
Numer. Math. (2018) 139:633–682
https://doi.org/10.1007/s00211-018-0948-4

Numerische
Mathematik

Stable polefinding and rational least-squares fitting via
eigenvalues

Shinji Ito1,2 · Yuji Nakatsukasa3

Received: 6 September 2016 / Revised: 14 January 2018 / Published online: 21 February 2018
© The Author(s) 2018. This article is an open access publication

Abstract A common way of finding the poles of a meromorphic function f in a
domain, where an explicit expression of f is unknown but f can be evaluated at
any given z, is to interpolate f by a rational function p

q such that r(γi) = f (γi) at

prescribed sample points {γi }Li=1, and then find the roots of q. This is a two-step process
and the type of the rational interpolant needs to be specified by the user. Many other
algorithms for polefinding and rational interpolation (or least-squares fitting) have
been proposed, but their numerical stability has remained largely unexplored. In this
work we describe an algorithm with the following three features: (1) it automatically
finds an appropriate type for a rational approximant, thereby allowing the user to
input just the function f , (2) it finds the poles via a generalized eigenvalue problem of
matrices constructed directly from the sampled values f (γi) in a one-step fashion, and
(3) it computes rational approximants p̂, q̂ in a numerically stable manner, in that (p̂+
�p)/(q̂+�q) = f with small�p,�q at the sample points, making it the first rational
interpolation (or approximation) algorithm with guaranteed numerical stability. Our
algorithm executes an implicit change of polynomial basis by the QR factorization,
and allows for oversampling combinedwith least-squares fitting. Through experiments
we illustrate the resulting accuracy and stability, which can significantly outperform
existing algorithms.

Yuji Nakatsukasa is supported by JSPS as an Overseas Research Fellow.

B Yuji Nakatsukasa
nakatsukasa@maths.ox.ac.uk

Shinji Ito
s-ito@me.jp.nec.com

1 Graduate School of Information Science and Technology, University of Tokyo, Tokyo 113-8656,
Japan

2 Present Address: NEC Corporation, Kanagawa 211-8666, Japan

3 Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00211-018-0948-4&domain=pdf

634 S. Ito, Y. Nakatsukasa

Mathematics Subject Classification 65D05 Numerical analysis, Interpolation ·
65D15 Numerical analysis, Algorithms for functional approximation

1 Introduction

Let f be ameromorphic function in a domainΩ , whose explicit expression is unknown
but can be evaluated at any set of sample points {γi }Li=1. This paper investigates numer-
ical algorithms for finding the poles of f , along with the associated problem of finding
a rational approximant r = p/q ≈ f in Ω . Finding the poles of a meromorphic or
rational function f is required in many situations, including resolvent-based eigen-
solvers [4,36,40] and the analysis of transfer functions [30,38].

One natural way of finding the poles is to first approximate f in Ω by a rational
function r = p/q, then find the poles of r , i.e., the roots of q. A common approach
to obtain r ∈ Rm,n (a rational function of type m, n, i.e., r = p/q for polynomials
p, q of degree at most m, n respectively) is to interpolate f at m + n + 1 points in
Ω (such as the unit disk), a code for which is available in the Chebfun command
ratinterp [21,35]. However, this is a two-step process; when the poles are of
primary interest, explicitly forming r is unnecessary and can be a cause for numerical
errors. Moreover, the type of the rational function is usually required as input.

In this paper we develop a polefinding algorithm ratfun that essentially involves
just solving one generalized eigenvalue problem, thereby bypassing the need to form
r . ratfun starts by finding an appropriate type for the rational approximant from the
function values: roughly, it finds the pair (m, n) with a smallest possible n (without
taking m excessively large) such that r = p/q ≈ f holds with r ∈ Rm,n ; in Sect. 3
we make this more precise. This allows the user to input just the function f to obtain
the poles. The rational approximant can also be obtained if necessary.

Since polefinding for r = p/q boils down to rootfinding for q, it is inevitable that
the algorithm involves an iterative process (as opposed to processes requiring finitely
many operations in exact arithmetic such as a linear system), and hence it is perhaps
unsurprising that we arrive at an eigenvalue problem. Our algorithm has runtime that
scales cubically with the type of the rational approximant, which is comparable to
some of the state-of-the-art algorithms.

A key property of ratfun is its numerical stability. To our knowledge, no
previous polefinding algorithm has been proven to be numerically stable. Numer-
ical stability here means backward stability in the sense that p̂+�p

q̂+�q = f holds

exactly at the sample points, where p̂
q̂ is the computed rational approximant and

‖�p‖L/‖ p̂‖L , ‖�q‖L/‖q̂‖L are O(u) where u is the unit roundoff (throughout we
write x = O(y) to mean x ≤ My for a moderate M > 0), and ‖ · ‖L is the vector
norm of function values at the sample points {γi }Li=1, see Notation below. Classical
algorithms such as Cauchy’s [13], Jacobi’s [26], Thiele’s continued fractions [44,
Sect. 2.2.2] and Neville-type algorithms [44, Sect. 2.2.3] are known to be of little
practical use due to instability [47, Ch. 26]. The more recent Chebfun’s ratinterp
is based on the SVD, and combined with a degree reduction technique, ratinterp
is reliable in many situations. However, as we shall see, the algorithm is still unstable

123

Stable polefinding and rational least-squares fitting via… 635

when a sample point lies near a pole. Once the numerical degree is determined, theway
our algorithm ratfun finds the poles is mathematically equivalent to ratinterp
(and some other algorithms), but overcomes this instability by avoiding the use of the
FFT and employing a diagonal scaling to attenuate the effect of an excessively large
sample value | f (γi)|.

Another practical method is a naive SVD-based interpolation algorithm (described
in Sect. 2.1), and despite its simplicity and straightforward derivation, it works sur-
prisingly well; indeed we prove stability in the above sense for obtaining r when an
appropriate diagonal scaling is employed. Nonetheless, it is still based on a two-step
approach, and the detour of forming the coefficients of p, q before computing the
poles incurs unnecessary inaccuracy. As is well known, in rootfinding problems the
choice of the polynomial basis is critical for accurate computation [47, App. 6], as
Wilkinson famously illustrated in [52].ratfun, by contrast, bypasses the coefficients
and implicitly performs an appropriate change of polynomial basis.

Also worth mentioning are polefinding algorithms based on a Hankel general-
ized eigenvalue constructed via evaluating discretized contour integrals of the form
s j := 1

2π i

∮
γ
z j 1

f (z)dz [29,40]. This algorithm still has a two-step flavor (computing
integrals and solving eigenproblem), and it was recently shown [3] to be mathemat-
ically equivalent to rational interpolation followed by polefinding, as in Chebfun’s
ratinterp. We shall see that this algorithm is also unstable.

We shall see that ratfun is also equivalent mathematically to these two algo-
rithms, in that our eigenproblem can be reduced to the Hankel eigenproblem by a
left equivalence transformation. However, numerically they are very different, and we
explain why ratfun is stable while others are not.

The contributions of this paper can be summarized as follows.

1. Polefinding (and rootfinding if necessary) by a one-step eigenvalue problem.
2. Automatic determination of a type (m, n) for the rational approximant. This allows

the user to obtain p, q from the input f alone. In previous algorithms the type
(m, n) has been a required input.

3. Stability analysis.We introduce a naturalmeasure of numerical stability for rational
interpolation, and establish that our algorithm ratfun is numerically stable.

Table 1 compares algorithms for polefinding and indicates the stability and complex-
ity of each method, along with the dominant computational operation. Here, RKFIT
refers to the recent algorithm by Berljafa and Güttel [8], Hankel is the algorithm
based on contour integration, resulting in a generalized eigenvalue problem involving
Hankel matrices (summarized in Sect. 4.8), and naive is the naive method presented
in Sect. 2.1. By “avoid roots(q)” we mean the algorithm can compute the poles
without forming the polynomial q and then finding its roots.

This paper is organized as follows. In Sect. 2.1we review some previous algorithms,
which also leads naturally to our proposed algorithm. In Sect. 3 we discuss the process
of finding an appropriate type of the rational approximation. Section 4 is the main part
where our eigenvalue-based algorithm is derived, and we prove its numerical stability
in Sect. 5. We present numerical experiments in Sect. 6.

Notation Pn is the set of polynomials of degree at most n, and Rm,n is the set of
rational functions of type at most (m, n). Unless mentioned otherwise, f is assumed to

123

636 S. Ito, Y. Nakatsukasa

Table 1 Comparison between polefinding algorithms

ratinterp RKFIT Hankel Naive ratfun

p, q stability × × − √ √
Avoid roots(q) × × √ × √

Complexity O(Ln2) O(Ln2) O(n3) O(L(m + n)2) O(L(m + n)2)

Main computation SVD etc Krylov GEP SVD Rectangular GEP

GEP generalized eigenvalue problem

bemeromorphic in a regionΩ in the complex plane, and (m, n) denotes the type of the
rational approximant r = p/q ≈ f that our algorithmfinds: r ∈ Rm,n , that is, p ∈ Pm

and q ∈ Pn . When necessary, when f is rational, we denote by (M, N) its exact type,
that is, f = p

q where p, q are coprime polynomials of degree M, N , respectively.

We define cp = [cp,0, cp,1, cp,2, . . . , cp,m]�, cq = [cq,0, cq,1, cq,2, . . . , cq,n]� to
be the vectors of their coefficients such that p(z) = ∑m

i=0 cp,iφi (z) and q(z) =
∑n

i=0 cq,iφi (z), in which {φi (z)}max(m,n)
i=0 is a polynomial basis, which we take to be

the monomials φi (z) = zi unless otherwise mentioned. When other bases are taken
we state the choice explicitly. L is the number of sample points, denoted by {γi }Li=1,
which we assume to take distinct points in Ω ∈ C. F = diag(f (γ1), . . . , f (γL))

is the diagonal matrix of function values at the sample points. We also let Γ =
diag(γ1, . . . , γL). ‖ · ‖L denotes a norm of a function, defined via the function values

at the sample points ‖g‖L =
√∑L

i=1 |g(γi)|2. Computed approximants wear a hat,

so for example ξ̂i is a computed pole. V is the Vandermonde matrix generated from
the L sample points (γi)

L
i=1 with (i, j)-element (V)i j = γ

j−1
i :

V =

⎡

⎢
⎢
⎢
⎣

1 γ1 · · · γ L−1
1

1 γ2 · · · γ L−1
2

...
...

. . .
...

1 γL · · · γ L−1
L

⎤

⎥
⎥
⎥
⎦

. (1.1)

The Vandermonde matrix and its inverse play the important role of mapping between
coefficient space and value space.When a non-monomial basis {φi (z)} is used, (V)i j =
φ j−1(γi). We denote by Vi the matrix of first i columns of V . u denotes the unit
roundoff, u ≈ 10−16 in IEEE double precision arithmetic. We write x = 	(y) to
mean x = O(y) and y = O(x).

2 Existing methods for rational interpolation and least-squares fitting

Rational interpolation is a classical problem innumerical analysis andmany algorithms
have been proposed, such as those by Jacobi [26], Neville and one based on continued
fractions [44, Sect. 2.2]. Here we review those that can be considered among the most

123

Stable polefinding and rational least-squares fitting via… 637

practical and stable. For more information on algorithms that are not explained, we
refer to [12, Ch. 5], [44, Sect. 2.2] and [37, p. 59].

We first clarify what is meant by rational interpolation and least-squares fitting.

Rational interpolation With sample points γi for i = 1, . . . , L with L = m + n + 1,
the goal of rational interpolation is to find polynomials p ∈ Pm, q ∈ Pn satisfying
the set of L equations

f (γi) = p(γi)

q(γi)
, i = 1, . . . , L . (2.1)

However, as is well known [12, Ch. 5], [47, Ch. 26], (2.1) does not always have
a solution p ∈ Pm, q ∈ Pn . To avoid difficulties associated with nonexistence, a
numerical algorithm often starts with the linearized equation

f (γi)q(γi) = p(γi), i = 1, . . . , L , (2.2)

which always has solution(s), which all correspond to the same rational function p
q .

Most methods discussed in this paper work with (2.2).

Rational least-squares fitting When we sample f at more than m + n + 1 sample
points {γi }Li=1 with L > m + n + 1, (2.2) has more equations than unknowns, and a
natural approach is to find p, q such that

f (γi)q(γi) ≈ p(γi), i = 1, . . . , L . (2.3)

This leads to a least-squares problem.Least-squares fitting is used throughout scientific
computing, and it often leads to more robust algorithms than interpolation. For exam-
ple, when function values contain random errors, polynomial least-squares fitting has
the benefit of reducing the variance in the outcome as compared with interpolation [14,
Sect. 4.5.5].

One main message of this paper is that the precise formulation of the least-squares
problem (2.3) is crucial for numerical stability. For example, the minimizers of
∥
∥
∥
∥

[f (γ1)q(γ1) − p(γ1)
...

f (γL)q(γL) − p(γL)

]∥
∥
∥
∥ and

∥
∥
∥
∥

[f (γ1) − p(γ1)/q(γ1)
...

f (γL) − p(γL)/q(γL)

]∥
∥
∥
∥ are clearly different. As

we describe below, our method works with

∥
∥
∥
∥D

[f (γ1)q(γ1) − p(γ1)
...

f (γL)q(γL) − p(γL)

]∥
∥
∥
∥ for an L × L

diagonal matrix D = diag(di) chosen so that

di = medianL | f (γ)|
max(| f (γi)|,medianL | f (γ)|) . (2.4)

Here medianL | f (γ)| is the median value of {| f (γi)|}Li=1. This choice is crucial for
establishing numerical stability.

123

638 S. Ito, Y. Nakatsukasa

2.1 Naive method

Perhaps the most straightforward, “naive” method for rational interpolation is to find
the coefficients of p(z) = ∑m

i=0 cp,i z
i and q(z) = ∑n

i=0 cq,i zi by writing out (2.2)
as a matrix equation

FVn+1cq = Vm+1cp, (2.5)

where F = diag(f (γ1), . . . , f (γL)) for L = m + n + 1 and Vm+1, Vn+1 are the first
(m + 1) and (n + 1) columns of V , the Vandermonde matrix of size L as in (1.1). To
obtain (2.5), note that the (partial)Vandermondematricesmap the coefficients cp, cq to
value space (i.e., Vn+1cq = [q(γ1), . . . , q(γL)]�, Vm+1cp = [p(γ1), . . . , p(γL)]�),
in which “multiplication by f (γi)” corresponds simply to “multiplication by F”.
Equation (2.5) is thus a matrix formulation of rational interpolation (2.2) in value
space.

Solving (2.5) for cp, cq amounts to finding a null vector of the L × (L + 1) matrix

(

C

[
cq

−cp

]

:=
)
[
FVn+1 Vm+1

]
[

cq
−cp

]

= 0. (2.6)

Sometimes the matrix C has null space of dimension larger than 1; in this case all the
null vectors of C give the same rational function p/q [12, Sect. V.3.A].

To find the poles of f once cq is obtained, we find the roots of the polynomial
q = ∑n

i=0 cq,i x i , for example by the companion linearization [22]. When a non-
monomial polynomial basis {φi (z)}Li=0 is chosen, other linearizations such as comrade
and confederate are available [5,22].

The above process (2.6) can be easily extended to the oversampled case, in which
L > m + n + 1 and the matrix C above is of size L × (m + n + 2). In this case the
matrix in (2.6) has at least as many rows as columns, and does not necessarily have a
null vector. Then the task is to perform a least-squares fitting, which we do by finding
the right singular vector corresponding to the smallest singular value of the matrix C ,
which for later use we state as an optimization problem:

minimize
cp,cq

∥
∥
∥
∥
[
FVn+1 Vm+1

]
[
cq

−cp

]∥
∥
∥
∥
2

subject to ‖cp‖22 + ‖cq‖22 = 1.

(2.7)

Here the normalization ‖cp‖22 + ‖cq‖22 = 1 is imposed to rule out the trivial solution
cp = 0, cq = 0.

We shall consider a scaled formulation of (2.7), which left-multiplies a suitably
chosen diagonal matrix D by the matrix in the objective function as

minimize
cp,cq

∥
∥
∥
∥D
[
FVn+1 Vm+1

]
[
cq

−cp

]∥
∥
∥
∥
2

subject to ‖cp‖22 + ‖cq‖22 = 1.

