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Abstract We construct 2D and 3D finite element de Rham sequences of arbitrary
polynomial degreeswith extra smoothness. Some of these elements have nodal degrees
of freedom and can be considered as generalisations of scalar Hermite and Lagrange
elements. Using the nodal values, the number of global degrees of freedom is reduced
compared with the classical Nédélec and Brezzi–Douglas–Marini finite elements, and
the basis functions are more canonical and easier to construct. Our finite elements
for H(div) with regularity r = 2 coincide with the nonstandard elements given by
Stenberg (Numer Math 115(1):131–139, 2010). We show how regularity decreases in
the finite element complexes, so that they branch into known complexes. The standard
deRhamcomplexes ofWhitney forms and their higher order version can be regarded as
the family with the lowest regularity. The construction of the new families is motivated
by finite element systems.
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1 Introduction

Differential complexes are an important tool in the study of finite element methods.
Finite element differential complexes characterise finite element spaces and the opera-
tors among them, specifying their kernels and images,which are crucial for the stability
of numerical formulations [1] and fast solvers [28]. There are many existing finite ele-
ment differential complexes, for example the de Rham complex [3,27], the Stokes
complex [24,37], the Darcy–Stokes complex [34,42], the elasticity complex [2,4] etc.
Among them, the discrete de Rham sequence is probably the most fundamental one.
Stokes complexes and Darcy–Stokes complexes have the same differential operators
as the standard de Rham complexes, and the only difference is that the spaces of Stokes
and Darcy–Stokes have higher continuity.

There have been many discussions on finite element de Rham sequences. For
incomplete polynomials, there are the Nédélec elements of the first kind [35] and
the Raviart–Thomas elements [38]. For complete polynomials, there are the Nédélec
elements of the second kind [36] and the Brezzi–Douglas–Marini (BDM) elements
[13]. All these successful elements can be unified as discrete differential forms [5,26].
The construction of degrees of freedom (DoFs) for higher orderWhitney forms is based
on moments on subsimplexes, therefore commuting interpolations can be constructed
easily. A periodic table has been developed to include arbitrary polynomial degree for
any k-forms, for simplicial and tensor product elements in any dimension [8].

Such elements are usually called “vector elements”, and cannot be represented by
Lagrange nodal basis functions. This leads to complications in applications, especially
for high order methods.

A canonical nodal basis is attractive from the perspective of implementation. The
choice of basis is not unique and there are several important criterions for a good
basis, including condition number, sparsity of stiffness and mass matrices, efficient
evaluation and rotational symmetry etc. There is a huge literature on the construction
of bases for high order finite elements. We refer to the book [33] for a survey of the
scalar case. Bases for H(curl) and H(div) are more complicated. Some efforts in this
direction can be found in [44]. The difficulty is that the bubble functions of H(curl)
and H(div) elements are not as canonical as those of the scalar H1 elements [17].

This has already been reflected in the dilemma of computational electromagnetism.
On one hand, nodal Lagrange elements are desirable for their simplicity, economic
degrees of freedom and point-wise evaluation; on the other hand, the C0 vector
Lagrange elements suffer from spurious modes and have difficulties in dealing with
inhomogeneous materials where the normal component of the electric field may be
discontinuous at interfaces [11]. There has been an increased interest in the use of
nodal elements in computational electromagnetism. A common strategy is to add a
stabilisation term—grad div in the variational formulation besides the curl curl oper-
ator (c.f. [11]). In order to remove spurious modes on nonconvex domains, a weighted
version of the penalty term was proposed in Costabel and Dauge [19], and a local
projection in the penalty term was proposed by Duan et al. [20]. Eigenvalue problems
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Nodal finite element de Rham complexes 413

approximated with Lagrange elements are considered in [10]. Of course this is a rather
incomplete review of the literature.

From the perspective of finite element exterior calculus, H(curl) edge elements
stand out for allowing normal discontinuities and fitting in a discrete sequence of
spaces. Therefore we are motivated to seek nonstandard finite element differential
complexes keeping these properties, but with nodal type bases. Actually, our approach
is to look for elements with higher continuity on low dimensional subsimplexes (for
example, extra smoothness at vertices and edges etc.).We remark that H(div) elements
with nodal degrees of freedom and incomplete polynomial shape function spaces were
explored in [24,25].

There are also some important circumstanceswhereweneed tomatch several copies
of finite element de Rham sequences with different continuities. In Arnold, Falk and
Winther [4], the authors constructed the Arnold–Winther symmetric stress element in
2D using the following Bernstein–Gelfand–Gelfand (BGG) resolution:

H1
h

curl� Hh(div)
div� L2

h
� 0

(
H̃1
h

)2 curl�

S0
�

(
H̃h(div)

)2 div�

S1
�

(
L̃2
h

)2
� 0

Here S0 is bijective between the discrete spaces
(
H̃1
h

)2
and Hh(div). Usually it is

not easy to find a compatible element for both
(
H1

)2
and H(div). Here compatibility

means that this element should fit in both sequences, but for different operators. There-
fore in the numerical discretisation, a compromise is to find finite element spaces such
that Sh0 := Π S0 is onto, where Π is a projection to Hh(div). This leads to convergent
finite elements with weak symmetry [6]. In order to obtain an element with strong

symmetry, one has to find the isomorphic elements for
(
H̃1
h

)2
and Hh(div). In [4] the

authors constructed such vector elements to give an explanation of Arnold–Winther
elasticity elements.

For conforming finite elements with local DoFs, S0 imposes stronger continu-
ity requirement on the H(div) element, which actually leads to a Stokes complex.
Therefore from the perspective of BGG, an essential difficulty of the construction of
tensor-valued elements with strong symmetry is to construct and match discrete de
Rham complexes with different continuities.

On the other hand, Hu et al. [29,31,32] designed a new element for linear elastic-
ity with strong symmetry following a different approach. A two-step approach was
proposed to design compatible elements and prove the inf–sup condition. The dis-
placement space is divided into rigid body motions and its orthogonal complement.
Rigid bodymotion is controlled by the face functions which areC0 continuous, and its
orthogonal complement is controlled by the bubble functions on each element, which
are local. The resulting space has a canonical nodal basis. However it remains open to
understand this innovative approach and generalize the constructions to the de Rham
case in the framework of finite element exterior calculus, which may yield a more
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Table 1 2D families and notation (p ≥ 2), elements in each box are the same as the family with lowest
regularity (possibly with different notation), r = 0 and r = 1 have the same 2D bubbles

k = 0 k = 1 k = 2
r = 0 Lagrange PpΛ0(T 2

h ) BDM Pp−1Λ1(T 2
h ) DG Pp−2Λ2(T 2

h )
r = 1 Hermite P1,p+1Λ0(T 2

h ) Stenberg P1,pΛ1(T 2
h ) DG P1,p−1Λ2(T 2

h )
r = 2 Argyris P2,p+3Λ0(T 2

h ) vector Hermite P2,p+2Λ1(T 2
h ) Falk-Neilan P2,p+1Λ2(T 2

h )

