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Abstract The paper is concernedwith the unconditional stability and optimal L2 error
estimates of linearized Crank–Nicolson Galerkin FEMs for a nonlinear Schrödinger–
Helmholtz system in R

d (d = 2, 3). By introducing a corresponding time-discrete
system,we separate the error into two parts, i.e., the temporal error and the spatial error.
Since the latter is τ -independent, the uniform boundedness of numerical solutions
in L∞-norm follows an inverse inequality immediately without any restrictions on
time stepsize. Then, optimal error estimates are obtained in a routine way. Numerical
examples in both twoand three dimensional spaces are given to illustrate our theoretical
results.
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1 Introduction

A generalized nonlinear Schrödinger type system is defined by

iut + �u + ψ f (|u|)u + l(|u|)u = 0, (1.1)
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αψ − β2�ψ = f (|u|)|u|2, (1.2)

for t ∈ [0, T ], with the initial condition

u(x, 0) = u0(x), (1.3)

where i = √−1, α, β are real nonnegative constants with α +β �= 0, and f , l are two
given real-valued continuous functions. The above systemmaydescribemanydifferent
physical phenomena in optics, quantum mechanics, and plasma physics. The system
defines the Schrödinger–Poisson–Slater model [4,36,45] when α = 0, f (|u|) = c,
and the Schrödinger–Poisson model if l = 0 and α = 0 [6,16,20,27–29]. When
β = 0, the system reduces to a generalized nonlinear Schrödinger (GNLS) equation
[1,31,32,35]. Besides, the system (1.1)–(1.3) was called a Schrödinger–Helmholtz
system in [10] when l = 0.

Mathematical analysis for various Schrödinger type equations has been well stud-
ied, e.g., see [5,37] and references therein. In [4,20,29,36], the Schrödinger–Poisson
type equations were analyzed by several authors and the existence and uniqueness
of solutions in R

d (d = 1, 2, 3) were proved. Cao et al. introduced a Schrödinger–
Helmholtz system in [10] as a regularization of the generalized nonlinear Schrödinger
equation, and studied local and global existence of a unique solution of the system. On
the other hand, numerical methods and analysis for nonlinear Schrödinger type equa-
tions (system) have also been investigated extensively, e.g., see [8,25,33,39] for finite
difference methods, [2,6,19,34,42,47] for finite element methods, [4,7,13,28] for
spectral methods and [1,24,27] for others. Akrivis et al. [2] presented several Crank–
NicolsonGalerkin FEMs for theGNLS equation. To obtain optimal L2 error estimates,
the authors studied a truncated system with a classical energy method, which required
to estimate the numerical solution of the truncated system in L∞-norm. A time-step
condition τ = o(hd/4) (d = 2, 3) arose immediately for both nonlinear schemes and
linearized schemes when an inverse inequality was used as usual, where τ and h were
the stepsize in the temporal direction and the spatial direction, respectively. Later,
Tourigny [42] proved optimal H1 error estimates of both implicit backward Euler
and Crank–Nicolson Galerkin finite element schemes for the GNLS equation. The
work was based on a nonlinear stability theory introduced in [26], which resulted in
time-step conditions τ = o(hd/2) and τ = o(hd/4) ( d = 1, 2, 3) for backward Euler
and Crank–Nicolson schemes, respectively. Similarly, the optimal error estimates of
finite difference methods have been done in [3,34,43] under certain time-step con-
ditions. Chang et al. [11] presented systematic numerical investigations of several
frequently-used finite difference schemes for the GNLS equation. Numerical results
indicated that a linearized Crank–Nicolson scheme was more efficient. Wang et al.
[43] studied this linearized scheme for a coupled cubic Schrödinger system. They
obtained optimal L2 error estimates by an energy method in one dimensional space
when τ = o(h1/4). The stronger restriction τ = o(hd/4) is needed when applying
their method in R

d , d = 2, 3. More recently in [38], we studied two linearized
Crank–Nicolson finite difference schemes for the coupled cubic Schrödinger system
in three dimensional space. We established optimal L2 error estimates of schemes
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unconditionally by making good use of both imaginary and real parts of the error
equations.

Linearized schemes usually show better performance to deal with nonlinear par-
tial differential equations, since one only needs to solve a linear system at each time
step. The analysis of linearized schemes for a variety of nonlinear physical equations
(system) can be found in the literatures, e.g., see [9,12,14,17,18,30,40,44] and ref-
erences therein. In these previous works, optimal error estimates were obtained with
certain time-step restrictive conditions, which make practical computation extremely
time-consuming, especially for a non-uniformmesh.Recently, Li andSun studied a lin-
earized backward Euler Galerkin FEM for a nonlinear thermistor system in [22]. They
proposed an error splitting technique based on the corresponding time-discrete system.
With a priori estimates of solutions for the time-discrete system, optimal error esti-
mates of the method were obtained unconditionally. Moreover, the method was used
in [23] for a nonlinear equation from incompressible miscible flows in porous media,
in which, the same backward Euler scheme as in [22] and a low-order Galerkin-mixed
FEMwas used. Analysis presented in [23] required a strong regularity for the domain.

In this paper, we present two linearized Crank–Nicolson Galerkin FEMs for the
complex Schrödinger type equations (1.1)–(1.3) and provide unconditionally optimal
L2 error estimates in both two and three dimensional spaces. For nonlinear complex
PDEs, analysis for Crank–Nicolson schemes is usually much more complicated than
that for Euler schemes, since the error in an energy-norm in Crank–Nicolson schemes
is defined by an average of those at two consecutive time levels. Thus, the nonlinear
term which is often defined in terms of classical extrapolation may not be easily
controlled. The key to theoretical analysis is the boundedness of numerical solutions
in L∞-norm. Following the splitting technique proposed in [22], also see [21], we
introduce a time-discrete system. With the required regularity for solutions (U n) of
the time-discrete system, the fully discrete Galerkin FEM solution is bounded by

‖U n
h ‖L∞ ≤ ‖RhU n‖L∞ + ‖U n

h − RhU n‖L∞

≤ ‖RhU n‖L∞ + Ch−d/2‖U n
h − RhU n‖L2

≤ C + Ch−d/2h2

≤ C , (1.4)

where U n
h is the finite element solution of (1.1) and Rh is a Ritz projection operator.

With the boundedness, unconditionally optimal L2 error estimates of fully discrete
Galerkin FEMs of degree r (r ≥ 1) can be obtained in a routine way.

The rest of the paper is organized as follows. In Sect. 2, we present two lin-
earized Crank–Nicolson finite element schemes for the Schrödinger type equations
(1.1)–(1.3) and our main results. The corresponding time-discrete scheme is then
introduced, with which, the error function is separated into two parts: the temporal
error function and the spatial error function. In Sect. 3, we obtain the uniform bound-
edness of numerical solutions in L∞-norm and establish optimal L2 error estimates
unconditionally. Finally, three numerical examples are given in Sect. 4 to illustrate
our theoretical results, i.e. the optimal convergence rate and unconditional stability
(convergence).
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2 The main results

In this paper, we study the Schrödinger type equations (1.1)–(1.3) defined in a bounded
and convex (or smooth) polygon � ∈ R

2 (or polyhedron in R
3), with homogenous

boundary conditions u = ψ = 0 on ∂�. Some remarks for problems in an infinite
domain will be given in the conclusion part. For simplicity, we only consider the case
l(|u|) = 0, since this term will not add any further difficulty in the analysis. For this
case, the system reduces to the Schrödinger–Helmholtz system [10].