(2.8)

123

Stable polefinding and rational least-squares fitting via… 639

Note that (2.7) and (2.8) have the same solution when the optimal objective value is
zero, but otherwise they are different, and in the oversampled case L > m+n+1 this
is usually the case. Numerically, they are vastly different even when L = m + n + 1.

The dominant cost is in the SVD (more precisely computing the right singular
vector corresponding to the smallest singular value) of

[
FVn+1 Vm+1

]
or the scaled

matrix D
[
FVn+1 Vm+1

]
, requiring O(L(m + n)2) cost.

The naivemethod (2.5) ismentioned for example in [10], but seems to be rarely used
in practice, and we are unaware of previous work that explicitly investigate the least-
squares formulation (2.8) or its scaled variant (2.7). Nonetheless, in Sect. 5 we shall
show that the scaled formulation (2.8) is numerically stable for rational interpolation
(i.e., computing p, q) for a suitable choice of D. In this paper we refer to (2.8) as the
scaled naive method (or just naive method).

Another method that relies on finding a null vector of a matrix is described in [41],
whose matrix elements are defined via the divided differences. Analyzing stability for
this method appears to be complicated and is an open problem.

2.2 Chebfun’s ratinterpratinterpratinterp

Chebfun [18] is a MATLAB package for working with functions based primarily on
polynomial interpolation, but it also provides basic routines for rational functions. In
particular, the ratinterp command runs a rational interpolation or least-squares
fitting algorithm for the linearized equation (2.3), as outlined below.

We start again with the matrix equation in the naive method (2.6), which we rewrite
as FVn+1cq = Vm+1cp. Expanding the matrices Vm+1, Vn+1 to form a full Vander-
monde matrix V , the equation becomes

FV

[
cq
0

]

= V

[
cp
0

]

. (2.9)

Nowwhen the sample points are at roots of unityγ j = exp(2π i jL) for j = 1, . . . , L , and

using the monomial basis {zi }L−1
i=0 , we can use the FFT to efficiently multiply by V or

V−1 = 1
L V

∗ (V ∗ = V̄ T denotes that Hermitian conjugate), and left-multiplying (2.9)
by V−1 = 1

L V
∗ gives

1

L
V ∗FV

[
cq

0L−(n+1)

]

=
[

cp
0L−(m+1)

]

. (2.10)

The multiplication by V−1 brings the equation back to coefficient space, and so
unlike the naive method (2.5) given in value space, (2.10) is a formulation of ratio-
nal interpolation in coefficient space. Note that the matrix 1

L V
∗FV can be formed

in O(L2 log L) operations using the FFT. An analogous result holds for Chebyshev
points γ j = cos(π(j−1)

L−1) using the Chebyshev polynomial basis [6], [46, Ch. 8].
By (2.10), cq is a null vector of the bottom-left (L−m−1)×(n+1) part of V ∗FV ,

which has one more column than rows in the interpolation case L = m + n + 1. Then

123

640 S. Ito, Y. Nakatsukasa

the task is to find cq such that

Ṽ ∗FVn+1cq = 0, (2.11)

where Ṽ denotes the last L −m − 1 columns of V (as before, Vn+1 is the first N + 1
columns).

Again, in the oversampled case a least-squares fitting can be done by finding the
smallest singular value and its right singular vector of the (L − m − 1) × (n + 1)
matrix Ṽ ∗FVN+1.

As in the naive method, ratinterp finds the poles by finding the roots of q
via the eigenvalues of the companion (when sampled at roots of unity) or colleague
(Chebyshev points) matrices.

2.3 RKFIT

The recent work by Berljafa and Güttel [7,8] introduces RKFIT, a toolbox for working
with matrices and rational functions based on rational Krylov decompositions. Given
matrices F, A ∈ C

L×L and a vector b ∈ C
L , RKFIT is designed to find a rational

matrix approximant r(A) to F such that r(A)b ≈ Fb by solving

minimize
r∈Rm,m

∥
∥
∥D̃ (F − r(A)) b

∥
∥
∥
2
, (2.12)

where D̃ ∈ C
L×L is an elementwise weight matrix, which the user can specify. The

objective function in (2.12) is called the absolute misfit in [8]. In the special case
where F = diag(f (γi)), A = diag(γi) and b = [1, . . . , 1]�, RKFIT seeks to solve
the optimization problem

minimize
p,q∈Pm

∥
∥
∥
∥
∥
∥
∥
∥

D̃

⎡

⎢
⎢
⎣

f (γ1) − p(γ1)
q(γ1)

...

f (γL) − p(γL)
q(γL)

⎤

⎥
⎥
⎦

∥
∥
∥
∥
∥
∥
∥
∥
2

. (2.13)

RKFIT solves (2.13) by an iterative process: startingwith an initial guess for poles (e.g.
∞) that determines a temporary q = q0, form a rational Krylov decomposition and
solve (2.13) over p ∈ Pm via computing an SVD. Using the obtained solution, RKFIT
then updates the pole estimates and q0, then repeats the process until convergence is
achieved. See [8] for details,which showsRKFITcandealwithmoregeneral problems,
for example with multiple vectors b and matrices F .

Note that (2.13) has the flavor of dealing with the original rational approxima-
tion problem (2.1) rather than the linearized version (2.2). We observe, nonetheless,
that (2.13) becomes very close to (2.8) (same except for the normalization) if we take
D̃ = Ddiag(q(γi)). As we discuss in Sect. 5, the choice of D (and hence D̃) is crucial
for numerical stability. Indeed, RKFIT is not stable with the default parameters when

123

Stable polefinding and rational least-squares fitting via… 641

used for scalar rational approximation, but the user can input an appropriate D (which
depends on f) to achieve stability.

3 Automatic type determination via oversampling

A significant feature of Chebfun’s polynomial approximation process for a continuous
function f is that the numerical degree can be obtained automatically by oversampling.
This allows the user to obtain the polynomial approximant by taking just the function
f as input, without prior information on the (numerical) degree of f .
Specifically, when the user inputs chebfun(f) for a function handle f , an adap-

tive process is executed to find the appropriate degree: Chebfun first samples f at
2s + 1 Chebyshev points {cos jπ

2s }2sj=0 for a modest integer s, examines the leading
Chebyshev coefficients of the interpolant, and if they have not decayed sufficiently,
then increments s by 1 to sample at twice as many points, and repeat until the leading
Chebyshev coefficients decay to O(u). For details see [2]. We emphasize the impor-
tant role that oversampling plays for determining the degree; the coefficient decay
is observed only after f is sampled more than necessary to obtain the polynomial
interpolant.

For rational interpolation or approximation, we argue that it is possible to deter-
mine an appropriate type for a rational approximant just as in the polynomial case by
oversampling, although the process is not just to look at coefficients but rather based
on the SVD of a certain matrix. Related studies exist: Antoulas and Anderson [1] find
a minimum-degree interpolant in the barycentric representation by examining a so-
called Löwner matrix, given a set of sample points. Similar techniques have been used
in Chebfun’s ratinterp [21] and padeapprox [20], and in RKFIT [8], which are
designed for removing spurious root-pole pairs, rather than to find a type of a rational
approximant.

3.1 Type determination by oversampling and examining singular values

Suppose that we sample a rational function f = p/q at sufficiently many points
{γ j }Lj=1, so that L/2 is larger than both deg(p), deg(q). We initially take m =
n =
(L − 1)/2� as tentative upper bounds for the degrees. Then, as in the naive
method (2.6), we compute the null space of C (which is square or tall, corresponding
to the oversampled case). In “Appendix B” we examine the rank of the matrix C as
the integers m, n, L vary, which shows that assuming L is taken large enough so that
L ≥ max{M + n,m + N } + 1, (recalling that (M, N) is the exact type of f)

1. If m < M or n < N , then
dim null(C) = 0. (3.1)

2. If m ≥ M and n ≥ N , then

dim null(C) = min(m − M, n − N) + 1 ≥ 1. (3.2)

123

642 S. Ito, Y. Nakatsukasa

(See [8, Thm. 3.1] for a similar result in the RKFIT setting). Note how this result gives
us information about the type of a rational f : By the first result, if dim null(C) = 0, we
need to takem, n larger, alongwith L . On the other hand, if dim null(C) > 1, then (3.2)
shows how to reduce n so that there is no redundancy: n := n − dim null(C) + 1
should give us the correct n(= N) provided that m was set large enough. Even if
m − M < n − N , if
 > 1 singular values of C are negligible then we reduce n by

−1 and repeat the process, which will eventually give us the correct n = N provided
that m > M . Once n = N is determined, we can find m as the smallest integer such
that the L × (N + 1 + m + 1) matrix C has a null vector. m can be obtained also
by looking at the leading coefficients of the computed cp, but we have found this
SVD-based approach to be more reliable. We emphasize the important role played by
oversampling, which is necessary for (3.1) and (3.2) to hold.

The above process would find the exact type in exact arithmetic if f is rational.
In practice, f may not be rational, and we compute dim null(C) numerically by the
number of singular values that are smaller than a tolerance tol = O(u) to find a
“numerical type” of f , which is the type (m, n) of a rational function r ∈ Rm,n such
that r ≈ f in Ω . It is worth noting that “numerical type” is an ambiguous notion:
for example, (1) r1 ∈ R20,5 and r2 ∈ R5,20 may be equally good as approximants to
f in the domain Ω , and (2) if f is analytic in Ω , polynomials would suffice if the
degree is taken large enough, but rational functions give much better approximants
if singularities lie near Ω , see [3, Sect. 6]. (1) Suggests that the “smallest” m, n
is not uniquely defined without further restriction. A natural approach is to find an
approximant with the smallest possible n (since we do not want unnecessary poles),
but (2) suggests that this may lead to an approximant p/q of excessively high deg(p).

Given f , we attempt to find a rational approximant with as few poles as possible,
within a controlled amount of computational effort. Specifically, our Algorithm 3.1
below finds a rational approximant p/q of type (m, n) with the following properties:

1. There exists p/q ∈ Rm,n such that ‖ f q − p‖L ≤ tol and

∥
∥
∥
∥
[cp
cq

]
∥
∥
∥
∥
2

= 1, and

2. No rational function r = p
q ∈ Rm̃,ñ with ñ < n and m̃ ≤
(L − 1)/2� (∈

[max(m, n), 2max(m, n)]) satisfies ‖ f q − p‖L ≤ tol and

∥
∥
∥
∥
[cp
cq

]
∥
∥
∥
∥
2

= 1.

In other words, no rational function with lower denominator degree is a good approx-
imant unless the numerator degree is more than doubled. In what follows, we set
tol = 10−14 unless otherwise mentioned.

Numerically in practice, we shall show in Sect. 4.2 that it is important that a pre-
processing step is carried out before examining the singular values of C . Specifically,
we first scale f as f ← f/medianL | f (γ)| so that the median of the scaled f is 1 in
absolute value, and left-multiply a diagonal matrix so that each row of C has roughly
the same norm:

DC = diag

(
1

max(| f (γi)|, 1)
)

C = [DFVn+1 DVm+1]. (3.3)

123

Stable polefinding and rational least-squares fitting via… 643

This choice of D is the same as the one we use in the scaled naive method (2.8)
for stability, to be justified in Sect. 5. Diagonal scaling has the effect of reducing the
conditionnumber (when ill-conditioning is causedby the entries havingwidely varying
magnitudes rather than the rows being linearly dependent), and a simple scaling that
scales the rows to have identical norms is known to be nearly optimal [16,50]; the
scaling in (3.3) achieves this approximately.

For further stability, we orthogonalize the two block columns by the “thin” QR
factorizations.1 DFVn+1 = Qn+1Rn+1, DVm+1 = Q̃m+1 R̃m+1, where Qn+1 ∈
C

L×(n+1), Q̃m+1 ∈ C
L×(m+1). Then we define

C̃ = [Qn+1 Q̃m+1] (3.4)

and determine the rational function type by the singular values of C̃ . Note that (3.2)
continues to hold with C replaced with C̃ in exact arithmetic.

Summarizing, Algorithm 3.1 is the pseudocode for our type determination algo-
rithm.

Algorithm 3.1 [m,n,sigma] = typefind(f,tol): find a type for a rational
approximant of f
1: Set L = 8. Scale f ← f/medianL | f (γ)|.
2: Sample f at the Lth roots of unity. Set m =
L/2� − 1, n = L − m − 3 and form the matrix C̃ as

in (3.4).
3: Compute dim null(C̃) by the number of singular values smaller than tol, and

(a) if dim null(C̃) = 0, then take L := 2L and return to step 2 (if L > 212 then stop and return a
warning).

(b) if dim null(C̃) ≥ 1, then n := n − dim null(C̃) + 1 and repeat until dim null(C̃) = 1.

4: Reduce m to the smallest integer such that C̃ has a null vector.
5: Set sigma = σm+n+2(C̃).

In Algorithm 3.1 we increase the number of sample points by a factor 2 until C̃
has a nontrivial null vector. Doubling the points allows us to reuse the previously
sampled values f (γi) when γi are roots of unity; for the same reason, when sampling
at Chebyshev points on [−1, 1] (this variant replaces the Lth roots of unity in step 2
by L Chebyshev points), we sample at 2s + 1 points as in Chebfun.

We note that (3.1) and (3.2) assume that sufficiently many sample points are taken
so that L ≥ max{M + n,m + N } + 1. If this does not hold, it is possible that
dim null(C) > 0 although m < M or n < N , causing Algorithm 3.1 to wrongly
conclude f is of a lower type. Fortunately, even if L < max{M + n,m + N } + 1,
it is unlikely that dim null(C) > 0, as this requires that f q ≈ p at L points, where
p, q together have < L degrees of freedom. Similarly, a tall rectangular matrix is

1 We note that these QR factorizations can be computed exploiting the Vandermonde-like structure of
DFVn+1, DVm+1. Namely, when the basis is degree-graded, i.e., degφi (z) = i , then the column space of
DVm+1 is equal to the Krylov subspace K(Γ, b) = [b, Γ b, Γ 2b, . . . , Γ n−1b] where b is the first column
of DVm+1. An orthonormal space for the Krylov subspaceK(Γ, b) can thus be computed using the Arnoldi
process [19, Sect. 10.5], as done for example in [24, App. A]. The same holds for DFVn+1.

123

644 S. Ito, Y. Nakatsukasa

unlikely to have nontrivial null vectors: a random rectangular matrix is full rank with
probability one, and well conditioned with high probability if the aspect ratio is safely
above 1 [39]. The default value n = L −m − 3 was chosen to ensure C̃ is always tall
rectangular.

The description of Step 3(b) is not necessarily the most efficient: we can instead
takem ← m−
 for some
(> dim null(C̃)−1), if this results in dim null(C) > 0. In
step 4, we can use bisection to determine the smallest integer m. The worst-case cost
is thus computing O(log2 m) SVDs.

When the evaluation of f incurs nonnegligible (relative) error, tol should be
adjusted accordingly. The outputsigma indicates the error bound; a successful degree
detection implies sigma < tol.

Mathematically in exact arithmetic, the matrix C or C̃ having null space of dimen-
sion greater than 1 indicates the presence of a spurious root-pole pair, and in fact the
coefficients of p, q obtained from any null vector of C are known to result in the same
rational function p/q. In finite precision arithmetic, however, this property gets lost
and a numerical null vector gives a function p/q that may be far from the function
f . Furthermore, the accuracy of a computed singular vector is known to be inversely
proportional to the gap between the corresponding singular value and the rest [43,
Ch. 5]. Besides making the solution unique, finding the smallest possible degree has
the additional benefit of widening the distance between the smallest and the second
smallest singular values.

3.2 Experiments with oversampling for degree determination

Here we illustrate typefind through some numerical experiments. For illustration
purposes, instead of doubling L = 23, 24, 25, . . . as in Algorithm 3.1, we formed
C̃ for each integer L = 2, 3, . . . with γ j = exp(2π i jL), and examined the resulting
output type without doubling L . For convenience, below we refer to this process as
typefind(f,tol,L), where the number of sample points L is an input.

Algorithm3.2[m,n,sigma] = typefind(f,tol,L):typefindwithfixed
sample points

1: Sample f at the Lth roots of unity {γi }Li=1, and scale f ← f/medianL | f (γ)|. Set m =
L/2� − 1,

n = max(L − m − 3, 0) and form the matrix C̃ as in (3.4).
2: Compute dim null(C̃) by the number of singular values smaller than tol, and

(a) if dim null(C̃) = 0, then output a warning that L is too small; exit with sigma = σm+n+2(C̃)

(m, n are unchanged).
(b) if dim null(C̃) ≥ 1, then determine n,m,sigma as in steps 3(b)-5 of typefind(f,tol).

