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Abstract Electrical impedance tomography aims at reconstructing the interior elec-
trical conductivity from surface measurements of currents and voltages. As the
current–voltage pairs depend nonlinearly on the conductivity, impedance tomogra-
phy leads to a nonlinear inverse problem. Often, the forward problem is linearized
with respect to the conductivity and the resulting linear inverse problem is regarded
as a subproblem in an iterative algorithm or as a simple reconstruction method as
such. In this paper, we compare this basic linearization approach to linearizations with
respect to the resistivity or the logarithm of the conductivity. It is numerically demon-
strated that the conductivity linearization often results in compromised accuracy in
both forward and inverse computations. Inspired by these observations, we present
and analyze a new linearization technique which is based on the logarithm of the
Neumann-to-Dirichlet operator. The method is directly applicable to discrete settings,
including the complete electrode model. We also consider Fréchet derivatives of the
logarithmic operators. Numerical examples indicate that the proposed method is an
accurate way of linearizing the problem of electrical impedance tomography.
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1 Introduction

The reconstruction task of electrical impedance tomography (EIT) is undoubtedly one
of the most studied nonlinear inverse boundary value problems [30]. The mathemat-
ical foundations of the problem were introduced by Calderón in [3] that considers
the conductivity reconstruction based on the Dirichlet-to-Neumann operator. As
has become a more standard numerical approach, in this paper we consider the
Neumann-to-Dirichlet operator, which maps the boundary currents to the correspond-
ing boundary potentials for a given interior conductivity. The dependence of the
Neumann-to-Dirichlet operator on the conductivity is nonlinear so that reconstruct-
ing the conductivity from the measurements is a nonlinear, and also illposed, inverse
problem.

Nonlinear inverse problems can be straightforwardly approached with nonlinear
least squares minimization algorithms, which rely on successive linearizations of the
forward operator. In particular, the accuracy of the sequential linearizations certainly
affects the performance of such an iterative reconstruction method. In EIT, one-step
linearization can also be used to obtain an approximative reconstruction [1,4,15]. It is
also worth noting that Calderón’s investigations were based on a linearization of the
forward problem in his seminal paper [3]. The Fréchet derivatives of the EIT forward
operator with respect to the conductivity can be computed explicitly [4,20,26]. By
applying the chain rule of Banach spaces, or via direct computation, it is possible to
consider derivatives with respect to the resistivity or the logarithm of the conductivity
as well. In this paper, we compare the linearization errors resulting from these different
input parametrizations of the electrical properties. We also discuss the corresponding
methods for the complete electrode model (CEM), which is an accurate model for
practical EIT measurements [5,29].

As the main novelty, we introduce the logarithm of the Neumann-to-Dirichlet oper-
ator and use its differentiability properties to construct a new linearization method for
EIT. Loosely speaking, the traditional forward operator is replaced by an operator that
maps the logarithm of the conductivity to the logarithm of the boundary potentials, the
latter being understood in a sense of linear operators. The corresponding least squares
inversion algorithm then fits the computed logarithmic potentials to the logarithm of
the measurement matrix. Although this logarithmic forward operator is still nonlinear,
numerical experiments show that the resulting linearization errors are in most cases
smaller than with any other considered linearization method.

This paper is organized as follows. In Sect. 2, the continuum forward model of EIT
and the related Neumann-to-Dirichlet operator are reviewed.Wewrite the dependence
of the Neumann-to-Dirichlet operator on the electrical properties in three different
ways and recall also the corresponding Fréchet derivatives. Section 3 presents the
formal definition for the logarithmof theNeumann-to-Dirichlet operator and studies its
differentiability and other properties as an unbounded operator on the space of square-
integrable functions. In Sect. 4, observations from Sects. 2 and 3 are generalized for
the complete electrode model. Numerical experiments concerning linearization errors
for both forward and inverse computations are given in Sect. 5. Finally, Sect. 6 offers
concluding remarks.
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Generalized linearization techniques in EIT 97

2 Input parametrization in EIT

The continuum forward model of EIT for the electric potential u is written as

∇ · (σ∇u) = 0 in Ω,

σ
∂u

∂ν
= f on ∂Ω, (1)

where Ω ⊂ Rd , d ≥ 2, is a bounded domain with a Lipschitz boundary ∂Ω and
a connected complement, the electrical conductivity σ ∈ L∞+ (Ω) is real-valued and

isotropic, and f ∈ H−1/2
� (∂Ω) can be complex-valued. The conductivity is bounded

from below by a positive constant, that is,

L∞+ (Ω) := {
v ∈ L∞(Ω; R) : v ≥ a a.e. in Ω for some a > 0

}
,

and the boundary current density belongs to the mean-free Sobolev space H−1/2
� (∂Ω)

defined via

Hr� (∂Ω) := {
v ∈ Hr (∂Ω) : 〈1, v〉 = 0

}
, r ∈ (−1, 1),

due to the conservation of electric charge. Here and in what follows, the bracket
〈·, ·〉 : H−r (∂Ω) × Hr (∂Ω) → C denotes the sesquilinear dual pairing that has
an interpretation as an extension of the L2(∂Ω) inner product (·, ·) : L2(∂Ω) ×
L2(∂Ω) → C. In particular, apart from L∞(Ω) := L∞(Ω; R), the multiplier field
for all employed function spaces is C.

The variational form of the Neumann problem (1) is to find u ∈ H1(Ω) such that

∫

Ω

σ∇u · ∇v dx = 〈
f, v|∂Ω

〉
(2)

holds for all v ∈ H1(Ω). The standard theory for elliptic partial differential equations
states that there exists a unique solution for (2) in the quotient space H1(Ω)/C for
any given current density f ∈ H−1/2

� (∂Ω). In particular, there is a unique mean-free
boundary potential

U := u|∂Ω ∈ H1/2
� (∂Ω)

that depends linearly and boundedly on the corresponding f ∈ H−1/2
� (∂Ω). [12]

The linear map f �→ U , which obviously depends on σ , is called the Neumann-to-
Dirichlet operator and is denoted by Λ(σ). For any given σ ∈ L∞+ (Ω), the mapping

Λ(σ) : H−1/2
� (∂Ω) → H1/2

� (∂Ω)
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98 N. Hyvönen, L. Mustonen

is a linear isomorphism that is self-adjoint in the sense that

〈 f,Λ(σ)g〉 = 〈g,Λ(σ) f 〉 for all f, g ∈ H−1/2
� (∂Ω)

and positive,

〈 f,Λ(σ) f 〉 ≥ c‖ f ‖2H−1/2(∂Ω)
for all f ∈ H−1/2

� (∂Ω) and some c > 0,

as can be easily deduced from (2) and (Neumann) trace theorems for those elements of
H1(Ω)/C for which the range of∇ ·σ∇(·) is a subspace of L2(Ω) (cf., e.g., [8, p. 381,
Lemma 1]). Unless stated otherwise, we interpretΛ(σ) as a self-adjoint operator from
L2�(∂Ω) to itself, that is, as a map

Λ(σ) : f �→ U, L2�(∂Ω) → L2�(∂Ω),

which is compact as are the (dense) embeddings H1/2
� (∂Ω) ↪→ L2�(∂Ω) ↪→

H−1/2
� (∂Ω). In particular, Λ(σ) admits a spectral decomposition

Λ(σ) f =
∞∑

k=1

λk( f, φk) φk, (3)

where the eigenvalues satisfy λk ≥ λk+1 and R+ 
 λk → 0 as k → ∞, and the
corresponding eigenfunctions {φk}∞k=1 form an orthonormal basis for L2�(∂Ω).