In this section, we present two linearized Crank–Nicolson schemes with r -order
(r ≥ 1) Galerkin FEM approximation in the spatial direction. Some notations are
introduced below.

Following classical FEM theory [41,46], we defineTh to be a quasiuniformpartition
of � into triangles in R

2 or tetrahedrons in R
3, and h = maxπh∈Th {diamπh} denotes

the mesh size. Let Vh be the finite-dimensional subspace of H1
0 (�), which consists of

continuous piecewise polynomials of degree r (r ≥ 1) on Th .We define�τ = {tn|tn =
nτ ; 0 ≤ n ≤ N } to be a uniform partition of [0, T ] with the time step τ = T/N ,
and tn− 1

2
= 1

2 (tn + tn−1). Let um = u(x, tm), ψm = ψ(x, tm). For a sequence of

functions {ωn}N
n=0, we denote

Dτω
n = ωn − ωn−1

τ
, ωn− 1

2 = 1

2

(
ωn + ωn−1

)
, n = 1, 2, . . . , N ,

ω̂n− 1
2 = 1

2

(
3ωn−1 − ωn−2

)
, n = 2, . . . , N .

We define the L2(�) inner product by

(u, v) =
∫

�

u(x) (v(x))∗ dx,

where u, v are any two complex functions in L2(�), and v∗ denotes the conjugate of
v.

With these notations, a semi-implicit linearized Crank–Nicolson Galerkin FEM is:

to seek U n
h , �

n− 1
2

h ∈ Vh such that

i
(
DτU n

h , v
) −

(
∇U

n− 1
2

h ,∇v

)
+

(
�

n− 1
2

h f

(∣∣∣∣Û
n− 1

2
h

∣∣∣∣
)

U
n− 1

2
h , v

)
= 0, (2.1)

α

(
�

n− 1
2

h , ϕ

)
+ β2

(
∇�

n− 1
2

h ,∇ϕ

)
=

(
f

(∣∣∣∣Û
n− 1

2
h

∣∣∣∣
) ∣∣∣∣Û

n− 1
2

h

∣∣∣∣
2

, ϕ

)
(2.2)

for any v, ϕ ∈ Vh and n = 1, 2, . . . , N , where a standard extrapolation [15] is used

for the nonlinear terms. Û
1
2

h is defined to be the solution of the following equation
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i

⎛
⎝Û

1
2

h − U 0
h

τ/2
, v

⎞
⎠ −

(
∇Û

1
2

h ,∇v

)
+

(
0

h f (|U 0
h |)Û

1
2

h , v

)
= 0 (2.3)

where U 0
h = �hu0, �0

h satisfies

α
(
0

h, ϕ
)

+ β2
(
∇0

h,∇ϕ
)

=
(

f (|u0|)|u0|2, ϕ
)

. (2.4)

Here, �h is an interpolation operator. It is easy to see that U n
h satisfies the mass

conservation, i.e.,

‖U n
h ‖L2 ≡ ‖U 0

h ‖L2 , 1 ≤ n ≤ N . (2.5)

With an explicit treatment of the nonlinear terms, an alternative linearized Crank–
Nicolson Galerkin scheme can be defined by

i
(
DτU n

h , v
) −

(
∇U

n− 1
2

h ,∇v

)
+

(
�̂

n− 1
2

h f

(∣∣∣∣Û
n− 1

2
h

∣∣∣∣
)

Û
n− 1

2
h , v

)
= 0, (2.6)

α

(
�

n− 1
2

h , ϕ

)
+ β2

(
∇�

n− 1
2

h ,∇ϕ

)
=

(
f

(∣∣∣∣Û
n− 1

2
h

∣∣∣∣
) ∣∣∣∣Û

n− 1
2

h

∣∣∣∣
2

, ϕ

)
(2.7)

for any v, ϕ ∈ Vh , where Û
1
2

h is the solution of (2.3) and �̂
1
2
h satisfies

α

(
�̂

1
2
h , ϕ

)
+ β2

(
∇�̂

1
2
h ,∇ϕ

)
=

(
f

(∣∣∣∣Û
1
2

h

∣∣∣∣
) ∣∣∣∣Û

1
2

h

∣∣∣∣
2

, ϕ

)
. (2.8)

At each time step of the scheme (2.1)–(2.2), one has to solve (2.2) for �
n− 1

2
h first,

and then (2.1) for U n
h . However, for the second scheme (2.6)–(2.7), one only needs to

solve the two equations simultaneously forU n
h and�n

h at each time step. In this paper,
we only present the theoretical analysis for the first linearized scheme (2.1)–(2.3). The
analysis of the second linearized scheme (2.6)–(2.7) can be obtained analogously.

Here, we assume that f : R → R is locally Lipschitz continuous, i.e., for any
s1, s2 ∈ [−K ∗, K ∗],

| f (s1) − f (s2)| ≤ L K ∗ |s1 − s2|, (2.9)

where L K ∗ is the Lipschitz constant dependent on K ∗.We also assume that the solution
to the problem (1.1)–(1.3) exists and satisfies

‖u0‖Hr+1 + ‖u‖L∞((0,T );Hr+1) + ‖ut‖L2((0,T );Hr+1) + ‖utt‖L2((0,T );H2)

+ ‖uttt‖L2((0,T );L2) + ‖ψ‖L∞((0,T );Hr+1) ≤ K . (2.10)
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We present our main results in the following theorem and the proof will be given
in Sect. 3.

Theorem 2.1 Suppose that the system (1.1)–(1.3) has unique solutions u, ψ satisfying
(2.10). Then the finite element system defined in (2.1)–(2.3) has unique solutions U m

h

and �
m− 1

2
h , m = 1, . . . , N. Moreover, there exists τ0 > 0 such that when τ ≤ τ0,

‖um − U m
h ‖L2 +

∥∥∥∥ψm− 1
2 − �

m− 1
2

h

∥∥∥∥
L2

≤ C0

(
τ 2 + hr+1

)
. (2.11)

where C0 is a positive constant dependent on K and independent of τ , h and N.

In our proof, the following lemma is useful.

Lemma 2.1 Let {ωn}N
n=0 and {vn}N

n=0 be two sequences of functions in �. Then

‖ωn‖ ≤ 2
n∑

m=1

‖ωm− 1
2 ‖ + ‖ω0‖, (2.12)

for any norm ‖ · ‖, and

n∑
m=1

ωmvm− 1
2 = 1

2
ω1v0 +

n∑
m=2

ωm− 1
2 vm−1 + 1

2
ωnvn . (2.13)

To prove Theorem 2.1, we introduce a time-discrete system

α�n− 1
2 − β2��n− 1

2 = f (|Û n− 1
2 |)|Û n− 1

2 |2, (2.14)

iDτU n + �U
n− 1

2 + �n− 1
2 f (|Û n− 1

2 |)U n− 1
2 = 0, (2.15)

with the initial and boundary conditions

U 0(x) = u0(x), in �,

U n(x) = 0, �n− 1
2 (x) = 0, on ∂�, (2.16)

for n = 1, 2, . . . , N , where Û
1
2 is the solution of the following system

i
Û

1
2 − U 0

τ/2
+ �Û

1
2 + �0 f (|U 0|)Û 1

2 = 0, (2.17)

