈T

4−|ω|‖g1‖2L2(ω),

(A.1)
A standard homogeneity argument shows that for ω ∈ T and v ∈ H1(ω),

‖v‖L2(∂ω) � 2−|ω|/2(|v|H1(ω) + 2|ω|‖v‖L2(ω)), so that ‖ψV1
λ ‖L2(�N ) � 2−|λ|/2. Writ-

ing ∂ω ∩ �N as ∂ωN , the arguments that led to (A.1) show that

∑
λ∈∨V 1\�V 1 (T ,k)

∣∣∣
∫

�N

�g2 · nψ
V1
λ ds

∣∣∣2 �
∑

λ∈∨V 1\�V 1 (T ,k)

∑
ω∈T

2−|λ|‖�g2 · n‖2
L2(ωN∩suppψ

V 1
λ )

� 2−k
∑
ω∈T

2−|ω|‖�g2 · n‖2L2(ωN ).

(A.2)

By combining (A.1), (A.2) with Lemma A.2, the proof is completed unless U =
V1 = H1(
)/R. In the latter case, define ḡ1 := g1 − meas(
)−1g(1) and ḡ(v) :=∫


ḡ1v dx+

∫
�N
�g2 ·nv ds. From g(�V1)

∣∣∨V 1\�V 1 (T ,k) = ḡ(�V1)
∣∣∨V 1\�V 1 (T ,k), and

‖g‖V ′
1
= ‖ḡ‖V ′

1
, applications of (A.1), (A.2) and that of Lemma A.2 to ḡ complete

the proof in this case. ��

Lemma A.2 In the situation of Proposition A.1, with additionally g(1) = 0 when
U = V1 = H1(
)/R, it holds that

∑
ω∈T

4−|ω|‖g1|ω‖2L2(ω) + 2−|ω|‖�g2 · n|ω‖2L2(∂ω∩�N ) � ‖g‖2V ′ .
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Proof Thanks to the uniform shape regularity condition, for any ω ∈ O
, there exists
a Vω ⊂ H1

0 (ω) such that

‖v‖H1(ω) � 2|ω|‖v‖L2(ω) (v ∈ Vω),

‖p‖L2(ω) � sup
0 �=v∈Vω

∫
ω
pv dx

‖v‖L2(ω)

(p ∈ Pm(ω)).

For each ω ∈ T , select vω ∈ Vω with ‖g1|ω‖L2(ω)‖vω‖L2(ω) �
∫
ω
g1|ωvω dx ,

and ‖vω‖L2(ω) = 4−|ω|‖g1|ω‖L2(ω). Then, with v = ∑ω∈T vω ∈ H1
0 (
), we have∑

ω∈T 4−|ω|‖g1|ω‖2L2(ω) �
∫


g1v dx . By combining this with

‖v‖2H1(
)
=
∑
ω∈T

‖vω‖2H1(ω)
�
∑
ω∈T

4|ω|‖vω‖2L2(ω) =
∑
ω∈T

4−|ω|‖g1|ω‖2L2(ω),

and g(v) = ∫


g1v dx , we arrive at

√∑
ω∈T 4−|ω|‖g1|ω‖2L2(ω) � g(v)

‖v‖H1(
)
≤ ‖g‖V ′ ,

with the last inequality being valid when H1
0 (
) ⊂ V1.

Otherwise, when V1 = H1(
)/R, we take v̄ = v −
∫

 v dx

meas(
)
1 ∈ V . Then

‖v̄‖H1(
) � ‖v‖H1(
), g(v) = g(v̄) by assumption, and so g(v)
‖v‖H1(
)

� g(v̄)
‖v̄‖H1(
)

≤
‖g‖V ′ .

For bounding the second term in the statement of the lemma, for a tile ω ∈ O


we write ∂ω ∩ �N as ∂ωN . Thanks to the uniform shape regularity condition, for any
ω ∈ O
 with meas(∂ωN ) > 0, there exists a Vω ⊂ {v ∈ H1(ω) : v|∂ω\∂ωN = 0} such
that

‖v‖H1(ω) � 2|ω|/2‖v‖L2(∂ωN ) (v ∈ Vω),

‖ �p · n‖L2(∂ωN ) � sup
0 �=v∈Vω

∫
∂ωN

�p · nv ds

‖v‖L2(∂ωN )

( �p ∈ Pm(ω)n),

Vω ⊥L2(ω) Pm(ω).