Let us denote by L(L2�(∂Ω)) the Banach space of bounded linear operators from
L2�(∂Ω) to itself. The mapping

Λ : σ �→ Λ(σ), L∞+ (Ω) → L
(
L2�(∂Ω)

)
(4)

is nonlinear and is called the (continuummodel) forward operator of EIT. The inverse
problem of EIT is to find σ from the knowledge of Λ(σ). In practice, this means that
the determination of the conductivity is based on current–voltage pairs measured on
the boundary. The following example shows that by composing the forward operator
with an elementary function, one can obtain another forward operator that in some
cases depends more linearly on the electrical input parameters.

Example 1 (Constant conductivity) If σ ≡ inv(ρ) := ρ−1 for ρ ∈ R+, then the
potential u from (1) solves the Laplace equation �u = 0 with the normal derivative
ρ f on the boundary. In particular, the mapping ρ �→ Λ(σ) = (Λ ◦ inv)(ρ) is linear
when restricted to spatially constant functions.

Of course, the example above is nothing but the Ohm’s law, stating that in a homo-
geneous medium the potential depends linearly on the resistivity ρ. Motivated by the
example, we denote

Λinv := Λ ◦ inv : ρ �→ Λ(ρ−1), L∞+ (Ω) → L
(
L2�(∂Ω)

)
. (5)
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Generalized linearization techniques in EIT 99

Similarly, the logarithm of the conductivity is denoted by κ := log(σ ) and the corre-
sponding composite forward operator is defined as

Λexp := Λ ◦ exp : κ �→ Λ(eκ), L∞(Ω) → L
(
L2�(∂Ω)

)
. (6)

The advantage of considering the logarithm of the conductivity is that the domain of
Λexp is the natural L∞-space without positivity constraints, simplifying many opti-
mization schemes in numerical computations. On the other hand, the advantage of
using the standard conductivity parametrization with the operator Λ is the simplic-
ity of the corresponding sesquilinear forms, for example in the context of stochastic
Galerkin methods [27]. Note that considering the logarithm of the resistivity would
not add anything new compared to (6), except for a sign change.

It is well known that the map σ �→ Λ(σ) is Fréchet differentiable, i.e., that the
bounded derivative

DΛ(σ ; η) : L2�(∂Ω) → L2�(∂Ω)

exists for every σ ∈ L∞+ (Ω) and depends linearly and boundedly on the perturbation
η ∈ L∞(Ω) in the topology of L(L2�(∂Ω)) (see, e.g., [26, Section 3]). In fact, the
derivative can be obtained from the equation

(
f, DΛ(σ ; η)g) = −

∫

Ω

η∇u f · ∇ug dx, f, g ∈ L2�(∂Ω), (7)

where u f ∈ H1(Ω) denotes the solution to the forward problem (1) with the conduc-
tivity σ and current density f . By using the chain rule of differentiation for Banach
spaces and (7), it easily follows that the alternative parametrizations of the forward
operator (5) and (6) are also Fréchet differentiable and the corresponding derivatives
can be characterized by

(
f, DΛinv(ρ; η)g) =

∫

Ω

η

ρ2∇u f · ∇ug dx (8)

and

(
f, DΛexp(κ; η)g) = −

∫

Ω

η eκ∇u f · ∇ug dx (9)

for f, g ∈ L2�(∂Ω).

3 Logarithmic forward operator

In this section, we first introduce the logarithm of theNeumann-to-Dirichlet mapΛ(σ)

as an unbounded operator on L2�(∂Ω) and subsequently consider its differentiability
with respect to the conductivity.
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100 N. Hyvönen, L. Mustonen

3.1 Formal definition

The spectral representation (3) allows a simple way of defining a logarithm for the
Neumann-to-Dirichlet operator:

logΛ(σ) : f �→
∞∑

k=1

log(λk)( f, φk) φk, (10)

where log denotes the principal branch of the natural logarithm. As the eigenvalues
{λk}∞k=1 ⊂ R+ accumulate at zero, logΛ(σ) is not bounded as an operator from
L2�(∂Ω) to itself. We define the domain of logΛ(σ) to simply be

D( logΛ(σ)
) =

{
g ∈ L2�(∂Ω) : ‖ logΛ(σ)g‖2L2(∂Ω)

=
∞∑

k=1

log2(λk)|(g, φk)|2 < ∞
}
.

(11)

It is obvious thatD(logΛ(σ)) is a dense linear subspace of L2�(∂Ω) and logΛ(σ) f ∈
L2�(∂Ω) for any f ∈ D(logΛ(σ)).

Proposition 1 The logarithmic Neumann-to-Dirichlet operator logΛ(σ) defined by
(10) and (11) is a self-adjoint (unbounded) operator on L2�(∂Ω).

Proof Since D(logΛ(σ)) is dense in L2�(∂Ω), the adjoint operator

logΛ(σ)∗ : D(logΛ(σ)∗) → L2�(∂Ω)

is well defined [31, p. 196, Theorem 1].With the help of the Cauchy–Schwarz inequal-
ity, it is easy to check that

(logΛ(σ) f, g) = ( f, logΛ(σ)g) (12)

is finite for all f, g ∈ D(logΛ(σ)). In other words, logΛ(σ) is symmetric, that is,
logΛ(σ)∗ = logΛ(σ) on D(logΛ(σ)) ⊂ D(logΛ(σ)∗).

Let V := N (logΛ(σ)) ⊂ D(logΛ(σ)) be the nullspace of logΛ(σ). Note that V
is either finite-dimensional or the trivial subspace, depending on whether λ = 1 is
an eigenvalue of Λ(σ). In consequence, L2�(∂Ω) = V ⊕ W , where W := V⊥ is the
orthogonal complement of V . It follows from (10) and (11) that the range of logΛ(σ)

is exactly W , and thus logΛ(σ) is self-adjoint as an operator from D(logΛ(σ)) ∩ W
to W [31, p. 199, Corollary].

Let g ∈ D(logΛ(σ)∗) be arbitrary, i.e., there exists g∗ ∈ L2�(∂Ω) such that

(logΛ(σ) f, g) = ( f, g∗) for all f ∈ D(logΛ(σ)).

Decompose g = g0 + g1, with g0 ∈ V ⊂ D(logΛ(σ)) and g1 ∈ W , and observe that

( f, g∗) = (logΛ(σ) f, g0) + (logΛ(σ) f, g1) = (logΛ(σ) f, g1)
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Generalized linearization techniques in EIT 101

for all f ∈ D(logΛ(σ)) due to (12). Since logΛ(σ) is self-adjoint on D(logΛ(σ)) ∩
W , g1 must belong to D(logΛ(σ)) ∩ W , and altogether we have g = g0 + g1 ∈
D(logΛ(σ)) ⊂ D(logΛ(σ)∗). In other words, D(logΛ(σ)∗) = D(logΛ(σ)), which
completes the proof. ��

Because any self-adjoint operator is also closed [31], D(logΛ(σ)) becomes a
Hilbert space if equipped with the graph norm

‖g‖G(logΛ(σ)) =
(
‖g‖2L2(∂Ω)

+ ‖ logΛ(σ)g‖2L2(∂Ω)

)1/2
,

with respect to which logΛ(σ) is trivially a bounded operator.

Corollary 1 The logarithmic Neumann-to-Dirichlet map logΛ(σ) defined by (10)
and (11) can be interpreted as a compact operator

logΛ(σ) : H ε� (∂Ω) → L2�(∂Ω), ε > 0,

that coincides with its L2�(∂Ω)-adjoint on H ε� (∂Ω).