Û
1
2 (x) = 0, on ∂�, (2.18)

and�0 = ψ0 satisfies the Eq. (1.2) at t = t0. By the homogeneous Dirichlet boundary
condition ψ = 0 on ∂�, the classical theory of PDEs shows the boundedness of
‖�0‖L∞ . Also, it is easy to see that U n satisfies the mass conservation, i.e.
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‖U n‖L2 ≡ ‖U 0‖L2 , (2.19)

for 1 ≤ n ≤ N , and Û
1
2 satisfies ‖Û

1
2 ‖L2 ≤ ‖U 0‖L2 . As proposed in [22,23], we

separate the errors into two parts

‖un − U n
h ‖L2 ≤ ‖un − U n‖L2 + ‖U n − U n

h ‖L2 , (2.20)∥∥∥∥ψn− 1
2 − �

n− 1
2

h

∥∥∥∥
L2

≤
∥∥∥ψn− 1

2 − �n− 1
2

∥∥∥
L2

+
∥∥∥∥�n− 1

2 − �
n− 1

2
h

∥∥∥∥
L2

. (2.21)

Under the splitting, we will prove that the first term in the right-hand side of each
above inequality is bounded by O(τ 2) and the second term is bounded by O(h2),
with which, classical inverse inequality and induction assumption, we can obtain the
uniform boundedness of numerical solution U n

h in L∞-norm. Then, the optimal error
estimates can be easily proved by a routine method.

For the simplicity of notations, we denote by CK a generic positive constant, which
is independent of n, h, τ and C0 and dependent upon α, β, f and K given in (2.10),
andwhich could be different in different places. Alsowe denote byC a generic positive
constant involved in some classical inequalities, such asGagliardo–Nirenberg inequal-
ity and inequalities for standard interpolation and Ritz projection, which depend only
upon the domain � and the partition Th in general.

3 The proof of Theorem 2.1

Weanalyze the error functionsun−U n andψn− 1
2 −�n− 1

2 ,U n−U n
h and�n− 1

2 −�
n− 1

2
h ,

respectively, in the following two subsections.

3.1 Temporal error analysis

Under the regularity assumption (2.10), we define

K0 := max
0≤n≤N

‖un‖L∞ + ‖û
1
2 ‖L∞ + 1, (3.1)

where û
1
2 := u

1
2 = u(x, t 1

2
), and K0 is a positive constant dependent on K and

independent of τ , h and n. Let

en = un − U n, θn− 1
2 = ψn− 1

2 − �n− 1
2 .

From (2.14)–(2.15) and (1.1)–(1.2), we can derive the error equations of en and θn− 1
2 :

αθn− 1
2 − β2�θn− 1

2 = G
n− 1

2
1 + Qn− 1

2 , (3.2)

iDτ en + �en− 1
2 + R

n− 1
2

1 = Pn− 1
2 , (3.3)
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for n = 1, 2, . . . , N , where

G
n− 1

2
1 = f

(
|̂un− 1

2 |
)

|̂un− 1
2 |2 − f

(
|Û n− 1

2 |
)

|Û n− 1
2 |2, (3.4)

R
n− 1

2
1 = ψn− 1

2 f
(
|̂un− 1

2 |
)

un− 1
2 − �n− 1

2 f
(
|Û n− 1

2 |
)

U
n− 1

2 , (3.5)

and Qn− 1
2 , Pn− 1

2 are truncation errors. Moreover, ê
1
2 := û

1
2 − Û

1
2 satisfies

i
ê
1
2

τ/2
+ �ê

1
2 + �0 f (|u0|)̂e 1

2 = P̂
1
2 , (3.6)

where P̂
1
2 is the truncation error at the initial step (2.3). By Taylor expansion, we have

‖P̂
1
2 ‖L2 ≤ Cτ‖utt‖L∞((0,T );L2), (3.7)

‖Qn− 1
2 ‖L2 +

(
N∑

n=1

τ‖Pn− 1
2 ‖2L2

) 1
2

≤ Cτ 2(‖uttt‖L2((0,T );L2) + ‖utt‖L2((0,T );H2)).

(3.8)

Theorem 3.1 Suppose that the system (1.1)–(1.3) has unique solutions u, ψ satisfying
(2.10). Then, there exists τ ∗

0 > 0 such that when τ ≤ τ ∗
0 , the time-discrete system

(2.14)–(2.15) has unique solutions U m and �m− 1
2 , m = 1, . . . , N, satisfying

‖em‖L2 + ‖θm− 1
2 ‖L2 ≤ C∗

0τ
2, (3.9)

τ‖DτU m‖H2 + ‖DτU
m− 1

2 ‖H2 + ‖U m‖H2 + ‖�m− 1
2 ‖H2 ≤ C+

0 , (3.10)

where C∗
0 and C+

0 are positive constants dependent on K and independent of τ , h, N
and C0.

Proof The time-discrete Eqs. (2.14)–(2.15) are actually linear elliptic equations, and
the existence and uniqueness of solutions follow the classical theory of elliptic PDEs
and the mass conservation (2.19). Before studying (3.9)–(3.10), we use mathematical
induction to prove the following estimate

‖em‖L∞ ≤ τ
1
4 (3.11)

for m = 1, 2, . . . , N .
First we estimate the initial error. We multiply (3.6) by (̂e

1
2 )∗, integrate it over �

and then, take the imaginary part of the resulting equation to get

‖̂e
1
2 ‖L2 ≤ τ

2
‖P̂

1
2 ‖L2 ≤ CK τ 2,
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where we have used (3.7). From (3.6), we see that

‖�ê
1
2 ‖L2 ≤ 2

τ
‖̂e

1
2 ‖L2 + ‖�0 f (|u0|)̂e 1

2 ‖L2 + ‖P̂
1
2 ‖L2 ≤ CK τ. (3.12)

The above result implies

‖Û
1
2 ‖L∞ ≤ ‖û

1
2 ‖L∞ + ‖̂e

1
2 ‖L∞ ≤ ‖û

1
2 ‖L∞ + C ‖̂e

1
2 ‖H2

≤ ‖û
1
2 ‖L∞ + CCK τ ≤ K0, (3.13)

when τ ≤ τ1 = 1
CCK

. From (2.14), it is easy to see that

‖� 1
2 ‖L∞ ≤ C‖ f (|Û 1

2 |)|Û 1
2 |2‖L∞ ≤ CK . (3.14)

Then, from (3.2) and (3.5), we have

‖θ 1
2 ‖L2 ≤ C‖G

1
2
1 ‖L2 + C‖Q

1
2 ‖L2 ≤ CK ‖̂e

1
2 ‖L2 + CK τ 2 ≤ CK τ 2, (3.15)

‖R
1
2
1 ‖L2 ≤ CK

(
‖e1‖L2 + ‖̂e

1
2 ‖L2 + ‖θ 1

2 ‖L2

)
≤ CK

(
‖e1‖L2 + τ 2

)
, (3.16)

where we have noted e0 = 0.
Furthermore, multiplying (3.3) by (e1)∗, integrating it over � and taking the imag-

inary part of the resulting equation leads to

i

τ
‖e1‖2L2 + Im

(
R

1
2
1 , e1

)
= Im

(
P

1
2 , e1

)
. (3.17)

By (3.8) and (3.16), we get

‖e1‖L2 ≤ CK τ 2. (3.18)

From (3.3), we have

‖�e1‖L2 ≤ 1

τ
‖e1‖L2 +

∥∥∥∥R
1
2
1

∥∥∥∥
L2

+ ‖P
1
2 ‖L2 ≤ CK τ. (3.19)

The above estimate implies that

‖e1‖L∞ ≤ C‖e1‖H2 ≤ CCK τ ≤ τ
1
4 , (3.20)

when τ ≤ τ2 = (CCK )− 4
3 . Thus (3.11) holds for m = 1.

