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Abstract The discontinuous Petrov–Galerkin method is a minimal residual method
with broken test spaces and is introduced for a nonlinear model problem in this paper.
Its lowest-order version applies to a nonlinear uniformly convex model example and
is equivalently characterized as a mixed formulation, a reduced formulation, and a
weighted nonlinear least-squares method. Quasi-optimal a priori and reliable and effi-
cient a posteriori estimates are obtained for the abstract nonlinear dPG framework
for the approximation of a regular solution. The variational model example allows
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for a built-in guaranteed error control despite inexact solve. The subtle uniqueness of
discrete minimizers is monitored in numerical examples.

Mathematics Subject Classification 47H05 · 49M15 · 65N12 · 65N15 · 65N30

1 Introduction

The discontinuous Petrov–Galerkin methodology (dPG) has recently been introduced
with the intention to design the optimal test spaces in a Petrov–Galerkin scheme for
maximal stability. On the continuous level, the weak form of a PDE may assume the
general form b(u, ·) = F with a unique solution u in some real Banach space X and
some bilinear form b : X × Y → R for some real Hilbert space Y with scalar product
a : Y × Y → R and a given right-hand side F ∈ Y ∗, the dual to Y . Well-posedness is
understood to lead to an inf-sup condition on the continuous level. Given some discrete
trial space Xh ⊂ X , the restriction b|Xh×Y clearly satisfies the inf-sup condition (even
with a possibly slightly better inf-sup constant) but it is less clear how to choose the
best trial space Mh , i.e. some subspace, Mh ⊂ Y such that

0 < β(Xh, Mh) := inf
xh∈Xh

sup
yh∈Mh

b(xh, yh)

‖xh‖X‖yh‖Y
(1.1)

is maximal under the condition that dim(Xh) = dim(Mh) is fixed. The idealized dPG
method computes the optimal test space utilizing some Riesz representations in the
infinite-dimensional Hilbert spaceY [18]. The practical realization utilizes, first, a test-
search space Yh ⊂ Y with dimension n = dim(Yh) much larger than the dimension
m = dim(Xh) of the trial space Xh and, second, aminimal residualmethod to compute
the discrete solution as a minimizer

xh ∈ argmin
ξh∈Xh

‖F − b(ξh, • )‖Y ∗
h
. (1.2)

The method is in fact equivalent to a Petrov–Galerkin scheme with the bilinear form
restricted to Xh × Mh for an appropriate subspace Mh ⊂ Yh of dimensionm as pointed
out in [8, Thm. 3.3]. Therefore, the large discrete space Yh (which is an input of the
dPG scheme) is called test-search space [17] and the (implicit) test space Mh is not
visible in (1.2).

The computation of xh in (1.2) is equivalent to solving the normal equations and
so possibly expensive. This guided Demkowicz and Gopalakrishnan [19] to break the
norms in the test (and ansatz) spaces [6]. This allows a parallel computation of the
dual norm separately for each individual element domain. As it stands today, the term
dPG abbreviates “discontinuous Petrov–Galerkin” and stands for a minimal residual
method with broken test or ansatz functions and solely outlines a paradigm. The dPG
methodology allows various weak and ultra-weak formulations, where X and Y are
completely different and b is not at all symmetric. The least-squares finite element
methods can be seen as a (degenerated) subset of (an idealized) dPGwith a degenerated
test space in which the Lebesgue norm can be evaluated exactly.
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Nonlinear discontinuous Petrov–Galerkin methods 531

To the best knowledge of the authors, not much is known about nonlinear versions
of themethodology. One first choice is to linearize the problem and then apply the dPG
schemes to the linear equations to generalize the Gauss-Newton method. There exist
already suggestions for nonlinear applications, in which there are constraints plus a
linear problem, e.g., for the contact problem in [21]. Concepts of nonlinear dPG in
fluid mechanics have been discussed in [16]. Another usage of the term nonlinear is in
nonlinear approximation theory and there is the contribution [22] on linear problems
with an attempt to replace theHilbert spaceY by someuniformly convexBanach space.

This paper introduces a direct nonlinear dPG methodology and replaces the above
bilinear form b by some nonlinear mapping b : X × Y → R, which is linear and
bounded in the second component to allow the computation of the dual norm in the
minimal residual method. To stress the nonlinear dependence in the first component
in X , the notation in this papers follows [24] and separates the linear components by
a semi-colon so that the nonlinear dPG method replaces b(ξh, • ) in (1.2) by b(ξh; • ).

The simplest case study for the nonlinear dPG methodology is an energy mini-
mization problem with some Hilbert space setting and a nonlinearity with quadratic
growth in the gradient. The scalar model example of this paper stands for a larger class
of Hencky materials [28, Sect. 62.8] and is the first model problem in line towards
real-life applications with a matrix-valued stress σ(F) given as a nonlinear function
of some deformation gradient F (such as the gradient ∇u of the displacement u) and
the remaining equilibration equation

f + div σ(∇u) = 0 a.e. in Ω (1.3)

for some prescribed source term f in the domainΩ . Although the existence of discrete
solutions xh to (1.2) follows almost immediately, the closeness of xh to some contin-
uous solution x is completely open (cf. Remark 2.11 below for a brief discussion).

One critical point is the role of the stability condition (1.1) in the nonlinear setting
for a regular solution and its low-order discretizations (as the most natural first choice
for nonlinear problems, partly because of limited known regularity properties). In the
situation of the model scenario (1.3), the discrete stability follows from the stability
of the continuous form for piecewise constant ∇uh and so the local discrete stability
simply follows from the linearization.

The overall structure of the nonlinear dPG of the type (1.2) but for a nonlinear map
b with derivative b′ with respect to the first variable is also characterized as a nonlinear
mixed formulation with solution (xh, yh) ∈ Xh × Yh to

a(yh, ηh) + b(xh; ηh) = F(ηh) for all ηh ∈ Yh,

b′(xh; ξh, yh) = 0 for all ξh ∈ Xh .
(M)

Another characterization in the lowest-order cases under consideration is that as a
weighted least-squares functional on Courant finite element functions S1

0(T ) with
homogeneous Dirichlet boundary values and the Raviart–Thomas finite element
functions RT0(T ) with some mesh-dependent piecewise constant weight S0 ∈
P0(T ;Rn×n)

123



532 C. Carstensen et al.

(uC, pRT) ∈ argmin
(vC,qRT)∈S10 (T )×RT0(T )

(
‖Π0 f + div qRT‖2L2(Ω)

+ ‖(In×n + S0)
−1/2(Π0qRT − σ(∇vC) + Π0( f (id−mid(T )))

)‖2L(Ω)

)
.

This is already a new result even for the linear cases in [9,13] and opens the door to a
convergence analysis of adaptive algorithms via a generalization of [11,14].

This paper contributes the aforementioned equivalent characterizations and a first
convergence analysis in the natural norms. The a priori result is local quasi-optimal
convergence for the simple model problem in that any discrete solution xh ∈ Xh ,
sufficiently close to the exact regular solution x ∈ X , satisfies

‖x − xh‖X � inf
ξh∈Xh

‖x − ξh‖X .

It has been discussed in [5,9,13] that the norm of the computed residual ‖yh‖Y =
‖F −b(vC , qRT; • )‖Y ∗

h
is almost a computable error estimator for linear problems and

this paper extends it to the a posteriori error estimate

‖p − qRT‖2H(div,Ω) + ~u − vC~2 ≈ ‖F − b(vC , qRT; • )‖2Y ∗
h

+‖(1 − Π0) f ‖2L2(Ω)
+ ‖(1 − Π0)qRT‖2L2(Ω)

(1.4)

for the nonlinear model problem (1.3). Since ‖F −b(vC , qRT; • )‖Y ∗
h
is the computable

residual, this leads to built-in error control despite inexact solve: The discrete quantities
(vC , qRT) in (1.4) do not need to solve the nonlinear dPG discrete problem.

The analysis is given for the primal version of the nonlinear dPG for brevity but
applies to the other formulations of Sect. 4.4 as well. The results of this paper can
be generalized, e.g., to the Hencky material [28, Sect. 62.8], and then applied to
more complicated real-life computational challenges where the advantages of the dPG
methodology are more striking.

The remaining parts of of this paper are organised as follows. Section 2 discusses
an abstract framework for different equivalent formulations of a dPG method for
nonlinear problems and develops an abstract a priori estimate. Section 3 presents a
model problem with a dPG discretization. Section 4 analyses this discretization and
gives proofs of the existence of a solution and an a posteriori error estimate. Some
numerical examples in Sect. 5 conclude the paper.

This paper employs standard notation of Sobolev and Lebesgue spaces Hk(Ω),
H(div,Ω), L2(Ω), and L∞(Ω) and the corresponding spaces of vector- or
matrix-valued functions Hk(Ω;Rn), L2(Ω;Rn), L∞(Ω;Rn), Hk(Ω;Rn×n),
H(div,Ω;Rn×n), L2(Ω;Rn×n), and L∞(Ω;Rn×n). For any regular triangulation
T of Ω , let Hk(T ) := ∏

T ∈T Hk(T ) := {v ∈ L2(Ω) | ∀T ∈ T , v|T ∈ Hk(T )}
denote the piecewise (or broken) Sobolev spaces and (∇NC v)

∣∣
T = ∇(v

∣∣
T ) on T ∈ T

the piecewise gradient for v ∈ H1(T ). Let ~ •~ := | • |H1(Ω) = ‖∇ • ‖L2(Ω) abbre-
viate the energy norm. For every Hilbert space X , let ( • , • )X denote the associated
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Nonlinear discontinuous Petrov–Galerkin methods 533

inner product and, for every normed space (X, ‖ • ‖X ), S(X) := {x ∈ X | ‖x‖X = 1}
the sphere in X . The measure | • | is context-dependent and refers to the number of
elements of some finite set or the length |E | of an edge E or the area |T | of some
triangle T and not just themodulus of a real number or the Euclidean length of a vector.

Throughout the paper, A � B abbreviates the relation A ≤ C B with a generic con-
stant 0 < C , which does not depend on the mesh-size of the underlying triangulation
T but solely on the initial triangulation T0; A ≈ B abbreviates A � B � A, e.g., in
(1.4).

2 Abstract framework

This section analyses an abstract nonlinear dPG method and presents an a priori error
estimate.