Table 2 3D families and notation (p ≥ 3), elements in each box are the same as the family with lowest
regularity (possibly with different notation), r = 0 and r = 1 have the same 2D bubbles, and r = 0, 1, 2
have the same 3D bubbles

k = 0 k = 1 k = 2 k = 3
r = 0 Lagrange PpΛ0(T 3

h ) Nédélec Pp−1Λ1(T 3
h ) BDM Pp−2Λ2(T 3

h ) DG Pp−3Λ3(T 3
h )

r = 1 Hermite P1,pΛ0(T 3
h ) new, P1,p−1Λ1(T 3

h ) BDM P1,p−2Λ2(T 3
h ) DG P1,p−3Λ3(T 3

h )
r = 2 (scalar) 3D Neilan velocity P2,p+2Λ0(T 3

h ) new, P2,p+1Λ1(T 3
h ) Stenberg P2,pΛ2(T 3

h ) DG P2,p−1Λ3(T 3
h )

systematic construction for a broader class of applications. We also hope a systematic
study could give a new perspective for the challenging problem of designing bases for
high order elements.

As a summary, we have several motivations to develop the new finite element de
Rham complexes in this paper:

– obtaining smaller algebraic systems by elements with higher continuity, which
was also the motivation of Stenberg [41],

– getting Lagrange or Hermite type nodal basis functions, which are more canonical
and easier to write,

– making progress towards a systematic development of finite element complexes
compatible with the BGG construction,

– developing tools of finite element exterior calculus to re-construct Hu–Zhang elas-
ticity elements,

– a better understanding of the periodic table of finite element differential forms.

We will introduce r as a new regularity parameter in the finite element periodic
table, which gives Pr,pΛ

k(T n
h ) on n-dimensional simplicial mesh, for differential k

forms with piecewise polynomials of degree p. Because of the periodicity, sometimes
different values of r inPr,pΛ

k(T n
h )may represent the same element. Themajor results

are summarised in Tables 1 and 2.
For each r = 0, 1, 2, the elements in lower dimensional spaces are restrictions of

those in higher dimensions. The H(div) elements with n = 2, r = 1 and n = 3, r = 2
coincide with the “nonstandard H(div) elements” of Stenberg [41].

The new elements have nodal degrees of freedom. The 2D H(curl) element
with r = 2 (the velocity space of the Falk–Neilan Stokes pair [21]) consists of
two copies of the scalar Hermite element. Therefore the basis of P2,pΛ

1
(
T 2
h

)
is

a simple combination of the scalar Hermite bases. The 2D H(div) element with
r = 1 (Stenberg nonstandard element [41]) and the 3D H(curl) element with
r = 2 are essentially vectorial, i.e. they cannot be represented as copies of scalar
elements. Nevertheless, the basis of these two spaces can be written based on
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scalar Lagrange and Hermite elements respectively by allowing tangential/normal
degrees of freedom taking different values on neighboring elements. This trick can-
not be applied to the 3D Stenberg H(div) element (P2,pΛ

2(T 3
h )) since there are no

degrees of freedom on edges (except for those at vertices). We can further reduce
P2,pΛ

2(T 3
h ) to a subspace by imposing normal continuity on edges and mean-

while retain the inf–sup condition between this space and piecewise polynomials.
This space, which we will call “Hu–Zhang type H(div) element”, is a generaliza-
tion of the Hu–Zhang construction [29,31] of a symmetric stress element for the
Hellinger–Reissner principle of linear elasticity and admits a Lagrange type nodal
basis.

The elements in the new sequences are subspaces of the standard finite element
de Rham complexes with complete polynomials [8], which fit in our family with
r = 0. Moreover, we can see the periodicity: beginning with an element with higher
continuity (for example, the Hermite element for H1 with r = 1), the continuity
decreases as we take exterior derivatives (for r = 1, we go back to the classical
BDM element for H(div) in 3D). Furthermore, we can consider restrictions to lower
dimensional simplexes. This is analogous to the idea of finite element system (FES)
[16], and inspired us to discover the whole families. For r = 2, restriction of the finite
elements to a two dimensional face has higher continuity across the one dimensional
boundary of that face. In fact, this reconstructs the 2D Stokes complex of Falk and
Neilan [21].

Although the new elements have higher continuity on low dimensional sub-
simplexes (vertices and edges etc.), generally these elements are not conforming
approximations for higher order problems. For example, the scalar Hermite element
is C1 at vertices, but normal derivatives may be discontinuous across faces. As a
result, the triangular or tetrahedral Hermite element is not a reasonable approxi-
mation for the fourth order biharmonic problem. Since the purpose of this paper
is not to pursue finite elements for high order PDEs, this will not be a trou-
ble.

The enriched periodic table studied in this paper also gives another possibility
for BGG constructions at least in 2D. We can use the Falk–Neilan Stokes com-
plex (n = 2, r = 2) for the top row, and use the n = 2, r = 1 complex for
the bottom. Then S0 is an identification between vector Hermite elements. This
leads to the 2D Hu–Zhang elasticity element [30], and explains why the stress ele-
ment naturally begins with cubic polynomials (since Hermite elements are at least
cubic).

Next we recall some notation. For a contractible domain Ω ⊂ R
2, we have two

exact sequences in 2D:

0 −−−−→ R −−−−→ H(curl;Ω)
curl−−−−→ H(div;Ω)

div−−−−→ L2(Ω) −−−−→ 0,
(1)

and

0 −−−−→ R −−−−→ H(grad;Ω)
grad−−−−→ H(rot;Ω)

rot−−−−→ L2(Ω) −−−−→ 0,
(2)
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and we have one exact sequence in 3D on a contractible domain Ω ⊂ R
3:

0 −−−−−−→ R −−−−−−→ H(grad;Ω)
grad−−−−−−→ H(curl;Ω)

curl−−−−−−→ H(div;Ω)
div−−−−−−→ L2(Ω) −−−−−−→ 0.

(3)
One can obtain (2) by rotating (1) by π/2. Therefore in the remaining part of this

paper, we only consider (1) in 2D.
We assume thatΩ is a polyhedral domain. In the following, we will use V to denote

the set of vertices, E for the edges, F for the faces and T for the 3D cells. For a given
mesh, V , E , F and T are used to denote the number of vertices, edges, faces and
tetrahedra respectively. From Euler’s formula, one has V − E + F = 1 in 2D and
V − E + F − T = 1 in 3D for contractible domains.

