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Abstract Most of the numerical methods dedicated to the contact problem involving
two elastic bodies are based on the master/slave paradigm. It results in important
detection difficulties in the case of self-contact and multi-body contact, where it may
be impractical, if not impossible, to a priori nominate a master surface and a slave one.
In this work we introduce an unbiased finite element method for the finite element
approximation of frictional contact between twoelastic bodies in the small deformation
framework. In the proposed method the two bodies expected to come into contact
are treated in the same way (no master and slave surfaces). The key ingredient is a
Nitsche-based formulation of contact conditions, as in Chouly et al. (Math Comput
84:1089–1112, 2015). We carry out the numerical analysis of the method, and prove
its well-posedness and optimal convergence in the H1-norm. Numerical experiments
are performed to illustrate the theoretical results and the performance of the method.
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Introduction

Although being a very rich subject in the past, contact computational mechanics for
deformable bodies in small or large strain is still the subject of intensive research. The
most common paradigm to treat the problem of two deformable bodies in contact is
known as the master/slave formulation. In this approach one distinguishes between a
master surface and a slave one on which is prescribed the non-penetration condition.
A presentation of this formulation and the contact problem can be found in Laursen’s
work [18,19] (see also [20]) and a presentation of discretization schemes andnumerical
algorithms for mechanical contact is given in [28]. This approach is confronted with
important difficulties especially in the case of self-contact and multi-body contact
where it is impossible or impractical to a priori nominate a master surface and a
slave one. Automating the detection and the separation between slave and master
surfaces in these cases may generate a lack of robustness since it may create detection
problems.

If the master/slave formulation consists in a natural extension of the contact treat-
ment between a deformable body and a rigid ground, it has no complete theoretical
justification. Consequently, to avoid these difficulties, we provide in this article an
unbiased formulation of the two elastic bodies contact problem in the small strain
framework. In this formulation we do not distinguish between a master surface and a
slave one since we impose the non-penetration and the friction conditions on both of
them. Unbiased contact and friction formulations have been considered before in [26]
and references therein. There, the authors present a numerical study of the method and
make use of a penalized formulation of contact and friction. The terms two-pass and
two-half-pass are also used in literature to describe this type of methods.

This study can be seen as a first step in the construction of a method taking into
account contact between two elastic solids and self-contact in large transformations
in the same formalism. The present formulation, in small deformations, allows us
to ensure the consistency, the convergence and the optimality of the method. In this
context, the aim of this paper is to provide an unbiased description of the contact and
Tresca friction conditions, that relies upon a Nitsche’s treatment of contact conditions.

Nitsche’s treatment of contact is an extension of the method proposed in 1971
by J. Nitsche to impose Dirichlet conditions within the variational formulation with-
out adding Lagrange multipliers [23]. Nitsche’s method has been widely applied on
problems involving linear conditions on the boundary of a domain or at the interface
between sub-domains: see, e.g. [27] for theDirichlet problemor [1] for domain decom-
positionwith non-matchingmeshes.More recently, in [13] and [15] it has been adapted
for bilateral (persistent) contact, which still involves linear boundary conditions on
the contact zone. A Nitsche-based formulation for the Finite Element discretization
of the unilateral (non-linear) contact problem in linear elasticity was introduced in
[6] and generalized in [8] to encompass symmetric and non-symmetric variants. A
simple adaptation of the Nitsche-based Finite Element Method to Tresca’s friction
is proposed in [5]. Conversely to standard penalization techniques (see [7,17]), the
resulting method is consistent. Moreover, unlike mixed methods (see [14,16]), no
additional unknown (Lagrange multiplier) is needed.
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Other possibilties for contact discretization are for instance node-to-segment tech-
niques or the mortar method. Note that the mortar method is an efficient alternative
that has been widely applied to contact problem (see [2,21,24]). The mortar technique
allows to match independent discretizations of the contacting solids and takes into
account the unilateral contact conditions in a convenient way. The procedure provides
variationally consistent contact pressures. But mortar methods normally represent
asymmetric formulations, by distinguishing between a master (or mortar) and a slave
(or non-mortar) surface. Thus, the adaptation to an unbiased contact description is
quite easier with Nitsche’s method than a mortar one. In fact, since Nitsche’s method
uses the contact stress as a multiplier, it is very simple to divide this contact effort
equitably on both of contact surfaces. A comparison between Nitsche’s method and
mortar-type ones for linear elasticity is provided in [12].

The formulation described in this paper uses an additional parameter θ as in [8],
allowing us to introduce some variants acting on the symmetry/skew-symmetry / non-
symmetry of the discrete formulation.Moreover, a unified analysis of all these variants
can be performed. We provide, as well, theoretical and numerical verifications of the
proposed method. First, we prove the consistency of the method, its well-posedness
and its optimal convergence.And then, a numerical verification is performed to confirm
the theoretical results.

In Sect. 1 we build an unbiased formulation of the two elastic bodies frictional
(Tresca) contact problem. This formulation will be based on Nitsche’s method. To
prove the efficiency of the method (15), we carry out some mathematical analysis in
Sect. 2. In the last Sect. 3 of this paper, we present the results of several two/three-
dimensional numerical tests. The tests cover a convergence study of the global relative
error of displacement in H1-norm and the contact pressure error in L2-norm with
different values of the parameter θ and the Nitsche’s parameter γ0. The open source
environment GetFEM++1 is used to perform the tests.

1 Setting of the problem

1.1 Formal statement of the two bodies contact problem

We consider two elastic bodies expected to come into contact. To simplify notations, a
general index i is used to represent indifferently the 1st or the 2nd body. Let �i be the
domain in Rd occupied by the reference configuration of the i-th body, with d = 2 or
3. Small strain assumption is made, as well as plane strain when d = 2. We suppose
that the boundary ∂�i of each body consists in three non-overlapping parts �i

D , �
i
N

and �i
C . On �i

D (resp �i
N ) displacements ui (resp. tractions ti ) are given. The body is

clamped on �i
D for the sake of simplicity. In addition each body can be subjected to

a volumic force f i (such as gravity). We denote by �i
C a portion of the boundary of

the i-th body which is a candidate contact surface with an outward unit normal vector
ni . The actual surface on which a body comes into contact with the other one is not
known in advance, but is contained in the portion �i

C of ∂�i .

1 http://getfem.org/.
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Fig. 1 Example of definition of ñi

Furthermore let us suppose that�i
C is smooth. For the contact surfaces, let us assume

a sufficiently smooth one to one application (projection for instance) mapping each
point of the first contact surface to a point of the second one:

�1 : �1
C → �2

C .

Let J 1 be the Jacobian determinant of the transformation �1 and J 2 = 1

J 1
the

Jacobian determinant of �2 = (�1)−1. We suppose in the following that J 1 > 0.
We define on each contact surface a normal vector ñi (see Fig. 1) such that:

ñi (x) =

⎧
⎪⎨

⎪⎩

�i (x) − x
‖�i (x) − x‖ if x �= �i (x),

ni if x = �i (x).

Note that ñ1 = −ñ2 ◦ �1 and ñ2 = −ñ1 ◦ �2.
The displacements of the bodies, relatively to the fixed spatial frame are represented

by u = (u1, u2), where ui is the displacement field of the i-th body.
The contact problem in linear elasticity consists in finding the displacement field u

satisfying the Eq. (1) and the contact conditions described hereafter:

div σ i (ui ) + f i = 0 in �i , (1a)

σ i (ui ) = Aiε(ui ) in �i , (1b)

ui = 0 on �i
D, (1c)

σ i (ui )ni = ti on �i
N , (1d)

where σ i = σ i
( j,k), 1 ≤ j, k ≤ d, stands for the stress tensor field and div denotes

the divergence operator of tensor valued functions. The notation ε(v) = 1
2 (∇v +

∇v
T
) represents the linearized strain tensor field and Ai is the fourth order symmetric

elasticity tensor on �i having the usual uniform ellipticity and boundedness property.
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For any displacement field vi and for any density of surface forces σ i (vi )ni defined
on ∂�i we adopt the following notation:

vi = vin ñi + vit and σ i (vi )ni = σ i
n(v

i )ñi + σ i
t (v

i ),

where vit (resp σ i
t (v

i )) are the tangential components of vi (resp σ i (vi )ni ).
We define an initial normal gap representing the normal distance between a point x of
�i
C and its image on the other body: gin = (�i (x) − x) · ñi .
We define, as well, the relative normal displacements �u�1n = (u1 − u2 ◦ �1) · ñ1

and �u�2n = (u2 − u1 ◦ �2) · ñ2.

Remark 1.1 Note that: g1n ◦ �2 = g2n and g2n ◦ �1 = g1n ; �u�1n ◦ �2 = �u�2n and
�u�2n ◦ �1 = �u�1n .

In order to obtain an unbiased formulation of the contact problem we prescribe the
contact conditions deduced from the Signorini problem conditions (see [17]) on the
two surfaces in a symmetric way. Thus, the conditions describing contact on �1

C and
�2
C are:

�u�1n ≤ g1n (2a)

σ 1
n (u1) ≤ 0 on �1

C , (2b)

σ 1
n (u1)(�u�1n − g1n) = 0 (2c)

�u�2n ≤ g2n (3a)

σ 2
n (u2) ≤ 0 on �2

C . (3b)

σ 2
n (u2)(�u�2n − g2n) = 0 (3c)

Let si ∈ L2(�i
C ), si ≥ 0, be the Tresca friction threshold associated to the physical

properties of the i-th surface, �u�1t = u1
t − u2

t ◦ �1 and �u�2t = u2
t − u1

t ◦ �2 =
−�u�1t ◦ �2.