2.1 Abstract nonlinear dPG

For an open set D 
= ∅ in a real Banach space X and a real Hilbert space Y with
scalar product a : Y × Y → R, let B ∈ C1(D; Y ∗) be a differentiable nonlinear map
with Fréchet derivative DB(x) ∈ L(X; Y ∗) at x ∈ D. With the duality bracket 〈 • , • 〉
in Y , associate the nonlinear map b : X × Y → R, b(x; • ) := 〈B(x), • 〉, which is
linear and bounded in the second component. Let b′(x; • ) abbreviate the derivative
DB(x) ∈ L(X; Y ∗) with b′(x; ξ, η) := 〈DB(x; ξ), η〉 for x ∈ D, ξ ∈ X, η ∈ Y .

Given F ∈ Y ∗, let x ∈ D be a regular solution to the problem B(x) = F in Y ∗.
That means that x solves B(x) = F and the Fréchet derivative DB at x is a bijection
from X to Y ∗. The latter implies the inf-sup condition for the Fréchet derivative at the
regular solution x , namely,

0 < β(x) := inf
ξ∈S(X)

sup
η∈S(Y )

b′(x; ξ, η). (2.1)

The minimal residual formulation of the continuous problem seeks x ∈ X with

x ∈ argmin
ξ∈D

‖F − B(ξ)‖Y ∗ . (2.2)

The existence of a solution x to (2.2) is immediate from the assumption B(x) = F . In
particular, the minimum is zero and any minimizer x in (2.2) solves B(x) = F . The
situation is (in general) different on the discrete level with some discrete subspaces
Xh ⊂ X and Yh ⊂ Y , the dPG scheme seeks a minimizer xh ∈ Dh := Xh ∩ D of the
residual F − B(ξh) in the norm of Y ∗

h ,

xh ∈ argmin
ξh∈Dh

‖F − B(ξh)‖Y ∗
h
. (dPG)
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534 C. Carstensen et al.

The existence of a solution to (dPG) requires further assumptions and follows in
Proposition 4.3 for a model problem.

2.2 Derivation of nonlinear dPG

A formal Lagrange ansatz leads to the minimization of the Lagrange functional L :
Dh × Yh × R → R defined for (xh, yh, λ) ∈ Xh × Yh × R by

L(xh, yh, λ) := F(yh) − b(xh; yh) − λ

2

(
a(yh, yh) − 1

)
.

The stationary points xh ∈ Dh , yh ∈ Yh , and λ ∈ R of L are characterized by the first
derivatives of L with respect to each argument in the sense that, for all ηh ∈ Yh and
ξh ∈ Xh ,

λa(yh, ηh) + b(xh; ηh) = F(ηh), b′(xh; ξh, yh) = 0, a(yh, yh) = 1.

For ηh = yh , this implies λ = F(yh) − b(xh; yh). The substitution of yh by λyh leads
to a modified system of equations. The resulting mixed formulation of the nonlinear
dPG method seeks xh ∈ Xh and yh ∈ Yh with

a(yh, ηh) + b(xh; ηh) = F(ηh) for all ηh ∈ Yh,

b′(xh; ξh, yh) = 0 for all ξh ∈ Xh .

Notice that this is known for linear problems (there, b = b′(xh; • )) [17, Sect. 2.3].

2.3 Equivalent mixed formulation

It is known in linear problems that the dPGmethod is equivalent to the mixed problem
(M) and this is generalized in this subsection to the nonlinear problem B(x) = F at
hand. Any local (or global) minimizer of Φ(ξh) := ‖F − Bξh‖2Y ∗

h
/2 is a stationary

point of Φ.

Definition 2.1 (stationary point) Any xh ∈ Dh := D ∩ Xh is a stationary point of the
dPG discretization (dPG) if any directional derivative of Φ(ξh) := ‖F − Bξh‖2Y ∗

h
/2

vanishes at xh , i.e., limδ→0(Φ(xh + δξh) − Φ(xh))/δ = 0 for all ξh ∈ Xh .

Stationary points are exactly the solutions to (M).

Theorem 2.2 ((dPG) ⇔ (M))

(a) Suppose xh is a stationary point of (dPG) and yh is the residual’s Riesz repre-
sentation (i.e. a(yh, • ) = F − b(xh; • )) in Yh. Then (xh, yh) solves (M).

(b) Suppose that (xh, yh) solves (M), then xh is a stationary point of (dPG).
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Nonlinear discontinuous Petrov–Galerkin methods 535

Proof (a) For any ξh ∈ Dh , the unique Riesz representation �h(ξh) ∈ Yh of the
residual F − b(ξh; • ) ∈ Y ∗

h satisfies

Φ(ξh) = 1

2
‖�h(ξh)‖2Y .

Given the stationary point xh ∈ Dh to (dPG) and ξh ∈ Xh , consider Φ(xh + tξh) as
a scalar function of the real parameter t with a derivative zero at t = 0. For |t | small
such that xh(t) := xh + tξh ∈ Dh and yh(t) := �h(xh(t)), it follows

a(yh(t), • ) + b(xh(t); • ) = F in Y ∗
h .

A differentiation with respect to t shows for ẏh := ∂yh(0)/∂t and ẋh := ∂xh(0)/∂t =
ξh that ẏh exists and is the Riesz representation of −b′(xh; ξh, • ) = a(ẏh, • ) in Yh .
Therefore, Φ(xh(t)) = a(yh(t), yh(t))/2 is differentiable and the derivative vanishes
at t = 0, which leads to

0 = a(ẏh, yh) for yh := yh(0).

It follows that

b′(xh; ξh, yh) = 0 for all ξh ∈ Xh .

Since yh = yh(0) = �h(xh), (xh, yh) solves (M).
(b) Conversely, if (xh, yh) solves (M) then, for any ξh ∈ Dh and the above notation

for the Riesz representation yh(t) of F − Bxh(t) in Yh ,

‖F − Bxh(t)‖2Y ∗
h

= a(yh(t), yh(t)) = F(yh(t)) − b(xh(t); yh(t))

has a derivative with respect to t at t = 0, namely, for yh := yh(0)

2 a(ẏh, yh) = F(ẏh) − b′(xh; ξh, yh) − b(xh; ẏh).

Since b′(xh; ξh, yh) = 0 and F(ẏh)−b(xh; ẏh) = a(yh, ẏh), this implies a(ẏh, yh) =
0. Recall ∂Φ(x(t))/∂t |t=0 = a(ẏh, yh) = 0, and so xh is a stationary point of Φ. ��
Proposition 2.3 (necessary and sufficient second-order condition)

Assume that Φ is twice differentiable. (a) If xh solves (dPG), then

b′′(xh; ξh, ξh, yh) ≤ ‖b′(xh; ξh, • )‖2Y ∗
h

for all ξh ∈ Xh . (2.3)

(b) If, in addition,

b′′(xh; ξh, ξh, yh) < ‖b′(xh; ξh, • )‖2Y ∗
h

for all ξh ∈ Xh \ {0}, (2.4)

then xh is locally unique.
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Proof The second derivative of Φ(xh(t)) reads a(∂2yh/∂t2, yh)+‖∂yh/∂t‖2Y . Recall
from the proof of Theorem 2.2 for t = 0, that the Riesz representation ẏh = ∂yh(0)/∂t
satisfies

a(ẏh, • ) = −b′(xh; ξh, • ) in Yh and ‖ẏh‖Y = ‖b′(xh; ξh, • )‖Y ∗
h
.

Another differentiation with respect to t shows that ÿh := ∂2yh(0)/∂t2 satisfies

a(ÿh, • ) = −b′′(xh; ξh, ξh, • ) in Yh .

Consequently, the second derivative of Φ(xh(t)) at t = 0 is

− b′′(xh; ξh, ξh, yh) + ‖b′(xh; ξh, • )‖2Y ∗
h
. (2.5)

The assertion follows from this and standard arguments in the calculus of stationary
and minimal points. ��
Remark 2.4 (linear problems) For a linear problem, b′′(xh; • ) vanishes and (2.4)
holds. This implies local uniqueness in the linear situation (which is a global one).

The uniqueness of the discrete solution is observed in numerical examples; cf.
Theorem 4.4 for a sufficient condition in the model example below.

2.4 Abstract a priori error analysis

This section presents a best-approximation result based on a discrete inf-sup condition
and the existence of a Fortin operator.

Hypothesis 2.5 Throughout this paper, assume that there exists a linear bounded
projection Πh : Y → Yh with Πh |Yh = id |Yh and

b′(Dh; Xh, (1 − Πh)Y ) = 0, (2.6)

i.e., for all xh ∈ Dh and all y ∈ Y , Πh y ∈ Yh satisfies b′(xh; ξh, y − Πh y) = 0 for all
ξh ∈ Xh . Let ‖Πh‖ denote the bound of Πh in L(Y ; Y ).

The following theorem generalizes [1, Prop. 5.4.2] to the nonlinear problem at
hand. A sufficiently fine initial triangulation guarantees that B(x, ε) ∩ Xh ⊂ Dh is
nonempty.

Theorem 2.6 (discrete inf-sup condition) Given a regular solution x to B(x) = F,
there exists an open ball B(x, ε) := {x̃ ∈ X | ‖x − x̃‖X < ε} of radius ε > 0 around
x such that, for all x̃h ∈ B(x, ε) ∩ Xh ⊂ Dh, the following discrete inf-sup condition
holds

0 <
β(x; Xh, Yh)

2‖Πh‖ ≤ β(x̃h; Xh, Yh) := inf
ξh∈S(Xh)

sup
ηh∈S(Yh)

b′(x̃h; ξh, ηh).
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Nonlinear discontinuous Petrov–Galerkin methods 537

Proof The continuous inf-sup condition (2.1) and the continuity of DB in D lead to
some ε such that

B(x, ε) ⊂ D, (2.7)

β(x)/2 ≤ inf
ξ∈B(x,ε)

β(ξ). (2.8)

Then x̃h ∈ B(x, ε) ∩ Xh and (2.6) imply

β(x)/2 ≤ β(x̃h) ≤ inf
ξh∈S(Xh)

sup
η∈S(Y )

b′(x̃h; ξh, η)

= inf
ξh∈S(Xh)

sup
η∈S(Y )

b′(x̃h; ξh,Πhη)

= inf
ξh∈S(Xh)

sup
η∈S(Y )

‖Πhη‖Y b′(x̃h; ξh,Πhη
/‖Πhη‖Y

)

≤ ‖Πh‖ inf
ξh∈S(Xh)

sup
η∈S(Y )

b′(x̃h; ξh,Πhη
/‖Πhη‖Y

)

= ‖Πh‖ inf
ξh∈S(Xh)

sup
ηh∈S(Yh)

b′(x̃h; ξh, ηh).