We use ν f and τ f to denote the unit normal and tangential vectors of a simplex
f respectively. In 2D, the tangential and normal directions of an edge are uniquely
defined up to an orientation. For edges in 3D there are one tangential and two normal
directions, and for faces in 3D there are one normal and two tangential directions. We
will write τ e, νe,i and ν f , τ f,i , i = 1, 2 for these cases.

In our discussions,Cr (V) includes functionswith continuous derivatives up to order
r at the vertices. Similarly we can define Cr (E) and Cr (F) for functions with certain
continuity on the edges and faces.

We use the notation PpΛ
k(Ω) to denote the Lagrange, second Nédélec, BDM and

discontinuous elements with polynomial degree p, and use P−
p Λk(Ω) for the fam-

ily with incomplete polynomials, i.e. P−
p Λ1(Ω) is the Nédélec element of the first

kind of degree p, P−
p Λ2(Ω) is the Raviart–Thomas element of degree p in 3D. We

use Pp(Ω) to denote the polynomial space of degree p on Ω and use Pr,pΛ
k(Ω)

to denote the families developed below. Here r is the regularity parameter and p is
the polynomial degree. Since we mainly consider one, two and three spatial dimen-
sions, we explicitly use grad, curl and div instead of the exterior derivative d in most
cases. We use P̊pΛ

k(Ω) to denote the finite element spaces with standard vanishing
boundary conditions. For example, in 3D P̊pΛ

1(Ω) has vanishing tangential com-
ponents and P̊pΛ

2(Ω) has vanishing normal components on ∂Ω when differential
forms are represented by vector fields. Functions in P̊r,pΛ

k may have stronger vanish-
ing conditions on low dimensional simplexes depending on the continuity condition
of Pr,pΛ

k .
We define ker (d, V ) as the kernel of the differential operator d in the space V , i.e.

ker (d, V ) := {v ∈ V : dv = 0}.

The rest of this paper is organised as follows. In Sect. 2, we construct the family
with regularity parameter r = 1 as a resolution of the Hermite element. We verify
the unisolvence and exactness of the new sequences. In Sect. 3, we construct the
family r = 2. In Sect. 4, we discuss boundary conditions. In Sect. 5, we discuss the
geometric decomposition and local exact sequences of the new complexes. In Sect. 6,
we re-construct 2D Hu–Zhang elasticity elements combining BGG and the new de
Rham families. We give concluding remarks in Sect. 7.
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2 Hermite family: r = 1

The Hermite family begins with Hermite elements in all dimensions.

2.1 Complex in 1D

The 1D complex (p ≥ 2):

R −−−−→ P1,p+1Λ
0(T 1

h )
grad−−−−→ P1,pΛ

1(T 1
h ) −−−−→ 0, (4)

consists of theC1 Hermite element of degree p+1 (P1,p+1Λ
0(T 1

h )), andC0 Lagrange
element of degree p (P1,pΛ

1(T 1
h ) ). It is obvious that this sequence is (globally) exact

on intervals, because the gradient of theHermite elementwith degree p+1 falls into the
Lagrange element space of degree p, and conversely, if grad uh = vh ∈ P1,pΛ

1(T 1
h ),

then uh is a piecewise polynomial of degree p + 1, and has continuous first order
derivatives at the vertices. This implies uh ∈ P1,p+1Λ

0(T 1
h ), i.e. uh belongs to the

global Hermite space.

2.2 Complex in 2D

We describe the discrete version of sequence (1):

R −−−−→ P1,p+2Λ
0(T 2

h )
curl−−−−→ P1,p+1Λ

1(T 2
h )

div−−−−→ P1,pΛ
2(T 2

h ) −−−−→ 0,
(5)

where p ≥ 1. For the lowest order casewhich starts frompiecewise cubic polynomials,
we show the finite element diagrams in Fig. 1.

We will use the Hermite elements to discretize H(curl). One can characterize the
Hermite elements of degree p as follows:

P1,pΛ
0(T 2

h ) = {s ∈ H(curl) : s| f ∈ Pp,∀ f ∈ F; s ∈ C1(V)}.

We define the H(div) finite element space of degree p as

P1,pΛ
1(T 2

h ) := {v ∈ H(div) : v| f ∈ (Pp)
2,∀ f ∈ F; v ∈ C0(V)}.

This was first introduced in Stenberg [41].
The degrees of freedom (n = 2, r = 1) can be given as follows. The set of DoFs is

empty when p < 0 in PpΛ
k .

– For u ∈ P1,pΛ
0:

– function value u(x) and first order derivatives ∂i u(x), i = 1, 2 at each vertex
x,
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curl div

Fig. 1 Finite element sequence of lowest order (2D, r=1): H(curl) → H(div) → L2 with the local shape
function spaces P3 → (P2)

2 → P1

– moments on each edge

∫

e
u · q ds, q ∈ Pp−4(e),∀e ∈ E,

– moments on each element

∫

f
u · q dx, q ∈ Pp−3( f ),∀ f ∈ F .

– For B ∈ P1,pΛ
1:

– function value B(x) at each vertex x,
– moments on each edge

∫

e
(B · ν) q ds, q ∈ Pp−2(e),∀e ∈ E,

– moments on each element

∫

f
B · q dx, q ∈ P−

p−1Λ
1( f ),∀ f ∈ F .

– For w ∈ P1,pΛ
2:

– moments on each element

∫

f
w · q dx, q ∈ Pp( f ),∀ f ∈ F .

Each row (or column) of the Hu–Zhang stress element [29,31] belongs to the
vector valued spaceP1,pΛ

1(T 2
h ). Connections betweenP1,pΛ

1(T 2
h ) and theLagrange

elements can be established based on a similar idea as the Hu–Zhang construction:
one can retain the normal degrees of freedom on a face (edge in 2D) of the Lagrange
elements, andmove the tangential DoFs on that face (edge in 2D) into the interior of the
elements. Alternatively we can consider decompositions of the shape function space.
The spaceP1,pΛ

1(T 2
h ) can be decomposed as globally continuous Lagrange elements

and H(div) bubble functions (shape functions with vanishing normal components, but
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the tangential components can be discontinuous). Specifically, we have the following
lemma.

Lemma 1 We have the decomposition:

P1,pΛ
1
(
T 2
h

)
= L p

h + Σ
p
b , p ≥ 2,

where L p
h is the Lagrange element of degree p, and the bubble function space Σ

p
b is

defined as

Σ
p
b =

{
Bh ∈ P1,pΛ

1
(
T 2
h

)
: Bh · νe = 0,∀e ∈ E

}
,

where νe is the normal direction of e.

Proof It is obvious that L p
h + Σ

p
b ⊂ P1,pΛ

1(T 2
h ). Conversely, given uh ∈

P1,pΛ
1(T 2

h ), define ũh ∈ L p
h by specifying its DoFs: the vertex DoFs and the normal

DoFs on the edges are defined to be the same as uh , while other DoFs are defined to
be zero. By definition uh − ũh has vanishing normal DoFs, and according to the con-
forming property, we know that the normal components of uh − ũh vanish. Therefore
uh − ũh ∈ Σ

p
b . ��

Theorem 1 The sequence (5) is a complex, which is exact on contractible domains.