Proof The proof is based on Lemma 1 in Appendix A, where an equivalent norm ‖·‖s
is introduced for Hs�(∂Ω), 0 ≤ s ≤ 1/2, with the help of (negative) powers of Λ(σ)

defined in the natural way. By virtue of Lemma 1 and the asymptotic dominance of
λ−ε
k over log2(λk) as k tends to infinity,

‖ logΛ(σ) f ‖L2(∂Ω) ≤ ‖ f ‖G(logΛ(σ)) ≤ C‖ f ‖G(Λ−ε/2(σ )) ≤ C‖ f ‖ε/2

≤ C‖ f ‖
H ε/2

� (∂Ω)

for any ε > 0 and f ∈ H ε/2
� (∂Ω), with C = C(ε) > 0 that may change between

different occurrences. Since logΛ(σ) : L2�(∂Ω) ⊃ D(logΛ(σ)) → L2�(∂Ω) is self-

adjoint and the embedding H ε� (∂Ω) ↪→ H ε/2
� (∂Ω) is compact, the assertion follows.

��
So far we have discussed the logarithm of the linear Neumann-to-Dirichlet operator.

A natural way to define the corresponding nonlinear forward operator is as follows
[cf. (4) and (6)]:

Definition 1 The logarithmic forward operator of EIT is

L := logΛ ◦ exp : κ �→ logΛ(eκ), L∞(Ω) → L(H ε� (∂Ω), L2�(∂Ω))

for some ε > 0.

Considering the conductivity logarithm κ instead of σ affords the same convenience
as with the non-logarithmic forward operator Λexp in (6). Moreover, the linear nature
ofΛinv in (5) with constant conductivities (see Example 1) becomes now available as
well, as shown next.
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102 N. Hyvönen, L. Mustonen

Example 2 (Constant conductivity revisited) If σ ≡ eκ is constant in Ω , then the
mapping κ �→ L(κ) is affine.

Proof As in Example 1, the potential u from (1) solves the Laplace equation with the
normal derivative e−κ f . Thus, the Neumann-to-Dirichlet operator satisfies

Λ(σ) f =
∞∑

k=1

λke
−κ( f, φk)φk,

where the eigensystem corresponds to the unit conductivity. Taking the logarithm
results in

L(κ) f = logΛ(σ) f =
∞∑

k=1

log(λk)( f, φk)φk − κ

∞∑

k=1

( f, φk)φk = (L(0) − κ id) f,

which proves the claim. ��
The following example shows that the logarithmic forward operator depends

‘almost linearly’ on the conductivity logarithm of a certain interior inclusion.

Example 3 (Nested concentric disk) Let Ω ⊂ R2 be the unit disk and let ΩR ⊂ Ω

be an origin-centered disk with radius 0 < R < 1. Define the conductivity via its
logarithm κ = log(σ ) as

κ =
{
0 in Ω \ ΩR,

κ̃ in ΩR

for some κ̃ ∈ R. Now the logarithmic forward operator satisfies L(κ) = L(0) +
κ̃ L ′(0) + O (̃κ3) for some L ′(0) ∈ L(L2�(∂Ω)) and with O (̃κ3) referring to the
topology of L(L2�(∂Ω)).

Proof It is shown in [19] that in this rotationally symmetric case the eigenfunctions
of Λ(σ) do not depend on κ̃ (they are the standard Fourier basis with respect to the
polar angle, excluding the constant function), and the eigenvalues are

λ2k−1 = λ2k = 1

k

gk (̃κ)

gk(−κ̃)
, k = 1, 2, 3, . . . ,

where

gk (̃κ) := 1 − eκ̃ − 1

eκ̃ + 1
R2k .

The logarithm of the eigenvalue λ2k satisfies

log(λ2k) + log(k) = log(gk (̃κ)) − log(gk(−κ̃)), (13)
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Generalized linearization techniques in EIT 103

which is an analytic, odd function with respect to κ̃ . In particular, the second derivative
of log(λ2k) with respect to κ̃ vanishes at the origin, and it is also straightforward,
yet tedious to check that the corresponding first and third derivatives are uniformly
bounded over k ∈ N in a neighborhood of the origin. The claim thus follows by
plugging (13) in (10) and using Taylor’s theorem. ��

3.2 Fréchet differentiability

Let us next consider the differentiability of logΛ(σ) with respect to the conductivity.
Since logΛ(σ) has not itself been introduced as a boundary operator corresponding
to some (elliptic) partial differential equation, but its definition directly involves an
eigensystem for Λ(σ), the natural way to start would be to consider the differentia-
bility of {λk, φk}∞k=1 ⊂ R+ × L2�(∂Ω). Indeed, the Gâteaux differentiability of (a
suitable parametrization for) individual eigenvalues and eigenfunctions with respect
to the conductivity could be proven by considering the corresponding eigensystem
{λ−1

k , φk}∞k=1 of the (unbounded) Dirichlet-to-Neumann operator Λ−1(σ ) and utiliz-
ing its analyticity with respect to perturbations in the conductivity; see, e.g., [3] for
the analyticity ofΛ−1( · ) and [23, p. 392, Theorem 3.9] or [25] for more information
about the differentiability of an eigensystem for a self-adjoint, unbounded operator
with respect to a real parameter that does not affect the domain of definition. However,
due to the singularity of the logarithm at the origin and the infiniteness of the sum
in (10), (the natural sense of) the differentiability of logΛ(σ) is not trivial to estab-
lish. Moreover, as our main motivation for differentiating logΛ(σ) with respect to the
conductivity is numerical computing as in Sect. 5, we only consider derivatives for
finite-dimensional approximations of σ �→ logΛ(σ) in what follows.

To be more precise, we investigate a finite-dimensional, positive and self-adjoint
mapping

Λ(n)(σ ) := P(n)Λ(σ)P(n) : L2�(∂Ω) → L2�(∂Ω), n ∈ N, (14)

where

P(n) =
n∑

k=1

Pk : L2�(∂Ω) → span{ψ1, . . . , ψn} (15)

is an L2(∂Ω)-orthogonal projection composed of individual projections Pk onto fixed
orthonormal basis functions ψk ∈ L2�(∂Ω), k = 1, . . . , n, respectively. Furthermore,
let

Λ(n)(σ ) : f �→
n∑

k=1

μk( f, ϕk) ϕk

be a spectral representation for Λ(n)(σ ), with {μk}nk=1 ⊂ R+ and {ϕk}nk=1 ⊂
span{ψ1, . . . , ψn} being orthonormal. Take note that {μk}nk=1 and {ϕk}nk=1 depend
on σ , but the basis for the discretization {ψk}nk=1 does not. The logarithm of Λ(n)(σ )

is defined in the same way as for its infinite-dimensional counterpart:
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104 N. Hyvönen, L. Mustonen

logΛ(n)(σ ) : f �→
n∑

k=1

log(μk)( f, ϕk) ϕk,

which is obviously a bounded, linear map from L2�(∂Ω) to itself.

Theorem 1 The mapping

L∞+ (Ω) 
 σ �→ logΛ(n)(σ ) ∈ L
(
L2�(∂Ω)

)
(16)

is Fréchet differentiable. The derivative at σ ∈ L∞+ (Ω) in the direction η ∈ L∞(Ω)

is the element of L(L2�(∂Ω)) defined via

D logΛ(n)(σ ; η) : f �→
n∑

j=1

n∑

k=1

log(μ j ) − log(μk)

μ j − μk
( f, ϕk)

(
DΛ(σ ; η)ϕk, ϕ j

)
ϕ j

(17)

where DΛ(σ ; η) : L2�(∂Ω) → L2�(∂Ω) is the Fréchet derivative of Λ(σ) and the
divided difference is extended for recurrent eigenvalues in the standard limit sense, i.e.,

log(μ j ) − log(μk)

μ j − μk
= 1

μ j

if μ j = μk .