For each ω ∈ T with meas(∂ωN ) > 0, select vω ∈ Vω for which
‖�g2|ω · n‖L2(∂ωN )‖vω‖L2(∂ωN ) �

∫
∂ωN

�g2|ω · nvω ds, and ‖vω‖L2(∂ωN ) =
2−|ω|‖�g2 · n|ω‖L2(∂ωN ). For the other ω ∈ T , set vω = 0. Then, for the function
v =∑ω∈T vω ∈ {w ∈ H1(
) : w|�D = 0}, we have

∑
ω∈T

2−|ω|‖�g2 · n|ω‖2L2(∂ωN ) �
∫

�N

�g2 · nv ds.

By combining this with

‖v‖2H1(
)
=
∑
ω∈T

‖vω‖2H1(ω)
�
∑
ω∈T

2|ω|‖vω‖2L2(∂ωN ) =
∑
ω∈T

2−|ω|‖�g2 · n|ω‖2L2(∂ωN ),
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and g(v) = ∫
�N
�g2 · nv dx , we arrive at

√∑
ω∈T

2−|ω|‖g2|ω · n‖2L2(∂ωN ) � g(v)

‖v‖H1(
)

≤ ‖g‖V ′ ,

in the case that {w ∈ H1(
) : w|�D = 0} ⊂ V1.

Otherwise, when V1 = H1(
)/R, we take v̄ = v −
∫

 v dx

meas(
)
1 ∈ V . Then

‖v̄‖H1(
) � ‖v‖H1(
), g(v) = g(v̄) by assumption, and so g(v)
‖v‖H1(
)

� g(v̄)
‖v̄‖H1(
)

≤
‖g‖V ′ . ��

An easy version of the proof of Proposition A.1 shows the following result, which
has been used to bound ‖r11 − r̃11‖ in the proof of Theorem 5.14.

Proposition A.3 For a tiling T ⊂ O
, and g ∈ Pm(T ), it holds that

∥∥〈�U , g〉L2(
)

∣∣∨U \�U (T ,k)

∥∥ � 2−k‖g‖U ′

(uniform in T and g).

The statements from the following proposition have been used to bound the terms
‖r11 − r̃11‖ (first statement) and ‖r2 − r̃2‖ (both statements) in the proof of Theo-
rem 5.14.

Proposition A.4 For a tiling T ⊂ O
, g ∈ Pm(T ), 1 ≤ q ≤ n, and �g ∈ Pm(T )n, it
holds that

∥∥〈�Tq , g〉L2(
)

∣∣∨T q \�T q (T ,k)

∥∥ � 2−k/2‖g‖L2(
)∥∥〈∇�U , �g〉L2(
)n
∣∣∨U \�U (T ,k)

∥∥ � 2−k/2‖�g‖L2(
)n

(uniform in T , g, and �g).

Proof Since by assumption (w2), for λ ∈ ∨Tq\�Tq (T , k), suppψ
Tq
λ has non-empty

intersection with a uniformly bounded number of ω ∈ T , we have

∑
λ∈∨T q \�T q (T ,k)

∣∣ ∑
ω∈T

〈ψTq
λ , g〉L2(ω)

∣∣2 �
∑
ω∈T

∑
λ∈∨T q \�T q (T ,k)

|〈ψTq
λ , g〉L2(ω)|2.