Proof From the definitions of P1,p+2Λ
0(T 2

h ), P1,p+1Λ
1(T 2

h ) and P1,pΛ
2(T 2

h ), it
is obvious that curlP1,p+2Λ

0(T 2
h ) ⊂ P1,p+1Λ

1(T 2
h ) and divP1,p+1Λ

1(T 2
h ) ⊂

P1,pΛ
2(T 2

h ).
Next we show that (5) is exact. From the inf–sup condition proved in [41], we

know that the div operator is onto, i.e. divP1,p+1Λ
1(T 2

h ) = P1,pΛ
2(T 2

h ). Therefore
it suffices to count the dimensions. We note that the global dimension of Hermite
element of degree p+ 2 is dim(P1,p+2Λ

0(T 2
h )) = 3V + (p− 1)E + 1/2p(p+ 1)F ,

and the dimensions of P1,p+1Λ
1(T 2

h ) and P1,pΛ
2(T 2

h ) are dim(P1,p+1Λ
1(T 2

h )) =
2V + pE + (2

(p+3
2

) − 3p − 6)F and dim(P1,pΛ
2(T 2

h )) = (p+2
2

)
F respectively. By

straightforward calculations, we have

dim
(
P1,p+1Λ

1(T 2
h )

)
=

[
dim(P1,p+2Λ

0(T 2
h )) − 1

]
+ dim(P1,pΛ

2(T 2
h )).

��
By rotating the elements in sequence (5), we can get another grad-rot finite element

complex.

Basis function The basis functions of P1,p+1Λ
1(T 2

h ) can be written in a similar way
as the Lagrange basis. For example, for P1,p+1Λ

1(T 2
h ) with continuous normal com-

ponents, we write the two basis functions associated to an edge Lagrange point as
one normal basis and one tangential basis. We require each normal basis to be single-
valued in the two elements sharing the edge, while we allow a tangential basis function
taking different values in the two neighbour elements.
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We explicitly construct a basis of P1,pΛ
1(T 2

h ). Below we will use φ
p
x to denote

the nodal basis function of the Lagrange elements at a Lagrange interpolation point x.
The superscript p in φ

p
x indicates that it is a polynomial of degree p. For simplicity of

presentation, we omit this superscript below when there is no possible confusion, i.e.
wewill write φx instead.Wewill use ei to denote the canonical basis (0, . . . , 1, . . . , 0)
in the Euclidean space Rn .

Basis functions of the H(div) finite element space P1,pΛ
1(T 2

h ) can be constructed
as:

1. Vertex-based basis functions: given x ∈ V , its two basis functions are

vx,i = φxei , i = 1, 2,

2. Edge-based basis functions: given a Lagrange point x on an edge e, its associated
basis function with the normal direction:

ve,x = φxνe,

where νe is the normal vector of the edge e,
3. Edge-based basis functions: given a Lagrange point x on an edge e, its associated

basis functions with the tangential direction:

ve,x,i = φx | fi τ e, i = 1, 2,

where f1 and f2 are the two elements sharing the edge e, τ e is the tangential vector
of the edge e.

4. Interior basis functions: at an interior Lagrange point x, its two associated basis
functions:

v f,x,i = φxei , i = 1, 2.

2.3 Complex in 3D

We now turn to the 3D complexes. For p ≥ 0 we formally write the sequence as

R −−−−−−−→ P1,p+3Λ
0(T 3

h )
grad−−−−−−−→ P1,p+2Λ

1(T 3
h )

curl−−−−−−−→ P1,p+1Λ
2(T 3

h )
div−−−−−−−→ P1,pΛ

3(T 3
h ) −−−−−−−→ 0.

(6)
Here P1,p+3Λ

0(T 3
h ) is the Hermite finite element in 3D with polynomial degree

p + 3, and P1,p+2Λ
1(T 3

h ) is a Stenberg-type H(curl) space, which is tangentially
continuous on edges and faces and C0 continuous at the vertices. To our knowledge,
this element is new in the literature.

We can give the following DoFs for P1,pΛ
1(T 3

h ) (as shown in Fig. 2):

1. function values u(x) at each vertex x ∈ V ,
2. p − 1 tangential DoFs on each edge e:

∫

e
(u · τ e) q, ∀q ∈ Pp−2Λ

0(e).
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Fig. 2 Lowest order (P2)
H(curl) element of continuity
r = 1

3. DoFs on each face f :

∫

f

(
u × ν f

) · ω, ∀ω ∈ P−
p−1Λ

1( f ),

where u × ν f is understood as a two dimensional vector on face f ,
4. interior DoFs on each 3D cell t :

∫

t
u · η, ∀η ∈ P−

p−2Λ
2(t).

In order to prove the unisolvence, we need the following two results which can be
found, for example, in Arnold, Falk and Winther [5] (Lemma 4.7).

Lemma 2 Let ω ∈ P̊pΛ
k(t). If

∫

t
ω ∧ η = 0, ∀η ∈ P−

p−n+kΛ
n−k(t),

where n is the dimension of t , we have ω = 0.

Lemma 3 (c.f. [5] (3.15)) We have the dimension count:

dimP−
p Λk(Rn) =

(
k + p − 1

k

)(
n + p

n − k

)
.

We now state the unisolvence results:

Lemma 4 The DoFs of P1,pΛ
1(T 3

h ) are unisolvent.

Proof First we check the dimension. From Lemma 3, we see

dim
(
P−

p−1Λ
1( f )

)
=

(
p − 1

1

)(
p + 1

1

)
= (p − 1)(p + 1),
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and

dim
(
P−

p−2Λ
2(t)

)
=

(
p − 1

2

)(
p + 1

1

)
= 1

2
(p − 2)(p − 1)(p + 1).

Therefore the dimension of DoFs is 3V + (p − 1)E + (p − 1)(p + 1)F + 1/2(p −
2)(p− 1)(p+ 1)T . On one element (V = 4, E = 6, F = 4, T = 1), this amounts to

3 × 4 + 6(p − 1) + 4(p − 1)(p + 1) + 1/2(p − 2)(p − 1)(p + 1)

= 1

2
p3 + 3p2 + 11

2
p + 3,

which is the same as the dimension of the space of 3D polynomials of degree p:

dim
(
Pp(t)

3
)

= 3 ·
(
p + 3

3

)
= 1

2
(p3 + 6p2 + 11p + 6).

Then it suffices to show that u = 0 if all the DoFs are zero.
From the vertex and edge DoFs, it is obvious that u · τ e = 0 on all the edges.