Proof Obviously, thefinite-dimensional approximationσ �→ Λ(n)(σ ) inherits Fréchet
differentiability from σ �→ Λ(σ). In fact, the derivative of the former at σ ∈ L∞+ (Ω)

is simply

L∞(Ω) 
 η �→ P(n)DΛ(σ ; η)P(n) ∈ L
(
L2�(∂Ω)

)
. (18)

The principal branch of a logarithm of a matrix (or of a finite-dimensional linear
operator given in a fixed basis) is also Fréchet differentiable over the set of matrices
that do not have eigenvalues on the closed negative real axis in the complex plane
[17]. The Fréchet differentiability of the mapping (16) thus follows from the chain
rule for Banach spaces, which also gives the representation (17) when combined with
[17, Theorem 3.11 and Corollary 3.12] and (18). ��

The computational cost of evaluating the full eigensystem ofΛ(n), required in (17),
is O(n3) since Λ(n) is positive-definite [9]. The number of the basis functions, or
input currents ψk , k = 1, . . . , n, is typically so low that this causes no computational
difficulties. In particular, practical EIT devices often only employ tens, e.g. M = 16
[24], or at most around a hundred of electrodes, which means that the eigensystem of
a resistance matrix, which belongs to C(M−1)×(M−1), can be easily computed; consult
Sect. 4 below for more information on electrodemeasurements. Moreover, the number
of degrees of freedom in the parametrization of the conductivity, say, N ∈ N is usually
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Generalized linearization techniques in EIT 105

higher than n2, making the numerical evaluation of the relevant integrals (7), (8) or
(9) for all f = ψ j and g = ψk the most time consuming task when employing (17).
This step is required in the linearization even if no logarithm is taken of the Neumann-
to-Dirichlet operator. Finally, the matrix arising from the linearization of any of the
above introduced forward operators of EIT belongs to Cn2×N because in the resulting
linear system the elements of the measuredΛ(n)(σ ) are the data and the unknowns are
the degrees of freedom in the parametrization of the conductivity. The computational
complexity of solving such a problem in a regularized least squares sense [cf. (32)
below] by resorting to a straightforward QR factorization is O(N 2n2) [9], which
reduces to O(n6) if one underestimates N ∼ n2. To summarize, the computation of
the eigensystem for Λ(n) needed in (17) does not usually reduce the computational
efficiency of any reconstruction algorithm for EIT based on linearizations of a forward
map.

If one chooses the discretization frame to be ψk = φk ∈ H1/2
� (∂Ω), k =

1, . . . , n, i.e., the first n orthonormal eigenfunctions of Λ(σ) for a particular, fixed
σ ∈ L∞+ (Ω), then

logΛ(n)(σ ) = P(n) logΛ(σ)P(n) : f �→
n∑

k=1

log(λk)( f, φk) φk, (19)

that is, logΛ(n)(σ ) inherits its eigenvalues and eigenfunctions from logΛ(σ). In this
case,

D logΛ(n)(σ ; η) : f �→
n∑

j=1

n∑

k=1

log(λ j ) − log(λk)

λ j − λk
( f, φk)

(
DΛ(σ ; η)φk, φ j

)
φ j .

(20)

Recall that here the basis for the discretization is fixed. In other words, the projection
P(n) in (19) is considered invariable when the Fréchet derivative is computed, that is,
it corresponds all the time to the first n orthonormal eigenfunctions of the unperturbed
Λ(σ), not to those of Λ(σ + η).

Remark 1 The derivative of the finite-dimensional logarithmic forward operator of
EIT,

L(n) := logΛ(n) ◦ exp : κ �→ logΛ(n)(eκ), L∞(Ω) → L
(
L2�(∂Ω)

)

is obtained by simply replacing DΛ(σ ; η) with DΛexp(κ; η) of (9) in (17).

We complete this section with a continuation of Example 3. It numerically studies
the linearization error of the discrete logarithmic forward operator L(n) with respect
to the logarithm of the conductivity in a generic discoidal inclusion embedded in the
unit disk.
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Example 4 (Nested non-concentric disk) LetΩ ⊂ R2 be the unit disk and letΩR,c ⊂
Ω be a disk of radius 0 < R < 1− |c| centered at c ∈ Ω . As in Example 3, we define
the conductivity via its logarithm κ = log(σ ) as

κ =
{
0 in Ω \ ΩR,c,

κ̃ in ΩR,c
(21)

for some κ̃ ∈ R. According to the Riemann mapping theorem for doubly connected
domains (see, e.g., [16]), there exists a unique 0 < R′ = R′(R, c) < 1 and a Möbius
transformation � : Ω → Ω , unique up to rotations of the image disk, such that
�(Ω \ ΩR,c) = Ω \ ΩR′,0. The explicit forms of � and R′ are given, e.g., in [13].

By the change of variables induced by �, it is straightforward to deduce that
the Neumann-to-Dirichlet map corresponding to the piecewise constant conductiv-
ity defined by (21) is characterized by (see, e.g., [11])

Λ(σ) : ∣∣�′|∂Ω
∣∣(φk ◦ �|∂Ω

) �→ λk
(
φk ◦ �|∂Ω − ck

)
, k = 1, 2, 3, . . . ,

where λk = λk (̃κ, R′) and φk are, respectively, the eigenvalues and (Fourier) eigen-
functions introduced in Example 3 for the concentric case. Moreover, |�′| is the
absolute value of the complex derivative of �, i.e., the square root of the Jacobian
determinant of �, and ck ∈ C is the mean of φk ◦ �|∂Ω over ∂Ω . By numerically
expanding the non-orthogonal bases {|�′|(φk◦�

)}∞k=1 and {φk◦�−ck}∞k=1 of L
2�(∂Ω)

in the orthonormal basis {φk}∞k=1, it is possible to accurately and efficiently formmatrix
representations for finite-dimensional approximations Λ(n)(σ ) of the type (14) with
respect to the Fourier basisψk = φk , k = 1, 2, . . . , in the considered simple geometry.

Let us study the linearization errors for Λ(n)
exp := Λ(n) ◦ exp and L(n) with respect

to the parameter κ̃ ∈ R in (21) around κ̃ = 0. To be more precise, we define the
‘symmetrized’ relative errors via

eexp(κ̃) :=
∥∥Λ(n)

exp(0) − Λ
(n)
exp(−κ̃) − DΛ

(n)
exp(0; κ̃)

∥∥
2 + ∥∥Λ(n)

exp (̃κ) − Λ
(n)
exp(0) − DΛ

(n)
exp(0; κ̃)

∥∥
2

2
∥∥Λ(n)

exp(0)
∥∥
2

and

eL (κ̃) :=
∥∥L(n)(0) − L(n)(−κ̃) − DL(n)(0; κ̃)∥∥2 + ∥∥L(n)(̃κ) − L(n)(0) − DL(n)(0; κ̃)∥∥2

2
∥∥L(n)(0)

∥∥
2

,

where ‖ · ‖2 denotes the spectral matrix norm. Observe that we have here abused the
notation by interpretingΛ

(n)
exp, DΛ

(n)
exp( · ; · ), L(n) and DL(n)( · ; · ) as functions of the

logarithmic conductivity level of the inclusion in an obvious manner. (The needed
derivatives DΛ