(A.3)
Given ω ∈ T and � ∈ N0, we set

�
(1)
ω,� = {λ ∈ ∨Tq : |λ| = �, suppψ

Tq
λ ⊂ ω, ψ

Tq
λ has a vanishing moment}

�
(2)
ω,� = {λ ∈ ∨Tq\�(1)

ω,� : |λ| = �, meas(suppψ
Tq
λ ∩ ω) > 0}.
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For λ ∈ �
(2)
ω,�, we estimate

|〈ψTq
λ , g〉L2(ω)| ≤ ‖ψTq

λ ‖L1(
)‖g‖L∞(ω) � 2−�n/22|ω|n/2‖g‖L2(ω). (A.4)

Using that #�(2)
ω,� � 2(�−|ω|)(n−1) (cf. (w4)), we infer that

∑
�>|ω|+k

∑
λ∈�

(2)
ω,�

|〈ψTq
λ , g〉L2(ω)|2 � 2−k‖g‖2L2(ω). (A.5)

Using that for λ ∈ �
(1)
ω,�, ψ

Tq
λ has a vanishing moment, we find that

|〈ψTq
λ , g〉L2(ω)| � ‖ψTq

λ ‖L1(
)2
−�‖g‖W 1∞(ω) � 2−�n/22−�2|ω|2|ω|n/2‖g‖L2(ω).

(A.6)
From #�(1)

ω,� � 2(�−|ω|)n , we obtain

∑
�>|ω|+k

∑
λ∈�

(1)
ω,�

|〈ψTq
λ , g〉L2(ω)|2 � 4−k‖g‖2L2(ω). (A.7)

The proof of the first inequality follows from (A.3), (A.5), and (A.7).
To prove the second inequality, for any λ ∈ ∨U , similar to (A.4) we have

|〈∇ψU
λ , �g〉L2(ω)n | ≤ ‖ψU

λ ‖W 1
1 (
)‖�g‖L∞(ω)n � 2−|λ|n/22|ω|n/2‖�g‖L2(ω)n .

When ψU
λ has a vanishing moment and suppψU

λ ⊂ ω, we have

|〈∇ψU
λ , �g〉L2(ω)n | = |〈ψU

λ , div �g〉L2(ω)| � ‖ψU
λ ‖L1(
)2

−|λ|‖�g‖W 2∞(ω)n

� 2−|λ|n/24−|λ|4|ω|2|ω|/2‖�g‖L2(ω)n

replacing (A.6). From these two estimates, the second inequality follows similarly to
the first one. ��

The following proposition has been used to bound the term ‖r( 12 )

3 − r̃
( 12 )

3 ‖ in the
proof of Theorem 5.14.

Proposition A.5 For a boundary tiling T�D ⊂ O�D , and g ∈ Pm(T�D ) ∩ C(�D),

‖〈�V2 , g〉L2(�D)|∨V 2\�V 2 (T�D ,k)‖ � 2−k/2‖g‖
H

1
2 (�D)

.
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Proof Using (5.8), similar to (A.1)

∑
λ∈∨V 2\�V 2 (T�D ,k)

∣∣∣
∫

�D

gψV2
λ ds

∣∣∣2 ≤ ∑
λ∈∨V 2\�V 2 (T�D ,k)

∑
ω∈T�D

2−|λ|‖g‖2
H1(ω∩suppψ

V 2
λ )

� 2−k
∑

ω∈T�D

2−|ω|‖g‖2H1(ω)
� 2−k‖g‖2

H
1
2 (�D)

,

by an application of an inverse inequality. ��
The following proposition has been used to bound the term ‖r3 − r̃3‖ in the proof

of Theorem 5.14.

Proposition A.6 For a boundary tiling T�D ⊂ O�D , and g ∈ Pm(T�D ),

‖〈�U , g〉L2(�D)|∨U \�U (T�D ,k)‖ � 2−k/2‖g‖
H−

1
2 (�D)

.

Proof In the proof of Proposition A.1, we saw that ‖�V1
λ ‖L2(�N ) � 2−|λ|/2. The same

arguments show that ‖�U
λ ‖L2(�D) � 2−|λ|/2. Consequently, similar to (A.1),

∑
λ∈∨U \�U (T�D ,k)

∣∣∣
∫

�D

gψU
λ ds

∣∣∣2 ≤ ∑
λ∈∨U \�U (T�D ,k)

∑
ω∈T�D

2−|λ|‖g‖2
L2(ω∩suppψU

λ )

� 2−k
∑

ω∈T�D

2−|ω|‖g‖2L2(ω) � 2−k‖g‖2
H−

1
2 (�D)

,

where the last inequality follows from analogous arguments as were applied in the
first paragraph of the proof of Lemma A.2. ��
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