Then combining Lemma 2 with the definitions of the face DoFs, we have u × ν f =
0, ∀ f ∈ F . Finally from the interior DoFs, we have u = 0.

This proves the unisolvence. ��
At P1,p+1Λ

2(T 3
h ) the new complex branches into the standard finite element de

Rham sequence:P1,p+1Λ
2(T 3

h ) is the BDM space with polynomial degree p+1, and
P1,pΛ

3(T 3
h ) is the space of piecewise polynomials of degree p.

Lemma 5 The 3D complex of r = 1 (6) is locally and globally exact on contractible
domains.

Proof The local exactness on an element only involves properties of local polynomials,
which is well known. We only show the global exactness.

The exactness at P1,p+3Λ
0(T 3

h ) is trivial because the kernel of the grad operator
only consists of constant functions. It is well known that

div : P1,p+1Λ
2(T 3

h ) → P1,pΛ
3(T 3

h )

for the BDM-DG pair is onto. This proves the exactness atP1,pΛ
3(T 3

h ). Furthermore,
we note that

P1,p+2Λ
1(T 3

h ) = Pp+2Λ
1(T 3

h ) ∩ {E : E ∈ C0(V)}.

From the standard results, we have

ker
(
curl,Pp+2Λ

1(T 3
h )

)
= gradPp+3Λ

0(T 3
h ),
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which implies that

ker
(
curl,P1,p+2Λ

1(T 3
h )

)
= grad

(
Pp+3Λ

0(T 3
h ) ∩ {u : u ∈ C1(V)}

)

= gradP1,p+3Λ
0(T 3

h ),

which shows the exactness at P1,p+2Λ
1(T 3

h ).
Then we only need to show the exactness at P1,p+1Λ

2(T 3
h ). After verifying the

exactness at all the other spaces, we can check the dimensions to show the desired
results.

The Hermite element of degree p + 3, i.e. P1,p+3Λ
0(T 3

h ), has dimension 4V +
pE +1/2(p+2)(p+1)F +1/6p(p+1)(p+2)T , and the spaceP1,p+2Λ

1(T 3
h ) has

dimension 3V + (p+1)E + (p+1)(p+3)F +1/2p(p+1)(p+3)T . Furthermore,

dim
(
Pp+1Λ

2(t)
)

= dim
(
P−

p+1Λ
0
)
F + dim

(
P−

p Λ1
)
T

=
(
p

0

)(
p + 3

2

)
F +

(
p

1

)(
p + 3

2

)
T

= 1

2
(p + 2)(p + 3)F + 1

2
p(p + 2)(p + 3)T,

and dim
(
PpΛ

3(t)
) = (p+3

3

) = 1/6(p + 3)(p + 2)(p + 1)T .
Checking the dimensions and using Euler’s formula, we have proved the exactness.

��

3 Argyris family: r = 2

The r = 2 family starts with elements with C2 continuity at vertices, C1 on edges
and C0 on faces. In 1D this leads to H2 → H1 pairs. In 2D, this gives H2 →
H1 → L2 conforming elements. In 3Dwe obtain conforming discretisations of H1 →
H(curl) → H(div) → L2.

3.1 Complexes in 1D and 2D

In 1D the sequence consists of the Argyris–Hermite pair as the name suggests. For the
lowest polynomial degree, we have the P5-P4 pair. We actually obtain a conforming
finite element sub-complex of

R −−−−→ H2(Ω)
grad−−−−→ H1(Ω) −−−−→ 0. (7)

The 2D sequence coincides with the Stokes complex given in Falk and Neilan [21].
Because of the higher regularity at vertices and on edges, here the sequence with
d = 2, r = 2 leads to a conforming discretisation of the Stokes complex

R −−−−→ H2(Ω)
curl−−−−→ H1(Ω)2

div−−−−→ L2(Ω) −−−−→ 0. (8)
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Fig. 3 3D r = 2 finite element sequence with lowest polynomial degrees P5 → (P4)
3 → (P3)

3 → P2.
Interior DoFs (except for the last space) are shown as “+4,+1,+20”. For the H(curl) and the H(div)
elements, the DoFs of the three components at each vertex are shown by one circle

Falk and Neilan [21] chose the Argyris element for H2(Ω), the Hermite element for
each components of H1(Ω)2 and the element with C0 continuity at the vertices for
L2(Ω). The inf–sup conditions and exactness were also shown in [21].

3.2 Complex in 3D

In 3D the H(curl) space is a straightforward generalisation of the Hermite element
by allowing jumps in the normal directions. In what follows we construct the finite
elements. The sequence of the lowest order elements is shown in Fig. 3.

– ElementP2,pΛ
0(T 3

h ) ⊂ H1(Ω). We useP2,pΛ
0(T 3

h ) to denote the finite element
subspace of H1(Ω) consisting of polynomials of degree p, which coincides with
each component of the velocity space in the 3D Stokes complex of Neilan [37].
For P2,pΛ

0(T 3
h ) we impose C2 continuity at vertices, C1 on edges and C0 on

faces, i.e.

P2,pΛ
0(T 3

h ) = {s ∈ H1(Ω) : s|t ∈ Pp(t),∀t ∈ T ; s ∈ C2(V), s ∈ C1(E)}.

Furthermore, the restriction of P2,pΛ
0(T 3

h ) to a face is a 2D Argyris element.
The DoFs are given in (3.2) of [37]. The dimensions can be counted as (for p ≥ 5):

– one function value and (nine) derivatives up to second order at each vertex,
– 2(p − 4) normal derivatives and p − 5 function values on each edge,
–

(p−4
2

)
DoFs on each face,

–
(p−1

3

)
interior DoFs.

The proof of the unisolvence can also be found in [37].

Lemma 6 The DoFs for P2,pΛ
0(T 3

h ) are locally unisolvent, and P2,pΛ
0(T 3

h ) ⊂
H1(Ω).

We count the dimensions of the global finite element space:

dim
(
P2,pΛ

0(T 3
h )

)
= 10V + [2(p − 4) + (p − 5)] E +

(
p − 4

2

)
F +

(
p − 1

3

)
T .
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– Element P2,pΛ
1(T 3

h ) ⊂ H(curl). The H(curl) finite element space P2,pΛ
1(T 3

h )

is partly motivated by the Hu–Zhang elements [29] for the Hellinger–Reissner
variational principle of linear elasticity, which are modifications of the nodal
Lagrange elements. Here we modify the Hermite elements to give a discretisa-
tion of P2,pΛ

1(T 3
h ).

We can describeP2,pΛ
1(T 3

h ) by the local shape function space and the interelement
continuity:

P2,pΛ
1(T 3

h ) = {w ∈ H(curl;Ω): ∀t ∈ T ,w|t ∈ PpΛ
1(t);w ∈ C1(V),w ∈ C0(E)}.