The Tresca friction condition on �1
C and �2

C reads:

⎧
⎪⎨

⎪⎩

‖σ i
t (u

i )‖ ≤ si if �u�it = 0,

σ i
t (u

i ) = −si
�u�it

‖�u�it‖
otherwise,

(4)

where ‖ · ‖ stands for the Euclidean norm in R
d−1.

Remark 1.2 In the frictionless contact case this condition is simply replacedbyσ i
t = 0.

Finally, we need to consider the second Newton law between the two bodies:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∫

γ 1
C

σ 1
n (u1)ds −

∫

γ 2
C

σ 2
n (u2)ds = 0,

∫

γ 1
C

σ 1
t (u

1)ds +
∫

γ 2
C

σ 2
t (u

2)ds = 0,
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where γ 1
C is any subset of �1

C and γ 2
C = �1(γ 1

C ). Mapping all terms on γ 1
C allows

writing:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∫

γ 1
C

σ 1
n (u1) − J 1σ 2

n (u2 ◦ �1)ds = 0,

∫

γ 1
C

σ 1
t (u

1) + J 1σ 2
t (u

2 ◦ �1)ds = 0,
∀γ 1

C ⊂ �1
C

so we obtain:

{
σ 1
n (u1) − J 1σ 2

n (u2 ◦ �1) = 0,

σ 1
t (u

1) + J 1σ 2
t (u

2 ◦ �1) = 0,
on �1

C . (5)

Remark 1.3 A similar condition holds on �2
c :

{
σ 2
n (u2) − J 2σ 1

n (u1 ◦ �2) = 0,

σ 2
t (u

2) + J 2σ 1
t (u

1 ◦ �2) = 0.

It is important to mention that, due to second Newton law, we need to fix s1 and

s2 such that: −s1
�u�1t

‖�u�1t ‖
= σ 1

t (u
1) = −J 1σ 2

t (u
2 ◦ �1) = J 1s2

�u�2t ◦ �1

‖�u�2t ◦ �1‖ =

−J 1s2
�u�1t

‖�u�1t ‖
.

And so:

s1 = J 1s2. (6)

1.2 Variational formulation using Nitsche’s method

In this section, we establish the weak formulation of problem (1)–(5) using Nitsche’s
method and the unbiased form of the contact and the friction conditions given in Sect.
1.1.
As in [8], we introduce an additional parameter θ . This generalization will allow
several variants, depending on the value of θ . The symmetric case is obtained when
θ = 1. The advantage of the symmetric formulation is that it derives from an energy
potential (see 1.3). These features are lost when θ �= 1. Nevertheless the variants
θ = −1 and 0 presents some other advantages, mostly from the numerical viewpoint.
In particular, the case θ = 0 involves a reduced number of terms, which makes it
easier to implement and to extend to contact problems involving non-linear elasticity.
Also, for θ = −1, the well-posedness of the discrete formulation and the optimal
convergence are preserved irrespectively of the value of the Nitsche parameter γ i .
Some general guidelines on how to choose γ0 and θ are provided in the Sect. 3.5.
First, we introduce the Hilbert space

123



An unbiased Nitsche’s approximation of the frictional... 599

V =
{

v = (v1, v2) ∈ H1(�1)d × H1(�2)d : v1 = 0 on �1
D and v2 = 0 on �2

D

}
.

Let u = (u1, u2) be the solution of the contact problem in its strong form (1)–(5). We
assume that u is sufficiently regular so that all the following calculations make sense.
The derivation of a Nitsche-based method comes from a reformulation of the contact
conditions (2a)–(2b)–(2c) (see for instance [6] and [8]). This reformulation is similar
to the augmented Lagrangian formulation of contact problems. The contact conditions
(2a)–(2b)–(2c) are equivalent to the Eq. (7) for a given positive function γ i :

σ i
n

(
ui

)
= − 1

γ i

[
(�u�in − gin) − γ iσ i

n(u
i )

]

+ , (7)

where the notation [·]+ refers to the the positive part of a scalar quantity. Similarly, as
in [5], the Tresca friction condition is equivalent to the equation

σ t

(
ui

)
= − 1

γ i

[
�u�it − γ iσ (ui )

]

γ i si
, (8)

where, for any α ∈ R
+, the notation [·]α refers to the orthogonal projection onto

B(0, α) ⊂ R
d−1, the closed ball centered at the origin and of radius α. In what

follows some properties of the positive part and the projection are mentioned. Those
properties will be useful in the analysis of the method.

Since a ≤ [a]+ and a[a]+ = [a]2+ ∀a ∈ R, we can write that for all a, b ∈ R:

([a]+ − [b]+)(a − b) = a[a]+ + b[b]+ − b[a]+ − a[b]+
≥ [a]2+ + [b]2+ − 2[a]+[b]+
= ([a]+ − [b]+)2. (9)

We note, also, the following classical property for a projection for all x, y ∈ R
d−1:

(y − x) · ([y]α − [x]α) ≥ ‖[y]α − [x]α‖2. (10)

From the Green formula and Eq. (1), we get for every v ∈ V:

∫

�1
σ 1(u1) : ε(v1)d� +

∫

�2
σ 2(u2) : ε(v2)d� =

∫

�1
f1 · v1d� +

∫

�2
f2 · v2d�

+
∫

�1
N

t1 · v1d� +
∫

�2
N

t2 · v2d� +
∫

�1
C

σ 1(u1)n1 · v1d� +
∫

�2
C

σ 2(u2)n2 · v2d�.

We define

a(u, v) =
∫

�1
σ 1(u1) : ε(v1)d� +

∫

�2
σ 2(u2) : ε(v2)d�,

and
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L(v) =
∫

�1
f1 · v1d� +

∫

�2
f2 · v2d� +

∫

�1
N

t1 · v1d� +
∫

�2
N

t2 · v2d�.

So, there holds:

a(u, v) −
∫

�1
C

σ 1
n (u1)v1nd� −

∫

�2
C

σ 2
n (u2)v2nd� −

∫

�1
C

σ 1
t (u

1) · v1t d�

−
∫

�2
C

σ 2
t (u

2) · v2t d� = L(v).

Using condition (5) we can write

a(u, v) − 1

2

∫

�1
C

(
σ 1
n (u1) + J 1σ 2

n (u2 ◦ �1)
)

v1nd� − 1

2

∫

�2
C

(
σ 2
n (u2)

+ J 2σ 1
n (u1 ◦ �2)

)
v2nd�

−1

2

∫

�1
C

(
σ 1
t (u

1) − J 1σ 2
t (u

2 ◦ �1)
)

· v1t d� − 1

2

∫

�2
C

(
σ 2
t (u

2)

−J 2σ 1
t (u

1 ◦ �2)
)

· v2t d� = L(v).

So, using the property
∫

�1
C

J 1 f d� =
∫

�2
C

f ◦ �2d�, we have

a(u, v) − 1

2

∫

�1
C

σ 1
n (u1)v1nd� − 1

2

∫

�1
C

σ 1
n (u1)(v2n ◦ �1)d� − 1

2

∫

�2
C

σ 2
n (u2)v2nd�

−1

2

∫

�2
C

σ 2
n (u2)(v1n ◦ �2)d� − 1

2

∫

�1
C

σ 1
t (u

1) · v1t + 1

2

∫

�1
C

σ 1
t (u

1) · (v2t ◦ �1)d�

−1

2

∫

�2
C

σ 2
t (u

2) · v2t + 1

2

∫

�2
C

σ 2
t (u

2) · (v1t ◦ �2)d� = L(v).

This leads to:

a(u, v) − 1

2

∫

�1
C

σ 1
n (u1)(v1n + v2n ◦ �1)d� − 1

2

∫

�2
C

σ 2
n (u2)(v2n + v1n ◦ �2)d�

−1

2

∫

�1
C

σ 1
t (u

1) · (v1t − v2t ◦ �1)d� − 1

2

∫

�2
C

σ 2
t (u

2) · (v2t − v1t ◦ �2)d� = L(v).