When f is a rational functionWe first examine the simplest case where f is a rational
function

f (z) =
N∑

i=1

1

z − ξi
= NzN−1

zN − 0.9N
, (3.5)

123

Stable polefinding and rational least-squares fitting via… 645

Fig. 1 Types of the rational
approximants found by
typefind(f,tol,L) for
rational function (3.5), as the
number of sample points L is
varied (throughout,
tol = 10−14). The red circles
indicate that
typefind(f,tol,L) found
that the number of sample points
is insufficient. The vertical black
dashed line indicates the number
of sampled points L taken by the
automatic degree determination
process typefind(f,tol);
here L = 16

where N = 5 and ξi = 0.9 exp(2π ii/N) are equispaced on the circle of radius 0.9
centered at the origin. f is a rational function of exact type (M, N) = (4, 5). Figure 1
shows the types obtained by typefind(f,tol,L) as we increase the number of
sample points L .

Observe that with 13 sample points or more, the algorithm correctly finds
the type (4, 5) of the rational function f . With five sample points, however,
typefind(f,tol,L) erroneously concludes that the function is of lower type;
this is an artifact of the symmetry of the function (which disappears e.g. by changing
the location of one pole), and illustrates the importance of oversampling.Wewill come
back to this issue in Fig. 5.

Algorithm 3.1 samples at 24 = 16 points to determine the type of the rational
approximant. Although 16 is larger than the smallest number M + N + 1 = 10
of sample points to theoretically obtain the rational interpolant p/q if the degree
were known, we believe this is a small price to pay for an automated degree-finding
algorithm.2

When f is a meromorphic function The situation becomes more complicated when f
is not rational but merely meromorphic. For example consider

f (z) = exp(z)

z − ξ1
+

N∑

i=2

1

z − ξi
. (3.6)

We take an example again with N = 5. f can be regarded as being of numerical
type (M̂, 5)where M̂ ≈ 20, because the exponential function can be resolved to O(u)

accuracy by a degree ≈ 15 polynomial in the unit disk. Moreover, we expect that
by increasing the denominator degree one can reduce the numerator degree for the
same approximation quality, so we could also approximate f in the unit disk by a type
(20 − δM , 5 + δN) rational function where δM , δN are modest integers such as 1, 2.

2 When reducing the number of sample points is of primary importance (i.e., when sampling f is expensive),
we can proceed as follows: having sampled f at L points, take n ← n +
,m ← m −
 for integers
 with
|
| ≤ L

2 , re-form C̃ and examine the condition dim null(C̃) ≥ 1; if this is satisfied for some
, there exists
an acceptable rational approximant of type (n +
,m −
).

123

646 S. Ito, Y. Nakatsukasa

Fig. 2 Type found by
typefind(f,tol,L) for a
meromorphic function f (3.6)

Figure 2 shows the numerical degrees obtained bytypefind(f,tol,L), which
confirms this observation. Algorithm 3.1 (i.e.,typefind(f,tol)) outputs the type
(m, n) = (14, 9) by sampling at 25 = 32 points. Our polefinder ratfun (described
in Sect. 4) computes nine poles, five of which approximate the correct poles ξi to
within 10−14 and four of which have absolute value larger than 10. The same is true
of all the types found by typefind(f,tol,L) for L ≥ 25; this example suggests
they are all appropriate types, illustrating the nonunique nature of the numerical type.
When f is an analytic function with poles near Ω Finally, we consider the function

f (z) = exp(z)

z − 1.1
, (3.7)

which is analytic in the unit disk Ω , therefore a polynomial p exists such that ‖ f −
p‖Ω < ε for any ε > 0. However, as described in [3, Sect. 6], rational functions do
a much better job of approximating analytic functions with a singularity lying near
Ω , and (3.7) is such an example. Indeed, to achieve ‖ f − p‖Ω < ε for a polynomial
p, we need deg(p) ≥ 386, whereas with rationals, ‖ f − p/q‖Ω < ε is achieved
for a p/q ∈ R16,1. Figure 3 shows the types obtained by typefind(f,tol,L),
which outputs the type (16, 1) for L > 36. The output would become (deg(p), 0) for
deg(p) ≈ 400 if we take L ≥ 800, but typefind(f,tol) terminates doubling
the sample points once dim null(C̃) ≥ 1 with L = 32, giving type (13, 3). Again, the
two extra poles are far outside the unit disk.

See Fig. 7 for a function with exact poles far from the unit disk, along with other
experiments in Sect. 6.

3.3 Interpretations as optimization problems

We have emphasized the role of the diagonal scaling D in the discussion in Sect. 3.1.
Here we reassess its significance from the viewpoint of optimization problems. Let us
consider the meaning of the smallest singular value σm+n+2(C) ofC in (2.6), allowing
for the oversampled case. As discussed in (2.7), it has the characterization

123

Stable polefinding and rational least-squares fitting via… 647

Fig. 3 Types found by
typefind(f,tol,L) for the
function f in (3.7), analytic in
the unit disk

σm+n+2(C) = min

{∥
∥
∥
∥C

[
cq

−cp

]∥
∥
∥
∥
2

:
∥
∥
∥
∥

[
cq

−cp

]∥
∥
∥
∥
2

= 1

}

, (3.8)

and the solution
[cq
−cp

]
is obtained by the corresponding right singular vector. Since

we have C
[cq
−cp

] = [f (γ j)q(γ j) − p(γ j)]Lj=1 by the definition of C , its smallest

singular value σm+n+2 is equal to the optimal value of the following optimization
problem:

minimize
p,q

‖ f q − p‖L
subject to p ∈ Pm, q ∈ Pn, ‖cp‖22 + ‖cq‖22 = 1,

(3.9)

where ‖g‖L :=
√∑L

i=1 |g(γi)|2. Note that the constraint in (3.9) changes depending
on the choice of the polynomial basis, and the norm in the constraint ‖ ·‖2 differs from
that of the objective function ‖ · ‖L .

Recall that for stability, instead of C , we work with the scaled-orthogonalized
matrix C̃ in (3.4). We claim that the smallest singular value σm+n+2(C̃) of C̃ is equal
to the optimal value of the following optimization problem:

minimize
p,q

‖d f q − dp‖L
subject to p ∈ Pm, q ∈ Pn, ‖dp‖2L + ‖d f q‖2L = 1,

(3.10)

where d(z) is a function such that d(γi) is equal to the i th diagonal element of D.
To verify the claim, we express σm+n+2(C̃) as

σm+n+2(C̃) = min{‖C̃x‖2 : ‖x‖2 = 1} (3.11)

= min{‖Qm+1x2 − Qn+1x1‖2 : ‖x1‖22 + ‖x2‖22 = 1}
= min{‖Qm+1x2 − Qn+1x1‖2 : ‖Qn+1x1‖22 + ‖Qm+1x2‖22 = 1},

123

648 S. Ito, Y. Nakatsukasa

where the last equality comes from the orthonormality of the columns of Qn+1 and
Qm+1. From the definition of Qn+1 and Qm+1, we have

range(Qn+1) = {[d(γ j) f (γ j)q(γ j)]Lj=1 : q ∈ Pn},
range(Qm+1) = {[d(γ j)p(γ j)]Lj=1 : p ∈ Pm}.

Hence, σm+n+2(C̃) in (3.11) is equal to the optimal value of the problem given by
(3.10). We note that, if the optimal value σm+n+2(C̃) is sufficiently small, then the
optimal solutions p and q are scaled so that ‖dp‖2L ≈ ‖d f q‖2L ≈ 1/2, because
|‖dp‖L − ‖d f q‖L | ≤ ‖dp − d f q‖L = σm+n+2(C̃).

We can also show similarly (andmore easily) for the scaled (but not orthogonalized)
matrix DC in (3.3) that σmin(DC) is equal to the optimal value of

minimize
p,q

‖d f q − dp‖L
subject to p ∈ Pm, q ∈ Pn, ‖cp‖22 + ‖cq‖22 = 1.

(3.12)

The optimization problems (3.9), (3.10) and (3.12) differ in the following respects:

– The objective function in (3.10) and (3.12) is scaled so that‖[d(γ j), d(γ j) f (γ j)]‖2
= 	(1).

– The constraint in (3.10) does not depend on the choice of the polynomial basis.
– In (3.10), the objective function and constraint employ the same norm ‖ · ‖L .
The diagonal scaling in the objective function is crucial for numerical stability

as we show in Sect. 5. The independence of C̃ from the polynomial basis is due to
the QR factorization, and it “automatically” chooses polynomial bases {φp,i }L−1

i=0 and
{φq,i }L−1

i=0 for p and q respectively, for which discrete orthonormality is achieved:

for p, defining vi :=
[d(γ1)φp,i (γ1)

...

d(γL)φp,i (γL)

]

we have orthonormality v∗
i v j = δi, j (the

Kronecker delta, δi, j = 0 if i �= j and δi,i = 1), and similarly for q, the vectors

wi :=
[d(γ1) f (γ1)φq,i (γ1)

...

d(γL) f (γL)φq,i (γL)

]

are orthonormal w∗
i w j = δi, j . Note that the two bases

for p, q are different, and they depend on the function f and sample points {γi }Li=1.
Working with orthonormal matrices have numerical benefits, as we shall illustrate in
Sect. 5.3. Together with the fact that the objective function and constraint are defined
with respect to the same norm ‖ · ‖L , this “scaled and QR’d” approach results in a
natural and numerically stable interpolation. For these reasons, we argue that (3.10)
is a natural way to formulate our problem.

Note, however, that the scaled naive method (2.8) works with (3.12), not (3.10).
No QR factorizations is performed in (2.8), because if one uses it, the null vector of C̃
no longer gives the coefficients cp, cq as in (2.8). Although we could retrieve cp, cq
by applying the inverse transformation with respect to the R factors in the QR fac-
torizations, this leads to numerical instability when FVn+1, Vm+1 are ill-conditioned.

123

Stable polefinding and rational least-squares fitting via… 649

In the next section we shall overcome this difficulty by formulating an algorithm that
directly computes the poles, bypassing the coefficient vector cq . The resulting algo-
rithmratfun essentiallyworkswith (3.10), but is immune to the difficulty associated
with the change of polynomial basis.

4 Polefinding via a generalized eigenvalue problem

We now describe our eigenvalue-based algorithm for finding the poles of f . Here we
take m, n as given, assumed to be obtained by Algorithm 3.1 or given as inputs.

4.1 Formulating polefinding as an eigenproblem

We consider finding the poles of f (z) = p(z)
q(z) ∈ Rm,n , i.e., the roots of q(z). Denote

the desired poles by ξi for i = 1, . . . , n.
As beforewe start with the linearized interpolation equation (2.2). Herewe consider

interpolationwhere L = m+n+1;we treat the oversampled case later in Sect. 4.3. The
key idea is to make a pole ξk , the sought quantity, appear explicitly in the equation to
be solved. To this end we rewrite q(z) using q̃(z) := q(z)

z−ξk
, which is also a polynomial,

as
q(z) = zq̃(z) − ξk q̃(z). (4.1)

We can then express (2.2) as

γi f (γi)q̃(γi) − p(γi) = ξk f (γi)q̃(γi), i = 1, . . . ,m + n, (4.2)

which is the crucial guiding equation for our algorithm. The equations (4.2) can be
written as a matrix equation using the Vandermonde matrix as

Γ FVncq̃ − Vm+1cp = ξk FVncq̃ , (4.3)

where Γ = diag(γi), cq̃ is the vector of coefficients for the polynomial q̃ , and as
before, F = diag(f (γi)) and Vi is the first i columns of the Vandermonde matrix. Just
as in the naive method (2.5), we obtain (4.3) by mapping into value space using the
Vandermonde matrix, then noting that in value space, “ f (γi)-multiplication” is “F-
multiplication” and “γi -multiplication” is “Γ -multiplication”. Thus (4.3) formulates
rational interpolation again in value space, but now with ξk shown explicitly.

Of course, ξk is unknown in (4.3), and setting it as an unknown λ we arrive at the
generalized eigenvalue problem

[
A1 A2

]
x = λ

[
B1 O

]
x, (4.4)

where A1 = FΓ Vn , A2 = Vm+1 and B1 = FVn , and O is the zero matrix of size
L × (m + 1).

Since thematrix [B1 O] clearly has null space of dimensionm+1, the eigenproblem
(4.4) hasm+1 eigenvalues at infinity. By construction, we expect the finite eigenvalues

123

650 S. Ito, Y. Nakatsukasa

to contain information about the poles. The next result shows indeed that the finite
eigenvalues of (4.4) are the poles of f .

Proposition 1 If f (z) = p(z)
q(z) ∈ Rm,n has n poles counting multiplicities (i.e., n =

N), then the matrix pencil [A1, A2] − λ[B1, O] is regular, and its finite eigenvalues
coincide with the poles of f .

(Proof) Since f (z) ∈ Rm,n has n poles, f (z) has the expression

f (z) = p(z)

q(z)
= a

∏d
j=1(z − η j)

∏n
i=1(z − ξi)

for some d ≤ m, where a �= 0 and η j does not coincide with any element of
{ξ1, . . . , ξn} for j = 1, . . . , d, i.e., {η1, . . . , ηd} ∩ {ξ1, . . . , ξn} = ∅. It suffices to
show that [A1, A2]−λ[B1, O] is singular if and only if λ is one of the roots ξ1, . . . , ξn
of q. We can easily confirm the “if” part as follows. Let λ = ξk for a fixed integer k.
Defining the coefficient vectors cq̃ = [cq̃,0, . . . , cq̃,n−1]� and cp = [cp,0, . . . , cp,m]�
such that q(z)

z−ξk
=∑n−1

i=0 c̃q,iφi (z) and p(z) =∑m
i=0 cp,iφi (z), we have

(

([A1, A2] − ξk[B1, O])
[
cq̃

−cp

])

i

= fiγi
q(γi)

γi − ξk
− p(γi) − ξk fi

q(γi)

γi − ξk
= fi q(γi) − p(γi) = 0

for i = 1, . . . ,m + n + 1, so it follows that ([A1, A2] − ξk[B1, O]) has a nontrivial
kernel, and hence, ([A1, A2] − ξk[B1, O]) is singular for k = 1, . . . , n.

Next, for the “only if” part, suppose (4.4) holds for a nonzero x = [x1, x2]� ∈
C
m+n+1 and λ ∈ C, where we write x1 = [c0, . . . , cn−1] and x2 = [d0, . . . , dm].

Then, it suffices to show that λ is one of the roots ξ1, . . . , ξn of q. Define polynomials
rx1(z) and rx2(z) by rx1(z) = ∑n−1

i=0 ci zi and rx2(z) = ∑m
i=0 di z

i , respectively. We
shall show that λ = ξi for some i , and that (z − ξi)rx1(z) = Cq(z), rx2(z) = Cp(z)
for some nonzero scalar C . From (4.4), we have

zrx1(z) f (z) + rx2(z) = λrx1(z) f (z)

for z = γ1, . . . , γm+n+1. Multiplying q(z) to both sides, we obtain

(z − λ)rx1(z)p(z) + rx2(z)q(z) = 0 (4.5)

for z = γ1, . . . , γm+n+1. Since the left-hand side of (4.5) is a polynomial of degree
at most m + n and take on the value 0 at m + n + 1 distinct points, it must be the
zero polynomial, i.e., (4.5) holds for arbitrary z ∈ C. Hence, the polynomial (z −
λ)rx1(z)p(z) is equal to the polynomial−rx2(z)q(z). Note that these two polynomials
are not the zero polynomial since x �= 0. Let α1, . . . , αd1 be the roots of rx1 and
β1, . . . , βd2 the roots of rx2 . Since (z−λ)rx1(z)p(z) has the same roots as−rx2(z)q(z),

123

Stable polefinding and rational least-squares fitting via… 651

we have {λ} ∪ {α1, . . . , αd1} ∪ {η1, . . . , ηd} = {β1, . . . , βd2} ∪ {ξ1, . . . , ξn}. Since
{η1, . . . , ηd}∩{ξ1, . . . , ξn} = ∅, we have {ξ1, . . . , ξn} ⊆ {λ}∪{α1, . . . , αd1}. Since the
number d1 of roots of rx1 is at most n−1, we have {ξ1, . . . , ξn} = {λ}∪{α1, . . . , αd1},
so it follows that λ ∈ {ξ1, . . . , ξn}.