Secondly, by mathematical induction, we assume (3.11) holds for m ≤ n −1. Then

‖U m‖L∞ ≤ ‖um‖L∞ + ‖em‖L∞ ≤ ‖um‖L∞ + τ
1
4 ≤ K0. (3.21)
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From the Eq. (2.14), we know that

‖�n− 1
2 ‖L∞ ≤ C‖ f

(
|Û n− 1

2 |
)

|Û n− 1
2 |2‖L∞ ≤ CK . (3.22)

Then, from (3.2) and (3.5), we have

‖θn− 1
2 ‖L2 ≤ C

∥∥∥∥G
n− 1

2
1

∥∥∥∥
L2

+ C‖Qn− 1
2 ‖L2 ≤ CK ‖̂en− 1

2 ‖L2 + CK τ 2, (3.23)

‖R
n− 1

2
1 ‖L2 ≤ CK

(
‖en− 1

2 ‖L2 + ‖̂en− 1
2 ‖L2 + ‖θn− 1

2 ‖L2

)

≤ CK

(
‖en− 1

2 ‖L2 + ‖̂en− 1
2 ‖L2

)
+ CK τ 2. (3.24)

Now we prove that (3.11) also holds for m = n. We multiply (3.3) by (en− 1
2 )∗,

integrate it over � and take the imaginary part of the resulting equation to get

1

2τ

(
‖en‖2L2 − ‖en−1‖2L2

)
= −Im

(
R

n− 1
2

1 , en− 1
2

)
+ Im

(
Pn− 1

2 , en− 1
2

)

≤ CK (‖en− 1
2 ‖2L2 + ‖̂en− 1

2 ‖2L2) + CK τ 4 + ‖Pn− 1
2 ‖2L2 ,

(3.25)

where we have used (3.24). By Gronwall’s inequality and (3.8), there exists τ3 > 0
such that

‖en‖L2 ≤ CK τ 2 (3.26)

when τ ≤ τ3. The above estimate further shows that

‖Dτ en‖L2 ≤ CK τ, (3.27)

with which and (3.3), we obtain

‖�en− 1
2 ‖L2 ≤ ‖Dτ en‖L2 +

∥∥∥∥R
n− 1

2
1

∥∥∥∥
L2

+ ‖Pn− 1
2 ‖L2 ≤ CK τ. (3.28)

By Lemma 2.1,

‖�en‖L2 ≤ 2
n∑

m=1

‖�em− 1
2 ‖L2 + ‖�e0‖L2 ≤ 2CK .

By using Gagliardo–Nirenberg inequality, we have

‖en‖L∞ ≤ C‖en‖
3
4
H2‖en‖

1
4
L2 + C‖en‖L2 ≤ CCK τ

1
2 ≤ τ

1
4 , (3.29)
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when τ ≤ τ4 = 1
C4C4

K
. Thus, (3.11) holds for m = n. The induction is closed. From

(3.23) and (3.26), we can easily get

‖en‖L2 + ‖θn− 1
2 ‖L2 ≤ CK τ 2 ≤ C∗

0τ
2. (3.30)

Furthermore, we arrive at

‖U n‖L∞ ≤ ‖un‖L∞ + ‖en‖L∞ ≤ ‖un‖L∞ + τ
1
4 ≤ K0,

‖U n‖H2 ≤ ‖un‖H2 + ‖en‖H2 ≤ ‖un‖H2 + C‖�en‖L2 ≤ C+
0 ,

‖�n− 1
2 ‖H2 ≤ CK ‖Û n− 1

2 ‖H2 ≤ C+
0 ,

‖DτU
n− 1

2 ‖H2 ≤ ‖Dτ un− 1
2 ‖H2 + ‖Dτ en− 1

2 ‖H2 ≤ C+
0 ,

τ‖DτU n‖H2 ≤ τ‖Dτ un‖H2 + τ‖Dτ en‖H2 ≤ C+
0 ,

for n = 1, 2, . . . , N . Taking τ ∗
0 ≤ min1≤i≤4 τi , the Proof of Theorem 3.1 is complete.

�

3.2 Spatial error analysis

In this subsection, we derive τ -independent estimates forU n −U n
h and�n− 1

2 −�
n− 1

2
h .

Let Rh : H1
0 (�) → Vh be a Ritz projection operator defined by

(∇(v − Rhv),∇ω) = 0, for all ω ∈ Vh . (3.31)

By classical FEM theory [15,41], it is easy to see that

‖v − Rhv‖L2 + h‖∇(v − Rhv)‖L2 ≤ Chs‖v‖Hs , 1 ≤ s ≤ r + 1, (3.32)

for any v ∈ H1
0 (�). By classical interpolation theory [41], we further have

‖v − �hv‖L2 + h‖∇(v − �hv)‖L2 ≤ Chs‖v‖Hs , 1 ≤ s ≤ r + 1. (3.33)

Moreover, since ‖RhU n‖L∞ ≤ C‖U n‖H2 and ‖�h�n− 1
2 ‖L∞ ≤ C‖�n− 1

2 ‖H2 , by
Theorem 3.1, we can define

K1 = max
0≤n≤N

‖RhU n‖L∞ + ‖RhÛ
1
2 ‖L∞ + 1, (3.34)

K2 = max
1≤n≤N

‖�h�n− 1
2 ‖L∞ + ‖�h�0‖L∞ + 1, (3.35)

where K1 and K2 are positive constants dependent on K and independent on τ , h and
n. The following inverse inequality will be always used in our proof:

‖v‖L∞ ≤ Ch− d
2 ‖v‖L2 (3.36)

for any v ∈ Vh and d = 2, 3.
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Let

en
h = RhU n − U n

h , θ
n− 1

2
h = �h�n− 1

2 − �
n− 1

2
h .

With (2.1)–(2.2) and (2.14)–(2.15), en
h and θ

n− 1
2

h satisfy

α

(
θ

n− 1
2

h , ϕ

)
+ β2

(
∇θ

n− 1
2

h ,∇ϕ

)

=
(

G
n− 1

2
2 , ϕ

)
+ α

(
�h�n− 1

2 − �n− 1
2 , ϕ

)
+ β2

(
∇(�h�n− 1

2 − �n− 1
2 ),∇ϕ

)
,

(3.37)

i
(
Dτ en

h , v
) −

(
∇e

n− 1
2

h ,∇v

)
+

(
R

n− 1
2

2 , v

)
= −i

(
Dτ (U

n − RhU n), v
)
, (3.38)

for v, ϕ ∈ Vh , where

G
n− 1

2
2 = f (|Û n− 1

2 |)|Û n− 1
2 |2 − f

(∣∣∣∣Û
n− 1

2
h

∣∣∣∣
) ∣∣∣∣Û

n− 1
2

h

∣∣∣∣
2

, (3.39)

R
n− 1

2
2 = �n− 1

2 f
(∣∣∣Û n− 1

2

∣∣∣
)

U
n− 1

2 − �
n− 1

2
h f

(∣∣∣∣Û
n− 1

2
h

∣∣∣∣
)

U
n− 1

2
h . (3.40)