Using the writings, for θ ∈ R,

{
v1n + v2n ◦ �1 = (v1n + v2n ◦ �1 − θγ 1σ 1

n (v1)) + θγ 1σ 1
n (v1)

v2n + v1n ◦ �2 = (v2n + v1n ◦ �2 − θγ 2σ 2
n (v2)) + θγ 2σ 2

n (v2)

123



An unbiased Nitsche’s approximation of the frictional... 601

{
v1t − v2t ◦ �1 = (v1t − v2t ◦ �1 − θγ 1σ 1

t (v
1)) + θγ 1σ 1

t (v
1)

v2t − v1t ◦ �2 = (v2t − v1t ◦ �2 − θγ 2σ 2
t (v

2)) + θγ 2σ 2
t (v

2),

we obtain:

a(u, v) − 1

2

∫

�1
C

θγ 1σ 1
n (u1)σ 1

n (v1)d� − 1

2

∫

�2
C

θγ 2σ 2
n (u2)σ 2

n (v2)d�

−1

2

∫

�1
C

θγ 1σ 1
t (u

1) · σ 1
t (v

1)d� − 1

2

∫

�2
C

θγ 2σ 2
t (u

2) · σ 2
t (v

2)d�

−1

2

∫

�1
C

σ 1
n (u1)(v1n + v2n ◦ �1 − θγ 1σ 1

n (v1))d�

−1

2

∫

�2
C

σ 2
n (u2)(v2n + v1n ◦ �2 − θγ 2σ 2

n (v2))d�

−1

2

∫

�1
C

σ 1
t (u

1) · (v1t − v2t ◦ �1 − θγ 1σ 1
t (v

1))d�

−1

2

∫

�2
C

σ 2
t (u

2) · (
v2t − v1t ◦ �2 − θγ 2σ 2

t (v
2)

)
d�

= L(v). (11)

Let us define:

Pi
n,γ i (u) = �u�in − γ iσ i

n(u
i ) − gin, Pi

t,γ i (u) = �u�it − γ iσ i
t (u

i ),

Pi
n,θγ i (v) = �v�in − θγ iσ i

n(v
i ), Pi

t,θγ i (v) = �v�it − θγ iσ i
t (v

i )
(12)

and

Aθ (u, v) = a(u, v) − 1

2

∫

�1
C

θγ 1σ 1
n (u1)σ 1

n (v1)d�

−1

2

∫

�2
C

θγ 2σ 2
n (u2)σ 2

n (v2)d�

−1

2

∫

�1
C

θγ 1σ 1
t (u

1) · σ 1
t (v

1)d�

−1

2

∫

�2
C

θγ 2σ 2
t (u

2) · σ 2
t (v

2)d�

= a(u, v) − 1

2

∫

�1
C

θγ 1σ 1(u1)n · σ 1(v1)n d�

−1

2

∫

�2
C

θγ 2σ 2(u2)n · σ 2(v2)n d�.
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Nowwe insert the expressions (7) of σ i
n(u

i ) and (8) of σ i
t (u

i ) in (11) and the variational
problem could be formally written as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find a sufficiently regular u ∈ V such that for all sufficiently regular v ∈ V,

Aθ (u, v) + 1

2

∫

�1
C

1

γ 1 [P1
n,γ 1(u)]+P1

n,θγ 1(v)d�

+ 1
2

∫

�2
C

1
γ 2 [P2

n,γ 2(u)]+P2
n,θγ 2(v)d�

+1

2

∫

�1
C

1

γ 1 [P1
t,γ 1(u)]γ 1s1 · P1

t,θγ 1(v)d� + 1

2

∫

�2
C

1

γ 2 [P2
t,γ 2(u)]γ 2s2

·P2
t,θγ 2(v)d� = L(v).

(13)

Remark 1.4 In the frictionless contact case the formulation reads:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Find a sufficiently regular u ∈ V such that for all sufficiently regular v ∈ V

Aθ (u, v) + 1

2

∫

�1
C

1

γ 1 [P1
n,γ 1(u)]+P1

n,θγ 1(v)d�

+ 1
2

∫

�2
C

1
γ 2 [P2

n,γ 2(u)]+P2
n,θγ 2(v)d� = L(v).

.

1.3 Derivation of the method from a potential

In this section we show, through a formal demonstration, that the method derives from
a potential in the frictional symmetric (θ = 1) case. Let us define the potential:

J (u) = ε�(u) +
2∑

i=1

(
εin(u) + εit (u)

)
,

with:

ε�(u) = 1

2
a(u, u) −

2∑

i=1

(1

4

∫

�i
C

γ i (σ i
n(u

i ))2 + 1

4

∫

�i
C

γ i‖σ i
t (u

i )‖2d�
)

− L(u)

= 1

2
A1(u, u) − L(u),

εin(u) = 1

4

∫

�i
C

1

γ i

[
Pi
n,γ i (u)

]2

+ d�,

εit (u) = 1

4

∫

�i
C

1

γ i
‖Pi

t,γ i (u)‖2d� − 1

4

∫

�i
C

1

γ i
‖Pi

t,γ i (u) −
[
Pi
t,γ i (u)

]

γ i si
‖2d�.
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We compute now the derivative of this potential. We have:

Dε�(u)[v] = A1(u, v) − L(v)(L is linear and Aθ is bilinear),

Dεin(u)[v] = 1

2

∫

�i
C

1

γ i

[
Pi
n,γ i (u)

]

+ D
(
[Pi

n,γ i (u)]+
)

[v]d�

= 1

2

∫

�i
C

1

γ i

[
Pi
n,γ i (u)

]

+ H
(
Pi
n,γ i (u)

) (
D(Pi

n,γ i (u)
)

[v]d�,

where H is the Heaviside step function. Using the equalities: H(ϕ(X))[ϕ(X)]+ =
[ϕ(X)]+ and D

(
Pi
n,γ i (u)

)[v] = Pi
n,γ i (v) (since Pi

n,γ i is linear), we get:

Dεin(u)[v] = 1

2

∫

�i
C

1

γ i

[
Pi
n,γ i (u)

]

+ Pi
n,γ i (v)d�.

Finally:

Dεit (u)[v] = 1

2

∫

�i
C

1

γ i
Pi
t,γ i (u) · Pi

t,γ i (v)d�

−1

2

∫

�i
C

1

γ i

(

Pi
t,γ i (u) −

[
Pi
t,γ i (u)

]

γ i si

)

·
(

Pi
t,γ i (v)

− D
([Pi

t,γ i (u)]γ i si
)[v]

)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

if ‖Pi
t,γ i (u)‖ ≤ γ i si , then Pi

t,γ i (u) − [Pi
t,γ i (u)]γ i si = 0

if ‖Pi
t,γ i (u)‖ > γ i si , then D

([Pi
t,γ i (u)]γ i si

)[v] is tangential toB(0, γ i si ) and

D
([Pi

t,γ i (u)]γ i si
)[v] · (Pi

t,γ i (u) − [Pi
t,γ i (u)]γ i si ) = 0.

So, in both cases we have:

Dεit (u)[v] = 1

2

∫

�i
C

1

γ i

[
Pi
t,γ i (u)

]

γ i si
· Pi

t,γ i (v)d�

so, if we consider the first order optimality condition Dε(u)[v] = 0 ∀v ∈ V, we get:

A1(u, v) +
2∑

i=1

(1

2

∫

�i
C

1

γ i
[Pi

n,γ i (u)]+Pi
n,γ i (v)d�

+1

2

∫

�i
C

1

γ i
[Pi

t,γ i (u)]γ i si · Pi
t,γ i (v)d�

)
= L(v).

This is exactly (13) when θ = 1.
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1.4 Strong–weak formulation equivalence

In this section, we are going to establish the formal equivalence between (13) and
(1)–(5). Since the construction of (13) is quite elaborated and consists in particular in
the splitting of the contact terms into two parts, this step is necessary to ensure the
coherence of the formulation.

Theorem 1.5 Let u = (u1, u2) be a sufficiently regular solution to the problem (13),
then u solves the problem (1)–(5) for all θ ∈ R.

Proof See “Appendix A” ��

1.5 Discretization of the variational formulation

Let (T i
h )h>0 be a family of triangulations of the domain �i supposed regular and

conformal to the subdivisions of the boundaries into �i
D , �

i
N and �i

C . We introduce

Vh =
(

V1
h × V2

h

)
, with

Vi
h =

{
vih ∈ C 0(�i ) : vih|T ∈ (Pk(T ))d ,∀T ∈ T i

h , vih = 0 on �i
D

}
,

the family of finite dimensional vector spaces indexed by h and coming from T i
h .

We consider in what follows that γ i is a positive piecewise constant function on the
contact interface �i

C which satisfies

γ i
|Ki∩�i

C
= γ0hKi ,

for every Ki ∈ T i
h that has a non-empty intersection of dimension d − 1 with �i

C , and
where γ0 is a positive given constant. Note that the value of γ i on element intersections
has no influence. This allows to define a discrete counterpart of (13). Let us introduce
for this purpose, with the same notation, the discrete linear operators:

Pi
n,γ i (uh) = �uh�n − gin − γ iσ i

n(u
i
h), Pi

t,γ i (uh) = �uh�
i
t − γ iσ i

t (u
i
h),

Pi
n,θγ i (vh) = �vh�

i
n − θγ iσ i

n(v
i
h), Pi

t,θγ i (vh) = �vh�it − θγ iσ i
t (v

i
h).

(14)

Then the unbiased formulation of the two bodies contact in the discrete setting
reads:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find uh ∈ Vh such that, for all vh ∈ Vh,

Aθ (uh, vh)

+1

2

∫

�1
C

1

γ 1 P
1
n,θγ 1(vh)[P1

n,γ 1(uh)]+d�+ 1

2

∫

�2
C

1

γ 2 P
2
n,θγ 2(vh)[P2

n,γ 2(uh)]+d�

+1

2

∫

�1
C

1

γ 1 P1
t,θγ 1(vh) · [P1

t,γ 1(uh)]γ 1s1d�

+1

2

∫

�2
C

1

γ 2 P2
t,θγ 2(vh) · [P2

t,γ 2(uh)]γ 2s2d� = L(vh).

(15)

Remark 1.6 Note that Nitsche’s method is not a standard penalty method, since it is
consistent. In fact the Nitsche’s method is closer to Barbosa & Hughes stabilization
(see [27] and [6, Section 2.3]), so the Nitsche parameter γ0 is in fact a stabilization
parameter. As a result, making γ0 tend to 0 does not increase necessarily precision,
conversely to standard penalty (see as well Figs. 16 and 17 in Sect. 3.5 for a numerical
illustration here). The parameter γ0 must therefore be just smaller than a threshold
value ensuring the coercivity so that the problem is well posed (and not too small not
to cause ill-conditioning). This threshold value depends on the variant (θ ).