Hence, any x̃h ∈ B(x, ε) satisfies 0 <
β(x)
2‖Πh‖ ≤ β(x̃h; Xh, Yh). ��

Remark 2.7 (converse of Theorem 2.6) Given the discrete inf-sup condition

0 < inf
ξh∈S(Xh)

sup
ηh∈S(Yh)

b′(x̃h; ξh, ηh) (2.9)

at some point x̃h ∈ Dh , the techniques of [9, Lemma 10] guarantee the existence
of a linear bounded projection Πh (̃xh) : Y → Yh with (2.6), which depends on x̃h .
The above proof shows that the existence of Πh (̃xh) is also sufficient for (2.9). The
class of model examples allows for the simple more uniform Hypothesis 2.5 with
Πh (̃xh) = Πh independent of x̃h ∈ Dh .

Theorem 2.8 (local best-approximation) Given a regular solution x to B(x) = F,
there exist positive constants ε > 0 and C(x, ε) > 0 such that any solution (xh, yh)

to (M) with ‖x − xh‖X < ε satisfies

‖x − xh‖X + ‖yh‖Y ≤ C(x, ε) inf
ξh∈Xh

‖x − ξh‖X .

The proof of the theorem requires the following lemma.

Lemma 2.9 Any ε > 0 and xh ∈ B(x, ε) ⊂ D satisfy

‖b′(xh; x − xh, • ) − b(x; • ) + b(xh; • )‖Y ∗

≤ 2 sup
ξ∈B(x,ε)

‖DB(x) − DB(ξ)‖L(X;Y ∗)‖x − xh‖X (2.10)
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‖B(x) − B(xh)‖Y ∗ ≤ sup
ξ∈B(x,ε)

‖DB(ξ)‖L(X;Y ∗)‖x − xh‖X . (2.11)

Proof Given any η ∈ S(Y ), the Taylor’s formula of b at xh with remainder reads

b′(xh; x − xh, η) − b(x; η) + b(xh; η)

=
∫ 1

0

(
b′(xh; x − xh, η) − b′(xh + s(x − xh); x − xh, η)

)
ds.

Since ‖x − xh‖X < ε implies ‖x − (xh + s(x − xh))‖X < ε for 0 ≤ s ≤ 1, the triangle
inequality proves

b′(xh; x − xh, η) + b(xh; η) − b(x; η)

≤ 2 sup
ξ∈B(x,ε)

|b′(x; x − xh, η) − b′(ξ ; x − xh, η)|

≤ 2 sup
ξ∈B(x,ε)

‖DB(x) − DB(ξ)‖L(X;Y ∗)‖x − xh‖X .

Since η ∈ S(Y ) is arbitrary, this implies (2.10). The assertion (2.11) follows from the
same arguments without the term b′(xh; x − xh, η). ��
Proof (of Theorem 2.8) Let x̃h be the best-approximation to x in Xh , i.e.,

‖x − x̃h‖X = inf
ξh∈Dh

‖x − ξh‖X ≤ ‖x − xh‖X < ε.

Suppose ε > 0 satisfies (2.7)–(2.8) and, with the continuity of DB at x ,

sup
ξ∈B(x,ε)

‖DB(ξ)‖L(X;Y ∗) ≤ 2‖DB(x)‖L(X;Y ∗). (2.12)

The discrete inf-sup condition from Theorem 2.6 plus the Brezzi splitting lemma [3,
Thm. 4.3 in Ch. III] with inf-sup constants, β(x)/2 and 1, and continuity constants,
2‖DB(x)‖L(X;Y ∗) and 1, for the bilinear form b′(xh; • , • ) and scalar product a prove
the global inf-sup condition 0 < γ ≤ β(xh; Xh, Yh) for

γ := inf
(ξ̃h ,η̃h)∈S(Xh×Yh)

sup
(ξh ,ηh)∈S(Xh×Yh)

(
b′(xh; ξ̃h, ηh)+b′(xh; ξh, η̃h)+a(η̃h, ηh)

)
.

independent of ε with (2.7)–(2.8) and (2.12). Given γ > 0 and β(x) > 0 suppose, for
some smaller ε > 0 if necessary, that ε > 0 satisfies (2.7)–(2.8), (2.12), and, from the
continuity of DB at x ,

sup
ξ∈B(x,ε)

‖DB(x) − DB(ξ)‖L(X;Y ∗) ≤ min{γ /4, β(x)/8}. (2.13)

For the best-approximation ỹh = 0 to y = 0 inYh and (ξ̃h, η̃h) = (x̃h −xh, ỹh −yh),
this implies the existence of (ξh, ηh) ∈ S(Xh × Yh) with
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γ
(‖x̃h − xh‖X + ‖yh‖Y

) ≤ b′(xh; x̃h − xh, ηh) − b′(xh; ξh, yh) − a(yh, ηh).

Since (xh, yh) solves (M) and ỹh = 0, this leads to

γ
(‖x̃h − xh‖X + ‖yh‖Y

) ≤ b′(xh; x̃h − x, ηh)

+ b′(xh; x − xh, ηh) + b(xh; ηh) − b(x; ηh).

Lemma 2.9 and (2.13) imply

b′(xh; x − xh, ηh) + b(xh; ηh) − b(x; ηh) ≤ γ ‖x − xh‖X/2.

The combination of the preceding two displayed formulae reads

γ

2
‖x̃h − xh‖X + γ ‖yh‖Y ≤ b′(xh; x̃h − xh, ηh).

With (2.12), this is bounded from above by

‖DB(xh)‖L(X;Y ∗)‖x − x̃h‖X ≤ 2‖DB(xh)‖L(X;Y ∗)‖x − x̃h‖X .

The triangle inequality concludes the proof. ��
Remark 2.10 Under further smoothness conditions on the nonlinear mapping b′ the
local existence and uniqueness of a discrete solution, e.g., follows from [25, Thm. 2].

Remark 2.11 The Newton–Kantorovich theorem [27, Section 5.2] is another tool for
the proof of the existence of discrete solutions close to the regular solution. In the
model problem of Sect. 3, the higher Fréchet derivatives for this argument do not
exist, cf. Remark 3.3 for details.

2.5 Abstract a posteriori error analysis

This subsection is devoted to a brief abstract a posteriori error analysis of the nonlinear
dPG.Given a discrete approximation xh close to the regular solution x to B(x) = F , the
residual F − B(xh) ∈ Y ∗ has a norm ‖F − B(xh)‖Y ∗ that, in principle, is accessible
in the sense that lower and upper bounds may be computable. The latter issue is a
typical general task in the a posteriori error analysis and will be adressed in Sect. 3
for a model example.

Theorem 2.12 (local a posteriori analysis) Let x be a regular solution to B(x) = F
with inf-sup constant β(x) from (2.1). Then there exists some ε > 0 such that any
xh ∈ B(x, ε) ⊂ D satisfies

β(x)

4
‖x − xh‖X ≤ ‖F − B(xh)‖Y ∗ ≤ 2‖DB(x)‖L(X;Y ∗)‖x − xh‖X .
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Proof With the choice of ε > 0 from the proof of Theorem 2.8 it follows (2.7)–(2.8)
and (2.12)–(2.13). The continuous inf-sup condition (2.1) implies the existence of
η ∈ S(Y ) with

β(x)

2
‖x − xh‖X ≤ b′(xh; x − xh, η)

≤ b(x; η) − b(xh; η) + |b′(xh; x − xh, η) − b(x; η) + b(xh; η)|.

Lemma 2.9 for the last term, b(x; η) = F(η), and (2.13) show

β(x)

2
‖x − xh‖X ≤ F(η) − b(xh; η) + β(x)

4
‖x − xh‖X .

This proves the asserted reliability

β(x)

4
‖x − xh‖X ≤ ‖F(η) − b(xh; η)‖Y ∗ .

To prove the efficiency, utilize F = B(x), Lemma 2.9, and (2.12) to verify

‖F − B(xh)‖Y ∗ = ‖B(x) − B(xh)‖Y ∗

≤ 2‖DB(x)‖L(X;Y ∗)‖x − xh‖X . ��
Remark 2.13 Since y = 0 and yh is computed, the a posteriori error ‖y − yh‖Y =
‖yh‖Y is already an error estimator and can be added on both sides of the reliability
(resp. efficiency) a posteriori error estimate. This justifies the usage of the extended
residual ‖F − a(yh, • ) − b(xh; • )‖Y ∗ + ‖yh‖Y of the system (M).

Remark 2.14 The constants β(x)/4 (resp. 2‖DB(x)‖L(X;Y ∗)) in Theorem 2.12 follow
from the choice of ε in the a priori error analysis in the proof of Theorem 2.8. For
smaller and smaller values of ε, those constants could be replaced by any number
< β(x) (resp. > ‖DB(x)‖L(X;Y ∗)) in the following sense. For any 0 < λ < 1 there
exists some ε > 0 such that any xh ∈ B(x, ε) satisfies λβ(x) ≤ ‖F − B(xh)‖Y ∗ ≤
(1 + λ)‖DB(x)‖L(X;Y ∗).

3 Model problem

This section introduces a nonlinear model problem and a low-order dPG discretization
and establishes two further equivalent characterizations of the nonlinear dPG method:
reduced discretization and weighted least-squares.

3.1 Convex energy minimization

The nonlinear model problem involves a nonlinear function φ ∈ C2(0,∞) with 0 <

γ1 ≤ φ(t) ≤ γ2 and 0 < γ1 ≤ φ(t) + tφ′(t) ≤ γ2 for all t ≥ 0 and universal positive

123



Nonlinear discontinuous Petrov–Galerkin methods 541

constants γ1, γ2. Given f ∈ L2(Ω) and the convex function ϕ, ϕ(t) := ∫ t
0 s φ(s) ds

for t ≥ 0, the model problem minimizes the energy functional

E(v) :=
∫

Ω

ϕ(| ∇ v(x)|) dx −
∫

Ω

f v dx among all v ∈ H1
0 (Ω).