Similarly, let ê
1
2
h = RhÛ

1
2 − Û

1
2

h . By (2.3) and (2.17), ê
1
2
h satisfies

2i

τ

(
ê
1
2
h , v

)
−

(
∇ ê

1
2
h ,∇v

)
+

(
�0 f (|U 0|)Û 1

2 − �0
h f (|U 0

h |)Û
1
2

h , v

)

= −2i

τ

(
Û

1
2 − RhÛ

1
2 , v

)
+ 2i

τ

(
U 0 − U 0

h , v
)

. (3.41)

In this subsection, we prove the following theorem

Theorem 3.2 Suppose that the system (1.1)–(1.3) has unique solutions u, ψ satisfying
(2.10). Then the finite element system defined in (2.1)–(2.3) has unique solutions U m

h

and �
m− 1

2
h , m = 1, . . . , N, and there exists τ ′

0 > 0, h′
0 > 0 such that when τ ≤ τ ′

0,
h ≤ h′

0,

‖em
h ‖L2 +

∥∥∥∥θ
m− 1

2
h

∥∥∥∥
L2

≤ C ′
0h2 (3.42)

where C ′
0 is a positive constant dependent on C∗

0 , C+
0 , K , and independent of τ , h, N

and C0.

Proof The existence and uniqueness of solutions for Eqs. (2.1) and (2.3) follow the
mass conservation (2.5) and ‖Û 1/2

h ‖L2 ≤ ‖U 0
h ‖L2 . For the Eq. (2.2), the coefficient
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matrix is symmetric and positive definite, which leads to the existence and uniqueness
of solutions immediately. Now, we prove the error estimate (3.42) by mathematical
induction. Since U 0

h = �hu0, by (2.10) and (3.32)–(3.33), we have

‖e0h‖L2 ≤ ‖u0 − U 0
h ‖L2 + ‖u0 − Rhu0‖L2 ≤ Ch2‖u0‖H2 ≤ CK h2. (3.43)

From (2.4), it is easy to get

‖�0
h − �h�0‖L2 ≤ CK h2. (3.44)

By using the inverse inequality (3.36), we obtain

‖U 0
h ‖L∞ ≤ ‖RhU 0‖L∞ + ‖RhU 0 − U 0

h ‖L∞ ≤ ‖RhU 0‖L∞ + Ch− d
2 CK h2 ≤ K1,

‖�0
h‖L∞ ≤ ‖�h�0‖L∞ + ‖�h�0 − �0

h‖L∞ ≤ ‖�h�0‖L∞ + Ch− d
2 CK h2 ≤ K2,

for d = 2, 3, when h ≤ h1 = (CCK )−
2

4−d .

We substitute v = ê
1
2
h into (3.41) and take the imaginary part of the resulting

equation to get

‖̂e
1
2
h ‖2L2 = −τ

2
Im

(
�0 f (|U 0|)Û 1

2 − �0
h f (|U 0

h |)Û
1
2

h , ê
1
2
h

)

− Re

(
Û

1
2 − RhÛ

1
2 , ê

1
2
h

)
+ Re

(
U 0 − U 0

h , ê
1
2
h

)

≤ CK τ
(∥∥∥Û

1
2 − Û

1
2

h

∥∥∥
L2

+ ‖U 0 − U 0
h ‖L2 + ‖�0 − �0

h‖L2

) ∥∥∥∥̂e
1
2
h

∥∥∥∥
L2

+ ‖Û
1
2 − RhÛ

1
2 ‖L2

∥∥∥∥̂e
1
2
h

∥∥∥∥
L2

+ ‖U 0 − U 0
h ‖L2

∥∥∥∥̂e
1
2
h

∥∥∥∥
L2

≤ 1

2

∥∥∥∥̂e
1
2
h

∥∥∥∥
2

L2
+ CK h4, (3.45)

when τ ≤ τ5 = 1
4CK

. Then, we have
∥∥∥∥̂e

1
2
h

∥∥∥∥
L2

≤ CK h2. (3.46)

Then, we can derive from (3.34) that∥∥∥∥Û
1
2

h

∥∥∥∥
L∞

≤ ‖RhÛ
1
2 ‖L∞ +

∥∥∥∥RhÛ
1
2 − Û

1
2

h

∥∥∥∥
L∞

≤ ‖RhÛ
1
2 ‖L∞ + Ch− d

2

∥∥∥∥RhÛ
1
2 − Û

1
2

h

∥∥∥∥
L2

≤ ‖RhÛ
1
2 ‖L∞ + CCK h− d

2 h2

≤ K1 (3.47)
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for d = 2, 3, when h ≤ h2 = (CCK )−
2

4−d . If β �= 0, we substitute ϕ = θ
1
2

h into (3.37)
and use (3.33) to arrive at

∥∥∥∥∇
(

�
1
2 − �

1
2
h

)∥∥∥∥
L2

≤ CK

(∥∥∥∥̂e
1
2
h

∥∥∥∥
L2

+ h

)
.

Furthermore, the difference of the Eqs. (2.14) and (2.2) gives

α
(
�

1
2 − �

1
2
h , ϕ

)
+ β2

(
∇

(
�

1
2 − �

1
2
h

)
,∇ϕ

)
=

(
G

1
2
2 , ϕ

)

for ϕ ∈ Vh . Let g be arbitrary in L2(�), take φ ∈ H2(�) ∩ H1
0 (�) as the solution of

αφ − β2�φ = g in �, with φ = 0 on ∂�,

so that ‖φ‖H2 ≤ C‖g‖L2 . Taking g = �
1
2 − �

1
2
h , we have

∥∥∥∥�
1
2 − �

1
2
h

∥∥∥∥
2

L2

= α
(
�

1
2 − �

1
2
h , φ − Phφ

)
+ β2

(
∇

(
�

1
2 − �

1
2
h

)
,∇(φ − Phφ)

)

+
(

G
1
2
2 , Phφ − φ

)
+

(
G

1
2
2 , φ

)

≤ Ch2
∥∥∥∥�

1
2 − �

1
2
h

∥∥∥∥
L2

‖φ‖H2 + Ch

∥∥∥∥∇
(

�
1
2 − �

1
2
h

)∥∥∥∥
L2

‖φ‖H2

+ Ch2
∥∥∥∥G

1
2
2

∥∥∥∥
L2

‖φ‖H2 +
∥∥∥∥G

1
2
2

∥∥∥∥
L2

‖φ‖L2

≤ Ch2
∥∥∥∥�

1
2 − �

1
2
h

∥∥∥∥
2

L2
+ C

∥∥∥∥�
1
2 − �

1
2
h

∥∥∥∥
L2

(
h
∥∥∇(

�
1
2 − �

1
2
h

)∥∥
L2 + ∥∥G

1
2
2

∥∥
L2

)
,

where Phφ denotes the elliptic projection of φ. When h ≤ h3 = (2C)− 1
2 , the above

results further show that

∥∥∥∥�
1
2 − �

1
2
h

∥∥∥∥
L2

≤ Ch

∥∥∥∥∇
(

�
1
2 − �

1
2
h

)∥∥∥∥
L2

+ C

∥∥∥∥G
1
2
2

∥∥∥∥
L2

≤ CK

(∥∥∥∥̂e
1
2
h

∥∥∥∥
L2

+ h2
)

≤ CK h2. (3.48)

If β = 0, from (3.37), it is straightforward to obtain

∥∥∥∥�
1
2 − �

1
2
h

∥∥∥∥
2

L2
≤ CK

(∥∥∥∥̂e
1
2
h

∥∥∥∥
2

L2
+ h4

)
≤ CK h4. (3.49)
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Then, we derive from (3.35) that