2 Mathematical analysis of the method

A major difference between Nitsche’s method and standard penalty methods is the
consistency demonstrated in 2.1. Using the same arguments as in [6] we prove the
well-posedness and the optimal convergence of (15) when the mesh size h vanishes.
To insure well-posedness and convergence of the method we need to impose γ0 to be
sufficiently small when θ �= −1. This condition is avoided when θ = −1 which is a
major advantage of this version.

2.1 Consistency

Similarly to Nitsche’s method for unilateral contact problems [6], our Nitsche-based
formulation (15) is consistent:

Lemma 2.1 Suppose that the solution u of (1)–(5) lies in (H
3
2+ν(�1))d

× (H
3
2+ν(�2))d with ν > 0, then u is also solution to:

Aθ (u, vh) + 1

2

∫

�1
C

1

γ 1 P
1
n,θγ 1(vh)[P1

n,γ 1(u)]+d�

+1

2

∫

�2
C

1

γ 2 P
2
n,θγ 2(vh)[P2

n,γ 2(u)]+d�

+1

2

∫

�1
C

1

γ 1 P1
t,θγ 1(vh) · [P1

t,γ 1(u)]γ 1s1d�

123



606 F. Chouly et al.

+1

2

∫

�2
C

1

γ 2 P2
tθγ 2(vh) · [P2

t,γ 2(u)]γ 2s2d�

= L(vh), ∀vh ∈ Vh . (16)

Proof Let u be a solution of (1)–(5) and set vh ∈ Vh . Since ui ∈ (H
3
2+ν(�i ))d , we

have σ i
n(u

i ) ∈ (H ν(�i
C ))d and Pnγ i and Ptγ i are well-defined and belong to L2(�i

C ).
With Eqs. (1)–(4) and integration by parts, it holds:

a(u, vh) −
∫

�1
C

σ 1
n (u1)v1hnd� −

∫

�2
C

σ 2
n (u2)v2hnd� −

∫

�1
C

σ 1
t (u

1) · v1htd�

−
∫

�2
C

σ 2
t (u

2) · v2htd� = L(vh).

We use now (5) to write:

a(u, v) − 1

2

∫

�1
C

σ 1
n (u1)(v1hn + v2hn ◦ �1)d� − 1

2

∫

�2
C

σ 2
n (u2)(v2hn + v1hn ◦ �2)d�

−1

2

∫

�1
C

σ 1
t (u

1) · (v1ht − v2ht ◦ �1)d�

−1

2

∫

�2
C

σ 2
t (u

2) · (v2ht − v1ht ◦ �2)d� = L(vh).

For any θ ∈ R, we can write:

{
v1hn + v2hn ◦ �1 = (v1hn + v2hn ◦ �1 − θγ 1σ 1

n (v1h)) + θγ 1σ 1
n (v1h)

v2hn + v1hn ◦ �2 = (v2hn + v1hn ◦ �2 − θγ 2σ 2
n (v2h)) + θγ 2σ 2

n (v2h)
{

v1th − v2ht ◦ �1 = (v1ht − v2ht ◦ �1 − θγ 1σ 1
t (v

1
h)) + θγ 1σ 1

t (v
1
h)

v2th − v1ht ◦ �2 = (v2ht − v1ht ◦ �2 − θγ 2σ 2
t (v

2
h)) + θγ 2σ 2

t (v
2
h).

(17)

Using (17), formulations (7) and (8) of the contact and friction conditions and the
notations (12), we obtain (16). ��
Remark 2.2 The regularity assumption that we made in Lemma 2.1 is standard for
Signorini contact. It was proved for an elliptic scalar problem in [22] and noted numer-
ically for linear elasticity. In fact the singularities that appear with contact-non-contact
transitions allow us, generally, to expect a Sobolev regularity between 3/2 and 5/2.

2.2 Well-posedness

To prove well-posedness of our formulation, we first need the following discrete trace
inequality.
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Lemma 2.3 There exists C > 0, independent of the parameter γ0 and of the mesh
size h, such that:

‖γ i
1
2 σ i

t (v
i
h)‖20,�i

c
+ ‖γ i

1
2 σ i

n(v
i
h)‖20,�i

c
≤ Cγ0‖vih‖21,�i , (18)

for all vih ∈ Vi
h .

Proof The inequality (18) is obtained using a scaling argument as in [5, Lemma 3.2].
��

We then show in Theorem 2.4 that the problem (15) is well-posed using an argu-
ment from [4] for M-type and pseudo-monotone operators. In the proof of the
well-posedness, two cases are discused: θ = 1 and θ �= 1.

Theorem 2.4 Suppose that γ0 > 0 is sufficiently small or θ = −1, then Problem (15)
admits one unique solution uh in Vh. When θ = −1 we do not need the assumption
of smallness of γ0.

Proof Using the Riesz representation theorem, we define a (non-linear) operator B :
Vh → Vh , by means of the formula:

(Buh, vh)1 = Aθ (uh, vh) + 1

2

∫

�1
C

1

γ 1 P
1
n,θγ 1(vh)[P1

n,γ 1(uh)]+d�

+ 1

2

∫

�2
C

1

γ 2 P
2
n,θγ 2(vh)[P2

n,γ 2(uh)]+d�

+ 1

2

∫

�1
C

1

γ 1 P1
t,θγ 1(vh) · [P1

t,γ 1(uh)]γ 1s1d�

+ 1

2

∫

�2
C

1

γ 2 P2
t,θγ 2(vh) · [P2

t,γ 2(uh)]γ 2s2d�,

for all uh, vh ∈ Vh , and where (., .)1 stands for the scalar product in V and the nota-
tions Pi

n,γ i , Pi
t,γ i , P

i
n,θγ i and Pi

t,θγ i are given by (12).
Note that Problem (15) is well-posed if and only if B is a one-to-one operator. Let
vh, wh ∈ Vh , using the writings Pi

n,θγ i (·) = Pi
n,γ i (·) + gin + (1 − θ)σ i

n(·) and

Pi
t,θγ i (·) = Pi

t,γ i (·) + (1 − θ)σ i
t (·), we have:

(Bvh − Bwh, vh − wh)1 = a(vh − wh, vh − wh)

+
2∑

i=1

(
− θ

2
‖γ i

1
2 σ (vih − wi

h)n‖2
0,�i

C

+1

2

∫

�i
C

1

γ i
Pi
n,γ i (vh − wh)

([Pi
n,γ i (vh)]+ − [Pi

n,γ i (wh)]+
)
d�

+ (1 − θ)

2

∫

�i
C

1

γ i
γ iσ i

n(v
i
h − wi

h)
([Pi

n,γ i (vh)]+ − [Pi
n,γ i (wh)]+

)
d�
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+1

2

∫

�i
C

1

γ i
Pi
t,γ i (vh − wh) · ([Pi

t,γ i (vh)]γ i si − [Pi
t,γ i (wh)]γ i si

)
d�

+ (1 − θ)

2

∫

�i
C

1

γ i
γ iσ i

t (v
i
h − wi

h) · ([Pi
t,γ i (vh)]γ i si − [Pi

t,γ i (wh)]γ i si
)
d�

)
.

We use Cauchy–Schwarz inequality and the proprieties (9) and (10) to get:

(Bvh − Bwh, vh − wh)1 ≥ a(vh − wh, vh − wh)

+
2∑

i=1

(
− θ

2
‖γ i

1
2 σ (vih − wi

h)n‖2
0,�i

C

+1

2
‖γ i− 1

2
([Pi

n,γ i (vh)]+ − [Pi
n,γ i (wh)]+

)‖2
0,�i

C

+1

2
‖γ i− 1

2
([Pi

t,γ i (vh)]γ i si − [Pi
t,γ i (wh)]γ i si

)‖2
0,�i

C

−|1 − θ |
2

‖γ i− 1
2
([Pi

n,γ i (vh)]+ − [Pi
n,γ i (wh)]+

)‖0,�i
C
‖γ i

1
2 σ i

n(v
i
h − wi

h)‖0,�i
C

−|1 − θ |
2

‖γ i− 1
2
([Pi

t,γ i (vh)]γ i si − [Pi
t,γ i (wh)]γ i si

)‖0,�i
C
‖γ i

1
2 σ i

t (v
i
h − wi

h)‖0,�i
C

)
.

If θ = 1, we use the coercivity of a(·, ·) and the property (18) to get:

(Bvh − Bwh, vh − wh)1 ≥ a(vh − wh, vh − wh) −
2∑

i=1

1

2
‖γ i

1
2 σ i (vih − wi

h)n
i‖2

0,�i
C

≥ a(vh − wh, vh − wh) −
2∑

i=1

1

2

(
‖γ i

1
2 σ i

n(v
i
h − wi

h)‖20,�i
C

+‖γ i
1
2 σ i

t (v
i
h − wi

h)‖20,�i
C

)

≥ C‖vh − wh‖21
when γ0 is sufficiently small.