The convexity of ϕ and the above assumptions on φ lead to growth-conditions and
sequential weak lower semicontinuity of E and guarantee the unique existence of a
minimizer u of E in H1

0 (Ω) [29, Thm. 25.D]. The equivalent Euler-Lagrange equation
reads ∫

Ω

φ(| ∇ u|)∇ u · ∇ v dx =
∫

Ω

f v dx for all v ∈ H1
0 (Ω) (3.1)

and has the unique solution u in H1
0 (Ω). The stress variable σ(A) := φ(|A|)A defines

a function σ ∈ C1(Rn;Rn) with Fréchet derivative

Dσ(A) = φ(|A|)In×n + φ′(|A|)|A| sign(A) ⊗ sign(A) (3.2)

with the sign function sign(A) := A / |A| for A ∈ R
n \ {0} and the closed unit ball

sign(0) := B(0, 1) in R
n . The prefactor φ′(|A|)|A| makes Dσ a continuous function

in R
n . In fact Dσ ∈ C0(Rn×n

sym) is bounded with eigenvalues in the compact interval
[γ1, γ2] ⊂ (0,∞).

Remark 3.1 (Lip(σ ) ≤ γ2) For A, B ∈ R
n , the argument σ(A) − σ(B) =∫ 1

0 Dσ(s A + (1− s)B)(A − B) ds and (3.2) imply the global Lipschitz continuity of
σ ,

|σ(A) − σ(B)| ≤
∫ 1

0
|Dσ(s A + (1 − s)B)(A − B)| ds ≤ γ2|A − B|.

Example 3.2 In the following examples, 0 ≤ φ′′ ≤ 2 is bounded as well as φ′ and
Dσ from (3.2) is globally Lipschitz continuous. (a) φ(t) := 2 + (1 + t)−2 with
γ1 = 1 < γ2 = 3 [15] and Lip(Dσ) ≤ 4 and (b) φ(t) := 2 − (1 + t2)−1 with
γ1 = 1 < γ2 = 4 and Lip(Dσ) ≤ 2.

Remark 3.3 (second derivative) A formal calculation with s( j) := (sign A) j ,
s( j, k) := (sign A) j (sign A)k etc. and theKronecker symbol δ jk for j, k, � = 1, . . . , n
leads at any A ∈ R

n to

D2σ(A) j,k,� =φ′(|A|)(δ jks(�)+δ j�s(k)+δk�s( j))+(φ′′(|A|)|A|−φ′(|A|))s( j, k, �).

Although D2σ(A) may be bounded (at least in the Example 3.2.a and b), it may be
discontinuous for A → 0. In Example 3.2.b, φ′(0) = 0 and D2σ is continuous with
D2σ(0) = 0. The associated trilinear form b′′(x; • ), however, is not well-defined on
X × Y × Y because the product of three Lebesgue functions in L2(Ω) is, in general,
not in L1(Ω).
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3.2 Breaking the test spaces

Let Ω ⊆ R
n be a bounded Lipschitz domain with polyhedral boundary ∂Ω . Let T

denote a regular triangulation of the domain Ω into n-simplices and let E (resp. E(T ))
denote the set of all sides in the triangulation (resp. of an n-simplex T ∈ T ).

The unit normal vector νT along the boundary ∂T of an n-simplex T ∈ T (is
constant along each side of T and) points outwards. For any side E = ∂T+ ∩∂T− ∈ E
shared by two simplices, the enumeration of the neighbouring simplices T± is globally
fixed and so defines a unique orientation of the unit normal νE = νT+|E . Let hT denote
the diameter of T ∈ T , hmax := maxT ∈T hT ≤ diam(Ω) and hT |K = hK for any
K ∈ T . The barycenter mid(T ) of T ∈ T defines the piecewise constant function
mid(T ) ∈ P0(T ;Rn) by mid(T )|K := mid(K ) for any K ∈ T and mid(E) is the
barycenter of E ∈ E . The piecewise affine function • −mid(T ) ∈ P1(T ;Rn) equals
x − mid(T ) at x ∈ T ∈ T .

Recall that Hk(T ) := ∏
T ∈T Hk(T ) := {v ∈ L2(Ω) | ∀T ∈ T , v|T ∈ Hk(T )}

denotes the piecewise Sobolev space. Define the discrete spaces

Pk(T ) := {vk ∈ L∞(T ) | vk is polynomial on T of degree ≤ k},
Pk(T ) := {vk ∈ L∞(Ω) | ∀T ∈ T , vk |T ∈ Pk(T )},

Pk(T ;Rn) ≡ Pk(T )n,

Sk
0 (T ) := Pk(T ) ∩ H1

0 (Ω),

RTk(T ) := {qk ∈ H(div,Ω) | ∃A ∈ Pk(T ;Rn), ∃b ∈ Pk(T ),

qk = A + b( • − mid(T ))},
C R1(T ) := {vCR ∈ P1(T ) | ∀E ∈ E(Ω), vCR continuous atmid(E)},
C R1

0(T ) := {vCR ∈ C R1(T ) | ∀E ∈ E(∂Ω), vCR(mid(E)) = 0},
Pk(E) := {tk ∈ L2(∂T ) | tk |E ∈ Pk(E) for any E ∈ E}.

Definition 3.4 For a triangulation T with skeleton ∂T := ⋃
T ∈T

⋃
E∈E(T ) E and

T ∈ T , recall the local trace spaces H1/2(∂T ) and H−1/2(∂T ) = (H1/2(∂T ))� and

H−1/2(∂T ) := {t = (tT )T ∈T ∈ ∏
T ∈T H−1/2(∂T ) |

∃q ∈ H(div,Ω),∀T ∈ T , tT = (q|T )|∂T · νT }

endowed with the minimal extension norm, for t ∈ H−1/2(∂T ),

‖t‖H−1/2(∂T ) := min{‖q‖H(div,Ω) | q ∈ H(div,Ω),∀T ∈ T , tT = (q|T )|∂T · νT }.

The duality brackets 〈 • , • 〉∂T in H−1/2(∂T )× H1/2(∂T ) extend the L2 scalar product
in L2(∂T ) and lead to the duality bracket on the skeleton for any t = (tT )T ∈T ∈∏

T ∈T H−1/2(∂T ) and s = (sT )T ∈T ∈ ∏
T ∈T H1/2(∂T ) defined by

〈t, s〉∂T :=
∑
T ∈T

〈tT , sT 〉∂T .
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Remark 3.5 (RT0(T ) ≡ P0(E))
The spaces RT0(T ) and P0(E) are isomorphic [8, Lemma 3.2] in the sense that any

qRT ∈ RT0(T ) and E ∈ E with fixed unit normal vector νE satisfies qRT|E · νE ∈
P0(E). Conversely, for any t0 ∈ P0(E), there exists a unique qRT ∈ RT0(T ) with
qRT|E · νE = t0|E for any E ∈ E , in short notation qRT · ν = t0 in ∂T . Since
‖t0‖H−1/2(∂T ) ≈ ‖qRT‖H(div,Ω), this identification justifies the embedding P0(E) ⊆
H−1/2(∂T ), where any T ∈ T and E ∈ E(T ) satisfy (qRT · νT )|E = ±t0|E with the
sign ± = νT · νE depending on the (globally fixed) choice of the orientation of the
unit normal νE ∈ {νT±|E }.
Definition 3.6 Define S0 ∈ P0(T ;Rn×n) and H0 : L2(Ω) → P0(T ;Rn) for T ∈ T
and f ∈ L2(Ω) by

S0|T := Π0(( • − mid(T )) ⊗ ( • − mid(T ))),

H0 f := Π0( f ( • − mid(T ))) ∈ P0(T ;Rn).
(3.3)

Remark 3.7 An analysis of the eigenvalues of the piecewise symmetric positive semi-
definite matrix S0 shows that any T ∈ T and v ∈ R

n satisfies

|v| ≤ |(In×n + S0|T )v| ≤ (1 + h2
T )|v| and |v| ≤ |(In×n + S0|T )1/2v| ≤ (1 + hT )|v|.

Furthermore, ‖H0 f ‖L2(Ω) ≤ hmax‖(1 − Π0) f ‖L2(Ω) for the maximal mesh-size
hmax = max hT in T .

3.3 Lowest-order dPG discretization

The nonlinear model problem of this paper concerns the nonlinear map σ : Rn → R
n

of Sect. 3.1. A piecewise integration by parts in (3.1) and the introduction of the
new variable t := σ(∇u) · ν on ∂T leads to the nonlinear primal dPG method with
F(v) := ∫

Ω
f v dx and b : X × Y → R for X := H1

0 (Ω) × H−1/2(∂T ) and
Y := H1(T ) defined by

b(u, t; v) :=
∫

Ω

σ(∇ u) · ∇NC v dx − 〈t, v〉∂T =: 〈B(u, t), y〉Y . (3.4)

for all x = (u, t) ∈ X := H1
0 (Ω) × H−1/2(∂T ) and y = v ∈ Y = H1(T )

with associated norms and the scalar product a in Y . Given the subspaces Xh :=
S1
0(T ) × P0(E) and Yh := P1(T ), the discrete problem minimizes the residual norm

and seeks (uh, th) = xh ∈ Xh with

‖F − B(xh)‖Y ∗
h

= min
ξh∈Xh

‖F − B(ξh)‖Y ∗
h
. (3.5)

The derivative Dσ : Rn → R
n×n gives rise to the map

b′(u, t;w, s, v) :=
∫

Ω

∇ w · (Dσ(∇ u)∇NC v) dx − 〈s, v〉∂T . (3.6)
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This defines a bounded bilinear form b′(u, t; • ) : X ×Y → R for any x = (u, t) ∈ X
and the operator B associated with b belongs to C1(X; Y ∗). Recall the equivalent
mixed formulation from (M) for themodel problem at hand,which seeks (uh, th) ∈ Xh

and vh ∈ Yh with

a(vh, ηh) + b(uh, th; ηh) = F(ηh) for all ηh ∈ Yh,

b′(uh, th;wh, sh, vh) = 0 for all (wh, sh) ∈ Xh .
(3.7)

Remark 3.8 (regular solution) Since Dσ(∇u) ∈ L∞(Ω;Rn×n
sym) uniformly positive

definite, the splitting lemma from the linear theory [6, Thm. 3.3] implies the inf-sup
condition (2.1) for the nondegenerate bilinear form b′(x; • , • ) : X × Y → R. Hence,
the solution x ∈ X to B(x) = F is regular.