∥∥∥∥�
1
2
h

∥∥∥∥
L∞

≤ ‖�h�
1
2 ‖L∞ +

∥∥∥∥�h�
1
2 − �

1
2
h

∥∥∥∥
L∞

≤ ‖�h�
1
2 ‖L∞ + Ch− d

2

∥∥∥∥�h�
1
2 − �

1
2
h

∥∥∥∥
L2

≤ ‖�h�
1
2 ‖L∞ + CCK h− d

2 h2

≤ K2 , (3.50)

for d = 2, 3, when h ≤ h4 = (CCK )−
2

4−d , and

∥∥∥∥R
1
2
2

∥∥∥∥
L2

≤ CK

(∥∥∥∥e
1
2
h

∥∥∥∥
L2

+
∥∥∥∥̂e

1
2
h

∥∥∥∥
L2

+
∥∥∥∥�

1
2 − �

1
2
h

∥∥∥∥
L2

)
. (3.51)

Again we substitute v = e
1
2
h into (3.38) and take the imaginary part of the resulting

equation to arrive at

‖e1h‖2L2 + τ Im

(
R

1
2
2 , e

1
2
h

)
= ‖e0h‖2L2 − Re

(
U 1 − RhU 1, e

1
2
h

)
+Re

(
U 0 − U 0

h , e
1
2
h

)
.

By (3.32)–(3.33), (3.48)–(3.49) and (3.51), we get

‖e1h‖L2 +
∥∥∥∥θ

1
2

h

∥∥∥∥
L2

≤ CK h2. (3.52)

Now, we assume that

‖em
h ‖L2 ≤ C ′

0h2, (3.53)

holds for m ≤ n − 1, By (3.34),

‖U m
h ‖L∞ ≤ ‖RhU m‖L∞ + ‖RhU m − U m

h ‖L∞

≤ ‖RhU m‖L∞ + Ch− d
2 ‖RhU m − U m

h ‖L2

≤ ‖RhU m‖L∞ + CC ′
0h− d

2 h2

≤ K1, (3.54)

for d = 2, 3, and h ≤ h5 = (CC ′
0)

− 2
4−d . With a similar approach used in (3.48)–

(3.49), we can get

∥∥∥∥�n− 1
2 − �

n− 1
2

h

∥∥∥∥
L2

≤ CK

(∥∥∥∥̂e
n− 1

2
h

∥∥∥∥
L2

+ Ch2
)

, (3.55)
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from the Eq. (3.37). By (3.35), (3.53) and (3.55),

∥∥∥∥�
n− 1

2
h

∥∥∥∥
L∞

≤ ‖�h�n− 1
2 ‖L∞ +

∥∥∥∥�h�n− 1
2 − �

n− 1
2

h

∥∥∥∥
L∞

≤ ‖�h�n− 1
2 ‖L∞ + Ch− d

2

∥∥∥∥�h�n− 1
2 − �

n− 1
2

h

∥∥∥∥
L2

≤ ‖�h�n− 1
2 ‖L∞ + Ch− d

2 CK C ′
0h2

≤ K2, (3.56)

for d = 2, 3, and h ≤ h6 = (CCK C ′
0)

− 2
4−d . With (3.54)–(3.56), we have

∥∥∥∥R
n− 1

2
2

∥∥∥∥
L2

≤ CK

(∥∥∥∥e
n− 1

2
h

∥∥∥∥
L2

+
∥∥∥∥̂e

n− 1
2

h

∥∥∥∥
L2

+
∥∥∥∥�n− 1

2 − �
n− 1

2
h

∥∥∥∥
L2

+ h2
)

≤ CK

(∥∥∥∥e
n− 1

2
h

∥∥∥∥
L2

+
∥∥∥∥̂e

n− 1
2

h

∥∥∥∥
L2

+ h2
)

. (3.57)

We need to prove that (3.53) also holds for m = n. Let v = e
n− 1

2
h in (3.38). Taking

the imaginary part of the resulting equation gives

‖en
h‖2

L2 − ‖en−1
h ‖2

L2

2τ
+ Im

(
R

n− 1
2

2 , e
n− 1

2
h

)
= −Re

(
Dτ (U

n − RhU n), e
n− 1

2
h

)
.

(3.58)

By (3.57), summing up (3.58) leads to

‖en
h‖2L2 ≤ CK τ

n∑
m=1

‖em
h ‖2L2 − τ

n∑
m=1

Re

(
Dτ

(
U m − RhU m)

, e
m− 1

2
h

)
+ CK h4,

(3.59)

where we have used (3.43). By Lemma 2.1, (3.10) and (3.52),

∣∣∣∣∣τ
n∑

m=1

(
Dτ (U

m − RhU m), e
m− 1

2
h

)∣∣∣∣∣

≤
∣∣∣τ
2

(
Dτ (U

1 − RhU 1), e0h

)∣∣∣ +
∣∣∣∣∣τ

n∑
m=2

(
Dτ (U

m− 1
2 − RhU

m− 1
2 ), em−1

h

)∣∣∣∣∣

+
∣∣∣τ
2

(
Dτ (U

n − RhU n), en
h

)∣∣∣

≤ Cτ 2h4‖DτU 1‖2H2 + ‖e0h‖2L2 + Cτh4
n∑

m=2

‖DτU
m− 1

2 ‖2H2 + Cτ

n∑
m=2

‖em−1
h ‖2L2
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+ Cτ 2h4‖DτU n‖2H2 + 1

4
‖en

h‖2L2

≤ 1

4
‖en

h‖2L2 + Cτ

n−1∑
m=1

‖em
h ‖2L2 + CK h4.

Applying Gronwall’s inequality to (3.59), there exists τ6 > 0, such that

‖en
h‖L2 ≤ CK h2. (3.60)

With (3.33) and (3.55), we have

‖en
h‖L2 +

∥∥∥∥θ
n− 1

2
h

∥∥∥∥
L2

≤ C ′
0h2.

Thus, (3.53) holds for m = n. Taking h′
0 ≤ min1≤i≤6 hi and τ ′

0 ≤ min{τ5, τ6, τ ∗
0 }, the

induction is closed. This completes the proof of Theorem 3.2. �
Remark Clearly, the error estimate obtained in Theorem 3.2 is optimal in L2-norm for
linear Galerkin FEM. Since the estimate (3.42) is τ -independent, we have the optimal
H1 error estimate

‖∇en
h‖L2 +

∥∥∥∥∇θ
n− 1

2
h

∥∥∥∥
L2

≤ C ′
0h, n = 1, 2, . . . , N ,

immediately by the inverse inequality. By (3.9), (3.32)–(3.33) and (3.42), we have the
optimal error estimates for the linear Galerkin FEM (r = 1) below.

Corollary 3.1 Under the assumption of Theorem 3.1, the finite element system defined

in (2.1)–(2.3) with r = 1 has unique solutions U m
h , �

m− 1
2

h , m = 1, . . . , N, and there
exist τ ′

0 > 0 and h′
0 > 0 such that when τ ≤ τ ′

0, h ≤ h′
0,

‖um − U m
h ‖L2 +

∥∥∥∥ψm− 1
2 − �

m− 1
2

h

∥∥∥∥
L2

≤ C̃0(τ
2 + h2), (3.61)

‖∇(um − U m
h )‖L2 +

∥∥∥∥∇
(

ψm− 1
2 − �

m− 1
2

h

)∥∥∥∥
L2

≤ C̃0(τ
2 + h), (3.62)

where C̃0 is a positive constant dependent on C∗
0 , C+

0 , C ′
0, and independent of τ , h,

N and C0.