We have thus shown that for every λ and x �= 0 such that (4.4) holds, λ must be
a pole of f . It hence follows that for any λ �= ξi , the matrix [A1, A2] − λ[B1, 0] is
nonsingular, showing the matrix pencil is regular. �

As shown in the proof, the eigenvectors of (4.4) have a special structure: the eigen-
vector corresponding to ξi is

[
A1 A2

]
[
cq̃

−cp

]

= ξi
[
B1 O

]
[
cq̃

−cp

]

. (4.6)

In the appendix we give further analysis of the eigenproblem, revealing the Kronecker
canonical form. It shows in particular that the orders of the poles are equal to the
multiplicities of the eigenvalues.

4.2 Techniques for efficient and stable solution of eigenproblem

We now discuss how to solve (4.4) in practice. We employ techniques to remove
undesired eigenvalues at ∞, and to achieve numerical stability.

Projecting out eigenvalues at infinity The generalized eigenvalue problem (4.4) has n
eigenvalues ξi along with m + 1 eigenvalues at infinity. These eigenvalues at infinity
can be projected out easily. Let A⊥

2 ∈ C
L×(L−n) be the orthogonal complement of A2

such that A∗
2A

⊥
2 = 0. Then

(A⊥
2)∗A1x = λ(A⊥

2)∗B1x (4.7)

is an n × n eigenvalue problem whose eigenvalues are {ξi }ni=1 with corresponding
eigenvectors cq̃i . To see this, recall (4.6) and note that (4.4) is equivalent to

[
A2 A1

]
[−cp
cq̃

]

= λ
[
O B1

]
[−cp
cq̃

]

, (4.8)

and so taking the QR factorization A2 = [Q1 A⊥
2]R, by left-multiplying [Q1 A⊥

2]∗
we obtain [

R Q∗
1A1

O (A⊥
2)∗A1

] [−cp
cq̃

]

= λ

[
O Q∗

1B1

O (A⊥
2)∗B1

] [−cp
cq̃

]

(4.9)

from which we can deflate the m + 1 eigenvalues corresponding to the top-left corner
and solve for the lower-right part, to arrive at (4.7) with eigenvector cq̃ . Alterna-
tively, (4.8) shows that the “residual” A1x1 − λB1x1 ∈ Span(A2), which means it is
orthogonal to A⊥

2 ; (4.7) is its representation.

123

652 S. Ito, Y. Nakatsukasa

Diagonal scaling Generally, given an eigenvalue problem A − λB, a well known
technique of balancing the elements in the presence of widely varying elements is
diagonal scaling.

As with the scaled naive method (2.8), we left-multiply a diagonal matrix D and
work with the pencil D(A − λB) so that each row of D[A B] has about the same
norm. In Sect. 5 we show that this scaling makes our approach numerically stable.

OrthogonalizationAs alluded to at the end of Sect. 3.3, the final technique that we use
for improved stability, which is inapplicable in the naive method, is orthogonalization.
As in (3.4), we take the thin QR factorizations DA2 = QA2 RA2 , DB1 = QB1RB1 ,
where QA2 , QB1 have orthonormal columns and are of the same size as DA2, DB1.
The rationale is that numerical errors are reduced byworkingwith orthogonalmatrices.
These can be computed exploiting theVandermonde structure, as explained after (3.4).

Applying scaling and orthogonalization to (4.9), the eigenvalue problem we solve
becomes

Ãx = λB̃x, where Ã = (Q⊥
A2

)∗Γ QB1 , B̃ = (Q⊥
A2

)∗QB1x . (4.10)

This is a n × n eigenproblem; the n eigenvalues are precisely the n sought poles.
Recall that as a consequence of this orthogonalization, the eigenvector of (4.10)

goes through the change of basis with respect to R−1
B1

. This severely affects the naive
method (for which the singular vector is the sought quantity), but not our algorithm
(for which the eigenvalues are sought).
Use of FFT? In the practically important cases where the sample points are at roots
of unity or Chebyshev points, we can use the FFT to efficiently obtain the matrices
in (4.7), as discussed in Sect. 2.2.

However, we shall not use the FFT in this work, for two reasons. First, while the FFT
significantly speeds up the matrix-matrix multiplication, from O(L3) to O(L2 log L),
this is not essential to the overall algorithm as it inevitably invokes an eigensolver (or
an SVD), which requires O(L(m+n)2) operations. Indeed [35] designs the algorithm
to fascilitate the use of the FFT, but again the saving is attenuated by the O(Ln2) SVD
step.

The second, more fundamental, reason is stability. We shall see in Sect. 5 and
through numerical experiments that diagonal scaling is crucial for stability. Unfortu-
nately, using the FFT makes diagonal scaling inapplicable.
Pole exactly at sample point When a pole happens to exactly coincide with a sample
point, f (γi) = ∞ and the eigenvalue problem breaks down due to infinity elements
in the matrices. However, this should be a “happy” breakdown, rather than a difficulty.
In this case we can simply take γi to be a computed pole, and work with the function
f := (z − γi) f , taking n := n − 1. An alternative and equally valid approach is to
take f (γi) = 1

umedianL | f (γ)|, and proceed as usual.

4.3 Oversampling and least-squares fitting

As with previous algorithms, it is often recommended to take advantage of the over-
sampled values f (γi) at more than m + n + 1 points γi , and perform a least-squares

123

Stable polefinding and rational least-squares fitting via… 653

fitting. This is true especially in our context, where the degree-finding process in
Algorithm 3.1 has oversampled f to find the type, and it is natural to try to reuse the
computed quantities f (γi).

Consider finding the poles of f (z) = p(z)
q(z) ∈ Rm,n with L > m+n+1 sample points

(γi)
L
i=1.We form thematrices as in the previous Sect. (4.4) with A1 = Γ FVn ∈ C

L×n ,
A2 = Vm+1 ∈ C

L×(m+1) and B1 = FVn ∈ C
L×n . We proceed as in (4.10) and apply

projection, scaling, and orthogonalization DA2 = QA2 RA2 , DB1 = QB1RB1 , to
obtain matrices Ã = (Q⊥

A2
)∗Γ QB1, B̃ = (Q⊥

A2
)∗QB1 . as in (4.10), but these matrices

are now nonsquare, of size (L −m − 1)× n: they have more rows than columns since
L > m + n + 1. Under the assumption that f has n poles, there exists a nonzero
x ∈ C

n with (Ã−λB̃)x = 0 if and only if λ is one of the poles of f ; this can be shown
as in Proposition 1. Hence, in theory, we can compute the poles of f by solving the
rectangular eigenvalue problem

Ãx = λB̃x, x �= 0. (4.11)

However, traditional methods for generalized eigenvalue problems such as the QZ
algorithm [19, Ch. 7], [31] are not applicable to (4.11) since the pencil Ã − λB̃ is
rectangular.

To solve the rectangular eigenvalue problem (4.11), we use the recent algorithm
by Ito and Murota [25]. The idea is to find perturbations �A,�B with smallest
‖[� Ã �B̃]‖F so that the pencil (Ã + � Ã) − λ(B̃ + �B̃) has n eigenpairs:

(Ã + � Ã)[x1, . . . , xn] = (B̃ + �B̃)[x1, . . . , xn]
⎡

⎢
⎣

λ1
. . .

λn

⎤

⎥
⎦ . (4.12)

The resulting algorithm computes the SVD [Ã B̃] = U�
[W ∗

11 W ∗
21

W ∗
12 W ∗

22

]
, then solves the

square n × n generalized eigenvalue problem

W ∗
11x = λW ∗

21x . (4.13)

This corresponds to taking Ã + � Ã = U�
[W ∗

11
O

]
and B̃ + �B̃ = U�

[W ∗
21
O

]
, hence

‖[� Ã�B̃]‖2F =∑min{2n,L−m−1}
i=n+1 σi ([Ã B̃])2. See [25] for details.

4.4 Pseudocode

Summarizing, the following is the pseudocode for our polefinding algorithmratfun.
By default, the sample points γi are the roots of unity γ j = exp(2π i jL) (once L is

specified); other choices are allowed such as Chebyshev points on [−1, 1]. We justify
the scaling in step 2 and the choice of the diagonal matrix D in Sect. 5.2.

123

654 S. Ito, Y. Nakatsukasa

Algorithm 4.1 ratfun: Polefinding and interpolation f (γi) ≈ p(γi)
q(γi)

; f , {γi }Li=1 are
given.
1: Determine m, n by Algorithm 3.1, if not given as inputs.
2: Scale f := f/medianL (| f (γi)|).
3: Define A1 = diag(γi fi)Vn+1, A2 = Vm+1 and B1 = diag(fi)Vn+1.
4: Compute the diagonal scaling matrix D = diag(1

max(| f (γi)|,1)).

5: Compute full QR factorization DA2 = [QA2 Q⊥
A2

][RA2
0

]
and “thin” QR factorization DB1 =

QB1 RB1 .

6: Ã = (Q⊥
A2

)∗Γ QB1 , B̃ = (Q⊥
A2

)∗QB1 .
7: Compute the SVD

[Ã B̃] = U�
[W∗

11 W∗
21

W∗
12 W∗

22

]
. (4.14)

8: Solve the square generalized eigenvalue problem

W∗
11x = λW∗

21x . (4.15)

The computed eigenvalues λ are approximants to the poles ξi of f .

When the domain of interest is far from the origin, it is recommended that one work
with a shifted function f (z − z0) so that the domain becomes near the origin (this
affects the Vandermonde matrix, in particular its condition number).

4.4.1 Efficiency

The dominant costs of Algorithm 4.1 are in the QR factorizations, forming Q⊥
A2
,

computing the SVD (4.14) and solving the eigenproblem (4.15). These are all
O(L(m + n)2) or less, using standard algorithms in numerical linear algebra. This is
comparable in complexity with other approaches, as we summarized in Table 1.

4.5 Input/output parameters

Combined with the degree determination process Algorithm 3.1, ratfun lets us find
poles and rational interpolants with the minimum input requirement: just the function
f . Our algorithm ratfun (described in detail in Sect. 4) adapts to the specifications
as necessary when the user inputs more information such as the location of the sample
points and type of the rational approximants. Below we detail the process for three
types of inputs:

1. Minimum input requirement: poles = ratfun(f).
2. Function and sample points: poles = ratfun(f,gam).
3. Function, sample points and degrees: poles = ratfun(f,gam,m,n).

Minimum input requirementpoles = ratfun(f)When the function f is the only
input the algorithm first determines the numerical type of the rational approximant by
Algorithm 3.1, then runs the polefinding algorithm to be described in Sect. 4. By

123

Stable polefinding and rational least-squares fitting via… 655

default, we take the sample points to be roots of unity; Chebyshev points can be
chosen by invoking ratfun(f,‘c’).

Inputs are function and sample points poles = ratfun(f,gam) When the
sample points are specified by gam the algorithm first runs the degree finder
typefind(f,tol,L) with L = length(gam), and gives a warning if the num-
ber of sample points L appears to be insufficient L < max{M + n,m + N } + 1,
indicated by σm+n+2(C̃) > tol. Regardless, the algorithm proceeds with solv-
ing the generalized eigenvalue problem to obtain approximate poles and p, q with
deg(p)+ deg(q)+ 2 ≤ L . We note that the backward errors ‖�p‖L and ‖�q‖L have
magnitudes O(σm+n+2(C̃)), which is not necessarily O(tol) in this case (see Sect. 5
for details on backward errors).

Full input: function, sample points and degrees poles = ratfun(f,gam,m,n)
When the degrees are further specified the algorithm directly solves the (rectangular
or square when L = m + n + 1) generalized eigenvalue problem to obtain the poles
and p, q.

4.5.1 Outputs

The full output information is [poles,cp,cq,type,roots]=ratfun(f), in
which poles are the computed poles, cp,cq are the vectors of coefficients cp, cq of
the polynomials p, q in the monomial basis, type is a 2-dimensional vector [m̂, n̂]
of the computed type, and roots are the computed roots.

We next discuss how to compute the roots and finding cp, cq .

4.6 Computing the roots

One situation that Algorithm4.1 did not deal with is when the roots of f are sought.We
suggest two approaches for rootfinding, depending on whether poles are also sought
or not.

Finding roots only First, when only the roots are of interest, we can invoke Algo-
rithm 4.1 to find the poles of 1/ f . Alternatively, the roots can be computed from f by
defining p̃(z) = p(z)

z−rk
and starting from the guiding equation [recall (4.2)]

f (γi)q(γi) = z p̃(γi) − rk p̃(γi), i = 1, . . . ,m + n, (4.16)

which, as before, can be rewritten as a generalized eigenvalue problem with λ := rk .
For brevity we omit the details, as the formulation is analogous to that for (4.4)
and (4.11).

Finding poles and roots When both the poles and roots are required, we suggest the
following. First compute the poles as in Algorithm 4.1. Then we find the roots by

123

656 S. Ito, Y. Nakatsukasa

solving for λ the equation

f (γi)q(γi) = (γi − λ) p̃(γi), p̃(z) = p(z)

z − λ
. (4.17)

Here p̃(z) is the same as above, and we form q(γi) from the expression q(z) =∏n
i=1(z − ξ̂i) using the poles ξ̂i that have previously been computed. Equation (4.17)

can be rearranged to γi p̃(γi) − f (γi)q(γi) = λ p̃(γi), which we write in matrix form
as

[
Fdiag(q(γi)) Γ V

]
[

1
−cp̃

]

= λ
[
0 V
]
[

1
−cp̃

]

. (4.18)

This is again a rectangular generalized eigenvalue problem. This has one irrelevant
eigenvalue at infinity, and the problem can again be solved via an SVD. Since the
matrices involved are of smaller size than (4.4) and (4.11), this process is cheaper than
finding the poles of 1/ f .

4.7 Finding cp, cq

To find the coefficient vectors cp and cq , we can take advantage of the eigenvector
structure (4.6) to extract cp from any eigenvector, along with cq̃ , fromwhich we obtain
cq via (4.1). Note that to do this we need to give up the QR factorization in step 4 of
Algorithm 4.1. Equally effective and stable is to invoke the scaled naive method (2.8),
which gives cp, cq directly (our current code adopts this approach). A word of caution
is that eigenvectors are sensitive to perturbation if (but not only if) the corresponding
eigenvalues are nearly multiple.

We note that there aremany otherways of representing a rational function f = p/q.
Since ratfun can compute the poles and roots as described above, one effective
representation is to take

f = c

∏m
i=1(z − r̂i)

∏n
i=1(z − ξ̂i)

, (4.19)

in which we store the constant c and the roots r̂i and poles ξ̂i .

4.8 Mathematical equivalence with previous algorithms: interpolation-based
and Hankel eigenproblem

Here we briefly discuss the connection between our eigenvalue problem and existing
ones. We shall show that the eigenproblem (4.7), when L = m + n + 1, is equivalent
in exact arithmetic to the generalized eigenvalue problem of Hankel matrices derived
in [29,40], which are in turn equivalent to Chebfun’s ratinterp as shown in [3].
Essentially, both our algorithm and ratinterp find the roots of q such that p

q
interpolates f at the sample points.

We shall show that the eigenvalues and right eigenvectors of (4.7) and those of the
Hankel matrix pencil are the same. Before proving this claim, we briefly review the
Hankel eigenproblem approach, which originates in work of Delves and Lyness [15]

123

Stable polefinding and rational least-squares fitting via… 657

andKravanja et al. [27,28], see also [3]. In this algorithm, one computes the discretized
moments

s j := 1

2π i

∮

|z|=1
z j f (z)dz, j = 0, . . . , 2n − 1,

and then solves the generalized eigenvalue problem with Hankel matrices

⎡

⎢
⎣

s1 sn
... . .

. ...

sn s2n−1

⎤

⎥
⎦ x = λ

⎡

⎢
⎣

s0 sn−1
... . .