3.4 Reduced discretization

The dPG discretization (3.5) can be simplified to a modified problem that seeks
(uh, vh) ∈ S1

0(T ) × C R1
0(T ) with

a(vh, wCR) +
∫

Ω

σ(∇ uh) · ∇NC wCR dx =
∫

Ω

f wCR dx for all wCR ∈ C R1
0(T ),

∫

Ω

∇ wC · (
Dσ(∇ uh)∇NC vh

)
dx = 0 for all wC ∈ S1

0(T ). (R)

Theorem 3.9 ((3.7) ⇔ (R))
(a) If (uh, th; vh) ∈ Xh × Yh solves (3.7), then vh ∈ C R1

0(T ) and (uh, vh) ∈
S1
0(T ) × C R1

0(T ) solves (R).
(b) For any solution (uh, vh) ∈ S1

0(T ) × C R1
0(T ) to (R), there exists a unique

th ∈ P0(E) such that (uh, th; vh) solves (3.7).

The proof utilizes the following discrete inf-sup condition of a linear primal dPG
method [19]. Let the bilinear forms aNC : H1(T )× H1(T ) → R and b̃ : X ×Y → R

be defined by

aNC(v1, v2) :=
∫

Ω

∇NC v1 · ∇NC v2 dx for v1, v2 ∈ H1(T ),

b̃(x, y) := aNC(u, w) − 〈t, w〉∂T for x = (u, t) ∈ X, y = w ∈ Y.

Lemma 3.10 The bilinear form b̃ : Xh × Yh → R satisfies the discrete inf-sup
condition

0 < β̃h := inf
ξh∈S(Xh)

sup
ηh∈S(Yh)

b̃(ξh, ηh). (3.8)

Proof The proof follows the arguments from [8, Thm. 3.5] for the bilinear form b̃ in
the lowest-order scheme at hand. ��
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Proof (of Theorem 3.9) (a) Since b′(xh; 0, sh, vh) = −〈sh, vh〉∂T = 0 for all sh ∈
P0(E), vh ∈ C R1

0(T ). Then, (3.7) reduces to (R).
(b) Conversely, suppose (uh, vh) solves (R), then the second equation in (3.7)

follows from the second equation in (R) and vh ∈ C R1
0(T ). The first equation in (R)

leads to the first equation in (3.7) for any th ∈ P0(E) and test functions in C R1
0(T ).

In other words, the linear functional

Λh := a(vh, • ) +
∫

Ω

σ(∇ uh) · ∇NC • dx − F ∈ Y ∗
h

vanishes on C R1
0(T ) ⊂ kerΛh . It remains to show that there exists th ∈ P0(E)

with 〈th, • 〉∂T = Λh , because then (uh, th, vh) solves (3.7). To prove the existence
of such a th for Λh ∈ Y ∗

h with C R1
0(T ) ⊂ kerΛh , recall the bilinear form b̃ from

Lemma 3.10 with discrete inf-sup condition (3.8) and consider the linear problem that
seeks (uh, th, vh) ∈ Xh × Yh with

aNC(vh, w1) + b̃(uh, th, w1) = −Λh(w1) for all w1 ∈ Yh,

b̃(wC , s0, vh) = 0 for all (wC, s0) ∈ Xh .
(L)

Since 〈r0, v1〉∂T = 0 for v1 ∈ P1(T ) and for all r0 ∈ P0(E) implies v1 ∈ C R1
0(T ) ⊂

P1(T ), the kernel

Zh := {v1 ∈ P1(T ) | b̃(xh, v1) = 0 for all xh ∈ Xh}

of b̃ consists of particular Crouzeix–Raviart functions, Zh ⊂ C R1
0(T ), and the discrete

Friedrichs inequality [4, p. 301] shows that aNC is Zh-elliptic.
Hence, the Brezzi splitting lemma [3, Thm. 4.3 in Ch. III] applies to the linear

system (L) and (L) has a unique solution (uh, th, vh) ∈ Xh × Yh . The test of the first
equation in (L) withw1 ∈ C R1

0(T ) ⊂ kerΛh shows aNC(vh +uh, • ) = 0 inC R1
0(T ).

The second equation in (L) implies vh ∈ C R1
0(T ) and this proves vh = −uh . This

leads to 〈th, • 〉∂T = Λh in P1(T ). The uniqueness of th follows from the fact that
〈th, • 〉∂T = 0 in P1(T ) implies th = 0. ��

3.5 Least-squares formulation

Recall S0 ∈ P0(T ;Rn×n) and H0 : L2(Ω) → P0(T ;Rn) from (3.3) to define an
equivalent least-squares formulation.

Theorem 3.11 (dPG is LS) Any xh = (uC , t0) ∈ Xh and pRT ∈ RT0(T )with pRT·ν =
t0 in ∂T satisfy

‖F − b(xh; • )‖2Y ∗
h

= ‖(In×n + S0)
−1/2(Π0 pRT − σ(∇uC ) + H0 f

)‖2L2(Ω)

+ ‖Π0 f + div pRT‖2L2(Ω)
.

(3.9)

Consequently, any solution xh = (uC , t0) ∈ Xh to (3.7) and pRT · ν = t0 in ∂T from
Remark 3.5 minimizes the weighted least-squares functional (3.9).
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Proof Let v1 ∈ P1(T ) ≡ Yh be the Riesz representation of b(xh; • ) − F ∈ Y ∗
h , i.e.,

any w1 ∈ P1(T ) satisfies

a(v1, w1) = b(xh;w1) − F(w1).

The substitution of t0 = pRT ·ν based on the isometry in Remark 3.5 and an integration
by parts lead to

b(xh;w1) − F(w1) =
∫

Ω

(σ(∇uC ) − pRT) · ∇NC w1 dx −
∫

Ω

( f + div pRT)w1 dx .

With w1 = Π0w1 + ∇NC w1 · ( • − mid(T )), this results in

∫

Ω

Π0v1Π0w1 dx +
∫

Ω

(In×n + S0)∇NC v1 · ∇NC w1 dx

=
∫

Ω

(σ(∇uC ) − Π0 pRT) · ∇NC w1 dx −
∫

Ω

(Π0 f + div pRT)Π0w1 dx

−
∫

Ω

H0 f · ∇NC w1 dx .

For any T ∈ T , the choices w1 = χT and w1 = χT ek · ( • − mid(T )), k = 1, . . . , n,
show

Π0v1 = −(div pRT + Π0 f ),

(In×n + S0)∇NC v1 = σ(∇uC ) − Π0 pRT − H0 f.

The Riesz isometry and ‖v1‖2H1(Ω)
= ‖Π0v1‖2L2(Ω)

+‖(In×n + S0)1/2 ∇NC v1‖2L2(Ω)

for any v1 ∈ P1(T ) conclude the proof. ��

4 Mathematical analysis of dPG for the model problem

This section analyses the low-order dPG method presented in Sect. 3 and proves an
a posteriori result next to the existence of a solution and applies the abstract framework
from Sect. 2. Recall the discrete spaces Xh := S1

0(T ) × P0(E), Yh := P1(T ), and the
nonlinear map from (3.4).

4.1 Well-posedness

This subsection is devoted to the equivalence of the dPG residuals and the errors. For
qRT ∈ RT0(T ) and vC ∈ S1

0(T ), the isomorphism between RT0(T ) and P0(E) from
Remark 3.5 leads to the abbreviation b(vC , qRT; • ) := b((vC , (qRT · νT )T ∈T ); • ).
Recall the energy norm ~ •~ = ‖∇ • ‖L2(Ω) in H1

0 (Ω).
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Theorem 4.1 The exact solution u ∈ H1
0 (Ω) to the model problem (3.1) with stress

p := σ(∇u) ∈ H(div,Ω) and any discrete (vC , qRT) ∈ S1
0(T ) × RT0(T ) satisfy the

equivalence

‖p − qRT‖2H(div,Ω) + ~u − vC~2 ≈ ‖F − b(vC , qRT; • )‖2Y ∗
h

+‖(1 − Π0) f ‖2L2(Ω)
+ ‖(1 − Π0)qRT‖2L2(Ω)

.

The proof is based on a lemma on the nonlinear least-squares formulation. The
related least-squares formulation is associated with the nonlinear residual R( f ; • ) :
H(div,Ω) × H1

0 (Ω) → L2(Ω) × L2(Ω;Rn) for the first-order system of (3.1) and
defined, for (p, u) ∈ H(div,Ω) × H1

0 (Ω), by

R( f ; p, u) := ( f + div p, p − σ(∇ u)).

Lemma 4.2 Any (p, u), (q, v) ∈ H(div,Ω) × H1
0 (Ω) satisfy

‖R( f ; p, u) − R( f ; q, v)‖2L2(Ω)
≈ ‖p − q‖2H(div,Ω) + ~u − v~2.

Proof Following [23, Thm. 4.4], the fundamental theorem of calculus shows

R( f ; q, v) − R( f ; p, u) =
∫ 1

0

d

ds
R( f ; p + s(q − p), u + s(v − u)) ds

=
∫ 1

0
R′(p + s(q − p), u + s(v − u); q − p, v − u) ds.

For x ∈ Ω and 0 ≤ s ≤ 1, define F(s) := ∇ u(x) + s ∇(v − u)(x) and

M(x) :=
∫ 1

0

(
φ(|F(s)|)In×n + φ′(|F(s)|) F(s) ⊗ F(s)

|F(s)|
)
ds.

Then

‖R( f ; q, v)−R( f ; p, u)‖2L2(Ω)
=‖ div(q − p)‖2L2(Ω)

+‖q− p−M ∇(v−u)‖2L2(Ω)
.

Since the assumptions on φ show that M ∈ L2(Ω;Rn×n) is pointwise symmetric and
positive definite with eigenvalues in the real compact interval [γ1, γ2] ⊂ (0,∞), the
triangle inequality shows

‖R( f ; q, v) − R( f ; p, u)‖2L2(Ω)
≤ 2max{1, γ 2

2 }(‖q − p‖H(div,Ω) + ~v − u~2).

For the reverse estimate, the positive definiteness of M provides the unique existence
of a solution α ∈ H1

0 (Ω) to the weighted problem

∫

Ω

M ∇ α · ∇ γ dx =
∫

Ω

(q − p) · ∇ γ dx for any γ ∈ H1
0 (Ω).
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An integration by parts shows r := q − p − M∇α ∈ H(div,Ω) with div r = 0. The
Friedrichs inequality with constant CF (i.e. ‖α‖L2(Ω) ≤ CF~α~) implies

‖M1/2 ∇ α‖2L2(Ω)
=

∫

Ω

div(p − q)α dx ≤CF/γ1‖ div(q− p)‖L2(Ω)‖M1/2 ∇ α‖L2(Ω).