The local DoFs can be given as:

– function value and first order derivatives of each component at each vertex x ∈ V:

Ei (x), ∂ j Ei (x), i, j = 1, 2, 3,

– p − 3 moments for each component on each edge e ∈ E :
∫

e
Ei q, q ∈ Pp−4(e), i = 1, 2, 3,

– moments of tangential components on each face f :

∫

f

(
E × ν f

) · q, q ∈ (
Pp−3( f )

)2
,

where E × ν f is considered as a 2D vector on f ,
– interior DoFs on t ∈ T :

∫

t
E · v, v ∈ P−

p−2Λ
2(t). (9)

The dimension of the bubble space on t ∈ T is 1/2(p3 − 2p2 − p + 2).
We can immediately check the local unisolvence:

Lemma 7 The DoFs for P2,pΛ
1(T 3

h ) are unisolvent.

Proof It is straightforward to check the local dimension of the DoFs on an element t :

12 × 4 + 3(p − 3) × 6 + 2

(
p − 2

2

)
× 4 +

(
1

2
p3 − p2 − 1

2
p + 1

)
× 1

= dim
(
Pp(t)

3
)

.

Now it suffices to show that if all the DoFs vanish, we have E = 0 on the element t .
Actually, from the DoFs attached to the vertices and edges, we know that E vanishes
on all the edges. By the DoFs on faces, the tangential components of E vanish on all
the faces, therefore E ∈ P̊pΛ

1(t). Finally, from the interior DoFs (9) and Lemma 2,
Lemma 3, we have E = 0, which shows the unisolvence. ��
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The dimension of P2,pΛ
1(T 3

h ) is

dim
(
P2,pΛ

1(T 3
h )

)
= 12V + 3(p − 3)E + 2

(
p − 2

2

)
F

+
(
1

2
p3 − p2 − 1

2
p + 1

)
T .

We characterise H(curl) bubbles in a more constructive way, which resembles the
discussions for the symmetric matrix valued H(div,S) bubble function in [29,31].

We define the H(curl) bubble space on a 3D cell t :

Σc
t,p :=

3∑
i=0

Pp−3(t)λ jλlλmνi ,

where i, j, l,m are the four different indices from 0 to 3, λ j is the j-th barycentric
coordinate and νi is the normal vector of the face opposite to vertex i .

We recall that P̊pΛ
1(t) is the Nédélec element of the second kind of degree p with

vanishing tangential components on ∂t .

Lemma 8 We have Σc
t,p = P̊pΛ

1(t), ∀t ∈ T .

Proof It is obvious that Σc
t,p ⊂ P̊pΛ

1(t). To show the converse, we assume E ∈
P̊pΛ

1(T ). Then from the definition of P̊pΛ
1(T ), E vanishes at the vertices and has

the representation:

E =
3∑

i=0

piνi , pi ∈ Pp(t).

The representation is not unique since there are four normals on a tetrahedron which
are not linearly independent. We are to prove that pi contains a factor λ jλlλm , where
i, j,m and l are the four different indices chosen from 0, 1, 2, 3.

On face f j , we have

0 = E × ν j =
3∑

i=0

piνi × ν j =
∑
i �= j

pi
elm
|elm | ,

where elm is the edge connecting vertex l and vertex m.
Fixing i , we have three options for j , so there are three options for elm which are

linearly independent and form a basis ofR3. Therefore pi vanishes on f j , i �= j . This
implies that pi contains a factor λ jλlλm .

This proves P̊pΛ
1(t) ⊂ Σc

t,p and hence Σc
t,p = P̊pΛ

1(t). ��
We have the following space decomposition which shows that P2,pΛ

1(T 3
h ) can be

written as the sum of a continuous Hermite element space and local bubble functions:
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Lemma 9 We have P2,pΛ
1(T 3

h ) = Sp
h + Σc

p, where S
p
h is the vector Hermite space,

and the restriction of Σc
p on an element t coincides with Σc

t,p.

Proof First we prove Sp
h + Σc

p ⊂ P2,pΛ
1(T 3

h ). In fact, the local polynomials of
Sp
h + Σc

p and P2,pΛ
1(T 3

h ) are the same (Pp). Furthermore, it is obvious that Sp
h

satisfies the interelement continuity imposed by the DoFs of P2,pΛ
1(T 3

h ). Now we
show that the interelement continuity of the extension by zero of Σc

t,p also satisfies
the continuity of P2,pΛ

1(T 3
h ).

In fact, the H(curl) bubbles piλ jλlλmνi vanish on all the edges and the derivatives
grad(piλ jλlλmνi ) contain at least two of the barycentric coordinates, which also
vanish at all the vertices. This shows that the bubble functions satisfy the interelement
continuity.

It remains to show the converse, i.e. P2,pΛ
1(T 3

h ) ⊂ Sp
h + Σc

p. From the DoFs of
P2,pΛ

1(T 3
h ), one can define the canonical interpolations I c : P2,pΛ

1(T 3
h ) �→ Sp

h . In
fact, given u ∈ P2,pΛ

1(T 3
h ), we can define I cu ∈ Sp

h by defining the function values
I cu(x) and derivatives ∂i I cu(x) at the vertices, function values on the edges I cu(e)
and tangential components on the faces I cu × ν to be the same as the corresponding
values of u (I cu(x) = u(x), ∂i I cu(x) = ∂iu(x), I cu(e) = u(e), I cu × ν = u × ν).
Then we define the normal components to zero I cu ·ν = 0, which is consistent across
the boundary of elements. For any u ∈ P2,pΛ

1(T 3
h ), it is easy to see that ub|t :=

(u − I cu)|t ∈ P̊pΛ
1(t) = Σc

t,p. This implies u = I cu + ub can be decomposed as a
sum of the Hermite elements and local bubbles. ��
– Element P2,pΛ

2(T 3
h ) ⊂ H(div). The construction of P2,pΛ

2(T 3
h ) has appeared

in Stenberg [41]. The space P2,pΛ
2(T 3

h ) can be characterised as:

P2,pΛ
2(T 3

h ) =
{
v ∈ H(div) : v|t ∈ (Pp(t))

3,∀t ∈ T 3
h ; v ∈ C0(V)

}
.

The local DoFs are:
– function values of each component ui (x) at each vertex x, i = 1, 2, 3,
– face DoFs:

∫

f

(
u · ν f

) · q, ∀ f ∈ F , q ∈ Pp( f ), q = 0 at the vertices of f.

– interior DoFs
∫

t
u · v, ∀v ∈ P−

p−1Λ
1(t), t ∈ T 3

h .

Lemma 10 The DoFs for P2,pΛ
2(T 3

h ) are locally unisolvent.