When r > 1, the above results are not optimal for the r -order Galerkin FEM.
However, by Theorem 3.2, we see immediately the uniform boundedness of numerical
solutions in L∞-norm:

‖Û
1
2

h ‖L∞ ≤ ‖RhÛ
1
2 ‖L∞ + Ch− d

2

∥∥∥∥RhÛ
1
2 − Û

1
2

h

∥∥∥∥
L2

≤ K1, (3.63)
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‖U n
h ‖L∞ ≤ ‖RhU n‖L∞ + Ch− d

2 ‖RhU n − U n
h ‖L2 ≤ K1, (3.64)∥∥∥∥�

n− 1
2

h

∥∥∥∥
L∞

≤ ‖�h�n− 1
2 ‖L∞ + Ch− d

2

∥∥∥∥�h�n− 1
2 − �

n− 1
2

h

∥∥∥∥
L2

≤ K2, (3.65)

for n = 1, 2, . . . , N when τ ≤ τ ′
0 and h ≤ h′

0, with which and in a routine way, we
can derive the optimal L2 error estimate as given in Theorem 2.1.

3.3 The proof of Theorem 2.1

At the time step t = t1
2 , let ẽ1/2h = Rhû1/2 − Û 1/2

h . When τ ≤ τ ′
0 and h ≤ h′

0, with

(3.32), (3.63) and ‖�0 −�0
h‖ ≤ CK hr+1, we can easily get ‖̃e1/2h ‖ ≤ CK (τ 2 +hr+1)

from the Eqs. (1.1) and (2.3). Thus, in the following, we only analyze the errors
un − U n

h , ψ
n−1/2 − �

n−1/2
h for 1 ≤ n ≤ N .

Let ẽn
h = Rhun −U n

h , θ̃
n− 1

2
h = �hψn− 1

2 −�
n− 1

2
h .At t = tn− 1

2
, the exact solutions

u and ψ satisfy

α
(
ψn− 1

2 , ϕ
)

+ β2
(
∇ψn− 1

2 ,∇ϕ
)

=
(

f (|un− 1
2 |)|un− 1

2 |2, ϕ
)

,

i

(
u

n− 1
2

t , v

)
−

(
∇un− 1

2 ,∇v
)

+
(
ψn− 1

2 f (|un− 1
2 |)un− 1

2 , v
)

= 0,

for any v, ϕ ∈ Vh . With (2.1)–(2.2) and the above two equations, the error functions

ẽn
h , θ̃

n− 1
2

h satisfy

α

(
θ̃

n− 1
2

h , ϕ

)
+ β2

(
∇ θ̃

n− 1
2

h ,∇ϕ

)

=
(

Gn− 1
2 , ϕ

)
+ α

(
�hψn− 1

2 − −ψn− 1
2 , ϕ

)
+ β2

(
∇(�hψn− 1

2 − ψn− 1
2 ),∇ϕ

)
,

(3.66)

i
(
Dτ ẽn

h , v
) −

(
∇ ẽ

n− 1
2

h ,∇v

)
+

(
Rn− 1

2 , v
)

= i

(
Dτ Rhun − u

n− 1
2

t , v

)
+

(
�(un− 1

2 − un− 1
2 ), v

)
, (3.67)

for n = 1, 2, . . . , N , where

Gn− 1
2 = f (|un− 1

2 |)|un− 1
2 |2 − f

(∣∣∣∣Û
n− 1

2
h

∣∣∣∣
) ∣∣∣∣Û

n− 1
2

h

∣∣∣∣
2

,

Rn− 1
2 = ψn− 1

2 f (|un− 1
2 |)un− 1

2 − �
n− 1

2
h f

(∣∣∣∣Û
n− 1

2
h

∣∣∣∣
)

U
n− 1

2
h .
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Applying the same approach used in (3.48)–(3.49) to the error Eq. (3.66) and with
(3.65), we obtain

∥∥∥∥ψn− 1
2 − �

n− 1
2

h

∥∥∥∥
2

L2
≤ CK

∥∥∥∥̂ẽ
n− 1

2
h

∥∥∥∥
2

L2
+ CK (τ 2 + hr+1)2. (3.68)

Moreover, by (3.63)–(3.65), we further have

‖Rn− 1
2 ‖L2 ≤ CK

(∥∥∥∥ẽ
n− 1

2
h

∥∥∥∥
L2

+
∥∥∥∥̂ẽ

n− 1
2

h

∥∥∥∥
L2

+ τ 2 + hr+1
)

. (3.69)

We substitute v = ẽ
n− 1

2
h into (3.67) and take the imaginary part to obtain

‖̃en
h‖2

L2 − ‖̃en−1
h ‖2

L2

2τ
+ Im

(
Rn− 1

2 , ẽ
n− 1

2
h

)

= Re

(
Dτ Rhun − u

n− 1
2

t , ẽ
n− 1

2
h

)
+ Im

(
�(un− 1

2 − un− 1
2 ), ẽ

n− 1
2

h

)
. (3.70)

By Gronwall’s inequality, (3.69) and

n∑
m=1

τ‖�(um− 1
2 − um− 1

2 )‖2L2 ≤Cτ 4‖utt‖2L2((0,T );H2)
,

n∑
m=1

τ‖Dτ Rhum − u
m− 1

2
t ‖2L2 ≤

n∑
m=1

τ‖Dτ Rhum − Dτ um‖2L2

+
n∑

m=1

τ‖Dτ um − u
m− 1

2
t ‖2L2

≤C(h2(r+1)‖ut‖2L2((0,T );Hr+1)
+ τ 4‖uttt‖2L2((0,T );L2)

),

there exists a positive constant τ7 such that when τ ≤ τ7, we get ‖̃en
h‖L2 ≤ CK (τ 2 +

hr+1). With (3.32) and (3.68), we have

‖un − U n
h ‖L2 +

∥∥∥∥ψn− 1
2 − �

n− 1
2

h

∥∥∥∥
L2

≤ C0

(
τ 2 + hr+1

)
. (3.71)

Up to now, we have proved Theorem 2.1 when τ ≤ τ0 := min{τ ′
0, τ7} and h ≤

h0 := h′
0. When h ≥ h0, by the mass conservation (2.5) and ‖Û

1
2

h ‖ ≤ ‖U 0
h ‖L2 ,

∥∥∥∥Û
1
2

h

∥∥∥∥
L∞

≤ Ch
− d

2
0

∥∥∥∥Û
1
2

h

∥∥∥∥
L2

≤ Ch
− d

2
0 ‖u0‖H2 ≤ CK , (3.72)

‖U n
h ‖L∞ ≤ Ch

− d
2

0 ‖U n
h ‖L2 ≤ Ch

− d
2

0 ‖u0‖H2 ≤ CK . (3.73)
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Together with (1.2), (2.2) and mass conservation, we have

‖un − U n
h ‖L2 ≤ ‖u0‖L2 + ‖U 0

h ‖L2 ≤ C‖u0‖H2 ≤ C0

2

(
τ 2 + hr+1

)
, (3.74)

∥∥∥∥ψn− 1
2 − �

n− 1
2

h

∥∥∥∥
L2

≤ CK

(
‖un− 1

2 ‖L2 +
∥∥∥∥Û

n− 1
2

h

∥∥∥∥
L2

)

≤ CK ‖u0‖H2 ≤ C0

2

(
τ 2 + hr+1

)
, (3.75)

for C0 ≥ 2(C+CK )‖u0‖H2

hr+1
0

. The proof of Theorem 2.1 is complete. �

4 Numerical results

In this section, three numerical examples are presented to confirm our theoretical
analysis. All computations are performed by FreeFem++, where the finite element
meshes are generated by a uniform triangular partition with M + 1 nodes in each

direction and h =
√
2

M .