(n)
exp(0; κ̃) and DL(n)(0; κ̃) with respect to κ̃ at κ̃ = 0 are actually

approximated using the central difference rule with a fine enough step size.)
Figure 1 shows the errors eexp and eL for four combinations of R and c. After an

initial brief cubic behavior, the relative error related toΛexp seems to decay asymptoti-
cally as O (̃κ2) for all parameter combinations. On the other hand, eL decays initially as
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Fig. 1 Relative linearization errors for n = 36 and four discoidal inclusionswith respect to their logarithmic
conductivity levels: c = (0.1, 0) and R = 0.1 (solid), c = (0.2, 0) and R = 0.2 (dashed), c = (0.3, 0) and
R = 0.3 (dash-dotted), c = (0.4, 0) and R = 0.4 (dotted). Left: eexp (̃κ). Right: eL (̃κ)

O (̃κ3), but the convergence rate seems to gradually decrease as κ̃ approaches zero—in
particular, one cannot exclude the possibility that the asymptotic rate is only O (̃κ2).
The closer the inclusion is to the exterior boundary ∂Ω , the earlier the change of rate
begins. However, in all cases considered in Fig. 1 the value of the relative error eL is
already less than 10−4 at this stage. Moreover, eL is significantly smaller than eexp for
all considered inclusions and plotted values of κ̃ .

According to additional numerical studies not documented here, the linearization
error of Λ(n) with respect to the conductivity and that of Λ

(n)
inv with respect to the

resistivity of an embedded discoidal inclusion are quadratic and do not seem to exhibit
a preliminary cubic convergence rate.

4 Complete electrode model

Practical EITmeasurement setups are characterized by M ∈ N\{1} electrodes that are
attached to the surface of the imaged object. Let Em ⊂ ∂Ω , m = 1, . . . ,M , denote
these nonempty, open, connected, well-separated sets. In the CEM, the Neumann
boundary condition in (1) is replaced by [5]

σ
∂u

∂ν
= 0 on ∂Ω \

M⋃

m=1

Em,

σ
∂u

∂ν
= ζm(Um − u) on Em, m = 1, . . . ,M,

∫

Em

σ
∂u

∂ν
dS = Im, m = 1, . . . ,M, (22)

where ζ = [ζm]Mm=1 ∈ RM+ denote the (constant) contact conductances at the electrode-
object interfaces. The current pattern I = [Im]Mm=1 is prescribed, whereas the electrode
potentials U = [Um]Mm=1 are part of the solution. Both of these vectors belong to the
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mean-free subspace CM� ⊂ CM , the current pattern due to the conservation of electric
charge and the electrode potentials as a result of our specific choice for the ground level
of potential. The variational formulation corresponding to the conductivity equation
from (1)with the boundary conditions (22) is tofind (u,U ) ∈ H1(Ω) := H1(Ω)⊕CM�
such that

∫

Ω

σ∇u · ∇v dx +
M∑

m=1

ζm

∫

Em

(Um − u)(Vm − v) dS = I · V (23)

holds for all (v, V ) ∈ H1(Ω). The problem (23) is uniquely solvable [29].
For simplicity, we use the same notations for the forward operators of CEM as

introduced previously for the continuum model in Sect. 2. However, as a disparity,
the CEM forward operators depend on the contact conductances in addition to the
conductivity. As an example, the CEM forward operator that takes the conductivity
and contact conductances as its inputs is of the form

Λ : (σ, ζ ) �→ Λ(σ, ζ ), L∞+ (Ω) × RM+ → C(M−1)×(M−1), (24)

where the output is called the resistance matrix (regardless of the used input
parametrization), which is given with respect to a fixed orthonormal basis for CM� .
In other words, if α ∈ CM−1 carries the coordinates of an electrode current pattern
I ∈ CM� with respect to the employed basis, then Λ(σ, ζ )α gives the coordinates
of the resulting electrode potentials U ∈ CM� in that same basis. Since σ and ζ are
real-valued and positive, it follows easily from (23) that Λ(σ, ζ ) is Hermitian and, in
particular, positive-definite. Similarly,

Λinv : (ρ, z) �→ Λ(ρ−1, z−1), L∞+ (Ω) × RM+ → C(M−1)×(M−1),

and

Λexp : (κ, υ) �→ Λ(eκ , eυ), L∞(Ω) × RM → C(M−1)×(M−1),

where we have abused the notation by defining z−1 = [z−1
m ]Mm=1 and eυ = [eυm ]Mm=1

as vectors of RM . Finally, the logarithmic forward operator is defined in accordance
with Definition 1, that is,

L : (κ, υ) �→ logΛexp(κ, υ), L∞(Ω) × RM → C(M−1)×(M−1),

where logΛexp(κ, υ) is the principal logarithm of the positive-definite matrix
Λexp(κ, υ).

The Fréchet derivative of the basic forward operator (24) with respect to σ ∈
L∞+ (Ω) in the direction η ∈ L∞(Ω) is characterized by [20]

βTDσΛ(σ, ζ ; η)α = −
∫

Ω

η∇uβ · ∇uα dx, α, β ∈ CM−1, (25)
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where (uβ,Uβ) and (uα,Uα) are the solutions of (23) corresponding to the current
patterns with the coordinates α and β, respectively, in the employed orthonormal basis
for CM� . Analogously, the derivative of ζ �→ Λ(σ, ζ ) in the direction ξ ∈ RM can be
assembled via

βTDζΛ(σ, ζ ; ξ)α = −
M∑

m=1

ξm

∫

Em

(
(Uβ)m − uβ

)(
(Uα)m − uα

)
dS,

α, β ∈ CM−1. (26)

Furthermore, the Fréchet derivatives of Λinv and Λexp can be easily obtained by uti-
lizing the chain rule and the above two formulas for Λ [cf. (8) and (9)], and those of
the logarithmic forward operator L can be deduced by writing an eigendecomposition
for Λ(σ, ζ ) and mimicking Theorem 1 and Remark 1.

Remark 2 Applying the three basic operations id, inv and exp to the conductivity and
the contact conductances, one could come up with nine different parametrizations for
the forward operator of the CEM. Here we only consider three of them, although it is
probable that in some cases one of the other options is optimal from the standpoint of
the linearization error.

Remark 3 When the contact conductances are perfect, i.e., in the limit ζm → ∞ for all
m = 1, . . . ,M , the resulting model is called the shunt model [5,7]. On the other hand,
when σ/ζm approaches infinity for allm = 1, . . . ,M , meaning that the contacts at the
electrodes are extremely bad compared to the resistivity of the imaged body, the model
formally approaches a resistor network for which the resistance between electrodes El

and Em is Rlm = (ζl |El |)−1 + (ζm |Em |)−1. In other words, the resistance observed
when feeding current between two electrodes can be modelled as the sum of the
resistances at the considered electrodes. In particular, the elements of the resistivity
matrix R depend in the limit linearly on the pair (ρ, z) = (σ−1, ζ−1), since they
depend linearly on the contact resistances ζ−1 := [ζ−1

m ]Mm=1 and not at all on the
resistivityρ ofΩ . As R(σ, ζ ) is essentially just a representation ofΛ(σ, ζ )with respect
to certain non-orthonormal current and potential bases, for high contact resistances z
and low resistivity ρ it is reasonable to expect that of the different forward operators
Λinv, which is parametrized by (ρ, z), is closest to being linear.