We suppose now that θ �= 1; let β > 0. Applying Young inequality yields:

(Bvh − Bwh, vh − wh)1 ≥ a(vh − wh, vh − wh)

+
2∑

i=1

(
− θ

2
‖γ i

1
2 σ i (vih − wi

h)n
i‖2

0,�i
C

+ 1

2
‖γ i− 1

2
([Pi

n,γ i (vh)]+ − [Pi
n,γ i (wh)]+

)‖2
0,�i

C

+ 1

2
‖γ i− 1

2
([Pi

t,γ i (vh)]γ i si − [Pi
t,γ i (wh)]γ i si

)‖2
0,�i

C

−|1 − θ |
4β

‖γ i− 1
2
([Pi

n,γ i (vh)]+ − [Pi
n,γ i (wh)]+

)‖2
0,�i

C
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−|1 − θ |β
4

‖γ i
1
2 σ i

n(v
i
h − wi

h)‖20,�i
C

−|1 − θ |
4β

‖γ i− 1
2
(
Pi
t,γ i (vh)]γ i si − [Pi

t,γ (wh)]γ i si
)‖2

0,�i
C

−|1 − θ |β
4

‖γ i
1
2 σ i

t (v
i
h − wi

h)‖20,�i
C

)

= a(vh − wh, vh − wh) +
2∑

i=1

(
− 1

2

(
θ + |1 − θ |β

2

)(
‖γ i

1
2 σ i

n(v
i
h − wi

h)‖20,�i
C

+‖γ i
1
2 σ i

t (v
i
h − wi

h)‖20,�i
C

)

+1

2

(
1 − |1 − θ |

2β

)(
‖γ i− 1

2
([Pi

n,γ i (vh)]+ − [Pi
n,γ i (wh)]+

)‖2
0,�i

C

+‖γ i− 1
2
([Pi

t,γ i (vh)]γ i si − [Pi
t,γ i (wh)]γ i si

)‖2
0,�i

C

))
.

Choosing β = |1 − θ |
2

and γ0 sufficiently small we get:

(Bvh − Bwh, vh − wh)1 ≥ a(vh − wh, vh − wh)

− (1 + θ)2

8

2∑

i=1

(
‖γ i

1
2 σ i

n(v
i
h − wi

h)‖20,�i
C

+ ‖γ i
1
2 σ i

t (v
i
h − wi

h)‖20,�i
C

)
.

(Bvh − Bwh, vh − wh)1 ≥ C‖v − w‖21
Note that, when θ = −1 we do not need the assumption of smallness of γ0.

Let us show, now, thatB is hemicontinuous. SinceVh is a vector space, it is sufficient
to show that:

ϕ : [0, 1] → R

t �→ (B(vh − twh), wh)1

is a continuous real function for all vh, wh ∈ Vh . Let t, s ∈ [0, 1], we compute:

|ϕ(t) − ϕ(s)|
=

∣
∣
∣(B(vh − twh) − B(vh − swh), wh)1

∣
∣
∣

=
∣
∣
∣Aθ ((s − t)wh, wh) +

2∑

i=1

(1

2

∫

�i
C

1

γ i
Pi
n,θγ i (wh)

([Pi
nγ i (vh − twh)]+

− [Pi
nγ i (vh − swh)]+

)
d�

+ 1

2

∫

�i
C

1

γ i
Pi
t,θγ i (wh)

([Pi
tγ i (vh − twh)]γ i si

−[Pi
tγ i (vh − swh)]γ i si

)
d�

)∣
∣
∣
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≤ |s − t |Aθ (wh, wh)

+
2∑

i=1

(1

2

∫

�i
C

1

γ i
|Pi

n,θγ i (wh)|
∣
∣
∣[Pi

nγ i (vh − twh)]+ − [Pi
nγ i (vh − swh)]+

∣
∣
∣d�

+1

2

∫

�i
C

1

γ i
‖Pi

t,θγ i (wh)‖
∥
∥
∥[Pi

tγ i (vh − twh)]γ i si − [Pi
tγ i (vh − swh)]γ i si

∥
∥
∥d�

)
.

We use the bounds |[a]+ − [b]+| ≤ |a − b| for all a, b ∈ R and
∥
∥[a]γ i gi −[b]γ i gi

∥
∥ ≤

‖a − b‖ for all a, b ∈ R
d−1 to deduce that:

∫

�i
C

1

γ i
|Pi

n,θγ i (wh)|
∣
∣
∣[Pi

nγ i (vh − twh)]+ − [Pi
nγ i (vh − swh)]+

∣
∣
∣d�

+
∫

�i
C

1

γ i
‖Pi

t,θγ i (wh)‖
∥
∥
∥[Pi

tγ i (vh − twh)]γ i si − [Pi
tγ i (vh − swh)]γ i si

∥
∥
∥d�

≤
∫

�i
C

1

γ i
|Pi

n,θγ i (wh)|
∣
∣
∣Pi

nγ i (vh − twh) − Pi
nγ i (vh − swh)

∣
∣
∣d�

+
∫

�i
C

1

γ i
‖Pi

t,θγ i (wh)‖
∥
∥
∥Pi

tγ i (vh − twh) − Pi
tγ i (vh − swh)

∥
∥
∥d�

≤ |s − t |
( ∫

�i
C

1

γ i
|Pi

n,θγ i (wh)||Pi
nγ i (wh)|d�

+
∫

�i
C

1

γ i
‖Pi

t,θγ i (wh)‖‖Pi
tγ i (wh)‖d�

)
.

It results that:

|ϕ(t) − ϕ(s)| ≤ |s − t |
(
Aθ (wh, wh) +

2∑

i=1

( ∫

�i
C

1

2γ i
|Pi

n,θγ i (wh)||Pi
nγ i (wh)|d�

+
∫

�i
C

1

2γ i
‖Pi

t,θγ i (wh)‖‖Pi
tγ i (wh)‖d�

))
.

Which means that ϕ is Lipschitz, so that B is hemicontinuous. We finally apply the
Corollary 15 (p.126) of [4] to conclude that B is a one to one operator. ��

2.3 A priori error analysis

Our Nitsche-based method (15) converges in a optimal way as the mesh parameter
h vanishes. This is proved in the Theorem 2.6, where we provide an estimate of the
displacement error in H1-norm and of the contact error in L2(�i

C )-norm.We establish,
first, the following abstract error estimate.

Theorem 2.5 Suppose that u is a solution to (1–5) and belongs to (H
3
2+ν(�1))d ×

(H
3
2+ν(�2))d with ν > 0.
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1. We suppose γ0 sufficiently small. The solution uh to the discrete problem (15)
satisfies the following error estimate:

2∑

i=1

(
‖ui − ui

h‖21,�i + 1

2
‖γ i

1
2
(
σ i
n(u

i ) + 1

γ i
[Pi

n,γ (uh)]+
)‖2

0,�i
C

+ 1

2
‖γ i

1
2
(
σ i
t (u

i ) + 1

γ i
[Pi

t,γ i (uh)]γ i si
)‖2

0,�i
C

)

≤ C inf
vh∈Vh

( 2∑

i=1

‖ui − vih‖21,�i + 1

2
‖γ i− 1

2 (ui − vih)‖20,�i
C

+ 1

2
‖γ i

1
2 σ (ui − vih)n

i‖2
0,�i

C

)
,

(19)

where C > 0 is a constant independent of h, u and γ0.
2. If θ = −1, for all γ0 > 0, the solution uh to the problem (15) satisfies the estimate

(19) with C > 0 a constant independent of h and u, but eventually dependent of
γ0.

Proof Let vh ∈ Vh , using the coercivity and the continuity of the form a(·, ·) as well
as Young’s inequality, we obtain:

α

2∑

i=1

‖ui − ui
h‖21,�i ≤ a(u − uh, u − uh)

= a(u − uh, u − vh) + a(u − uh, vh − uh)

≤ C
2∑

i=1

‖ui − ui
h‖1,�i ‖ui − vih‖1,�i + a(u − uh, vh − uh)

≤ α

2

2∑

i=1

‖ui − ui
h‖21,�i

+C2

2α

2∑

i=1

‖ui − vih‖21,�i

+ a(u, vh − uh) − a(uh, vh − uh).

Therefore, we get:

α

2

2∑

i=1

‖ui − ui
h‖21,�i ≤ C2

2α

2∑

i=1

‖ui − vih‖21,�i + a(u, vh − uh) − a(uh, vh − uh).
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Since u solves (1-5) and uh solves (15), using the Lemma 2.1 yields:

α

2

2∑

i=1

‖ui − ui
h‖21,�i ≤ C2

2α

2∑

i=1

‖ui − vih‖21,�i

+
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)
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)
. (20)

Let β1 > 0. The first integral term in (20) is bounded, using Cauchy–Schwarz and
Young’s inequalities, as follows:
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For the second integral term in (20), we can write:

∫
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Using the bound (10) and applying two times Cauchy–Schwarz and Young’s inequal-
ities, we obtain for β2 > 0 and β3 > 0:

∫

�i
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In a similar way, we can upper bound the third integral term of (20). Noting that:
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and using estimates (21) and (22) in (20), we obtain:

α
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We use now the estimate (18) to get:

‖γ i
1
2 σ i (vih−ui

h)n
i‖2

0,�i
C

≤ Cγ
1
2
0 ‖vih−ui

h‖21,�i ≤ Cγ
1
2
0 (‖vih−ui‖21,�i +‖ui

h−ui‖21,�i )

(25)
For a fixed θ ∈ R we choose β2 and β3 large enough that:

−1 + 1

2β2
+ |1 − θ |

2β3
< −1

2

Choosing γ0 small enough in (25) and putting the estimate in (24), we establish the
first statement of the theorem.

We consider now the case θ = −1 in which (24) becomes:
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.