. ...

sn−1 s2n−2

⎤

⎥
⎦ x . (4.20)

We write this as H1x = λH0x for simplicity. The pencil H1 − λH0 can be written
using a contour integral as

H1 − λH0 =
∮

|z|=1
(z − λ) f (z)

⎡

⎢
⎣

1
...

zn−1

⎤

⎥
⎦ [1 · · · zn−1]dz. (4.21)

If f is meromorphic in the unit disk {z ∈ C | |z| ≤ 1} and has n poles ξ1, . . . , ξn ∈
{z ∈ C | |z| < 1}, then the poles are eigenvalues of H1x = λH0x . Indeed, defining
q̃ =∏l �=k,1≤l≤n(z − ξl) and letting cq̃ be its coefficient vector as in (4.3) we obtain

(H1 − ξk H0)cq̃ =
∮

|z|=1
(z − ξk) f (z)q̃(z)

⎡

⎢
⎣

1
...

zn−1

⎤

⎥
⎦ dz = 0, (4.22)

since (z − ξk) f (z)q̃(z) = f (z)
∏n

k=1(z − ξk) is analytic in the unit disk.
The contour integral (4.22) needs to be discretized in a practical computation. If

we use the standard trapezoidal rule evaluating at roots of unity γ j = exp(2π i j/L)

for j = 1, . . . , L to approximate H1 − λH0, the computed pencil Ĥ1 − λĤ0 becomes

Ĥ1 − λĤ0

=
L∑

j=1

2π iγ j

L
(γ j − λ) f (γ j)

⎡

⎢
⎣

1
...

γ n−1
j

⎤

⎥
⎦ [1 · · · γ n−1

j]

= 2π i

L

⎡

⎢
⎣

γ1 γ2 · · · γL
...

...
...

γ n
1 γ n

2 · · · γ n
L

⎤

⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

(γ1 − λ) f (γ1)
. . .

. . .

(γL − λ) f (γL)

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

1 · · · γ n−1
1

1 · · · γ n−1
2

...
...

1 · · · γ n−1
L

⎤

⎥
⎥
⎥
⎦

= V�
n Γ 2FVn − λV�

n Γ FVn,= (V�
n Γ F)(Γ − λI)Vn, (4.23)

123

658 S. Ito, Y. Nakatsukasa

where F = diag(f (γ1), . . . , f (γL)) and Γ = diag(γ1, . . . , γL) as before. Hence if
f is a rational function f = p

q , we have

(Ĥ1 − ξi Ĥ0)cq̃ = (V�
n Γ)F(Γ − ξi I)[q̃(γ1), . . . , q̃(γL)]�

= V�
n Γ [p(γ1), . . . , p(γL)]�

= V�
n [γ1 p(γ1), . . . , γL p(γL)]�.

The i th element of the final vector is
∑L

j=1 γ i+1
j p(γi) for i = 1, . . . , n, which is

equal to the evaluation of 1
2π i

∮ L
|z|=1 z

i p(z). Now the L-point trapezoidal rule is exact
if the integrand is polynomial of degree L − 1 or below [49, Cor. 2.3]. Therefore, if
L ≥ m+n+1 then (Ĥ1−ξi Ĥ0)cq̃ = 0. Thus also for the discretized pencil Ĥ1−ξi Ĥ0,
cq̃ is again an eigenvector if f = p

q with p ∈ Pm, q ∈ Pn with L ≥ m + n + 1.

This shows that the eigenproblems Ĥ1x = λĤ0x and (A⊥
2)∗A1x = λ(A⊥

2)∗B1x
in (4.9) have the same eigenvalues and eigenvectors, thus are equivalent, i.e., there
exists a nonsingular matrix W such that W Ĥ1 = (A⊥

2)∗A1 and W Ĥ0 = (A⊥
2)∗B1.

Despite the mathematical equivalence, we reiterate that the numerical behavior of
the algorithms is vastly different. Crucially, the left-multiplication by V�

n in (4.23)
mixes up themagnitudes of f (γi), resulting in the instability due to near-pole sampling.
This will be made precise in the next section.

5 Numerical stability

A crucial aspect of any numerical algorithm is stability [23]. It is common, and often
inevitable for problems that are potentially ill-conditioned, to investigate backward
stability (as opposed to analyzing the forward error in the outcome itself), in which
we ask whether a computed output is guaranteed to be the exact solution of a slightly
perturbed input.

The great success of polynomial interpolation of a continuous function f at roots of
unity (for approximation in the unit disk) or Chebyshev points (on an interval [−1, 1])
is due to its combined efficiency and stability: a degree-n polynomial interpolation can
be done in O(n log n) operations employing the Chebyshev polynomials and FFT [6].
Moreover, since the FFT matrix has condition number 1, the process is numerically
stable, and we obtain an interpolant p̂ satisfying

f (γi) = p̂(γi) + O(u‖ f ‖L) (5.1)

at every sample point γi ; this holds regardless of f . Suppose further the inter-
polation is successful (with smooth f , good points γi and basis φi (z)) in that
‖ f − p̂‖∞/‖ f ‖∞ = O(u), where ‖ f ‖∞ = maxz∈Ω | f (z)| for a domain Ω . Then
with a stable rootfinding algorithm for p̂, one obtains stability in the computed roots:
p(r̂i) = O(u‖ f ‖∞). This shows r̂i are the exact roots of a slightly perturbed input f .
Rootfinding algorithms with proven stability include the companion [51] (for mono-
mials) and colleague linearizations [32] (for Chebyshev).

123

Stable polefinding and rational least-squares fitting via… 659

For rational interpolation and polefinding, to our knowledge, stability in the context
of polefinding and rational interpolation has been rarely discussed; [35], which con-
nects the inaccuracies with the presence of ill-conditioned matrices, is one of the few,
but their argument does not treat the backward stability of the rational interpolants p̂

q̂ .
Here we attempt to make a step forward and analyze backward stability for rational
interpolation algorithms.

First we need to elucidate our goal. The presence of poles complicates the situation
because, for example ‖ f − p̂

q̂ ‖∞ is infinity unless we compute the poles exactly, and
this is true even for the linearized version ‖ f q̂ − p̂‖∞. For this reason, sometimes
rational interpolation is thought to be inherently ill-posed for a stable computation.

There is a natural workaround here: we allow for perturbation in both the numer-
ator and denominator polynomials p̂ and q̂ . We then analyze whether the rational
interpolation is satisfied with small backward errors, that is,

f (γi) = p̂(γi) + �p(γi)

q̂(γi) + �q(γi)
,

‖�p‖L
‖ p̂‖L = O(u),

‖�q‖L
‖q̂‖L = O(u) (5.2)

for i = 1, . . . , L ,. As before, we work with the linearized formulation.

Definition 1 Let f be a meromorphic function. Given sample points {γi }Li=1 and
computed polynomials p̂, q̂ , we say that p̂/q̂ is a stable rational interpolant of f if
there exist functions �q,�p : {γi }Li=1 → C such that

f (γi)(q̂(γi) + �q(γi)) − (p̂(γi) + �p(γi)) = 0,

‖�p‖L
‖ p̂‖L = O(u),

‖�q‖L
‖q̂‖L = O(u).

(5.3)

We note that the requirement here is a rather weak condition: for example, it does
not require that p̂, q̂ are close to the correct p, q when f = p/q. Nonetheless, we
shall see that many previous algorithms fail to satisfy them. We now give a necessary
and sufficient condition for stability that is easy to work with.

Lemma 1

| f (γi)q̂(γi) − p̂(γi)| = O(u)max(| f (γi)|‖q̂‖L , ‖ p̂‖L) (5.4)

is a necessary and sufficient condition for p̂/q̂ to be a stable rational interpolant at
γi satisfying (5.3), for i = 1, . . . , L.

(Proof) Suppose (5.4) is satisfied. Then, defining �p and �q by

(�p(γi),�q(γi)) =
{

(f (γi)q̂(γi) − p̂(γi), 0) if | f (γi)|‖q̂‖L ≤ ‖ p̂‖L
(0, − f (γi)q̂(γi)− p̂(γi)

f (γi)
) if | f (γi)|‖q̂‖L > ‖ p̂‖L ,

(5.5)

we obtain (5.3). Conversely, if �q and �p satisfy (5.3), then we have

| f (γi)q̂(γi) − p̂(γi)| = | f (γi)�q(γi) − �p(γi)| = O(u)max(| f (γi)|‖q̂‖L , ‖ p̂‖L).

(5.6)

123

660 S. Ito, Y. Nakatsukasa

This proves the claim. ��
Below we analyze the stability of algorithms based on Lemma 1. In Sects. 5.1

and 5.2, to avoid the jarring complications due to the ill-conditioning of the Vander-
monde matrix, we discuss the case where the sample points are the roots of unity and
the polynomial basis is the monomials φi (z) = zi . Essentially the same argument
carries over to other sets of sample points employed with an appropriate polynomial
basis {φi (z)}, such as Chebyshev-points sampling employing the Chebyshev polyno-
mial basis.

5.1 Instability of previous algorithms

Here we illustrate with the example of Chebfun’s ratinterp that previous algo-
rithms can be numerically unstable, i.e., they do not necessarily satisfy (5.4) in
Lemma 1. Recall that ratinterp computes cq in (2.11) as the null vector of
Ṽ ∗FVN+1.

Let us explain the numerical issue here. Let ĉq be the computed null vector. Consider
the Eq. (2.10) left-multiplied by the Vandermonde matrix V , which is unitary times√
L . Taking into account the numerical errors, the equation can be written as

FV

[
ĉq
0

]

= V

[
ĉp

εL−(m+1)

]

, (5.7)

which we rewrite using εL = V
[0
εL−(m+1)

]
as

FV

[
ĉq
0

]

− V

[
ĉp
0

]

= εL . (5.8)

The vectors εL−(m+1) and εL are zero when ĉq is equal to the exact cq , but
εL−(m+1), εL �= 0 due to numerical errors. Indeed, we see that the i th element of εL is
f (γi)q̂(γi) − p̂(γi), which is precisely the linearized interpolation residual in (5.4).
Now, the computed null vector ĉq of the matrix Ṽ ∗FVN+1 in (2.11) obtained by a

stable algorithm such as the SVD generally satisfies the normwise condition

(L‖εL‖2 =) ‖Ṽ ∗FVN+1ĉq‖2 = O(u‖Ṽ ∗FVN+1‖2). (5.9)

Now since ‖V ‖2 = ‖V ∗‖2 = √
L = O(1), we have ‖Ṽ ∗FVN+1‖2 =

O(maxi | f (γi)|). Thus ‖εL‖2 = O(umaxi | f (γi)|), which indicates that if maxi
| f (γi)| � | f (γ j)| for some j , then the interpolation residual for the j th equation is
(for a constant ci = O(1))

f (γ j)q̂(γ j) − p̂(γ j) = ciumax
i

| f (γi)|‖q̂‖L � ciumax(| f (γ j)|‖q̂‖L , ‖ p̂‖L),

which violates the condition (5.4) for stability.

123

Stable polefinding and rational least-squares fitting via… 661

Althoughwedonot present the details, such instability is present inmost algorithms,
including the unscaled naive method and RKFIT (with default weight D̃).

5.2 Diagonal scaling and stability of ratfunratfunratfun and scaled naive method

Let us reconsider the eigenvalue problem (4.4) from a similar viewpoint, and we shall
show that our approach of solving (4.4) employing diagonal scaling is immune to the
instability just discussed, and ratfun gives a stable rational interpolation.

For simplicity we rewrite the eigenvalue problem (4.4) with diagonal scaling.3

D
[
A1 A2

]
x = λ

[
DB1 O

]
x as DAx = λDBx . By the backward stability of the

standard QZ algorithm, each computed eigenpair (ξ̂i , x̂) satisfies

(DA+�A)x̂ = ξ̂i (DB+�B)x̂, ‖�A‖2 ≤ ε‖DA‖2, ‖�B‖2 ≤ ε‖DB‖2, (5.10)

in which ε denotes a constant of magnitude O(u).
To establish stability we need two preparations. First, we use an appropriate scaling

of f .Wecan clearly scale f ← 1
κ
f for anyκ > 0without changing the poles and roots,

and the analysis below will show that a good choice is one such that ‖cp‖2 ≈ ‖cq‖2.
To be precise, it suffices to have

‖cp‖2
‖cq‖2 = 	(1), (5.11)

which means ‖cp‖2
‖cq‖2 = O(1) and ‖cq‖2

‖cp‖2 = O(1). This means we expect f = 	(1)
holds at most of the sample points. In practice, we achieve (5.11) by sampling at
sufficiently many points and taking κ to be the median value medianL | f (γ)|; this is
adopted in the pseudocode of ratfun, Step 2 of Algorithm 4.1.

Second, as mentioned before, we choose the diagonal scaling matrix D as in (2.4),
so that (since we scale f s.t. medianL | f (γ)| = 1) the j th diagonal d j is

d j = 1

max(| f (γi)|, 1) , j = 1, . . . , L . (5.12)

We are now ready to state our main stability result.

Theorem 1 Let A, B be as defined in (4.4)with L = m+n+1, where γ j = exp(2π i jL)

and φi (z) = zi . Let D = diag(d j) be as in (5.12), and let (ξ̂k, x̂) with |ξ̂k | = O(1) be

a computed eigenpair such that (5.10) holds. Partition x̂ = [ĉq̃
−ĉp

]
, where ĉq̃ ∈ C

n.

Defining p̂ = ∑m
j=0 ĉp, j z

j , q̃ = ∑n−1
j=0 ĉq̃, j z j and q̂ = (z − ξ̂k)q̃ with coefficient

vector ĉq , suppose that‖ĉq‖2/‖ĉp‖2 = 	(1). Then p̂/q̂ is a stable rational interpolant
of f , that is, (5.4) is satisfied.

3 For simplicity, we mainly analyze the scaled version of (4.4), without employing the projection (4.7) and
QR factorization.

123

662 S. Ito, Y. Nakatsukasa

(Proof) By (5.10) we have

‖DAx̂ − ξ̂k DBx̂‖2 = O(u(‖DA‖2 + ξ̂k‖DB‖2)‖x̂‖2) = O(u‖x̂‖2), (5.13)

where we used the fact that ‖DA‖2, ‖DB‖2 and |ξk | are all O(1). Now recalling (4.2),
the i th element of DAx̂ − ξ̂k DBx̂ is

(DAx̂ − ξ̂k DBx̂)i = di (γi f (γi)q̃(γi) − p̂(γi)) − diξk f (γi)q̃(γi)

= di (f (γi)(γi − ξ̂k)q̃(γi) − p̂(γi))

= di (f (γi)q̂(γi) − p̂(γi)).

This represents a scaled interpolation error, which is O(u‖x̂‖2) by (5.13). Since γi
are roots of unity we have ‖ p̂‖L = √

L‖ĉp‖2 and ‖q̂‖L = √
L‖ĉq‖2, so in view of

Lemma 1, it suffices to show that

1

di
‖x̂‖2 = O(max(| f (γi)|‖ĉq‖2, ‖ĉp‖2)). (5.14)

Now since ‖x̂‖2 = ‖[ĉq̃
ĉp

]‖, using the assumption ‖ĉq‖2/‖ĉp‖2 = 	(1) and the fact

‖ĉq‖2/‖ĉq̃‖2 = 	(1), which follows from |ξ̂k | = O(1), we have ‖x̂‖2/‖ĉp‖2 = O(1)
and ‖x̂‖/‖ĉq‖L = O(1). Using these in Eq. (5.14) divided by ‖x̂‖2, we see that it
suffices to establish 1

di
= O(max(| f (γi)|, 1)), which indeed holds due to the choice

of diagonal scaling (5.12).
Since the above argument is valid for every i = 1, . . . , L , we conclude from

Lemma 1 that p̂/q̂ is a stable rational interpolant of f . �
We emphasize the crucial role that diagonal scaling plays in the stability analysis.

We also note that the scaling such that f ← c f is actually not necessary for the
reduced eigenproblem (4.7) (without the diagonal scaling D), which is invariant under
the scaling f ← c f .

Stability of scaled naive method The scaled naive method can also be proven to be

stable. In this case the analysis is even simpler as the j th row of DC
[cq
−cp

]
, where C

is as in (2.6), represents

d j

(
[
FVn+1 Vm+1

]
[
cq

−cp

])

j
= d j (f (γ j)q(γ j) − p(γ j)). (5.15)

That is, the residual of each row is exactly the scaled interpolation error. Thus a null

vector
[cq
−cp

]
computed in a stable manner under the same assumptions as above

[(5.10) and (5.11)] is automatically a stable rational interpolant.
However, for finding the poles, the additional process of finding the roots of q is

necessary, and this can be a cause for further numerical instability. We discuss this
further in Sect. 5.3.