5 Numerical experiments

In this section, we study the accuracies of different linearization techniques by per-
forming numerical experiments in the unit diskΩ ⊂ R2. The elliptic forward problems
for both the continuum model and the CEM are solved with the finite element method
(FEM) on meshes with approximately 30,000 nodes and piecewise linear basis func-
tions. These meshes and corresponding FEM solutions are also employed when
evaluating derivatives of forward maps [cf., e.g., (7)–(9)]. The discretization errors
of the FEM solutions can be regarded to be small. Throughout this section, the nota-
tion E[·] is used to denote the sample mean. The size of the sample is 50,000 in
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each considered case and the random realizations of involved parameters are mutually
independent.

5.1 Forward accuracy

We study the linearization errors of the EIT forward problem with discrete lognormal
random conductivity fields. To this end, the domain Ω is divided into N = 1800
subdomainsΩi , each having approximately the same area, and the piecewise constant
conductivity is written as

σ(x) =
N∑

i=1

σ̂iχi (x), (27)

where χi is the indicator function of Ωi and the vector σ̂ ∈ RN+ contains the cor-
responding conductivity values. The resistivity ρ = σ−1 and the logarithm of the
conductivity κ = log(σ ) are defined similarly via vectors ρ̂ ∈ RN+ and κ̂ ∈ RN ,
respectively. Furthermore, let x̂i ∈ Ωi denote the center of a subdomain. The random
conductivities are drawn via their logarithms such that the vectors κ̂ follow a Gaussian
distribution with the probability density

p(κ̂) = 1
√
(2π)N |Γ | exp

(
−1

2
(κ̂ − κ̂0)

�Γ −1(κ̂ − κ̂0)

)
,

where κ̂0 ∈ RN specifies the discrete mean field and

Γi, j = ς2 exp

(

−‖x̂i − x̂ j‖22
2�2

)

, i, j = 1, . . . , N (28)

defines the covariance matrix for some variance parameter ς2 > 0 and correlation
length � > 0. Table 1 lists the used values for four different distributions.

First we consider the continuummodel. For the purpose of numerical computations,
the finite-dimensional approximation Λ(n)(σ ) in (14) is considered with n = 16
trigonometric basis functions

ψ2k−1(θ) = 1√
π
cos(kθ), ψ2k(θ) = 1√

π
sin(kθ), k = 1, . . . , 8, (29)

where θ denotes the polar angle. In order to obtain a fully discrete forward operator,
the conductivity σ is replaced by σ̂ , resulting in

Λ̂ : σ̂ �→ Λ̂(σ̂ ), RN+ → Rn×n, (30)

where Λ̂(σ̂ ) is the matrix representation of P(n)Λ(σ)P(n) for the conductivity (27);
see (15). This nonlinear matrix-valued function is linearized around the unit conduc-
tivity σ0 ≡ 1 as
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Table 1 Parameters defining the discrete random conductivity fields F1–F4 and the random contact con-
ductances C1–C2 used in the numerical experiments

N κ̂0 ς2 � E[‖κ‖L2(Ω)] M υ0 γ 2

F1 1800 0 1/4 1/3 0.86 C1 16 log(10) 1

F2 1800 0 1/4 2/3 0.84 C2 16 log(1000) 1

F3 1800 0 1 1/3 1.74

F4 1800 0 1 2/3 1.66

Λ̂(σ̂ ) ≈ Λ̂lin(σ̂ ) := Λ̂(σ̂0) + Λ̂′(σ̂0)(σ̂ − σ̂0),

where Λ̂′(σ̂ )η̂ is the Fréchet derivative of the mapping (30) in the direction η̂ ∈ RN .
To be more precise,

Λ̂′(σ̂ )η̂ =
N∑

i=1

η̂i P
(n)DΛ(σ ;χi )P(n), (31)

which can be evaluated with the help of (7); see also (18). The alternative fully discrete
forward operators ρ̂ �→ Λ̂inv(ρ̂) and κ̂ �→ Λ̂exp(κ̂) are defined analogously, as are their
linearizations around ρ0 ≡ 1 and κ0 ≡ 0, respectively, with the appropriate derivative
from (8) or (9) replacing DΛ(σ ;χi ) in (31). The same conclusions also apply to the
fully discrete logarithmic forward operator κ̂ �→ L̂(κ̂); cf. Definition 1, Theorem 1
and Remark 1 with η = χi . Note that for a rotationally symmetric conductivity, (29)
are eigenfunctions of the Neumann-to-Dirichlet operator, meaning that ϕk = φk = ψk

in the notation of Sect. 3 (cf. [19] as well as Examples 3 and 4). In particular, (19) and
(20) hold.

The error indicator for the linearized Λ̂ is

e(Λ̂) := E

⎡

⎢
⎣

∥∥∥Λ̂lin(σ̂ ) − Λ̂(σ̂ )

∥∥∥
F

‖Λ̂(σ̂ )‖F

⎤

⎥
⎦,

where ‖·‖F is the Frobenius norm. The corresponding definitions of indicators for
Λ̂inv and Λ̂exp should be obvious. For the logarithmic forward operator, the error is
computed as

e(L̂) := E

⎡

⎢
⎣

∥∥∥exp
(
L̂ lin(κ̂)

)
− Λ̂(σ̂ )

∥∥∥
F

‖Λ̂(σ̂ )‖F

⎤

⎥
⎦,

where exp is just the ordinary matrix exponential, i.e., the inverse of (the principal
branch of) the matrix logarithm.
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Table 2 Linearization errors e for the continuum forward model (left) and for the CEM (right) with the
different random distributions defined in Table 1

e(Λ̂) e(Λ̂inv) e(Λ̂exp) e(L̂) e(Λ̂) e(Λ̂inv) e(Λ̂exp) e(L̂)

F1 0.237 0.076 0.095 0.039 F3/C1 0.916 0.175 0.390 0.270

F2 0.294 0.043 0.123 0.027 F4/C1 1.012 0.090 0.418 0.269

F3 0.989 0.288 0.327 0.142 F3/C2 1.003 0.272 0.345 0.132

F4 1.481 0.146 0.434 0.094 F4/C2 1.420 0.139 0.430 0.090

The forward operators parametrizedwith respect to conductivity, resistivity and log-conductivity are denoted
by Λ̂, Λ̂inv and Λ̂exp, respectively, whereas the logarithmic forward operator is L̂

The left-hand side of Table 2 lists the mean errors for the four linearization
approaches and for the four different random fields defined in Table 1. It can be seen
that linearizing with respect to the conductivity results in the worst accuracy in each
case, whereas the novel logarithmic linearizationmethod is clearly the best. Increasing
the correlation length in the random field deteriorates the performance of the conduc-
tivity and log-conductivity linearizations, whereas Λ̂inv and L̂ perform better with the
smoother fields. An intuitive explanation for the latter phenomenon is that increasing
the correlation length in our random model makes the corresponding realizations of
the conductivity to be closer to constants, for which Λ̂inv and L̂ are linear and affine,
respectively; see Examples 1 and 2. It is not surprising that increasing the pointwise
variance ς2 leads in every case to a higher sample mean for the linearization error.

For theCEMexperimentswe employ the same lognormal conductivity fields F3–F4
as with the continuum model, but now the contact conductances ζm are also random.
The conductances are drawn independently and for each of the M = 16 electrodes
the conductance distribution is lognormal with the underlying Gaussian distribution
havingmean υ0 and variance γ 2 as listed on the right in Table 1. Of these two statistical
models for the contact conductances, C2 is in better correspondence with the elec-
trode contacts documented for water tank experiments in, e.g., [5,6]; note that when
comparing contact conductances documented in different works and dimensions, one
needs to take into account the size of the imaged domain as well as its approximate
conductivity level as explained in [18, Section 3.1]. However, bad contacts described
by the scenario C1 cannot be excluded in, e.g., imaging of concrete [22].