Let be given η > 0. Set β1 = 1
2η , β2 = 1 + 1

η
, β3 = 1 + η. And so we arrive at:
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Set η = α

16C2γ0
, whereC is the constant in (25) to conclude the proof of the theorem.
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Theorem 2.6 Suppose that u = (u1, u2) is a solution to problem (1–5) and belongs

to (H
3
2+ν(�1))d × (H

3
2+ν(�2))d with 0 < ν ≤ 1

2
if k = 1 and 0 < ν ≤ 1 if k = 2 (

k is the degree of the finite element method). If θ = −1 or γ0 is sufficiently small, the
solution uh to the problem (15) satisfies the following estimate:

2∑

i=1

(
‖ui − ui

h‖21,�i + 1

2
‖γ i

1
2
(
σ i
n(u

i ) + 1

γ i
[Pi

n,γ i (uh)]+
)‖2

0,�i
C

+1

2
‖γ i

1
2
(
σ i
t (u

i ) + 1

γ i
[Pi

t,γ i (uh)]γ i si
)‖2

0,�i
C

)
≤ Ch1+2ν

2∑

i=1

‖ui‖23
2+ν,�i

(26)

where C is a constant independent of u and h.

Proof To establish (26) we need to bound the right terms in estimate (19). We choose
vih = I i

hui where I i
h stands for the Lagrange interpolation operator mapping onto Vi

h .
The estimation of the Lagrange interpolation error in the H1-norm on a domain is
classical (see, e.g. [3,9] and [10])

‖ui − I i
hui‖1,�i ≤ Ch

1
2+ν‖ui‖ 3

2+ν,�i (27)

for − 1
2 < ν ≤ k − 1

2 .
Let E in �i

C be an edge of triangle K ∈ T i
h , we have:

‖γ i− 1
2 (ui − I i

hui )‖0,E ≤ Ch
1
2+ν‖ui‖1+ν,E

A summation on all the edges E , with the trace theorem yields:

‖γ i− 1
2 (ui − I i

hui )‖0,�i
C

≤ Ch
1
2+ν‖ui‖1+ν,�i

C
≤ Ch

1
2+ν‖ui‖ 3

2+ν,�i (28)

From Appendix A of [8] (see also [12]), we get the following estimate:

‖γ i
1
2 σ (ui − I i

hui )ni‖0,�i
C

≤ Ch
1
2+ν‖ui‖ 3

2+ν,�i (29)

By inserting (27), (28) and (29) onto (19) we get (26). ��

3 Numerical experiments

In this section, we test the Nitsche unbiased method (15) for two/three-dimensional
contact between two elastic bodies �1 and �2. The first body is a disk/sphere and
the second is a rectangle/rectangular cuboid. This situation is not strictly a Hertz type
contact problem because �2 is bounded.

The tests are performedwith P1 and P2 Lagrange finite elements. The finite element
libraryGetfem++ is used. The discrete contact problem is solved by using a generalized
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Newton method. Further details on generalized Newton’s method applied to contact
problems can be found for instance in [25] and the references therein. The accuracy of
the method is discussed for the different cases with respect to the finite element used,
the mesh size, and the value of the parameters θ and γ0. We perform experiments with
a frictionless contact to compare the results of the formulation with other ones using
Nitsche’s method (given mainly in [8,11]). Moreover, we present the convergence
curves for frictional contact in Figs. 11 and 12.

The numerical tests in two dimensions (resp. three dimensions) are performed on a
domain � =]− 0.5, 0.5[2 (resp. � =]− 0.5, 0.5[3) containing the two bodies �1 and
�2. The first body is a disk of radius 0.25 and center (0,0) (resp. a sphere of radius 0.25
and center (0,0,0)), and the second is a rectangle ] − 0.5, 0.5[×] − 0.5,−0.25[ (resp.
�2 =]−0.5, 0.5[2×]−0.5, 0.25[). The contact surface�1

C is the lower semicircle and
�2
C is the top surface of �2 (i.e. �1

C = {x ∈ ∂�1; x2 ≤ 0} and �2
C = {x ∈ ∂�2; x2 =

−0.25} (resp. �1
C = {x ∈ ∂�1; x3 ≤ 0} and �2

C = {x ∈ ∂�2; x3 = −0.25})). A
Dirichlet condition is prescribed at the bottom of the rectangle (resp. cuboid). Since
noDirichlet condition is applied on�1 the problem is only semi-coercive. To overcome
the non-definiteness coming from the free rigid motions, the horizontal displacement
is prescribed to be zero on the two points of coordinates (0,0) and (0,0.1) (resp.
(0,0,0) and (0,0,0.1)) which blocks the horizontal translation and the rigid rotation.
The projector �1 is defined from �1

C to �2
C in the vertical direction. All remaining

parts of the boundaries are considered traction free. For simplicity, we consider a
dimensionless configuration with Lamé coefficients λ = 1 and μ = 1 and a volume
density of vertical force fv = −0.25.

The expression of the exact solution being unknown, the convergence is studied
with respect to a reference solution computed with a P2 element on a very fine mesh
for θ = −1 (see Figs. 2 and 3).

To show the quality of the approximation method we plot in Fig. 4 the contact stress
profile on the second boundary and we compare it to Hertz’s solution. The diagrams
in Fig. 4 correspond to the pressure profiles for the reference fine mesh with quadratic
elements. The vertical green arrows correspond to values of the contact pressure field
at quadrature points. The blue solid line represents the analytically calculated Hertz’s
pressure profile. The left diagram correspond to the bidimensional case and the right
one is the obtained pressure at quadrature points of the elements crossing the plan
y = 0 in the three dimensional case.

3.1 Convergence in the two dimensional frictionless case

We perform a numerical convergence study on the three methods θ = 1, θ = 0 and
θ = −1 for a fixed parameter γ0 = 1

100 (chosen small in order to obtain convergence
for the three cases) and friction coefficients s1 = s2 = 0. In each case we plot the
relative error in percentage in the H1-norm of the displacement in the two bodies and
the error of the L2 norm of the Nitsche’s contact condition on �1

C and �2
C . The error

of the Nitsche’s contact condition is equal to:
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Fig. 2 2D Numerical reference solution with contour plot of Von Mises stress. h = 1/400, γ0 = 1/100
and P2 elements

Fig. 3 Cross-section of 3D numerical reference solution with contour plot of Von Mises stress. h =
1/50, γ0 = 1/100 and P2 elements

‖γ i
1
2
(
σ i
n(u

hi
re f ) + 1

γ i [Pi
n,γ (uh)]+

)‖0,�i
C

‖γ 1
2 σ i

n(u
hi
re f )‖0,�i

C

, where uhi
re f is the reference solution on�i .

On Figs. 5, 6 and 7 the curves of relative error in percentage for Lagrange P1 finite
elements are plotted. The convergence rate in a H1-norm is about 1 for the three values
of θ which is in this case optimal, according to Theorem 2.6. On Figs. 8, 9 and 10 the
same experiments are reported for Lagrange P2 finite elements. The convergence rate
for the three cases is about 1.5 which corresponds to optimality as well.
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Fig. 4 Contact pressure profile for the 2D and 3D cases (Hertz solution in blue solid line and computed
solution in vertical green lines). a 2D, b 3D (for y = 0) (color figure online)
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Fig. 5 Convergence curves in 2D for the method θ = 1, with γ0 = 1/100 and P1 finite elements for the
relative H1-norm of the error (a) and the relative L2(�C )-norm of the error (b)
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Fig. 6 Convergence curves in 2D for the method θ = 0, with γ0 = 1/100 and P1 finite elements for the
relative H1-norm of the error (a) and the relative L2(�C )-norm of the error (b)
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Fig. 7 Convergence curves in 2D for the method θ = −1, with γ0 = 1/100 and P1 finite elements for the
relative H1-norm of the error (a) and the relative L2(�C )-norm of the error (b)
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Fig. 8 Convergence curves in 2D for the method θ = 1, with γ0 = 1/100 and P2 finite elements for the
relative H1-norm of the error (a) and the relative L2(�C )-norm of the error (b)
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Fig. 9 Convergence curves in 2D for the method θ = 0, with γ0 = 1/100 and P2 finite elements for the
relative H1-norm of the error (a) and the relative L2(�C )-norm of the error (b)
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Fig. 10 Convergence curves in 2D for the method θ = −1, with γ0 = 1/100 and P2 finite elements for
the relative H1-norm of the error (a) and the relative L2(�C )-norm of the error (b)
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Fig. 11 Convergence curves in 2D frictional case for the method θ = −1, with γ0 = 1/100 with P1 finite
elements for the relative H1-norm of the error (a) for the L2(�C )-norm of the error (b)

3.2 Convergence in 2D frictional contact case

We establish, as well, the convergence curves for a frictional contact (Tresca friction)
with a friction coefficient s1 = 0.1 with the method θ = −1, for a Nitsche’s parameter
γ0 = 1

100 . The frictional contact curves are presented for P1 and P2 Lagrange elements
in Figs. 11 and 12. Similar curves are obtained with other values of θ . Wemention here
that this numerical validation is the first one for Nitsche’s method with frictional con-
tact since in [5] no numerical study was performed. This validation confirms optimal
convergence with a convergence rate close to the frictionless case.

3.3 Convergence in the three dimensional case

The three-dimensional tests are similar to the two-dimensional ones. The error curves
with θ = −1 and P1 Lagrange elements are presented in Fig. 13. Very similar con-
clusions can be drawn compared with the two-dimensional case.
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Fig. 12 Convergence curves in 2D frictional case for the method θ = −1, with γ0 = 1/100 with P2 finite
elements for the relative H1-norm of the error (a) for the L2(�C )-norm of the error (b)

Fig. 13 Convergence curves in 3D for the method θ = −1, with γ0 = 1/100 for the relative H1-norm of
the error with P1 finite elements (a) and P2 finite elements (b)

As expected the optimal convergence is obtained in H1 and L2(�C )-norm for all
methods in good accordance with Theorem 2.6.