123

Stable polefinding and rational least-squares fitting via… 663

Barycentric formula Finally, we mention the rational interpolation based on the
barycentric formula [9–11,41]

r(z) =
∑n

k=0
wk
z−γk

fk
∑n

k=0
wk
z−γk

, (5.16)

where w = [w1, . . . , wn] are called the barycentric weights. For a general w (e.g. for
randomly chosen w) the rational function r(z) in (5.16) is of type (n, n). However, by
choosing appropriate weightsw one obtains an interpolant of desired type; Berrut and
Mittelmann [10] show how such w can be found by a null vector of a matrix related
to
[
FVn+1 Vm+1

]
as in (2.6). Antoulas and Anderson [1] introduce an algorithm for

computing w to interpolate r(γi) = f (γi), where (γk)
n
i=1 are taken to be half of

the sample points and hence interpolation is achieved at 2n points. The recent AAA
algorithm [33] chooses the points (γk)

n
i=1 in a greedy manner reduce the linearized

error in the rational approximant.
As noted in [10], at the sample points γk the barycentric formula (5.16) essentially

gives an exact interpolation function, in that r(γk) = f (γk) at all γk (this holds regard-
less of the choice of w as long as wk �= 0). However, this is due to the representation
of the rational function; finding the poles and obtaining p, q from (5.16) would induce
further numerical errors. Below we focus our attention on algorithms that work with
the coefficients of the rational interpolant.

5.3 Accuracy of polefinder and effect of orthogonalization

For rational interpolation, we have described and identified two stable methods:
ratfun and the scaled naive method.

Let us now turn to polefinding, and focus on the accuracy of the computed poles.
ratfun finds the poles while simultaneously computing the rational approximant.
By contrast, in the scaled naive method (or practically any other existing method for
rational approximation) we first find the denominator polynomial q, then compute
its roots. Intuitively this two-step approach should be more susceptible to numerical
instability, and here we illustrate that this is indeed the case.

We compare two algorithms: scaled naive andratfun. Inratfun, the QR factor-
ization DB1 = QB1RB1 in step 3 of Algorithm 4.1 is implicitly performing a change
of basis for the polynomial q, so that discrete weighted orthogonality is achieved in the
new basis. This has the possible disadvantage that the computed eigenvector in (4.15)
contains the coefficients in the changed basis. However, crucially, for polefinding, this
is not an issue at all, because the eigenvalues are unaffected. The change-of-basis is
rather a benefit, because in the new basis the matrices A1, B1 are well-conditioned,
which reduces numerical errors.

By contrast, this change-of-basis cannot be done for the naive method, because
it requires the coefficients of q in a polynomial basis that is easy to work with for
computing the roots.

Numerical example We illustrate the above discussion with an example. Let f be
a rational function of the form (3.5) with N = 20 poles in equispaced points on

123

664 S. Ito, Y. Nakatsukasa

Fig. 4 Error of 20 computed
poles for ratfun and the naive
method using the monomial
basis. ratfun implicitly and
automatically uses the
appropriate polynomial basis to
obtain accurate poles

[−1+ δ, 1− δ] with δ = 10−3. We use the monomial basis but sample at Chebyshev
points, whose number we vary. Therefore we are employing a “wrong” polynomial
basis for the sample points; the “correct” one is the Chebyshev polynomials.

Figure 4 shows the result with the two algorithms, showing the errors in the com-
puted poles min j |ξi − ξ̂ j | for i = 1, . . . , n, as the number of sample points is varied.
The diagonal scaling (5.12) is used for both algorithms; without this, the accuracy is
significantly worse than in the figures.

ratfun clearly gives significantly more accurate results. The inaccuracy of the
naivemethod is mainly due to the wrong choice of basis used to represent q. For exam-
ple, by choosing the “correct” Chebyshev basis, the red plots become only slightly
worse than ratfun. Indeed it is known that when looking for real roots of a polyno-
mial, one is often advised to use Chebyshev polynomials instead of monomials.

The point here is that ratfun automatically finds an appropriate basis for the
particular problem given: If a function f and a set of sample points are given, the QR
factorization finds the appropriate basis. Indeed, if the QR factorization is not used in
ratfun, the accuracy deteriorates significantly.

6 Numerical experiments

We present further numerical experiments to illustrate the behavior of ratfun. We
compare

1. ratfun: Algorithm 4.1,
2. The scaled naive method (2.8) with diagonal scaling (5.12), shown as naive,
3. Chebfun’s ratinterp command, shown as chebfun,
4. RKFIT [7,8] with diagonal inputs F = diag(f (γi)), A = diag(γi) and v =

[1, . . . , 1]�, with the default choice D̃ = I and maximum number of iterations
set to 10 (increasing this made no noticeable difference).

All the experiments were conducted in MATLAB R2014a using IEEE double pre-
cision arithmetic with u ≈ 1.1 × 10−16, on a desktop machine with an Intel Core i7
Processor with four cores, and f16GB RAM.

For “easy” problems like those in Sect. 3.2, all the algorithms compute the poles
and approximants reliably. Below we thus focus on more challenging problems.

123

Stable polefinding and rational least-squares fitting via… 665

Fig. 5 f (z) = ∑N
i=1

1
z−ξi

, with 50 poles inside the unit disk. Left: numerical degrees of the rational
approximants. Black dashed line indicates the number of sampled points L in the degree determination
process Algorithm 3.1; here L = 8. ratfun(f) returns the incorrect type (0, 2); see comment in the
text. Middle: error of computed poles min j |ξi − ξ̂ j | with ratfun(f,gam) sampling 128 points. Right:
sample points, poles and roots

High-degree examplesWe consider a moderately high-degree example, where we take
f as in (3.5) with N = 50. The results are in Fig. 5.
With a sufficient number of sample points L ≥ 103, ratfun finds the type of the

rational approximant and computes the poles and roots stably. Here and below, the
roots are computed simply by finding the poles of 1/ f byratfun; the other processes
described in Sect. 4.6 had similar performances.

It is worth observing that most computed roots turned out to lie on a circle of radius
about 0.5. This may look bizarre at first sight, as one easily sees that the only zero of
f is at z = 0. This can be explained by eigenvalue perturbation theory: the zero of
f has multiplicity N − 1 = 49, so the eigenvalue problem for computing it attempts
to find the eigenvalue of algebraic multiplicity 49. Now it is well known [43, Ch. 5]
that the eigenvalues of algebraic multiplicity k and geometric multiplicity 1, which
are essentially eigenvalues of a k × k Jordan block, can be perturbed by O(ε1/k) by
a perturbation in the matrix of norm O(ε). The QZ algorithm computed the roots in
a backward stable manner, but the small perturbation is enough to perturb them by

u
1
49 ≈ 0.4725. The reason the roots appear to lie systematically on a circle is that the

eigenvalues of a Jordan block are extremely sensitive to perturbation in the bottom-left
element, but much less so in other positions.

Note in the left figure that with insufficient sample points L < 100 the type finder
outputs an incorrect output. In view of Lemma 4, this happens when the number
of sample points L was less than the necessary max{M + n,m + N } + 1, but the
function f and sample points γi happened to (e.g. by symmetry) make the matrix
C rank-deficient, and so at γi the function behaved as if it is a lower-type rational
function. The same was observed in Fig. 1, and the problem is pronounced here.
Indeed the degree determination Algorithm 3.1 indicated a numerical degree of (0, 2)
after sampling initially at the eigth roots of unity. We have not overcome this issue
completely; indeed such difficulty is present even in the polynomial case [48]; for
example when a highly oscillatory function f happened to be 0 at all the initial
sample points. Perhaps some further insurance policy is needed to ensure that the type
obtained by Algorithm 3.1 is appropriate, such as sampling f at a few more random
points [2]. One could also try typefind(f,tol,L) for neighboring values of L
and accept only if they are the same. These remedies, while effective, cannot be proven
to be fool-proof.

123

666 S. Ito, Y. Nakatsukasa

Fig. 6 f (z) = ∑N
i=1

ri
z−ξi

with random residues ri . Left: numerical degrees of the rational approximants.

ratfun(f) samples at 27 points and returns the correct type (49, 50). Middle: error of computed poles
min j |ξi − ξ̂ j |. Right: sample points, poles and roots

Fig. 7 f with a pole far outside the unit disk. Left: numerical degrees of the rational approximants.
ratfun(f) samples at 24 points and returns the type (4, 5).Middle: error of computed polesmin j |ξi−ξ̂ j |.
The pole that eventually gets lost by ratfun and naive corresponds to ξ1 = 10, the pole far from the
sample points. Right: sample points, poles and roots

Nonetheless, this is a rather contrived example with high symmetry, which generi-
cally would not happen. For example, if we take the residues of each term in (3.6) to
be random numbers, we obtain Fig. 6, for which an appropriate type is chosen. In both
cases, once a sufficient number of sampled points is taken, ratfun finds the correct
poles and rational intepolant.

When f has poles far away from sample points Another possible difficulty is when f
has a pole far away from the sample points.

To examine the behavior of our algorithm in such cases we take f as in (3.5) of
type (4, 5), but we now set one pole to be far by taking ξ1 = 10. Figure 7 shows the
results.

Again, with a sufficient number of sample points we obtain a rational approximant
of correct type (4, 5). In themiddle error plot in Fig. 7, the poles inside the unit disk are
computed accurately to machine precision. By contrast, the pole ξ1 = 10 is computed
with poorer accuracy. Loss of accuracy for poles outside the unit disk is a typical
phenomenon, and the accuracy worsens rapidly if we take |ξ1| larger or let f be of
higher type. This observation can be explained via eigenvalue conditioning analysis,
which shows the condition numbers of the eigenvalues of (4.4) corresponding to poles
outside the unit disk grow exponentially with base |ξi | and exponent m + n, whereas
those of eigenvalues inside the unit circle decrease (slowly) with m + n. The analysis
is presented in “Appendix C”.

Recall that ratfun finds a numerical type by Algortihm 3.1. As explained in
Sect. 3.1, there can be other numerical types for f that may be appropriate: Indeed,

123

Stable polefinding and rational least-squares fitting via… 667

if we sample at many more points than necessary (i.e., typefind(f,tol,L) with
L � m + n + 1), ratfun eventually ignores the outlying pole and converges to a
rational function of type (m, 4) where m is large. That is, the computed outcome has
lower denominator degree than that of the exact type 5; recall the experiment with (3.7)
with a similar discussion. This can be explained as follows. By a standard result in
complex analysis [34, Ch. 9], inside the unit disk a meromorphic function f can be
written as

f (z) =
∑

|ξi |≤1

∑

j

ai, j
(z − ξi) j

+ p f (z). (6.1)

The sum is taken over the poles inside the unit disk. Here p f (z) is a power series,
obtained e.g. as a Taylor series of f (z) −∑|ξi |≤1

∑
j

ai, j
(z−ξi)

j , which converges inside
a disk centered at the origin and of radius |ξ0|, where ξ0 is the pole closest to the origin
besides those with |ξi | ≤ 1; here |ξ0| = 10. Therefore, near the sample points (the unit
circle), f behaves as if it is a sum of terms 1/(z − ξi) with |ξi | ≤ 1, and an analytic
function.

From a practical viewpoint, this example suggests that we should locate the sample
points near the poles of interest. For example, we can find the pole ξ1 = 10 accurately
in the above example by taking the sample points to lie on a circle centered around 10.

When a sample point is near a pole This example illustrates how existing algorithms
lose accuracy when a sample point is near a pole.

We form a rational function f (z) =
∏M

i=0(z−ri)∏N
i=0(z−ξi)

where the roots ri and poles ξi are

generated randomly to lie in the unit disk. Here we take M = 4, N = 5, and let the
sample points be equispaced points on the unit circle. We then reset one pole to be
1 + 10−13, forcing it to lie close to a sample point.

ratfun and the naive method compute the poles much more accurately than the
other methods. This is largely due to the diagonal scaling discussed in Sect. 5; indeed,
if we turn off the diagonal scaling and take D = I , the accuracy deteriorates for both
ratfun and the naive methods to about the same as Chebfun’s ratinterp and
RKFIT.

We believe that with RKFIT, which allows for tuning various inputs and parameters,
it is possible to obtain accurate results if appropriate parameters are provided, such as
D̃; recall the discussion in Sect. 2.3. The point here is that our analysis revealed an
appropriate choice (Fig. 8).

Rational functions with poles of order > 1 When f is memorophic but has poles ξi of
order di > 1, the generalized eigenvalue problems (4.4) and (4.15) have an eigenvalue
ξi of the same multiplicity di . Here we examine the behavior of our algorithm in such
cases.

We generate the function f simply by squaring the function in (3.5), that is, f (z) =
(
∑5

j=1
1

z−ξ j
)2 with ξ j = 0.9 exp(2π i j/5). Then f has 5 poles, all of which are of

order 2.
Observe that all the algorithms, including ratfun, find the poles with accuracy

O(
√

ε), which is what one would expect from a backward stable algorithm: the poles

123

668 S. Ito, Y. Nakatsukasa

Fig. 8 f with a pole close to a sample point. ratfun(f) samples at 24 points and returns the correct
type. Left: numerical degrees of the rational approximants. Middle: error of computed poles min j |ξi − ξ̂ j |.
Right: sample points, poles and roots

Fig. 9 f with double poles. Left: numerical degrees of the rational approximants.Middle: error of computed
poles min j |ξi − ξ̂ j |. Right: sample points, poles and roots

ξi of order 2 result in an eigenvalue with Jordan block of size 2, and perturbation of ε

in the matrices perturb such eigenvalues by O(
√

ε) (Fig. 9).

Non-meromorphic functions Although we have started our discussion assuming f
is a meromorphic function in the unit disk, our algorithm can be applied to f with
singularities other than poles, as long as f can be evaluated at the sample points. We
now explore such cases by examining functions with a branch cut, or an essential
singularity.

First let f have a log-type branch cut

f (z) = log

(

z − 1

10
i

)

, (6.2)

which has a branch cut on z = 1
10 i − R+. Figure 10 shows the results. Observe that

spurious poles and roots appear along the branch cut; we suspect this is related to a
similar phenomenon known for Padé approximants of functions with branch cuts [42].

For a function with an essential singularity, we examine the standard example

f (z) = exp

(
1

z

)

. (6.3)

The results are in Fig. 11. Again, spurious poles and roots appear near the singu-
larity point 0, but away from the singularity f is bounded and analytic, and is well
approximated by the rational interpolant. This is no surprise as exp(1/z) behaves as a
completely analytic function on the unit circle.

123

Stable polefinding and rational least-squares fitting via… 669

Fig. 10 f with a log-type branch cut. ratfun(f) samples at 25 points and determines the numerical
type (14, 14). Left: numerical degrees of the rational approximants. Right: sample points, poles and roots

Fig. 11 f with an essential singularity. Left: numerical degrees of the rational approximants. ratfun(f)
samples at 24 points and determines the numerical type (7, 7). Right: sample points, poles and roots

Sample points at Chebyshev points In this example the sample points are taken to
be the Chebyshev points γ j = cos(π(j−1)

L−1) and the polynomial basis is Chebyshev
polynomials φi (x) = Ti (x). This is numerically recommended when most poles lie
on the real axis. In this example f is again as in (3.5), with 6 equispaced poles on
[−1 + 10−2, 1 − 10−2], along with complex poles at 0.2i and 2i. The results are in
Fig. 12. For such functions, sampling at Chebyshev points give better accuracy than
roots of unity.