Example 4.1 First, we consider the Schrödinger–Poisson system

iut + �u + ψu = g1, (4.1)

− �ψ = |u|2 + g2, (4.2)

in� = [0, 1]×[0, 1], with the initial condition u(x, 0) = u0(x) and the homogeneous
boundary condition u = ψ = 0 on ∂�, where g1 and g2 are chosen correspondingly
to the exact solutions

u = e(i+1)t sin(x) sin(y) sin(πx) sin(πy), (4.3)

ψ = et+x+y(1 − x)(1 − y) sin(x) sin(y). (4.4)

We solve the above system by the linearized Crank–Nicolson Galerkin schemes (2.1)–
(2.2), and (2.6)–(2.7), respectively, with a linear finite element approximation. Here,
we choose τ = 1

M to confirm the optimal L2 convergence rate O(τ 2 +h2) = O( 1
M2 ).

Numerical results are presented in Tables 1 and 2 at time t = 0.5, 1.0, 1.5, 2.0.
We can observe from both tables that the errors in L2-norm are proportional to h2,
which confirm our theoretical results and illustrates that the semi-implicit or explicit
treatment of the nonlinear term in the Eq. (1.1) has little impact on the convergence
of the whole scheme.

Example 4.2 Secondly, we consider a high order Schrödinger–Poisson–Slater system

iut + �u + ψu + |u|4u = g1, (4.5)

− �ψ = |u|2 + g2, (4.6)
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Table 1 L2 errors of the first scheme (2.6)–(2.7) (Example 4.1)

t M = 10 M = 20 M = 40 Order(α)

‖u (·, tn) − Un
h ‖L2

t = 0.5 1.0532e−02 2.8991e−03 9.2710e−04 1.7530

t = 1.0 1.7826e−02 4.2675e−03 1.1798e−03 1.9587

t = 1.5 2.8029e−02 8.2854e−03 1.9915e−03 1.9075

t = 2.0 5.0906e−02 1.3456e−02 3.5601e−03 1.9189

‖ψ(·, t
n− 1

2
) − �

n− 1
2

h ‖L2

t = 0.5 5.0606e−03 1.3425e−03 3.4241e−04 1.9428

t = 1.0 8.7334e−03 2.2288e−03 5.6195e−04 1.9790

t = 1.5 1.4764e−02 3.9256e−03 9.8370e−04 1.9539

t = 2.0 2.5724e−02 6.7895e−03 1.7389e−03 1.9434

Table 2 L2 errors of the second scheme (2.1)–(2.2) (Example 4.1)

t M = 10 M = 20 M = 40 Order(α)

‖u (·, tn) − Un
h ‖L2

t = 0.5 1.0501e−02 2.9225e−03 9.2895e−04 1.7494

t = 1.0 1.8040e−02 4.3294e−03 1.1696e−03 1.9736

t = 1.5 2.8704e−02 8.3832e−03 2.0182e−03 1.9151

t = 2.0 5.1190e−02 1.3519e−02 3.5243e−03 1.9302

‖ψ(·, t
n− 1

2
) − �

n− 1
2

h ‖L2

t = 0.5 5.0590e−03 1.3425e−03 3.4242e−04 1.9425

t = 1.0 8.7195e−03 2.2294e−03 5.6190e−04 1.9779

t = 1.5 1.4791e−02 3.9177e−03 9.8498e−04 1.9542

t = 2.0 2.5742e−02 6.7805e−03 1.7362e−03 1.9451

in � = [0, 1]× [0, 1], with the initial condition u(x, 0) = u0(x) and the homogenous
Dirichlet boundary conditions for both u and ψ , where g1, g2 are chosen correspond-
ingly to the exact solutions

u = 2eit+(x+y)/5(1 + 5t3)x(1 − x)y(1 − y), (4.7)

ψ = 5(1 + 3t2 + sin(t)) sin
( x

2

)
sin

( y

2

)
(1 − x)(1 − y). (4.8)

We solve the problem by the two Crank–Nicolson Galerkin schemes given in Sect. 2
with a quadratic FEM. To show the unconditional stability of schemes, we takemeshes
with M = 10, 20, 30, 40, 50 for each τ = 1

10 ,
1
20 ,

1
40 and present in Figs. 1 and 2 the

numerical results at t = 1.0. We observe that, the L2-errors converge to O(τ 2) as
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Fig. 1 Stability of the first linearized scheme (Example 4.2)
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·,t

n
)−

U
n h

L
2
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10
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10
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10
−2

M

ψ
( ·,

t n
−1 2

)−
Ψ

n
−1 2

h
L

2

τ=1/40
τ=1/20
τ=1/10

Fig. 2 Stability of the second linearized scheme (Example 4.2)

τ/h → ∞ for each fixed time stepsize, which imply that the schemes are stable and
the restriction on time step is unnecessary.

Example 4.3 Finally, we consider the high order Schrödinger–Poisson–Slater system
(4.5)–(4.6) in three-dimensional space with � = [0, 1] × [0, 1] × [0, 1] and homoge-
nous Dirichlet boundary conditions. The exact solutions are given by

u = 10eit+(x+y+z)/5(1 + 5t3)x(1 − x)y(1 − y)z(1 − z), (4.9)

ψ = 10(1 + 3t2 + sin(t)) sin
( x

2

)
sin

( y

2

)
sin

( z

2

)
(1 − x)(1 − y)(1 − z). (4.10)

Here, we use the first linearized Crank–Nicolson Galerkin FEM (2.1)–(2.2) with a
quadratic FEM to solve the problem. Numerical results are obtained with several
differentmeshes for each τ = 1

10 ,
1
20 ,

1
40 at t = 1.0, and presented in Fig. 3. In previous

works, the error estimates in 3-D often required stronger time stepsize conditions than
that in 2-D. However, the results in Fig. 3 indicate that the scheme (2.1)–(2.2) is
unconditionally stable for the three-dimensional model.
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Fig. 3 Stability of the first linearized scheme (Example 4.3)

5 Conclusion

We have proved the optimal L2 error estimates of a linearized Crank–Nicolson
Galerkin FEM for a nonlinear Schrödinger–Helmholtz system unconditionally. The
theoretical analysis has been confirmed by numerical results obtained in both two and
three dimensional spaces. In some other works [10,28,29], people often rewrote ψ

explicitly from the Eq. (1.2) in terms of a Green function by

ψ = G(x) ∗
(

f (|u|)|u|2
)

, (5.1)

where G(x) is the Green’s function of the elliptic equation (1.2) and ∗ denotes the
convolution. With the formula (5.1), the system (1.1)–(1.3) reduces to a general-
ized Schrödinger equation with a nonlinear and nonlocal source. Then, the resulting
equation was solved by Galerkin FEMs or spectral methods. Clearly, our approach is
applicable for such a nonlinear and nonlocal Schrödinger equation to obtain uncondi-
tionally optimal error estimates.
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