3.4 Comparison with other methods

To better compare the proposed method with other ones we present in the following
the convergence curves of our test case with the convergence curves of the biased
Nitsche’s formulation and the augmented Lagrangian method [8,16], see Figs. 14 and
15.

The curves are exactly the same for P1 elements and very similar for P2 ones and
the convergence rate of the unbiased Nitsche’s method is equal to other formulations’
rate. We note that, for different values of θ the convergence is obtained for Nitsche’s
method (biased and unbiased) and the augmented Lagrangian method generally with
a close number of iterations of the Newton algorithm.
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Fig. 14 Comparison of convergence curves in 2D frictionless case for themethod θ = −1,with γ0 = 1/100
and P1 finite elements for the relative H1-normof the error on�1 (a) andon�2 (b) for different formulations
of contact
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Fig. 15 Comparison of convergence curves in 2D frictionless case for themethod θ = −1,with γ0 = 1/100
and P2 finite elements for the relative H1-normof the error on�1 (a) andon�2 (b) for different formulations
of contact

3.5 Influence of the Nitsche parameter

The influence of γ0 on the H1-norm of the error for P2 elements is plotted in Fig.
16 in the frictionless case and on Fig. 17 with a friction coefficient s1 = 0.1. It is
remarkable that the error curves for the smallest value of γ0 are rather the same for
the three values of θ .
The variant θ = 1 is the most influenced by the value of γ0. It converges only for γ0
very small (≤ 10−1). The method for θ = 0 gives a much large window of choice
of γ0 though it has to remain small to keep a good solution. In agreement with the
theoretical result of Theorem 2.6, the influence of γ0 on the method θ = −1 is limited.

So the choice of γ0 depends on the considered version. We can always choose
θ = −1 to insure the stability and convergence independently on γ0. In this case
we loose symmetry and we need to introduce σ (vh) into the weak formulation. The
version θ = 1 allows to keep symmetry, however it requires that γ0 be rather small. The
version θ = 0 can be seen as good compromise since it is the simplest and it remains
stable and converges optimally even for moderate values of γ0. A strategy to guarantee
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Fig. 16 Influence of γ0 on the H1-norm error for different values of θ in the 2D frictionless case and with
P2 finite elements on �1 (a) and on �2 (b)

Fig. 17 Influence of γ0 on the H1-norm error for different values of θ in the 2D frictional case and with
P2 finite elements on �1 (a) and on �2 (b)

the coercivity of the problem and then an optimal convergence is of course to consider
a sufficiently small γ0. However, the price to pay is an ill-conditioned discrete problem.
The study presented in [25] shows that Newton’s method has important difficulties to
converge when γ0 is very small because the nonlinear discrete system (15) becomes
very stiff in this case.

Conclusion

A theoretical and numerical study ofNitsche’smethodwas carried out for the Signorini
problem in [6,8]. These analysis prove the performance of this type of formulation for
contact between an elastic body and a rigid support. In this work we adapt Nitsche’s
method to the two elastic bodies contact problem andwe proposed an unbiasedmethod
that could be directly applicable to multi-body contact and self-contact. The method
was analysed and we proved its consistency, well-posedness and optimal convergence.
For the numerical study, the accuracy of the method was discussed for the Hertz prob-
lemwith different types of finite elements, for variations of the mesh size and the value
of the parameters θ and γ0. Frictionless and frictional situations have been considered,
as well as two- and three-dimensional cases. The theoretical results are, generally, con-
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firmed by numerical tests, especially the optimal convergence and the influence of the
parameter γ0. Since the analysis in the small strain case are promising, forthcoming
studies will be for the non-linear materials in the large deformation framework. In this
case, our goal is to provide a construction of the method similar to the linear case and
the corresponding numerical study.

As well, other solvers than semi-smooth Newton could be considered for improved
computational efficiency. For instance highly efficient multigrid methods have been
designed for mortar-type discretizations of contact problems in [29]. The adaptation
of multigrid techniques to Nitsche’s discretization of contact is still an open issue and
could be considered as a perspective (see [12] for multigrid with Nitsche for interface
problems).
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matiques Michelin” for the financial and technical support. We thank, as well, Région Franche-Comté for
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Appendix

A Strong–weak formulation equivalence

Let u = (u1, u2) be a sufficiently regular solution to the problem (13). Using the
definitions of Aθ , Pi

γ i (u) and Pi
θγ i (v), we obtain:

a(u, v) − 1

2

∫

�1
C

θγ 1σ 1
n (u1)σ 1

n (v1)d� − 1

2

∫

�2
C

θγ 2σ 2
n (u2)σ 2

n (v2)d�

−1

2

∫

�1
C

θγ 1σ 1
t (u

1) · σ 1
t (v

1)d�

−1

2

∫

�2
C

θγ 2σ 2
t (u

2) · σ 2
t (v

2)d� + 1

2

∫

�1
C

1

γ 1 [�u�1n − g1n − γ 1σ 1
n (u1)]+

(v1n + v2n ◦ �1 − θγ 1σ 1
n (v1))d�

+1

2

∫

�2
C

1

γ 2 [�u�2n − g2n − γ 2σ 2
n (u2)]+(v2n + v1n ◦ �2 − θγ 2σ 2

n (v2))d�

+1

2

∫

�1
C

1

γ 1 [�u�1t − γ 1σ 1
t (u

1)]γ 1s1 · (v1t − v2t ◦ �1 − θγ 1σ 1
t (v

1))d�

+1

2

∫

�2
C

1

γ 2 [�u�2t − γ 2σ 2
t (u

2)]γ 2s2 · (
v2t − v1t ◦ �2 − θγ 2σ 2

t (v
2)

)
d� = L(v).
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Using Green’s formula we can write

a(u, v) = −
∫

�1
divσ 1(u1) · v1d� −

∫

�2
divσ 2(u2) · v2d�

+
∫

∂�1
σ 1(u1)n1 · v1d� +

∫

∂�2
σ 2(u2)n2 · v2d�.

If we take v = (v1, 0) with v1 = 0 on ∂�1, we obtain:

∫

�1
divσ 1(u1) · v1d� =

∫

�1
f1 · v1d�∀v1,

which yields (1a) for i = 1. In the same way we establish (1a) for i = 2.
To establish (2), (3), (4) and (5), we consider a displacement field v that vanishes on
the boundary except on the contact surfaces where v = (v1, v2). Then (13) and (1a)
gives

∫

�1
C

σ 1
n (u1)v1nd� +

∫

�1
C

σ 1
t (u

1) · v1t d�

+
∫

�2
C

σ 2
n (u2)v2nd� +

∫

�2
C

σ 2
t (u

2) · v2t d�

−1

2

∫

�1
C

θγ 1σ 1
n (u1)σ 1

n (v1)d� − 1

2

∫

�2
C

θγ 2σ 2
n (u2)σ 2

n (v2)d�

−1

2

∫

�1
C

θγ 1σ 1
t (u

1) · σ 1
t (v

1)d�

−1

2

∫

�2
C

θγ 2σ 2
t (u

2) · σ 2
t (v

2)d� + 1

2

∫

�1
C

1

γ 1 [�u�1n − g1n

−γ 1σ 1
n (u1)]+(v1n + v2n ◦ �1 − θγ 1σ 1

n (v1))d�

+1

2

∫

�2
C

1

γ 2 [�u�2n − g2n

−γ 2σ 2
n (u2)]+

(v2n + v1n ◦ �2 − θγ 2σ 2
n (v2))d�

+1

2

∫

�1
C

1

γ 1 [�u�1t − γ 1σ 1
t (u

1)]γ 1s1 · (v1t − v2t ◦ �1 − θγ 1σ 1
t (v

1))d�

+1

2

∫

�2
C

1

γ 2 [�u�2t − γ 2σ 2
t (u

2)]γ 2s2 · (
v2t − v1t ◦ �2 − θγ 2σ 2

t (v
2)

)
d� = 0.

(30)

We need to discuss two cases: θ �= 0 and θ = 0.

123



626 F. Chouly et al.

Case 1 θ �= 0: In (30), let us consider v = (v1, v2) such that:

{
v1 = 0 and σ 1

t (v
1) = 0, σ 1

n (v1) �= 0 on �1
C and

v2 = 0 and σ 2(v2)n2 = 0 on �2
C ,

(31)

so,

θ

2

∫

�1
C

(
[�u�1n − g1n − γ 1σ 1

n (u1)]+ + γ 1σ 1
n (u1)

)
σ 1
n (v1)d� = 0 ∀v satisfying (31) .

Then:

σ 1
n (u1) = − 1

γ 1 [�u�1n − g1n − γ 1σ 1
n (u1)]+,

which implies (2). Arguing in the same way we obtain (3) and the friction conditions
(4).

Remark A.1 We can show that v satisfying (31) can be built by considering s(x) the
curvilinear coordinate system on the boundary �C and d(x) the signed distance to
�C . Then, for g a given vector field of Rd , u(x) = B−1(s(x))g(s(x))d(x) satisfies
u(x) = 0 and σ (u)n = g on �C , with Bil = Ai jklnkn j , A being the elasticity tensor.

To obtain the second Newton law, we use Nitsche’s writing of (2) and (3) in (30)
with: vt = 0 and σ t = 0 and v2n = −v1n ◦ �2:

∫

�1
C

σ 1
n (u1)v1nd� −

∫

�2
C

σ 2
n (u2)v1n ◦ �2d� = 0 ∀v1n .