Although not shown in the figure, the accuracy of poles far from [−1, 1] worsens
rapidly as the poles lie farther away, or the function type increases. This is analogous
to the observation made in Fig. 7: the poles far from the sample points will eventually
get ignored (here the poles that converge are those within a narrow ellipse that covers
the real interval [−1, 1]).
Speed illustrationHereweexamine the speed and accuracyofratfun for high-degree
rational functions.We take f to be as in (3.5) with poles ξ being the Chebyshev points,
scaled by 1 − 10−5, and vary the number of points (i.e., the degree of q) from 100
to 1000. We sample at the Chebyshev points. In order to examine the breakdown

123

670 S. Ito, Y. Nakatsukasa

Fig. 12 Sampled at Chebyshev points. ratfun(f) samples at 25 points and determines the correct type
(8, 7). The pole at 2i loses accuracy as we sample more and increase m

Fig. 13 High-degree example, accuracy of computed poles max j |ξ j − ξ̂ j | (left) and runtime (right)

of the runtime we present the runtime for (1) ratfun(f), which inputs only the
function (hence starts by finding the type), and (2) ratfun(f,m,n), which inputs
the correct type (and hence bypasses the type determination). The results are in Fig. 13.
This example illustrates that ratfun can work with rational functions of quite high
degree, and that the degree determination step often takes up a dominant part of the
runtime.

Eigenvalues of a matrix via the resolvent One use of rational approximation and
polefinding that has been attracting recent interest [4] is in finding eigenvalues of a
matrix A or matrix pencil A − λB via finding the poles of the projected resolvent
u�(A − z I)−1v or u�(A − zB)−1v, where u, v are some vectors (usually random).
We have applied our algorithm to this problem, and observed that it works. However,
usually it is not superior to the algorithm presented in [4], which combines a rational
filter function with a block subspace whose dimension is proportional to the estimated
number of eigenvalues in the region of interest. The distinct feature in [4] (and also the
FEAST eigensolver [36]) is that the algorithmworks with the subspaces (A−zB)−1V
instead of the function u�(A − zB)−1v, and this is crucial to overcome the difficulty
associated with a nearly multiple eigenvalue. We suspect that an extension of our
algorithm to work with block subspaces would be possible; we leave this for future
work.

Acknowledgements We thank Nick Trefethen for providing many suggestions, particularly on clarifying
what is meant by a numerical type. We are grateful to Amit Hochman for suggesting the use of Arnoldi

123

Stable polefinding and rational least-squares fitting via… 671

orthogonalization for the QR factorizations, Stefan Guettel for discussions on RKFIT, and Anthony Austin
and Olivier Séte for their comments on an early draft. We thank the referees for their valuable suggestions.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

A The Kronecker canonical form

Here we analyze in detail the generalized eigenvalue problem (4.4) and derive its
Kronecker canonical form [17, Ch. 4.5.2]. It shows in particular that multiple poles
(if any) can be computed along with their multiplicities, at least in exact arithmetic.

Here, let f be a rational function f (z) = p(z)
q(z) ∈ Rm,n , where p(z) and q(z) have

no common divisors except for constants (i.e., f = p/q is an irreducible expression).
Then p(z) and q(z) are in the following form:

p(z) = α

J∏

j=1

(z − η j)
c j , q(z) = β

K∏

k=1

(z − ξk)
dk , (A.1)

where η1, . . . , ηJ , ξ1, . . . , ξK ∈ C are distinct and α, β ∈ C \ {0}. Each η j is a root
of f of multiplicity c j and each ξk is a pole of order dk . Note that M = deg p =
∑J

j=1 c j ≤ m and N = deg q = ∑K
k=1 dk ≤ n since f ∈ Rm,n . For simplicity we

analyze the case where L = m + n + 1.

Proposition 2 The matrix pencil A−λB = [A1, A2]−λ[B1, O] is strictly equivalent
to the matrix pencil

F(λ) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

H1(λ)

. . . ON ,m+1 ON ,n−N
HK (λ)

IM+1 OM,n−N
OL−N ,N

U (λ)
On−N ,m+1 Om−M,n−N

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (A.2)

where

Hk(λ) =

⎡

⎢
⎢
⎢
⎢
⎣

ξk − λ 1

ξk − λ
. . .

. . . 1
ξk − λ

⎤

⎥
⎥
⎥
⎥
⎦

∈ C[λ]dk×dk , (k = 1, . . . , K) (A.3)

123

http://creativecommons.org/licenses/by/4.0/

672 S. Ito, Y. Nakatsukasa

U (λ) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

−λ

1 −λ

1
. . .

. . . −λ

1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ C[λ](n−N+1)×(n−N). (A.4)

(Proof) It suffices to show that there exist nonsingular constant matrices P, Q ∈
C

L×L satisfying (A−λB)P = QF(λ). We will construct such P and Q in two steps:
(1) construct Pk, Qk ∈ C

(m+n+1)×dk satisfying

(A − λB)Pk = QkHk(λ) (A.5)

for k = 1, . . . , K , and (2) construct S ∈ C
L×(L−N), T1 ∈ C

L×(m+1) and T2 ∈
C

L×(n−N) such that (using MATLAB notation)

(A − λB)T1 = S(:, 1 : m + 1), (A.6)

(A − λB)T2 = S(:, M + 1 : n + M − N)U (λ). (A.7)

Then, P and Q defined by

P = [P1, . . . , PK , T1, T2], Q = [Q1, . . . , QK , S] (A.8)

satisfy (A − λB)P = QF(λ) .
Before discussing Step (1), let us introduce some notation. For functions g(z) in z

and sample points {γi }Li=1, define the “vector of values” as

v(g(z)) := [g(γ1), . . . , g(γL)]� ∈ C
L . (A.9)

Similarly, for p1(z) =∑n−1
j=0 a j z j ∈ Pn−1 and p2(z) =∑m

j=0 b j z j ∈ Pm , define the
“vector of coefficients” as

c(p1, p2) := [a0, . . . , an−1, b0, . . . , bm]� ∈ C
L . (A.10)

Then, it holds for arbitrary λ that

(A − λB)c(p1, p2) = v((z − λ) f (z)p1(z) + p2(z)). (A.11)

(1) We will construct Pk, Qk ∈ C
(L)×dk satisfying (A.5) for each k ∈ {1, . . . , K }.

For d = 0, 1, . . . , dk , define polynomials q(d)
k ∈ Pn−1 by

q(d)
k (z) := q(z)

d∑

j=1

1

(z − ξk) j
, (A.12)

123

Stable polefinding and rational least-squares fitting via… 673

where we define q(0)
k = 0. Then, for d = 1, . . . , dk , the polynomial q(d)

k satisfies

(z − λ) f (z)q(d)
k (z) − p(z) = p(z)

⎛

⎝
d∑

j=1

z − λ

(z − ξk) j
− 1

⎞

⎠

= p(z)

⎛

⎝
d∑

j=1

(z − ξk) + (ξk − λ)

(z − ξk) j
− 1

⎞

⎠

= p(z)

⎛

⎝(ξk − λ)

d∑

j=1

1

(z − ξk) j
+

d∑

j=1

1

(z − ξk) j−1 − 1

⎞

⎠

= p(z)

⎛

⎝(ξk − λ)

d∑

j=1

1

(z − ξk) j
+

d−1∑

j=1

1

(z − ξk) j

⎞

⎠

= (ξk − λ) f (z)q(d)
k (z) + f (z)q(d−1)

k (z).

From this equation and (A.11), we see that Pk, Qk ∈ C
(L)×dk defined by

Pk = [c(q(1)
k (z),−p(z)), . . . , c(q(dk)

k (z),−p(z))],
Qk = [v(f (z)q(1)

k (z)), . . . , v(f (z)q(dk)
k (z))] (A.13)

satisfy

(A − λB)Pk(:, 1) = (ζk − λ)Qk(:, 1),
(A − λB)Pk(:, j) = (ζk − λ)Qk(:, j) + Qk(:, j − 1), j = 2, . . . , dk,

which means that (A − λB)Pk = QkHk(λ).
(2) Define S ∈ C

L×(L−N), T1 ∈ C
L×(m+1) and T2 ∈ C

L×(n−N) by

T1 = [c(0, z0), . . . , c(0, zM−1), c(0, z0 p(z)), . . . , c(0, zm−M p(z))], (A.14)

T2 = [c(z0q(z), 0), . . . , c(zn−N−1q(z), 0)], (A.15)

S = [v(z0), . . . , v(zM−1), v(z0 p(z)), . . . , v(zm+n−N−M p(z))]. (A.16)

By substituting p1 = 0 into (A.11), we obtain (A − λB)c(0, p2(z)) = v(p2(z)) for
an arbitrary p2 ∈ Pm , which implies (A.6). Since (A.11) gives

(A − λB)c(z j−1q(z), 0) = v((z − λ) f (z)z j−1q(z)) = −λv(z j−1 p(z)) + v(z j p(z))
(A.17)

for j = 1, . . . , n − N , we have (A.7).
From (A.5), (A.6) and (A.7), P and Q defined by (A.8) satisfy (A − λB)P =

QF(λ).

123

674 S. Ito, Y. Nakatsukasa

It remains to show that P and Q are nonsingular. This is proven in the next lemma.
��

Lemma 2 The matrices P and Q defined by (A.13), (A.16), (A.14), (A.15) and (A.8)
are nonsingular.

(Proof) Since T1(1 : n, :) is a zero matrix and T1(n + 1 : m + n + 1, :) is an
upper triangular matrix with non-zero diagonal entries, P = [P1, . . . , PK , T1, T2]
is nonsingular if and only if W = [P1, . . . , PK , T2](1 : n, :) is nonsingular. We
shall prove that R is nonsingular by showing that Wx = 0 implies x = 0. Write
x = [x (1)

1 , . . . , x (d1)
1 , x (1)

2 , . . . , x (dK)
K , y1, . . . , yn−N]� ∈ C

n . If Wx = 0, from the
definitions (A.13), (A.15) of Pk and T2, all the coefficients of the polynomial

px (z) =
K∑

k=1

dk∑

j=1

x (j)
k q(j)

k (z) +
n−N∑

i=1

yi z
i−1q(z) (A.18)

are equal to zero, and hence px is the zero polynomial. Therefore, the rational function

px (z)

q(z)
=

K∑

k=1

dk∑

j=1

x (j)
k

j∑

s=1

1

(z − ξk)s
+

n−N∑

i=1

yi z
i−1 =

K∑

k=1

dk∑

s=1

∑dk
j=s x

(j)
k

(z − ξk)s
+

n−N∑

i=1

yi z
i−1

(A.19)

is also the zero function. This means that

dk∑

j=s

x (j)
k = 0 (k = 1, . . . , K , s = 1, . . . , dk), (A.20)

yi = 0 (i = 1, . . . , n − N), (A.21)

which implies that all the elements in x are zero. It follows from the above argument
that P is nonsingular.

We prove that Q is nonsingular similarly by showing that Qx = 0 implies x = 0.
Write x = [x (1)

1 , . . . , x (d1)
1 , x (1)

2 , . . . , x (dK)
K , y1, . . . , yM , w1, . . . , wm+n−M−N+1]� ∈

C
m+n+1. If Qx = 0, from the definitions (A.13) and (A.16) of Qk and S, we have

gx (z) :=
K∑

k=1

dk∑

j=1

x (j)
k f (z)q(j)

k (z) +
M∑

i=1

yi z
i−1 +

m+n−M−N+1∑

l=1

wl z
l−1 p(z) = 0

(A.22)

123

Stable polefinding and rational least-squares fitting via… 675

for z = γ1, . . . , γm+n+1. By multiplying q(z) to both sides, we have

hx (z) := q(z)gx (z) =
K∑

k=1

dk∑

j=1

p(z)x (j)
k q(j)

k (z) +
M∑

i=1

yi z
i−1q(z)

+
m+n−M−N+1∑

l=1

wl z
l−1q(z)p(z) = 0 (A.23)

for z = γ1, . . . , γm+n+1. Since hx is a polynomial of degree at most m + n and take
on the value 0 at m + n + 1 distinct points, hx must be the zero polynomial. Using
this fact we obtain x = 0 as in the case of P , and hence Q is nonsingular. ��

Corollary 1 The Kronecker canonical form of the pencil A − λB is as follows:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

H1(λ)

. . .

HK (λ)

Is1
Js2(λ)

L1(λ)

. . .

Ls3(λ)

Os3,2s3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (A.24)

where s1 = M + max{0,m − n − M + N }, s2 = max{0,−m + n + M − N } + 1,
s3 = min{m − M, n − N },

Js2(λ) =

⎡

⎢
⎢
⎢
⎢
⎣

1 −λ

1
. . .

. . . −λ

1

⎤

⎥
⎥
⎥
⎥
⎦

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

s2, (A.25)

L j (λ) = [1,−λ], j = 1, . . . , s3 (A.26)

and Hj (λ) is defined by (A.3) .

123

676 S. Ito, Y. Nakatsukasa

(Proof) We can transform the (m + n − N) × (m + n − N) lower-right block of
L(λ) to obtain the Kronecker canonical form as follows:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1 −λ

1 1 −λ

1 1 −λ

1 −λ

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−→
erase s3 1’s

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1 −λ

1 −λ

1 −λ

1 −λ

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−→
column

permutation

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1 −λ

1 −λ

1 −λ

1 −λ

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−→
row

permutation

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1 −λ

1 −λ

1
1 −λ

1 −λ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

B Rank of the rational interpolation matrix

Here we analyze the rank of the matrix in (2.6) and derive (3.2). For a ratio-
nal function f = r sampled at {γ1, . . . , γL}, define Cmn(r) ∈ C

L×(m+n+2) by
Cmn(r) = [FVn+1, Vm+1], where F = diag(r(γ1), . . . , r(γL)). Then we have

range(Cmn(r)) = {v(rp1 + p2) | p1 ∈ Pn, p2 ∈ Pm}, (B.1)

where we define v(h) = [h(γ1), . . . , h(γL)]� ∈ C
L for functions h.

In this section we focus on the case where r is a rational function, and assume
that r does not have poles coinciding with the sample points γ1, . . . , γL . When r =
p/q is an irreducible expression, the degrees M, N of p, q are uniquely determined,
dependening only on r . For these M and N , we say that r is of exact type (M, N).

Below we summarize the properties of the matrix Cmn(r) when r is a rational
function of exact type (M, N) and has an irreducible expression r = p/q. Note that
r is not necessarily inRmn .

From (B.1), we have

range(Cmn(r)) = {v((pp1 + qp2)/q) | p1 ∈ Pn, p2 ∈ Pm}. (B.2)

Let D := max{M + n,m + N }. Defining a subspace Q of PD by

Q := {pp1 + qp2 | p1 ∈ Pn, p2 ∈ Pm}, (B.3)

123

Stable polefinding and rational least-squares fitting via… 677

we obtain

range(Cmn(r)) = {v(p3/q) | p3 ∈ Q}. (B.4)

Lemma 3 If r ∈ Rmn, i.e., M ≤ m and N ≤ n, then Q = PD.

(Proof) It suffices to show that dimQ ≥ D + 1. Since Q = pPn + qPm , we have

dim(Q) = dim(pPn) + dim(qPm) − dim(pPn ∩ qPm)

= m + n + 2 − dim(pPn ∩ qPm). (B.5)

Since p and q are relatively prime, any polynomial in pPn ∩ qPm is a multiple
of pq. Hence, we have pPn ∩ qPm ⊆ pqPd , where d = min{m − M, n − N }.
This means dim(pPn ∩ qPm) ≤ dimPd = d + 1, and hence by (B.5) dim(Q) ≥
m + n + 2 − (d + 1) = D + 1. �

Lemma 4 If r does not belong toRmn, i.e., M > m or N > n, thendimQ = m+n+2.

(Proof) This follows from (B.5) and the fact that pPn ∩ qPm = {0}. �
We now prove results on the rank of the matrix Cmn(r) that we use for finding the

type of the rational approximant r in our algorithm. The first result shows that if we
take m, n large enough so that m ≥ M, n ≥ N , then the rank of Cmn(r) gives the
information on M, N .

Proposition 3 Assume that r ∈ Rmn is of exact type (M, N) and r = p/q is an
irreducible expression of r . Then, we have

range(Cmn(r)) = {v(p1/q) | p1 ∈ PD}, (B.6)

where D = max{M + n,m + N }.
(Proof) This follows immediately from (B.4) and Lemma 3. �

Note thatm ≥ M, n ≥ N is impliedby the assumptions inProposition3. From (B.6)
we see that the rank of Cmn(r) is

rank(Cmn(r)) = D + 1, (B.7)

as long as L ≥ D+1, which always holds in our algorithm in which L ≥ m+n+1 ≥
D+1. Thus we obtain dim null(C) = m+n+2−(D+1) = min(m−M, n−N)+1,
which is (3.2).

The next result shows that if we do not takem, n large enough then this is indicated
by Cmn(r) not having a null vector, provided we still sample at sufficiently many
points.