The orthogonality of ∇ H1
0 (Ω) and H(div,Ω) ∩ {div = 0} in L2(Ω) shows

‖q − p‖2L2(Ω)
= ‖M ∇ α + r‖2L2(Ω)

≤ γ2‖M1/2 ∇ α + M−1/2r‖2L2(Ω)

= γ2‖M1/2 ∇ α‖2L2(Ω)
+ γ2‖M−1/2r‖2L2(Ω)

.

The two previous displayed inequalities, the triangle inequality, and the abbreviation
e := v − u yield

‖q − p‖2H(div,Ω) + ~e~2 ≤ (2 + γ2)‖M1/2 ∇ α‖2L2(Ω)
+ ‖ div(q − p)‖2L2(Ω)

+ max{2, γ2}
(‖M1/2 ∇(α−e)‖2L2(Ω)

+‖M−1/2r‖2L2(Ω)

)

≤ ((2 + γ2)C
2
F/γ

2
1 + 1)‖ div(q − p)‖2L2(Ω)

+ max{2, γ2}/γ1‖q − p − M ∇ e‖2L2(Ω)
. ��

Proof (of Theorem 4.1) Since R( f ; p, u) = 0, Lemma 4.2 with (q, v) := (qRT, vC )

shows

‖p − qRT‖2H(div,Ω) + ~u − vC~2 ≈ ‖ f + div qRT‖2L2(Ω)
+ ‖qRT − σ(∇ vC )‖2L2(Ω)

.

The L2-orthogonality of (1−Π0)qRT and (1−Π0) f onto piecewise constants implies

‖ f + div qRT‖2L2(Ω)
+ ‖qRT − σ(∇ vC )‖2L2(Ω)

= ‖Π0 f + div qRT‖2L2(Ω)
+ ‖(1 − Π0)qRT‖2L2(Ω)

+ ‖(1 − Π0) f ‖2L2(Ω)
+ ‖Π0qRT − σ(∇vC )‖2L2(Ω)

.

The triangle inequality and the estimates of Remark 3.7 result in

‖p − qRT‖2H(div,Ω) + ~u − vC~2

� ‖Π0 f + div qRT‖2L2(Ω)
+ ‖(1 − Π0)qRT‖2L2(Ω)

+ ‖(1 − Π0) f ‖2L2(Ω)

+ ‖H0 f ‖2L2(Ω)
+ ‖Π0qRT − σ(∇vC ) + H0 f ‖2L2(Ω)

� ‖Π0 f + div qRT‖2L2(Ω)
+ ‖(1 − Π0)qRT‖2L2(Ω)

+ ‖(1 − Π0) f ‖2L2(Ω)

+ ‖Π0qRT − σ(∇vC ) + H0 f ‖2L2(Ω)
.
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Recall that S0 is pointwise positive semi-definite, hence In×n + S0 is positive definite
and Remark 3.7 also proves

‖Π0qRT−σ(∇vC )+H0 f ‖2L2(Ω)
≈ ‖(In×n +S0)

−1/2(Π0qRT−σ(∇vC )+H0 f )‖2L2(Ω)
.

The proof of the converse estimate utilizes the last estimate and the triangle inequal-
ity to show

‖(In×n + S0)
−1/2(Π0qRT − σ(∇vC ) + H0 f )‖2L2(Ω)

+ ‖(1 − Π0) f ‖2L2(Ω)

� ‖Π0qRT − σ(∇vC )‖2L2(Ω)
+ ‖H0 f ‖2L2(Ω)

+ ‖(1 − Π0) f ‖2L2(Ω)

� ‖Π0qRT − σ(∇vC )‖2L2(Ω)
+ ‖(1 − Π0) f ‖2L2(Ω)

.

This and the aforementioned orthogonalities imply

‖(In×n + S0)
−1/2(Π0qRT − σ(∇vC ) + H0 f )‖2L2(Ω)

+ ‖(1 − Π0) f ‖2L2(Ω)

+ ‖(1 − Π0)qRT‖2L2(Ω)
+ ‖Π0 f + div qRT‖2L2(Ω)

� ‖qRT − σ(∇vC )‖2L2(Ω)
+ ‖ f + div qRT‖2L2(Ω)

� ‖p − qRT‖2H(div,Ω) + ~u − vC~2. ��

4.2 Existence and uniqueness of discrete solutions

The existence of discrete solutions follows from variational arguments, while their
uniqueness is fairly open.

Proposition 4.3 The discrete problem (3.5) has a solution.

Proof The proof followswith the direct method in the calculus of variations and, in the
present case of finite dimensions, from the global minimum of a continuous functional
on a compact set from the growth condition

lim‖ξh‖X →∞ ‖F − Bξh‖Y ∗
h

= ∞. (4.1)

The latter property follows from Theorem 4.1 up to some perturbation terms. Theo-
rem 3.11 shows

‖(1 − Π0)qRT‖L2(Ω) ≤ ‖hT Π0 f ‖L2(Ω) + hmax‖Π0 f + div qRT‖L2(Ω)

≤ ‖hT Π0 f ‖L2(Ω) + hmax‖F − Bξh‖Y ∗
h
.
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The combination with Theorem 4.1 shows that the right-hand side of Theorem 4.1 is
bounded from above by

(1 + 2h2
max)‖F − Bξh‖2Y ∗

h
+ 2h2

max‖Π0 f ‖2L2(Ω)
+ ‖(1 − Π0) f ‖2L2(Ω)

≤ (1 + 2h2
max)(‖F − Bξh‖Y ∗

h
+ ‖ f ‖L2(Ω)).

Hence the left-hand side in Theorem 4.1 is controlled by this and so

‖x − ξh‖X � ‖F − Bξh‖Y ∗
h

+ ‖ f ‖L2(Ω).

Since f and x are fixed, this implies (4.1) and concludes the proof. ��
The uniqueness of the exact solution (u, t) on the continuous level does not imply

the uniqueness of discrete solutions. There is, however, a sufficient condition for a
global unique discrete solution. Notice that vh = v = 0 on the continuous level h = 0
satisfies (4.2).

Theorem 4.4 (a posteriori uniqueness) Suppose that (uh, vh) ∈ S1
0(T ) × C R1

0(T )

solves (R) with Dσ ∈ C(Rn;Rn×n
sym) globally Lipschitz continuous and

Lip(Dσ)(1 + C2
F)/γ

2
1 ‖∇NC vh‖L∞(Ω) < 1 (4.2)

with the Friedrichs constant CF from ‖• ‖L2(Ω) ≤ CF~ •~ in H1
0 (Ω). Then (R) has

exactly one solution (uh, vh) ∈ S1
0(T ) × C R1

0(T ).

Proof Suppose that (̃uh, ṽh) ∈ S1
0(T ) × C R1

0(T ) solves (R) as well and so

a(vh, vh) = F(vh) −
∫

Ω

σ(∇uh) · ∇NC vh dx

= a(̃vh, vh) +
∫

Ω

(σ(∇ũh) − σ(∇uh)) · ∇NC vh dx .

This and the second equation of (R) imply

a(vh − ṽh, vh) =
∫

Ω

∇NC vh · (σ (∇ũh) − σ(∇uh) − Dσ(∇uh)∇ (̃uh − uh)) dx .

Since σ ∈ C1(Rn) is bounded and Dσ Lipschitz continuous, any A, B ∈ R
n with

F(s) := (1 − s)A + s B for 0 ≤ s ≤ 1 satisfy

|σ(B) − σ(A) − Dσ(A)(B − A)| = |
∫ 1

0
(Dσ(F(s)) − Dσ(A))(B − A) ds|

≤ Lip(Dσ)|B − A|
∫ 1

0
|F(s) − A| ds = 1

2
Lip(Dσ)|B − A|2.
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With A = ∇uh(x) and B = ∇ũh(x) for a.e. x and an integration over Ω , this leads
in the preceding identity to

a(vh − ṽh, vh) ≤ 1

2
Lip(Dσ)‖∇NC vh‖L∞(Ω)~uh − ũh~2. (4.3)

The discrete solutions of (R) lead to the same minimal discrete residual norm and
hence

‖vh‖Yh = ‖F − b(uh, th; • )‖Y ∗
h

= ‖F − b(̃uh, t̃h; • )‖Y ∗
h

= ‖̃vh‖Yh .

This shows a(vh − ṽh, vh + ṽh) = 0 and the combination with (4.3) is

‖vh − ṽh‖2Yh
= 2a(vh − ṽh, vh) − a(vh − ṽh, vh + ṽh)

≤ Lip(Dσ)‖∇NC vh‖L∞(Ω)~uh − ũh~2.
(4.4)

On the other hand, Dσ(A) ∈ R
n×n
sym has eigenvalues in the compact interval [γ1, γ2] ⊂

(0,∞) and so, for all A, B ∈ R
n ,

γ1|A − B|2 ≤
∫ 1

0
(A − B) · Dσ(B + s(A − B))(A − B) ds

= (σ (A) − σ(B)) · (A − B) ≤ γ2|A − B|2.
(4.5)

With A = ∇uh(x) and B = ∇ũh(x), and an integration over a.e. x ∈ Ω , this shows

γ1~uh − ũh~2 ≤
∫

Ω

(σ(∇uh) − σ(∇ũh)) · ∇(uh − ũh) dx .

The first identity in (R) for (uh, vh) and (̃uh, ṽh), respectively, results in

∫

Ω

(σ(∇uh) − σ(∇ũh)) · ∇(uh − ũh) dx = a(̃vh − vh, uh − ũh)

≤ ‖vh − ṽh‖Yh

√
1 + C2

F~uh − ũh~.

The combination with the previous inequality shows

γ1~uh − ũh~ ≤
√
1 + C2

F‖vh − ṽh‖Yh . (4.6)

The substitution in (4.4) results in

‖vh − ṽh‖2Yh
≤ Lip(Dσ)(1 + C2

F)/γ
2
1 ‖∇NC vh‖L∞(Ω)‖vh − ṽh‖2Yh

.

This and (4.2) show vh = ṽh . Then (4.6) implies uh = ũh . ��

123



552 C. Carstensen et al.

4.3 Best-approximation

For any v ∈ H1(T ), the nonconforming interpolation I locNCv ∈ P1(T ) is defined, on
each triangle T ∈ T , by piecewise linear interpolation of the values

(I locNCv)(mid(E)) := −
∫

E
v
∣∣
T ds (4.7)

at the midpoints of the sides E ∈ E(T ).