Then:
∫

�1
C

[σ 1
n (u1) − J 1σ 2

n (u2 ◦ �1)]v1nd� = 0 ∀v1n .

For v1n = v2n = 0 and v2t = v1t ◦ �2 and using (4) in (30), we have similary

∫

�1
C

[σ 1
t (u

1) + J 1σ 2
t (u

2 ◦ �1)] · v1t d� = 0 ∀v1t ,

and we have (5).

Case 2 θ = 0: Let us take v1t = v2t = 0 and v2n = −v1n ◦ �2, v1n = −v2n ◦ �1, then
(30) reads:

∫

�1
C

[σ 1
n (u1) − J 1σ 2

n (u2 ◦ �1)]v1nd� = 0 ∀v1n .
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Let us take, now v1n = v2n = 0 and v2t = v1t ◦ �2, v1t = v2t ◦ �1, then (30) reads:

∫

�1
C

[σ 1
t (u

1) + J 1σ 2
t (u

2 ◦ �1)] · v1t d� = 0 ∀v1t ,

and we have (5).
Let v2 = 0 on �2

C . Taking v1t = 0, we get:

∫

�1
C

[
σ 1
n (u1) + 1

2γ 1 [�u�1n − g1n − γ 1σ 1
n (u1)]+

+J 1
1

2γ 2 [�u�2n ◦ �1 − g2n ◦ �1 − γ 2σ 2
n (u2 ◦ �1)]+

]
v1nd� = 0∀v1n .

Then:

σ 1
n (u1) = −1

2

[ 1

γ 1 [�u�1n − g1n − γ 1σ 1
n (u1)]+ + J 1

γ 2 [�u�1n − g1n − γ 2σ 2
n (u2 ◦ �1)]+

]
.

Since J 1 > 0, σ 1
n (u1) ≤ 0 and so we obtain (2b). The second Newton law (5) yields:

σ 1
n (u1) = −1

2

[ 1

γ 1 [(�u�1n − g1n) − σ 1
n (u1)]+ + [ J

1

γ 2 (�u�1n − g1n) − σ 1
n (u1)]+

]
. (32)

We discuss both cases:
If σ 1

n (u1) = 0:

1

2
(
1

γ 1 + J 1

γ 2 )[�u�1n − g1n]+ = 0 then �u�1n ≤ g1n .

If σ 1
n (u1) < 0:

1

γ 1 (�u�1n − g1n) − σ 1
n (u1) > 0 or

J 1

γ 2 ((�u�1n − g1n) − σ 1
n (u1)) > 0 or both.

1. If we suppose first that:
1

γ 1 (�u�1n − g1n) − σ 1
n (u1) > 0 and

J 1

γ 2 (�u�1n − g1n) −
σ 1
n (u1) > 0, the Eq. (32) holds:

σ 1
n (u1) = −1

2
[( 1

γ 1 + J 1

γ 2 )(�u�1n − g1n) − 2σ 1
n (u1)] then �u�1n = g1n .
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2. If now there only holds
1

γ 1 (�u�1n−g1n)−σ 1
n (u1) > 0 and

J 1

γ 2 (�u�1n−g1n)−σ 1
n (u1) =

0, we can write (32):

σ 1
n (u1) = − 1

2γ 1 (�u�1n − g1n) + 1

2
σ 1
n (u1).

So σ 1
n (u1) = − 1

γ
(�u�1n − g1n).

Then, since σn(u1) < 0: �u�1n > g1n . But in this case,

J 1

γ 2 (�u�1n − g1n) − σ 1
n (u1) > 0,

and this contradicts the assumption
J 1

γ 2 (�u�1n − g1n) − σ 1
n (u1) = 0. So, this case is

absurd. In a similarwayweget contradiction for the case
J 1

γ 2 (�u�1n−g1n)−σ 1
n (u1) >

0.

To conclude, we establish that: if σ 1
n (u1) = 0, �u�1n ≤ g1n and if σ 1

n (u1) < 0, �u�1n =
g1n ; and this is equivalent to (2a) and (2c).
We suppose, now, that v1n = 0 and v2 = 0. We get:

∫

�1
C

[
σ 1
t (u

1) + 1

2γ 1 [�u�1t − γ 1σ 1
t (u

1)]γ 1s1 − J 1

2γ 2 [�u�2t ◦ �1

−γ 2σ 2
t (u

2 ◦ �1)]γ 2s2

]
· v1t d� = 0∀v1t .

Then, using the property: ∀γ > 0, [x]γ s = γ
[ x

γ

]

s , it yields:

σ 1
t (u

1) + 1

2

[�u�1t
γ 1 − σ 1

t (u
1)

]

s1
− J 1

2

[�u�2t ◦ �1

γ 2 − σ 2
t (u

2 ◦ �1)
]

s2
= 0.

We use the Newton law (5) and the condition (6) to obtain:

σ 1
t (u

1) + 1

2

[�u�1t
γ 1 − σ 1

t (u
1)

]

s1
+ 1

2

[
J 1

�u�1t
γ 2 − σ 1

t (u
1)

]

s1
= 0. (33)

1. If ‖�u�1t
γ 1 − σ 1

t (u
1)‖ < s1 and ‖J 1 �u�1t

γ 2 − σ 1
t (u

1)‖ < s1:

�u�1t
2

(
1

γ 1 + J 1

γ 2 ) = 0; so �u�1t = 0. In this case we obtain: σ 1
t (u

1) =
[
σ 1
t (u

1)
]

s1
,

and so: ‖σ 1
t (u

1)‖ < s1.
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2. If ‖�u�1t
γ 1 − σ 1

t (u
1)‖ ≥ s1 and ‖J 1 �u�1t

γ 2 − σ 1
t (u

1)‖ ≥ s1:

σ 1
t (u

1) + s1

2

�u�1t
γ 1 − σ 1

t (u
1)

‖ �u�1t
γ 1 − σ 1

t (u1)‖
+ s1

2

J 1 �u�1t
γ 2 − σ 1

t (u
1)

‖J 1 �u�1t
γ 2 − σ 1

t (u1)‖
= 0. (34)

The Eq. (34) shows that σ 1
t (u

1) and �u�1t are collinear.

So:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�u�1t
γ 1 − σ 1

t (u
1)

‖ �u�1t
γ 1 − σ 1

t (u1)‖
=

J 1 �u�1t
γ 2 − σ 1

t (u
1)

‖J 1 �u�1t
γ 2 − σ 1

t (u1)‖
,

or

�u�1t
γ 1 − σ 1

t (u
1)

‖ �u�1t
γ 1 − σ 1

t (u1)‖
= −

J 1 �u�1t
γ 2 − σ 1

t (u
1)

‖J 1 �u�1t
γ 2 − σ 1

t (u1)‖
(∗),

and we obtain, from (34):⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ 1
t (u

1) = −s1
�u�1t
γ 1

−σ 1
t (u

1)

‖ �u�1t
γ 1

−σ 1
t (u1)‖

= − 1
γ 1 [�u�1t − γ 1σ 1

t (u
1)]γ 1s1 ,

and this is equivalent to (4).

or

σ 1
t (u

1) = 0 which is impossible in (∗).

3. If now ‖�u�1t
γ 1 − σ 1

t (u
1)‖ < s1 and ‖J 1 �u�1t

γ 2 − σ 1
t (u

1)‖ ≥ s1:

σ 1
t (u

1) + 1

2

(�u�1t
γ 1 − σ 1

t (u
1)

) + s1

2

J 1 �u�1t
γ 2 − σ 1

t (u
1)

‖J 1 �u�1t
γ 2 − σ 1

t (u1)‖
= 0.

Projecting on σ 1
t (u

1)

‖σ 1
t (u1)‖ and setting a = ‖σ 1

t (u
1)‖; b = σ 1

t (u
1) · �u�1t

γ 1‖σ 1
t (u1)‖ ,

we get:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

|b − a| < s1 and |bJ 1 γ 1

γ 2 − a| ≥ s1

and

(b + a) + εs1 = 0; where ε = sign(bJ 1 γ 1

γ 2 − a) = ±1.

Let ε = +1; so, a = −b − s1 and we obtain:⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

b − a = 2b + s1 and |b − a| < s1

and

bJ 1 γ 1

γ 2 − a = (J 1 γ 1

γ 2 + 1)b + s1 and bJ 1 γ 1

γ 2 − a ≥ s1.
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So:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−s1 < b < 0

and

(J 1 γ 1

γ 2 + 1)b ≥ 0

which is absurd.

Let ε = −1; so a = −b + s1 and we obtain:⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

b − a = 2b − s1 and |b − a| < s1

and

bJ 1 γ 1

γ 2 − a = (J 1 γ 1

γ 2 + 1)b − s1 and bJ 1 γ 1

γ 2 − a ≤ −s1,

so:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 < b < s1

and

(J 1 γ 1

γ 2 + 1)b ≤ 0

, which is absurd.

4. If ‖ �u�1t
γ 1 − σ 1

t (u
1)‖ ≥ s1 and ‖J 1 �u�1t

γ 2 − σ 1
t (u

1)‖ < s1:

We argue in the same way putting a = ‖σ 1
t (u

1)‖; b = J 1
σ 1
t (u

1) · �u�1t
γ 2‖σ 1

t (u1)‖ .

Thus,we establish the friction condition (4) for i = 1. In the sameway,when supposing
v1 = 0, we get (2a)–(2b)–(2c) and (4) for i = 2.
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