The identical electrodes are positioned uniformly and they cover approximately
46% of the boundary ∂Ω . The orthonormal electrode current basis for RM� , employed
when forming the resistance matrices, is the discrete counterpart of the Fourier basis
(29), that is,

I (2k−1) =
√

2

M
[cos(kθm)]Mm=1, I (2k) =

√
2

M
[sin(kθm)]Mm=1,

k = 1, . . . ,M/2 − 1,

and I (M−1) = [(−1)m−1]Mm=1/
√
M . Here, θm = 2π(m − 1)/M is the central polar

angle of the mth electrode. The definitions of the fully discrete CEM forward opera-
tors, their linearizations and the corresponding error indicators should be obvious.
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In particular, the forward operators are now mappings from RN+M+ or RN+M to
R(M−1)×(M−1) and their derivatives can be assembled using the appropriate variants
of (25), (26) and (20).

For the contact conductance distribution C1 with the lower expected value, the
resistivity-based operator Λinv results in the best linearization accuracy, as can be
seen on the right in Table 2. This is in line with Remark 3. On the other hand, when
the contact conductance is high (i.e., the setting is close to the shunt model), the
errors almost coincide with the corresponding values for the continuum model. That
is, the rows corresponding to C2 are similar to the adjacent rows on the left-hand side
of Table 2. In particular, the logarithmic forward operator L̂ gives the best and the
conductivity-based parametrization the worst linearization accuracy for the CEM as
well.

5.2 Inverse accuracy

Regarding the accuracy of linearizations when solving the inverse problem of EIT, we
only consider the forward operators Λ̂exp and L̂ that are based on the logarithmic input
parametrization. One reason for this is the fact that non-logarithmic parametrizations
may lead to conductivity reconstructions that are not positive. In addition, it would be
problematic to design equivalent regularizations for different input parametrizations,
and thus the error indicators would not be directly comparable to each other. In the
following, we give all definitions for the logarithmic forward operator L̂ , but the
corresponding definitions for Λ̂exp should be obvious.

The simulated finite-dimensional Neumann-to-Dirichlet operators are denoted by
Λ̃(σ̂ ). They are also computed with FEM, but in order to avoid inverse crimes, the
matrices Λ̃(σ̂ ) are contaminated with Gaussian noise. More precisely, realizations of
independent, zero-mean normal random variables with standard deviation

δ := 10−3E
[
max
i, j

Λ̂(σ̂ )i, j

]

are added to each element of a matrix Λ̂(σ̂ ), and the matrix is subsequently symmetri-
cized. The simulated CEM measurements are obtained in the same way and they are
denoted by Λ̃(σ̂ , ζ ).

For a regularization parameter t > 0, the reconstruction κ̂t based on the logarithmic
continuum model forward operator L̂ is

κ̂t (L̂) = argmin
ŷ∈RN

{∥∥L̂ lin(ŷ) − log(Λ̃(σ̂ ))
∥∥2
F + t2

∥∥G(ŷ − κ̂0)
∥∥2
2

}
, (32)

where G ∈ RN×N is a ‘Bayesian regularization matrix’ satisfying Γ −1 = G�G.
Here, Γ is the covariance matrix (28) of the distribution from which the logarithm
of the vector σ̂ is drawn, and the expected log-conductivity κ̂0 is as in Sect. 5.1.
The reconstruction obtained from (32) approximates a maximum a posteriori (MAP)
estimate under the assumption that the linearization error is negligible and the elements
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of the matrix log(Λ̃(σ̂ )) are contaminated by independent realizations of zero-mean
Gaussian noise with standard deviation t > 0 [21]. (Notice that the latter is not true
for any t due to the application of the matrix logarithm after adding the measurement
noise.) Naturally, for Λ̂exp the minimization does not involve a logarithm, but the
linearized operator is compared directly to the matrix Λ̃(σ̂ ) in the Frobenius norm.
For the CEM forward operators, the reconstructions are computed according to

(
κ̂t (L̂), υt (L̂)

) = argmin
ŷ∈RN , w∈RM

{∥∥L̂ lin(ŷ, w) − log(Λ̃(σ̂ , ζ ))
∥∥2
F + t2

∥∥G(ŷ − κ̂0)
∥∥2
2

}

(33)

or by replacing L̂ lin(ŷ, w) with (Λ̂exp)lin(ŷ, w) and deleting the logarithm. In partic-
ular, no regularization is applied to the contact conductances since their estimation is
a relatively stable task (cf., e.g., [14, (4.8)]). Observe that (32) and (33) correspond to
minimizing quadratic Tikhonov functionals, which is a simple task.

The average reconstruction error for a fixed regularization parameter t > 0 is

ιt (L̂) := E
[∥∥κt (L̂) − κ

∥∥
L2(Ω)

]
,

where κ = log(σ ) is the (random draw of a) true log-conductivity corresponding to the
vector σ̂ in (32); see (27). For a given conductivity/conductance distribution, the opti-
mal regularization parameter is obtained by solving a one-dimensional optimization
problem,

τ(L̂) := argmin
t∈R+

ιt (L̂),

and the corresponding error indicator is simply denoted by ι(L̂) := ι
τ (L̂)(L̂). (Natu-

rally, such an optimal regularization parameter cannot be found in practice when the
true conductivity is not known, but the idea here is to compare upper bounds for the
performances of the two considered one-step reconstruction algorithms.) In addition,
for the CEM we denote the contact conductance reconstruction error by

d(L̂) := E
[∥∥∥υτ(L̂)(L̂) − υ

∥∥∥
2

]
,

where υ = log(ζ ) is defined componentwise, but it should be emphasized that the
optimal regularization parameter τ(L̂) is still chosen so that it minimizes the L2(Ω)

reconstruction error corresponding to the mere log-conductivity. Once again, the cor-
responding definitions for Λexp are analogous.

Table 3 reveals that the new logarithmic method is more accurate in each test case,
and the difference is highlightedwith the smoother fields F2 and F4, as could have been
predicted based on the forward accuracy observations in Table 2. In practice, the choice
of regularization parameter may well be suboptimal. However, Fig. 2 demonstrates
that the new method results in a smaller average error with almost any choices for the
regularization parameters.
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Table 3 Conductivity reconstruction errors ι for the linearized continuummodel (left) and for the linearized
CEM (right), together with the conductance errors d for the CEM

ι(Λ̂exp) ι(L̂) ι(Λ̂exp) ι(L̂) d(Λ̂exp) d(L̂)

F1 0.329 0.204 F3/C1 1.042 0.833 8.266 3.404

F2 0.296 0.058 F4/C1 1.053 0.437 8.034 2.889

F3 1.204 0.580 F3/C2 1.097 0.759 421.3 164.6

F4 1.128 0.134 F4/C2 1.061 0.320 359.4 79.98

The considered random fields and parameters are described in Table 1
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Fig. 2 Mean reconstruction errors ιt as functions of the regularization parameter t for the linearization
methods based on the continuum forward operators Λ̂exp (dashed) and L̂ (solid). The plots correspond to
the random fields F3 (left) and F4 (right)

In order to illustrate the difference in the one-step inversion accuracies for Λ̂exp and
L̂ , some example reconstructions, with regularization parameters that are optimized
as described above, are shown in Figs. 3 and 4. The first example, which is based
on a realization of the random conductivity field F3 and the CEM with high contact
conductances, demonstrates that the traditional linearization method is not capable of
recovering the high contrast of the target conductivity. On the other hand, the new
method reproduces the conductivity levels far more accurately and also recovers the
resistive area close to the northwest boundary of the unit disk. The second example
presented in Fig. 4 considers a realization of the random conductivity field F4 with
twice as long correlation length. The superiority of the new logarithmic method is
even more clearly visible with this smoother conductivity field, as was expected based
on the statistical evidence in Tables 2 and 3.