Proposition 4.5 The operator Π := I locNC satisfies Hypothesis 2.5.

Proof Given v ∈ H1(T ), set vh := I locNCv ∈ P1(T ). For every K ∈ T , an integration
by parts leads to

∇ (
vh

∣∣
K

) =
∫

∂K
vh · νK ds =

∫

∂K
v · νK ds =

∫

K
∇ v dx

/
|K |.

Since∇ wC ∈ P0(T ;Rn) and (3.2) showsDσ(∇ uC ) ∈ P0(T ;Rn×n) for allwC , uC ∈
S1
0(T ), this implies

∫

Ω

∇ wC · (Dσ(∇ uC )∇NC(v − vh)) dx = 0.

Moreover, (4.7) guarantees that any s0 ∈ P0(E) satisfies

〈s0, v − vh〉∂T = 0.

Consequently, any xh = (uC , t0) ∈ Xh and ξh = (wC , s0) ∈ Xh satisfy

b′(xh; ξh, v − vh) =
∫

Ω

∇ wC · (Dσ(∇ uC )∇NC(v − vh)) dx − 〈s0, v − vh〉∂T = 0.

��
The estimates for the function Dσ from Sect. 3.1 lead to an explicit generic constant

for the best-approximation estimate from Theorem 2.8 without any local hypothesis.

Theorem 4.6 (best-approximation)
Let x = (u, t) ∈ X be the unique solution to B(x) = F for the nonlinear map B

from (3.4) in Sect. 3.3. Any discrete solution (uh, th; vh) ∈ Xh × Yh to (3.5) satisfies

~u − uh~ + ‖vh‖Y � inf
uC∈S10 (T )

~u − uC~ + inf
t0∈P0(E)

‖t − t0‖H−1/2(∂T ).
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Proof Given the best-approximation x∗
h = (u∗

h, t∗h ) ∈ Xh to (u, t) in Xh and let
A = ∇u∗

h(x) and B = ∇uh(x) in (4.5) and integrate over a.e. x ∈ Ω . Then

γ1~u∗
h − uh~2 ≤

∫

Ω

(
σ(∇ u∗

h) − σ(∇ uh) · ∇(u∗
h − uh)

)
dx

= b(x∗
h ; u∗

h − uh) − b(xh; u∗
h − uh).

Since b(u, t; • ) = F , the last term is equal to

F(u∗
h − uh) − b(xh; u∗

h − uh) + b(x∗
h ; u∗

h − uh) − b(u; u∗
h − uh)

= a(vh, u∗
h − uh) +

∫

Ω

(
σ(∇ u∗

h) − σ(∇ u)
) · ∇(u∗

h − uh) dx .
(4.8)

The Lipschitz continuity from Remark 3.1 leads to

‖σ(∇ u) − σ(∇ u∗
h)‖L2(Ω) ≤ γ2~u − u∗

h~ (4.9)

and the last term in (4.8) is controlled by

∫

Ω

(
σ(∇ u∗

h) − σ(∇ u)
) · ∇(u∗

h − uh) dx ≤ γ2~u − u∗
h~~u∗

h − uh~. (4.10)

Since xh is a global discrete minimizer,

‖vh‖Y = ‖F − b(xh; • )‖Y ∗
h

≤ ‖F − b(x∗
h ; • )‖Y ∗

h
= ‖b(x; • ) − b(x∗

h ; • )‖Y ∗
h
.

The Lipschitz continuity (4.9) of σ and the structure of the map b from (3.4) show
that the last term is ≤ γ2~u − u∗

h~+‖t − t∗h ‖H−1/2(∂T ). The combination of ‖vh‖Y ≤
γ2~u − u∗

h~ + ‖t − t∗h ‖H−1/2(∂T ) with (4.8) and (4.10) shows

γ1~u∗
h − uh~ ≤

√
1 + C2

F‖vh‖Y + γ2~u − u∗
h~.

A triangle inequality concludes the proof with explicit constants

~u − uh~ ≤ (1 + γ2(1 +
√
1 + C2

F)
/
γ1) inf

uC∈S10 (T )

~u − uC~

+ γ2

√
1 + C2

F

/
γ1 inf

t0∈P0(E)

‖t − t0‖H−1/2(∂T ). ��

The following a posteriori error estimate holds for any discrete approximation, and
even for inexact solve, and generalizes the built-in error control despite inexact solve
of [5, Thm. 2.1] to the nonlinear model problem at hand.
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Theorem 4.7 (a posteriori) There exist universal constants κ ≈ 1 ≈ CdF such that
the exact solution (u, t) ∈ X of B(x) = F and any discrete (vC , s0) ∈ S1

0(T )× P1(T )

satisfy

γ 2
1 ~u − vC~2 ≤ (1 + C2

dF)‖F − b(vC , s0; • )‖2
C R1

0(T )∗ + κ2‖hT f ‖2L2(Ω)
.

Remark 4.8 The proof reveals that CdF is the constant in the discrete Friedrichs
inequality [4, p. 301] ‖ • ‖ ≤ CdF‖∇NC • ‖ in C R1

0(T ). The explicit bounds of CdF
in [10] allow quantitative estimates in 2D and show in particular CdF ≤ 6.24 for a
convex domain with diam(Ω) ≤ 1 and a triangulation with right isosceles triangles.

Remark 4.9 The proof reveals that κ is the constant in interpolation error estimate for
the nonconforming interpolation operator ‖h−1

T (1 − INC)v‖ ≤ κ‖∇NC(1 − INC)v‖
for v ∈ H1(Ω). An estimate with the first positive root j1,1 of the Bessel function of
the first kind in [7, Thm. 4] in 2D reads κ = (1/48 + 1/j21,1)

1/2 = 0.29823.

Proof (of Theorem 4.7) The estimate (4.5) with A = ∇ u(x), B = ∇ uh(x), e :=
u − uh , and an integration over a.e. x ∈ Ω leads to

γ1~e~2 ≤
∫

Ω

(
σ(∇ u) − σ(∇ uh)

) · ∇ e dx . (4.11)

Since (u, t) ∈ X solvesb(u, t; • ) = F inY ∗ andwith the nonconforming interpolation
operator (4.7), this is equal to

F(e)−
∫

Ω

σ(∇ uh) · ∇ e dx = F((1− INC)e)+F(INCe)−
∫

Ω

σ(∇ uh) · ∇NC INCe dx

= F((1 − INC)e) + F(INCe) − b(uh, th; INCe)

≤ F((1 − INC)e)+‖F −b(uh, th; • )‖C R1
0(T )∗‖INCe‖Yh .

The interpolation error estimate for the nonconforming interpolation operator with
constant κ [7, Thm. 4] yields

F((1 − INC)e) ≤ κ‖hT f ‖L2(Ω)~e − INCe~NC.

The discrete Friedrichs inequality [4, p. 301] and INCe ∈ C R1
0(T ) prove

‖INCe‖Yh ≤
√
1 + C2

dF~INCe~NC.

The Cauchy inequality in R2 and the theorem of Pythagoras imply

γ1~e~2 ≤ (
κ2‖hT f ‖2L2(Ω)

+ (1 + C2
dF)‖F − b(uh, th; • )‖2

C R1
0(T )∗

)1/2~e~NC. ��
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4.4 Other nonlinear dPG methods

This section illustrates the plethora of dPG methodology by introducing the primal
mixed, the dual, and the ultraweak dPG method for the nonlinear model problem. All
three methods concern the first-order system of (3.1) with the convex function ϕ and
σ = D(ϕ ◦ | • |) and its dual ϕ∗ so that the relation p = σ(∇u) is equivalent to ∇u =
Dϕ∗(|p|) sign p on the continuous level. Recall the space of functions with piecewise
divergence H(div; T ) := ∏

T ∈T H(div; T ) from [8] as well as the piecewise version
RTNC

k (T ) ⊂ H(div; T ) of RTk(T ), and the subspace Sk
0 (E) ≡ Sk

0 (T )
∣∣
∂T of

H1/2
0 (∂T ) := {s = (sT )T ∈T ∈ ∏

T ∈T H1/2(∂T ) | ∃v ∈ H1
0 (Ω),

∀T ∈ T , sT = (v|T )|∂T }.

Recall the primal nonlinear dPG method (dPG) in Sect. 3.3 with b from (3.4) and
general polynomial degree k ≥ 0 and m ≥ k in the discrete spaces

Xh := Sk+1
0 (T ) × Pk(E) and Yh := Pm+1(T ).

The primal mixed nonlinear dPG method departs from a piecewise integration by
parts and employs the spaces and discrete subspaces

X := L2(Ω;Rn) × H1
0 (T ) × H1/2(∂T ) and Y := L2(Ω;Rn) × H1(T ),

Xh := Pk(T ;Rn) × Sk+1
0 (T ) × Pk(E) and Yh := Pm(T ;Rn) × Pm+1(T ).

For (p, u, t) ∈ X and (q, v) ∈ Y , define (dPG) with F(q, v) := ( f, v)L2(Ω) and

b(p, u, t; q, v) := (p − σ(∇u), q)L2(Ω) + (p,∇NC v)L2(Ω) − 〈t, v〉∂T .

The dual nonlinear dPG method utilizes the spaces and discrete subspaces

X := H(div;Ω) × L2(Ω) × H1/2
0 (∂T ) and Y := H(div; T ) × L2(Ω),

Xh := RTk(T ) × Pk(T ) × Sk+1
0 (E) and Yh := RTNC

m (T ) × Pm(T ).

For F as before and (p, u, s) ∈ X and (q, v) ∈ Y , define (dPG)withb(p, u, s; q, v) :=

(Dϕ∗(|p|) sign p, q)L2(Ω) + (u, divNC q)L2(Ω) − (div p, v)L2(Ω) − 〈q · ν, s〉∂T .

The ultraweak nonlinear dPG method utilizes a piecewise integration by parts in
both equations of the first-order system and the spaces

X := L2(Ω;Rn)×L2(Ω) × H1/2(∂T ) × H1/2
0 (∂T ) and Y := H(div; T )×H1(T ),

Xh := Pk(T ;Rn) × Pk(T ) × Pk(E) × Sk+1
0 (E) and Yh := RTNC

m (T ) × Pm+1(T ).
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For F from the above primal mixed method and (p, u, t, s) ∈ X and (q, v) ∈ Y ,
define (dPG) with

b(p, u, t, s; q, v) := (Dϕ∗(|p|) sign p, q)L2(Ω) + (p,∇NC v)L2(Ω)

+ (u, divNC q)L2(Ω) − 〈q · ν, s〉∂T − 〈t, v〉∂T .