The global dimension of P2,pΛ
2(T 3

h ) is:

dim
(
P2,pΛ

2(T 3
h )

)
= 3V + 1

2
(p2 + 3p − 4)F + 1

2
(p − 1)(p + 1)(p + 2)T .
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– Element P2,pΛ
3(T 3

h ) ⊂ L2(Ω). As above, P2,pΛ
3(T 3

h ) is the space of piecewise
polynomials of degree p:

P2,pΛ
3(T 3

h ) :=
{
q ∈ L2 : q|T ∈ Pp,∀T ∈ T

}
.

The dimension reads

dim
(
P2,pΛ

3(T 3
h )

)
=

(
p + 3

3

)
T .

We verify the exactness on a contractible domain in the following theorem:

Theorem 2 The sequence in 3D (p ≥ 2)

R −−−−−−−→ P2,p+3Λ
0(T 3

h )
grad−−−−−−−→ P2,p+2Λ

1(T 3
h )

curl−−−−−−−→ P2,p+1Λ
2(T 3

h )
div−−−−−−−→ P2,pΛ

3(T 3
h ) −−−−−−−→ 0

(10)
is exact on contractible domains.

Proof From the inf–sup condition of P2,p+1Λ
2(T 3

h ) and P2,pΛ
3(T 3

h ) which was
proved in [41] (it also follows from the inf–sup condition of the Hu–Zhang type
vector elements below, where the velocity space is smaller), we see that div :
P2,p+1Λ

2(T 3
h ) → P2,pΛ

3(T 3
h ) is onto.

We recall that PpΛ
1(T 3

h ) and PpΛ
0(T 3

h ) represent the Nédélec edge element of
the second kind of degree p and the Lagrange element of degree p respectively.

From the definition of P2,pΛ
1(T 3

h ), we have

P2,pΛ
1(T 3

h ) = PpΛ
1(T 3

h ) ∩ {w : w ∈ C1(V),w ∈ C0(E)},

and

ker
(
curl,P2,pΛ

1(T 3
h )

)
= ker

(
curl,PpΛ

1(T 3
h )

)
∩ {w : w ∈ C1(V),w ∈ C0(E)}.

We note that gradPp+1Λ
0(T 3

h ) = ker
(
curl,PpΛ

1(T 3
h )

)
by the exactness of the

standard finite element de Rham complex, where

gradPp+1Λ
0(T 3

h ) := {grad u : u ∈ Pp+1Λ
0(T 3

h )}.

Therefore we have

gradP2,p+1Λ
0(T 3

h ) = grad
(
Pp+1Λ

0(T 3
h ) ∩ {s : s ∈ C2(V), s ∈ C1(E)}

)

= ker
(
curl,P2,pΛ

1(T 3
h )

)
,

since if grad u has C1 continuity at vertices and C0 on edges, u has to be C2 and C1

at the vertices and on the edges.
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It remains to show that for each vh ∈ P2,pΛ
2(T 3

h ) satisfying div vh = 0, we have
vh = curlwh for some wh ∈ P2,p+1Λ

1(T 3
h ). Since we have shown the exactness at

other indices, it suffices to check the dimension now.
We summarise the global dimension of the sequence as follows:

1 → 10V + [2(p − 1) + (p − 2)]E + (p−1
2

)
F + (p+2

3

)
T

→ 12V + 3(p − 1)E + 2
(p+1

2

)
F + [

1/2(p + 2)3 − (p + 2)2 − 1/2(p + 2) + 1
]
T

→ 3V + 1/2(p2 + 5p)F + 1/2p(p + 2)(p + 3)T → (p+3
3

) → 0.

By straightforward calculations, we know that (10) satisfies the dimension condition
of the exactness. ��

3.3 Basis functions in 3D

For the H(curl) finite element space P2,pΛ
1(T 3

h ), we can group the basis functions
into several classes. Hereafter, we will use ψx to denote the Hermite nodal basis at a
Hermite interpolation point x, i.e.ψx(x) = 1,ψx( y) = 0 at anyHermite interpolation
point y �= x, and ψx has vanishing first order derivatives at vertices.

1. Vertex-based basis functions: given x ∈ V , its twelve basis functions are

wx,i = ψxei , i = 1, 2, 3,

w̃x,i, j = ψ̃x,i e j , i, j = 1, 2, 3,

where ψ̃x,i is the basis function corresponding to the vertex derivative DoF sat-

isfying
(
∂kψ̃x,i

) ∣∣∣
x

= δki and ψ̃x,i ( y) = 0 at all the Hermite points y. Here

ei , i = 1, 2, 3 are the three bases of R3.
2. Edge-based basis functions: given a Hermite point x on an edge e, its associated

three basis functions:

we,x,i = ψxei , i = 1, 2, 3.

3. Face-based basis functions: given a Hermite point x on a face f , its associated
two basis functions with tangential directions:

wτ
f,x,i = ψxτ f,x,i , i = 1, 2,

where τ f,x,i is the tangential vector of the face f at x.
4. Face-based basis functions: given a Hermite point x on a face f , its associated

basis functions with the normal direction:

wν
f,x,i = ψx |ti ν f , i = 1, 2,
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where t1 and t2 are the two elements sharing the face f , ν f is the normal vector
of the face f .

5. Interior basis functions: at each interior Hermite point x, its three associated basis
functions:

wt,x,i = ψxei , i = 1, 2, 3.

3.4 Asymptotic dimensions of the global finite element spaces

With enhanced smoothness, the dimensions of the global DoFs are significantly
reduced. The advantages of the discrete H(div) spaceP2,pΛ

2(T 3
h ) have been shown in

Stenberg [41]. So here we focus on the H(curl) subspace P2,pΛ
1(T 3

h ). An analogous
discussion is also possible for the 2D elements.

To see this, we first recall the asymptotic estimates of the dimensions (c.f. [41]):

V = O
(
1

6
T

)
, E = O (7V ) = O

(
7

6
T

)
, F = O(2T ). (11)

Remark 1 In 2D, such asymptotic estimates can be established in a rigorousway. From
Euler’s formula, one has V − E + F = 1. Since two triangles share one edge and each
triangle contains three edges, one further has 2E = 3F asymptotically. Combining
these two identities, one obtains the asymptotic relation V = O(1/2F). However, in
3D we do not have enough information to give such estimates for general triangula-
tions. To give similar estimates, we consider a special triangulation where each cube
is divided into fourteen tetrahedra by connecting the center with eight vertices and the
centers of the six faces. In this case, the vertex at the center is connected by fourteen
edges and each edge contains two vertices. Therefore we give an asymptotic estimate
E = 7V . Together with Euler’s formula V −E+F−T = 1, we derived the estimates
(11).

We can estimate the dimension of the Nédélec element of the second kind (c.f. [9]):

dim
(
PpΛ

1
(
T 3
h

))
= 6(p + 1)E + 4(p + 1)(p − 1)F + 1

2
(p + 1)(p − 1)(p − 2)T

= O ([7(p + 1) + 8(p + 1)(p − 1)

+1

2
(p + 1)(p − 1)(p − 2)

]
T

)

= O
((

1

2
p3 + 7p2 + 13

2
p

)
T

)
.