Our final numerical example, presented in Fig. 5, considers a single piecewise
constant target conductivity, which is not in good correspondence with the employed
‘prior model’ characterized by the pair F4/C2. The new logarithmic linearization
technique is still slightly more accurate, but neither method is able to capture the
high contrast of the inhomogeneity. This is not very surprising taking into account
that the regularization matrix G in (33) promotes smooth conductivities. On the other
hand, both of the one-step reconstruction methods are able to approximately locate the
support of the inclusion, which is in line with [15]. The reconstructions in Fig. 5 are the
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Fig. 3 Example reconstructions for the CEM and a realization of the random conductivity/conductances
F3/C2. Left: target log-conductivity with ‖κ‖L2(Ω) ≈ 1.526. Middle: reconstruction based on a single

linearization of Λ̂exp with L2(Ω)-error 1.051. Right: reconstruction based on a single linearization of L̂
with L2(Ω)-error 0.729
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Fig. 4 Example reconstructions for the CEM and a realization of the random conductivity/conductances
F4/C2. Left: target log-conductivity with ‖κ‖L2(Ω) ≈ 1.372. Middle: reconstruction based on a single

linearization of Λ̂exp with L2(Ω)-error 0.924. Right: reconstruction based on a single linearization of L̂
with L2(Ω)-error 0.310

-1

0

1

2

3

4

Fig. 5 Example reconstructions for the CEM, a piecewise constant target conductivity and a realization
of the random conductances C2. The Tikhonov functional (33) is formed as if the conductivity were a
realization of the randommodel described by F4. Left: target log-conductivity with ‖κ‖L2(Ω) ≈ 3.179 (the
log-conductivity level of the inclusion is log(100) ≈ 4.605,which is slightly outside the color scale).Middle:
reconstruction based on a single linearization of Λ̂exp with L2(Ω)-error 2.533. Right: reconstruction based

on a single linearization of L̂ with L2(Ω)-error 2.351

best possible in the sense that the regularization parameter t appearing in (33) is in each
case chosen so that the reconstruction error for the considered target is minimized.
This is naturally an unrealistic approach in practice, but it enables a relatively fair
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comparison between the optimal performance levels of the two linearization methods
for a single, fixed target conductivity.

6 Discussion

We have reviewed existing linearization approaches for EIT and proposed a new log-
arithmic technique that seems to be the most accurate linearization method amongst
those studied here. Although the EIT forward operator is somewhat frequently lin-
earized with respect to the conductivity, it was numerically demonstrated that the
linearization error in the measurement matrix becomes smaller if the linearization is
based on the resistivity or the logarithm of the conductivity. In a sense, this is just
a consequence of the Ohm’s law, and the conclusion applies to both the continuum
model and to the CEM.Our novel method, whichmaps the logarithm of the conductiv-
ity to the logarithm of the Neumann-to-Dirichlet operator or the measurement matrix,
produces the smallest linearization error in almost all tested cases.

Regarding the inverse problem of EIT, the proposed logarithmic method retains
the positivity property of the log-conductivity parametrization, while preserving the
accuracy of the resistivity linearization in the case of, e.g., constant conductivities.
Numerical studies and example reconstructions demonstrate that when comparing to
the traditional log-conductivity linearization approach, the proposed method is clearly
more accurate, regardless of the parameters defining the lognormal random models
for the conductivity and the contact conductances.

The above conclusions are valid if themeasurements aremodelled by theNeumann-
to-Dirichlet map or its counterparts for electrode measurements. If the Dirichlet-to-
Neumann map were employed, one would expect conductivity parametrizations to
prevail over those based on the resistivity (cf. Ohm’s law). However, such a change
would not affect the performance of the novel method since the logarithms of the
Neumann-to-Dirichlet and Dirichlet-to-Neumann operators only differ by their sign.

Acknowledgements This work was supported by the Academy of Finland (Decision 267789), the
Finnish Foundation for Technology Promotion TES, and the Foundation for Aalto University Science and
Technology.

A An equivalent norm for Hs� (∂Ω)

This appendix is based on the assumptions and definitions of Sects. 2 and 3. The
proof of Corollary 1 requires the following lemma. Observe that the lemma could be
extended (with obvious modifications) for−1/2 ≤ s ≤ 1/2 by duality and for a wider
scale of smoothness indices by utilizing some integer power of Λ(σ)−1 in place of
Λ(σ)−1/2 in the following proof, assuming ∂Ω is smooth enough.

Lemma 1 For any fixed σ ∈ L∞+ (Ω), it holds that

Hs�(∂Ω) = {
g ∈ L2�(∂Ω) : ‖g‖s < ∞}

, 0 ≤ s ≤ 1

2
,
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where

‖g‖s :=
( ∞∑

k=1

1

λ2sk

|(g, φk)|2
)1/2

defines an equivalent norm for Hs�(∂Ω).

Proof Let us introduce the positive powers of Λ(σ) : L2�(∂Ω) → L2�(∂Ω) in the
natural way, that is,

Λs(σ ) : f �→
∞∑

k=1

λsk( f, φk) φk, L2�(∂Ω) → L2�(∂Ω),

which defines a compact, injective, self-adjoint operator with a dense range for any
s > 0. The negative powers are the corresponding inverse operators:

Λ−s(σ ) : f �→
∞∑

k=1

1

λsk
( f, φk) φk, D(Λ−s(σ )

) → L2�(∂Ω), s > 0,

where (cf., e.g., [10, Theorem 2.8])

D(Λ−s(σ )
) := R(

Λs(σ )
) =

{
g ∈ L2�(∂Ω) : ‖Λ−s(σ )g‖L2(∂Ω) = ‖g‖s < ∞

}
.

Using the same arguments as for logΛ(σ) in Sect. 3.1, it is easy to show that
Λ−s(σ ) : D(Λ−s(σ )) → L2�(∂Ω) is self-adjoint and becomes an isomorphism
between Hilbert spaces if its domain is equipped with the graph norm defined via

‖g‖s ≤ ‖g‖G(Λ−s(σ )) :=
(
‖g‖2L2(∂Ω)

+ ‖Λ−s(σ )g‖2L2(∂Ω)

)1/2 ≤ C‖g‖s (34)

for g ∈ D(Λ−s(σ )) and with C > 0.
Since Λ(σ) : H−1/2

� (∂Ω) → H1/2
� (∂Ω) is positive and self-adjoint, the (positive)

square rootΛ1/2(σ ) is, in fact, an isomorphism from L2�(∂Ω) to H1/2
� (∂Ω); see, e.g.,

[2, Lemma 3.4] for a simple proof. In particular,D(Λ−1/2(σ )) = H1/2
� (∂Ω). Accord-

ing to [28, p. 10, Definition 2.1 and Remark 2.3] and the definition of Hs(∂Ω) as a
(complex) interpolation space (see, e.g., [28, p. 36, Theorem 7.7]), we thus have

Hs�(∂Ω) =
[
H1/2

� (∂Ω), L2�(∂Ω)
]

1−2s
= D(Λ(1−(1−2s))/2(σ )

) = D(Λ−s(σ )
)
,

0 ≤ s ≤ 1/2,

with the graph norm of D(Λ−s(σ )) being equivalent to that of Hs�(∂Ω). The claim
now follows from (34). ��
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