The linear version is analysed in [2,6,8,18]. The four nonlinear dPG methods may be
further analysed in the spirit of this section.

5 Numerical experiments

This section presents numerical experiments with the LS-FEM of Sect. 3.5.

5.1 Computational realization

Given f ∈ L2(Ω), the discrete solution of (3.7) is computed by a Newton scheme
with an initial iterate from the solution of the scaled linear Poissonmodel problem. Let
S1
0(T ) be endowed with the energy norm ~ •~ and RT0(T ) with ‖ • ‖H(div,Ω) and let

~ •~∗ denote the normof thedual spaceof S1
0 (T )×RT0(T ). Thefirst Fréchet derivative

DL S( f ; uC, pRT) of L S( f ; • ) belongs to the dual space of S1
0(T )× RT0(T ). After at

most 5 Newton iterations, every displayed discrete solution (uh, ph) in the following
subsections satisfy ~DL S( f ; uh, ph, • )~∗ = 0 up to machine precision. In the case
of successive mesh-refinement, the iteration starts with the prolongated solution from
the coarser triangulation and terminates in at most 3 or 4 iterations.

Table 1 presents the errors ~DL S( f ; u( j)
h , p( j)

h , • )~∗ of the Newton iterate

(u( j)
h , p( j)

h ) for j = 0, 1, . . . , 5 on fixed triangulations of the square domain from
Sect. 5.2 and the L-shaped domain from Sect. 5.4 with the convex function φ from
Example 3.2.a. The iterations (A) and (B) utilize a uniform triangulation of the square
domain with 4 096 triangles (ndof = 8 193) and an initial iterate from a Poisson
model problem for (A) and a weighted Poisson problem with constant weight 2.5 in
(B). The adaptive mesh of the L-shaped domain with 3 450 triangles (ndof = 6.901)
in (C) and (D) has been generated by the algorithm from Sect. 5.3 below at level
� = 12. Iteration (C) starts with a weighted Poisson solution with constant factor 2.5
and (D) with the prolongated solution from the previous mesh.

From the very beginning of the Newton iteration, all values in Table 1 provide
numerical evidence for Q-quadratic convergence.

In order to investigate the uniqueness of discrete solutions, the minimal and the
maximal eigenvalue λmin and λmax of the Hessian matrix D2L S( f ; uh, ph; • , • ) of
the least-squares functional is computed, where (uh, qh) ∈ Xh and λ ∈ R satisfy, for
all (̃vh, q̃h) ∈ Xh ,

D2L S( f ; uh, ph; vh, qh, ṽh, q̃h) = λ
(
aNC(vh, ṽh) + (qh, q̃h)H(div,Ω

)
. (5.1)
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Table 1 Convergence history of Newton iteration for 4 representative examples

niter (A) (B) (C) (D)

0 1.67431× 101 8.73230× 100 6.431245× 100 1.16987× 10−1

1 2.20124× 100 7.69274× 10−2 4.194389× 10−2 1.94092× 10−3

2 1.59872× 10−1 2.13909× 10−4 8.04263× 10−5 3.30072× 10−6

3 9.61529× 10−4 1.74101× 10−9 3.74273× 10−10 1.17441× 10−11

4 4.11730× 10−8 1.12689× 10−14 6.111556× 10−15 6.26485× 10−15

5 1.13667× 10−14 1.09142× 10−14 5.70819× 10−15 5.93587× 10−15

6 1.11131× 10−14 1.10560× 10−14 5.92760× 10−15 5.82990× 10−15

7 1.09108× 10−14 6.03978× 10−15

8 1.14493× 10−14

The value λmin is uniformly bounded from zero for the examples in the following
subsections, so that every computed discrete solution (uh, ph) is a local minimizer.

For any discrete approximation (uh, ph), Theorems 3.11 and 4.7 verify the a pos-
teriori error estimator η2(T ) := LS( f ; uh, ph) + ‖hT f ‖2

L2(Ω)
even for inexact solve

in its computation. In view of a lacking proof in Sect. 5.4 below that the computed dis-
crete solution is in fact a global discrete minimizer (at least up to machine precision),
it is only by this universal a posteriori error control that we know that the computed
approximations converge to the exact solution.

5.2 Numerical example on square domain

This subsection considers the nonlinear model problem for the exact solution

u(x) := cos(πx1/2) cos(πx2/2) for x ∈ Ω := (−1, 1)2

with homogeneous Dirichlet boundary condition, f := − div(σ (∇ u)), and φ from
Example 3.2.a. This defines the exact stress function p := σ(∇ u) ∈ H(div,Ω).

Figure 1 displays the error estimator η� := η(T�) at the discrete solutions (u�, p�)

on each level � of a sequence of uniform triangulations as well as the error to the
exact solution (u, p). The reference energy E(u) = −5.774337908509 in the energy
difference E(u�) − E(u) ≥ γ1~u − u�~2/2 has been approximated by the ener-
gies of P1-conforming finite element solution with an Aitken �2 extrapolation. The
eigenvalues of (5.1) in all experiments of Fig. 1 satisfy 1.597 ≤ λmin ≤ 1.722 and
9.943 ≤ λmax ≤ 16.128 and so prove that the discrete solutions are local mini-
mizers. The parallel graphs confirm the equivalence of the built-in error estimator
‖y�‖Y = (L S( f ; u�, p�))

1/2 with the exact error from Theorem 4.1.
With the Friedrichs constant CF = √

2/π of the square domain, the criterion (4.2)
is equivalent to ‖∇NC vh‖L∞(Ω) < γ 2

1 Lip(Dσ)−1(1 + C2
F)

−1 = 0.17239892 and
so Fig. 1 shows that the criterion (4.2) holds for each level � ≥ 6 and Theorem 4.4
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Fig. 1 Convergence history for a sequence of uniform triangulations of the square domain with exact
solution u from Sect. 5.2

implies global uniqueness of the computed (u�, p�). This proves that there exists only
one local minimizer in the discrete problem (dPG).

5.3 Adaptive mesh-refinement

The natural adaptive algorithm with collective Dörfler marking [20] utilizes the local
error estimator η2(T , T ) := ‖(In×n + S0)−1/2

(
Π0 pRT − σ(∇uC ) + H0 f

)‖2
L2(T )

+
‖Π0 f + div pRT‖2

L2(T )
+ ‖hT f ‖2

L2(T )
for any (uC , pRT) ∈ S1

0(T ) × RT0(T ) and
T ∈ T as follows.

Input: Regular triangulation T0 of the polygonal domain Ωinto simplices.
for any level � = 0, 1, 2, . . . do

Solve generalized LS-FEM with respect to triangulation T� and solution
(u�, p�).
Compute error estimator η� := η(T�).
Mark a subset M� ⊆ T� of (almost) minimal cardinality |M�| with

0.3 η2� ≤ η2�(M�) :=
∑

T ∈M�

η2(T�, T )

Compute smallest regular refinement T�+1 of T� with M� ⊆ T� \ T�+1 by
newest-vertex bisection (NVB). od

Output: Sequence of discrete solutions (u�, p�)�∈N0 and triangulations (T�)�∈N0 .

See [26] for details on adaptive mesh-refinement and NVB.
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(a) (b)

Fig. 2 Solution uh for different functions φ on a uniform triangulation of the L-shaped domain into 768
(ndof = 1 537). a φ from Example 3.2.a. b φ from Example 3.2.b

(a) (b)

Fig. 3 Adaptively refined triangulation T� for different functions φ. a φ from Example 3.2.a, mesh with
1 783 triangles (ndof = 3 567). b φ from Example 3.2.b, mesh with 1 838 triangles (ndof = 3 677)

5.4 Numerical example on L-shaped domain

This subsection considers f ≡ 1 on the L-shaped domain Ω := (−1, 1)2 \ [0, 1]2 ⊂
R
2 with homogeneous Dirichlet boundary condition u|∂Ω ≡ 0 and unknown exact

solution u. Figure 2 displays the corresponding discrete solutions uh on a uniform
triangulation of Ω for the different functions φ from Example 3.2.a and b.

Figure 3 shows two typical adaptively generated triangulations with considerable
refinement at the re-entrant corner for different functions φ. At first glance, the meshes
appear similar and resemble the undisplayed adaptive triangulation from the Poisson
model problem.

For φ from Example 3.2.a, Fig. 4 shows the convergence history plot of the natu-
ral least-squares error estimator η� = η(T�) and the difference of the energy E(u�)

of the solution u� and a reference energy E(u) = −3.657423002939 × 10−2 (com-
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Fig. 4 Convergence history for adaptive mesh-refinement (solid lines) and uniform mesh-refinement (dot-
ted lines) with φ from Example 3.2.a

puted by the energies of P1-conforming finite element solutions with an Aitken �2

extrapolation).
The eigenvalues of (5.1) in all experiments satisfy 1.787 ≤ λmin ≤ 1.914 and

16.682 ≤ λmax ≤ 17.932 and so prove that all the discrete solutions are local mini-
mizers. The function φ from Example 3.2.b leads to (undisplayed) similar results.

For the L-shaped domain, the smallest eigenvalue λ1 = 9.6397238 of the Lapla-
cian with homogeneous Dirichlet boundary conditions yields the Friedrichs constant
CF = 1/

√
λ1 = 0.32208293. Since ‖∇NC v�‖L∞(Ω) ≥ γ 2

1 Lip(Dσ)−1(1 + C2
F)

−1 =
0.22650326 for all level � ∈ N0 in Fig. 4, Theorem 4.4 is not applicable to any
triangulation T� of the computation at hand.

To guarantee optimal convergence rates for least-squares FEMs with an alternative
a posteriori error estimator, the choice of a sufficiently small bulk parameter is crucial
[11,14]. However, for the natural error estimator with the values of the least-squares
functional, the plain convergence proof of [12] requires the bulk parameter sufficiently
close to 1. For the nonlinear model problem at hand, the convergence history plot in
Fig. 4 provides numerical evidence for optimal convergence rates for adaptive mesh-
refinement of Sect. 5.3 and suboptimal convergence for uniform refinement.
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