Proposition 4 Suppose that r of exact type (M, N) does not belong to Rmn, i.e.,
M > m or N > n. If L ≥ max{M + n,m + N } + 1, then the rank of Cmn(r) is equal
to m + n + 2, i.e., Cmn(r) has full column rank.

123

678 S. Ito, Y. Nakatsukasa

(Proof) This follows from (B.4) and Lemma 4. �
The above two propositions indicate that we can obtain the type (M, N) of r by

combining (1) sufficient sample points, and (2) adjusting m, n so that Cmn(r) has null
space of exactly dimension 1. This is the crux of the degree determination process
described in Sect. 3.1.

B.1 Analysis of our generalized eigenvalue problem

The above results provide information on the building-block eigenvalue problem (4.4)
in terms of its regularity and eigenvalues. We say that a (possibly rectangular) matrix
pencil A − λB is regular if the matrix A − λB has full column rank for some value
of λ.

Proposition 5 Suppose that f is a rational function of exact type (M, N)with M ≤ m
and N ≤ n, and L ≥ m + n + 1. If M = m or N = n, then the matrix pencil
[A1, A2] − λ[B1, O] is regular and its finite eigenvalues coincide with the poles of f .

(Proof) The matrix pencil [A1, A2] − λ[B1, O] is equal to Cm,n−1((z − λ) f (z)).
If λ is a pole of f , then (z−λ) f (z) is of exact type (M, N − 1), and consequently,

we have

rank(Cm,n−1((z − λ) f (z))) = max{M + n − 1,m + N − 1} + 1 = m + n

by Proposition 3, hence Cm,n−1((z − λ) f (z)) is rank deficient.
Conversely, if λ is not a pole of f , then (z − λ) f (z) is of exact type (M + 1, N),

and hence by Proposition 4, Cm,n−1((z − λ) f (z))) has full column rank. �
We are thus able to correctly compute the poles of f provided that we take one of

m, n to be the correct value M, N .

C Condition number of eigenvalues

Here we analyze the condition number of the eigenvalues of the matrix pencil
[A1, A2] − λ[B1, O], which here we write simply as A − λB. For simplicity we
focus on the case where the sample points are roots of unity, and examine the condi-
tioning as n is fixed and the number of sample points grow along with m. We shall
show that the eigenvalues outside the unit disk become increasingly ill-conditioned,
which explains the observation in Fig. 7.

Assume that f = p/q is irreducible and f has N simple poles ξ1, . . . , ξN . We
consider the square generalized eigenvalue problem (4.4) where n = N (i.e., the
denominator degree is fixed to the correct value), L = m + n + 1 and {γ j }Lj=1 =
{exp(2π i · j/L)}Lj=1. For m ≥ M , A − λB has eigenvalue equal to ξk for each k. We
will investigate how the condition number of each eigenvalue ξk change, when we
increase m (and hence also L = m + n + 1).

The absolute condition number of a simple eigenvalues of a matrix pencil A−λB is
known [45] to be proportional to ‖x‖‖y‖/|y�Bx |, where y and x are the corresponding
left and right eigenvectors. Thus we need to identify the eigenvectors for ξk .

123

Stable polefinding and rational least-squares fitting via… 679

The right eigenvector xk such that [A1, A2]xk = ξk[B1, O]xk is given by xk =
[c�

q̃ , c�
p]�, where q̃(z) = q(z)/(z − ξk). This xk satisfies Bxk = v(f q̃).

To find the left eigenvector, first note that as in Proposition 3 we have

range(A − ξk B) = {v(p1/q̃) | p1 ∈ PL−2}.

Now since {γ j } are Lth roots of unity, the vector

y�
k = [q̃(γ1)γ1, . . . , q̃(γL)γL]

satisfies y�
k (A − ξk B) = 0, indicating yk is the left eigenvector.

Hence, we have

y�
k Bxk = y�

k B1cq̃ =
L∑

j=1

f (γ j)q̃(γ j)
2γ j =

L∑

j=1

p(γ j)q̃(γ j)
2γ j

q(γ j)

=
L∑

j=1

p(γ j)q̃(γ j)γ j

γ j − ξk
. (C.1)

This implies that y�
k Bxk/L is an approximate value of

I = 1

2π i

∫

|z|=1

p(z)q̃(z)

z − ξk
dz =

{
0 (|ξk | > 1)
p(ξk)q̃(ξk) (|ξk | < 1).

(C.2)

In fact, the trapezoidal rule approximation to I with sample points {γ1, γ2, . . . , γL} is
given by

IL = 1

2π i

L∑

j=1

p(γ j)q̃(γ j)

γ j − ξk

2π iγ j

L
= 1

L

L∑

j=1

p(γ j)q̃(γ j)γ j

γ j − ξk
= y�

k Bxk
L

. (C.3)

Now suppose that |ξk | > 1, that is, ξk lies outside the unit disk. Then, the integrand is
analytic in the disc |z| < |ξ | and have a simple pole on the circle |z| = |ξ |, and hence
the trapezoidal rule approximation satisfies (see [49] for the trapezoidal rule and its
properties)

|IL − I | = O(|ξk |−L). (C.4)

From (C.2), (C.3) and (C.4), we have

y�
k Bxk = O(L|ξk |−L). (C.5)

123

680 S. Ito, Y. Nakatsukasa

Furthermore, since ‖yk‖ = 	(
√
L) and ‖xk‖ = Ω(1), the condition number κ(ξk) of

the eigenvalue ξk satisfies

κ(ξk) = ‖yk‖‖xk‖
|yk Bxk | = Ω(L− 1

2 |ξk |L) for |ξk | > 1. (C.6)

This means that the condition numbers of eigenvalues outside the unit circle grow
exponentially as we use more sample points.

On the other hand, if the eigenvalue ξk is inside the unit disk, i.e., |ξk | < 1, then
the condition number of ξk behaves differently. Indeed, since we have

lim
L→∞

y�
k Bxk
L

= I �= 0, (C.7)

we see that the condition number of the eigenvalue ξk satisfies

κ(ξk) = ‖yk‖‖xk‖
|yk Bxk | = O(L− 1

2) for |ξk | < 1. (C.8)

This is in sharp contrast to (C.6). Equations (C.6) and (C.8) imply that, when the
number of sample points grows, the computed eigenvalues outside the unit disk lose
accuracy exponentially, while those inside do not.

We confirmed this in our numerical experiments as the figures in Sect. 6 show.

References

1. Antoulas, A.C., Anderson, B.D.Q.: On the scalar rational interpolation problem. IMA J. Math. Control
Inf. 3(2–3), 61–88 (1986)

2. Aurentz, J.L., Trefethen, L.N.: Chopping a Chebyshev Series. ArXiv e-prints 1512.01803. Submitted
to ACM Trans. Math. Softw. (2015)

3. Austin, A.P., Kravanja, P., Trefethen, L.N.: Numerical algorithms based on analytic function values at
roots of unity. SIAM J. Numer. Anal. 52(4), 1795–1821 (2014)

4. Austin, A.P., Trefethen, L.N.: Computing eigenvalues of real symmetric matrices with rational filters
in real arithmetic. SIAM J. Sci. Comput. 37(3), A1365–A1387 (2015)

5. Barnett, S.: Polynomials and Linear Control Systems. Marcel Dekker Inc., New York (1983)
6. Battles, Z., Trefethen, L.N.: An extension of MATLAB to continuous functions and operators. SIAM

J. Sci. Comput. 25(5), 1743–1770 (2004)
7. Berljafa, M., Güttel, S.: Generalized rational Krylov decompositions with an application to rational

approximation. SIAM J. Matrix Anal. Appl. 36(2), 894–916 (2015)
8. Berljafa, M., Güttel, S.: The RKFIT algorithm for nonlinear rational approximation, MIMS EPrint

2015.38 (2015)
9. Berrut, J.-P., Baltensperger, R., Mittelmann, H.D.: Recent developments in barycentric rational inter-

polation. In: Trends and Applications in Constructive Approximation, pp. 27–51. Springer (2005)
10. Berrut, J.-P., Mittelmann, H.D.: Matrices for the direct determination of the barycentric weights of

rational interpolation. J. Comput. Appl. Math. 78(2), 355–370 (1997)
11. Berrut, J.-P., Trefethen, L.N.: Barycentric Lagrange interpolation. SIAM Rev. 46(3), 501–517 (2004)
12. Braess, D.: Nonlinear Approximation Theory. Springer, Berlin (1986)
13. Cauchy, A.L.: Sur la formule de Lagrange relative á l’interpolation. Analyse algebraique, Paris (1821)
14. Dahlquist, G., Björck, A., Anderson, N.: Numerical Methods. Prentice-Hall, Englewood Cliffs (1974)
15. Delves, L.M., Lyness, J.N.: A numerical method for locating the zeros of an analytic function. Math.

Comput. 21, 543–560 (1967)

123

http://arxiv.org/abs/1512.01803

Stable polefinding and rational least-squares fitting via… 681

16. Demmel, J.: The condition number of equivalence transformations that block diagonalize matrix pen-
cils. SIAM J. Numer. Anal. 20(3), 599–610 (1983)

17. Demmel, J.: Applied Numerical Linear Algebra. SIAM, Philadelphia (1997)
18. Driscoll, T.A., Hale, N., Trefethen, L.N.: Chebfun Guide. Pafnuty Publications, Oxford (2014)
19. Golub, G.H., Van Loan, C.F.: Matrix Computations, 4th edn. The Johns Hopkins University Press,

Baltimore (2012)
20. Gonnet, P., Güettel, S., Trefethen, L.N.: Robust padé approximation via SVD. SIAM Rev. 19(2),

160–174 (2013)
21. Gonnet, P., Pachón, R., Trefethen, L.N.: Robust rational interpolation and least-squares. Electron.

Trans. Numer. Anal. 38, 146–167 (2011)
22. Good, I.J.: The colleague matrix, a Chebyshev analogue of the companion matrix. Q. J. Math. 12(1),

61–68 (1961)
23. Higham, N.J.: Accuracy and Stability of Numerical Algorithms, 2nd edn. SIAM, Philadelphia (2002)
24. Hochman, A., Leviatan, Y., White, J.K.: On the use of rational-function fitting methods for the solution

of 2d laplace boundary-value problems. J. Comput. Phys. 238, 337–358 (2013)
25. Ito, S., Murota, K.: An algorithm for the generalized eigenvalue problem for nonsquare matrix pencils

by minimal perturbation approach. SIAM J. Matrix Anal. Appl. 37(1), 409–419 (2016)
26. Jacobi, C.G.J.: Über die Darstellung einer Reihe gegebner Werthe durch eine gebrochne rationale

Function. Journal für die reine und angewandte Mathematik 30, 127–156 (1846)
27. Kravanja, P., Sakurai, T., Van Barel, M.: On locating clusters of zeros of analytic functions. Bit Numer.

Math. 39(4), 646–682 (1999)
28. Kravanja, P., Van Barel, M.: A derivative-free algorithm for computing zeros of analytic functions.

Computing 63(1), 69–91 (1999)
29. Kravanja, P., Van Barel, M.: Computing the Zeros of Analytic Functions. Number Lecture Notes in

Math, p. 1727. Springer, Berlin (2000)
30. Martins, N., Lima, L.T.G., Pinto, H.J.C.P.: Computing dominant poles of power system transfer func-

tions. IEEE Trans. Power Syst. 11(1), 162–170 (1996)
31. Moler, C.B., Stewart, G.W.: An algorithm for generalizedmatrix eigenvalue problems. SIAM J. Numer.

Anal. 10(2), 241–256 (1973)
32. Nakatsukasa, Y., Noferini, N.: On the stability of computing polynomial roots via confederate lin-

earizations, MIMS EPrint 2014.49. To appear in Math. Comput. (2014)
33. Nakatsukasa, Y., Sète, O., Trefethen, L.N.: The AAA algorithm for rational approximation. Technical

report. Submitted to SIAM J. Sci. Comput. (2016)
34. Needham, T.: Visual Complex Analysis. Oxford University Press, Oxford (1998)
35. Pachón, R., Gonnet, P., Van Deun, J.: Fast and stable rational interpolation in roots of unity and

Chebyshev points. SIAM J. Numer. Anal. 50(3), 1713–1734 (2012)
36. Polizzi, E.: Density-matrix-based algorithm for solving eigenvalue problems. Phys. Rev. B 79(11),

115112 (2009)
37. Powell, M.J.D.: Approximation Theory and Methods. Cambridge University Press, Cambridge (1981)
38. Rommes, J., Martins, N.: Efficient computation of transfer function dominant poles using subspace

acceleration. IEEE Trans. Power Syst. 21(3), 1218 (2006)
39. Rudelson, M., Vershynin, R.: Non-asymptotic theory of random matrices: extreme singular values.

In: Proceedings of the International Congress of Mathematicians, vol. III, pp. 1576–1602. Hindustan
Book Agency, New Delhi (2010). ArXiv:1003.2990

40. Sakurai, T., Sugiura, H.: A projection method for generalized eigenvalue problems using numerical
integration. J. Comput. Appl. Math. 159(1), 119–128 (2003)

41. Schneider, C., Werner, W.: Some new aspects of rational interpolation. Math. Comput. 47(175), 285–
299 (1986)

42. Stahl, H.: The convergence of Padé approximants to functions with branch points. J. Approx. Theory
91(2), 139–204 (1997)

43. Stewart, G.W., Sun, J.-G.: Matrix Perturbation Theory (Computer Science and Scientific Computing).
Academic Press, Cambridge (1990)

44. Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis. Springer, Berlin (2002)
45. Tisseur, F.: Backward error and condition of polynomial eigenvalue problems. Linear Algebra Appl.

309(1), 339–361 (2000)
46. Trefethen, L.N.: Spectral Methods in MATLAB. SIAM, Philadelphia (2000)
47. Trefethen, L.N.: Approximation Theory and Approximation Practice. SIAM, Philadelphia (2013)

123

http://arxiv.org/abs/1003.2990

682 S. Ito, Y. Nakatsukasa

48. Trefethen, L.N.: The doublelength flag. Chebfun examples (2015). http://www.chebfun.org/examples/
cheb/DoublelengthFlag.html

49. Trefethen, L.N., Weideman, J.A.C.: The exponentially convergent trapezoidal rule. SIAM Rev. 56(3),
385–458 (2014)

50. VanDer Sluis, A.: Condition numbers and equilibration ofmatrices. Numer.Math. 14(1), 14–23 (1969)
51. Van Dooren, P., Dewilde, P.: The eigenstructure of an arbitrary polynomial matrix: computational

aspects. Linear Algebra Appl. 50, 545–579 (1983)
52. Wilkinson, J.H.: The perfidious polynomial. In: Golub, G.H. (ed.) Studies in Numerical Analysis, pp.

1–28. Mathematical Association of America, Washington, DC (1984)

123

http://www.chebfun.org/examples/cheb/DoublelengthFlag.html
http://www.chebfun.org/examples/cheb/DoublelengthFlag.html

	Stable polefinding and rational least-squares fitting via eigenvalues
	Abstract
	1 Introduction
	2 Existing methods for rational interpolation and least-squares fitting
	2.1 Naive method
	2.2 Chebfun's ratinterp-.4
	2.3 RKFIT
	3 Automatic type determination via oversampling
	3.1 Type determination by oversampling and examining singular values
	3.2 Experiments with oversampling for degree determination
	3.3 Interpretations as optimization problems

	4 Polefinding via a generalized eigenvalue problem
	4.1 Formulating polefinding as an eigenproblem
	4.2 Techniques for efficient and stable solution of eigenproblem
	4.3 Oversampling and least-squares fitting
	4.4 Pseudocode
	4.4.1 Efficiency

	4.5 Input/output parameters
	4.5.1 Outputs

	4.6 Computing the roots
	4.7 Finding cp,cq
	4.8 Mathematical equivalence with previous algorithms: interpolation-based and Hankel eigenproblem

	5 Numerical stability
	5.1 Instability of previous algorithms
	5.2 Diagonal scaling and stability of ratfun-.4 and scaled naive method
	5.3 Accuracy of polefinder and effect of orthogonalization

	6 Numerical experiments
	Acknowledgements
	A The Kronecker canonical form
	B Rank of the rational interpolation matrix
	B.1 Analysis of our generalized eigenvalue problem
	C Condition number of eigenvalues
	References