For the new element P2,pΛ
1(T 3

h ) we have

dim(P2,pΛ
1(T 3

h )) = 12V + 3(p − 3)E + 2

(
p − 2

2

)
F +

(
1

2
p3 − p2 − 1

2
p + 1

)
T
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= O
([

2 + 7

2
(p − 3) + 2(p − 1)(p − 2)

+
(
1

2
p3 − p2 − 1

2
p + 1

)]
T

)

= O
((

1

2
p3 + p2 − 3p − 11

2

)
T

)
.

We see that P2,pΛ
1(T 3

h ) has fewer DoFs than PpΛ
1
(
T 3
h

)
:

dim
(
PpΛ

1
(
T 3
h

))
− dim(P2,pΛ

1(T 3
h )) = O

((
6p2 + 19

2
p + 11

2

)
T

)
.

For example, for p = 4, dim
(
PpΛ

1
(
T 3
h

)) = O (170T ) and dim(P2,pΛ
1(T 3

h )) <

O (31T ).

3.5 Hu–Zhang type H(div) space

The Stenberg H(div) element P2,pΛ
2 in 3D does not have continuity on the edges,

except for the vertex continuity. On the other hand, the Hu–Zhang element for linear
elasticity has continuous normal components on the edges. Using an analogous idea,
we can design another vector H(div) element with normal continuity on edges. The
inf–sup condition of the proposed H(div)-L2 finite element pair also holds.

The new element can be described as

V h
p :=

{
v ∈ H(div;Ω) : v|t ∈ Pp(t),∀t ∈ T , v ∈ C0(V), v · νi ∈ C0(E), i = 1, 2

}
.

The local degrees of freedom are:

– function value of each component at each vertex:

ui (x), x ∈ V, i = 1, 2, 3,

– the moments on each edge:

∫

e
(u · νe,i )w, ∀w ∈ Pp−2(e), e ∈ E, i = 1, 2,

– on each face f :

∫

f

(
u · ν f

)
w, ∀w ∈ Pp−3( f ),

– interior DoFs on each tetrahedron t ∈ T :
∫

t
u · v, ∀v ∈ P−

p−1Λ
1(t).
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The proof of the unisolvence is similar to Lemma 4, following Lemma 2. From a
similar argument as Lemma 9, the interior bubble functions of V h

p coincide with those
of the BDM elements and P2,pΛ

2(T 3
h ).

Following the proof of the inf–sup conditions in Hu and Zhang [31] (Lemma 3.2),
replacing the space of rigid body motions by the space of constants and replacing the
symmetric gradient ε by the gradient, we can prove the inf–sup condition of the pair
V h

p-Pp−1Λ
2 where p ≥ 2.

There is a Lagrange type basis for V h
p. We recall that φx is the Lagrange nodal

basis at x, i.e. φx(x) = 1, φx( y) = 0 for the Lagrange interpolation point y �= x. For
V h

p we can group the basis functions into several classes:

1. Vertex-based basis functions: given x ∈ V , its three basis functions are

vx,i = φxei , i = 1, 2, 3.

2. Edge-based basis functions: given a Lagrange point x on an edge e, its associated
basis functions with the tangential direction:

vτ
e,x,i = φx |ti τ e,

where τ e is the tangential direction of e, ti is an element sharing e as an edge.
3. Edge-based basis functions: given Lagrange point x on an edge e, its associated

basis functions with normal directions:

vν
e,x,i = φxνe,i , i = 1, 2,

where νe,i , i = 1, 2, are the two normal directions of e.
4. Face-based basis functions: given a Lagrange point x on a face f , its associated

two basis functions with tangential directions:

v f,x,i = φx |ti τ f,x,i , i = 1, 2,

where τ f,x,i , i = 1, 2, are the two tangential vectors of the face f at x, t1 and t2
are the two elements sharing the face f .

5. Face-based basis functions: given Lagrange point x on a face f , its associated
basis function with the normal direction:

v f,x = φxν f ,

where ν f is the normal vector of the face f .
6. Interior basis functions: at each interior Lagrange point x, its three associated basis

functions:

vt,x,i = φxei , i = 1, 2, 3.
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4 Boundary conditions

Since the proposed elements have extra smoothness compared with the standard de
Rham complexes, the boundary conditions call for more explanations.

4.1 Two space dimensions

We start from two space dimensions and consider discretizations of the following
spaces with essential boundary conditions:

H0(curl;Ω) := {s ∈ H(curl;Ω), s|∂Ω = 0} ,

H0(div;Ω) := {w ∈ H(div;Ω), w|∂Ω · ν = 0} .

We denote

L2
0(Ω) :=

{
q ∈ L2(Ω) :

∫

Ω

q = 0

}
.

Now we are in a position to define the following discrete de Rham sequence with
homogeneous boundary conditions:

0 −−−−→ P̊1,p+2Λ
0
(
T 2
h

) curl−−−−→ P̊1,p+1Λ
1
(
T 2
h

) div−−−−→ P̊1,pΛ
2
(
T 2
h

) −−−−→ 0.
(12)

To impose the vanishing boundary conditions in (12) all function values of
P1,p+2Λ

0
(
T 2
h

)
and normal components of P1,p+1Λ

1
(
T 2
h

)
should be set zero on the

boundary. However in the implementation consistent conditions should be considered
due to the extra smoothness. For example, P1,p+2Λ

0
(
T 2
h

)
has two derivative DoFs

at each vertex. If boundary values of a function in P1,p+2Λ
0
(
T 2
h

)
are set zero, the

tangential derivatives along the boundary should also be zero due to the consistency.
Therefore in the implementation, the DoFs for the tangential derivatives should be
imposed explicitly as well. On the other hand, the normal derivatives should be left
free. There is a similar situation for the vertex DoFs of P1,p+1Λ

1
(
T 2
h

)
.

Consistency conditions are related to the geometry of the boundary. We first follow
the terminology in [21] to introduce the definition of corner boundary vertices.

Definition 1 A boundary vertex is called a corner vertex if the two adjacent boundary
edges sharing this vertex do not lie on a straight line.

In Fig. 4, Q′ is a corner vertex while Q is not.
At a non-corner boundary vertex, the two tangential derivatives along its two adja-

cent edges coincide up to a sign. In this case, we only specify the DoF value of this
tangential derivative. The number of global DoFs (unknowns) is reduced by two at
this vertex (one function value and one tangential derivative). Otherwise we should
specify both derivative DoFs at each corner vertex and the number of DoFs is reduced
by three.
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Fig. 4 Boundary DoFs. Q′ is a corner vertex, while Q is not

For the H(div) conforming space P1,p+1Λ
1(T 2

h ), we explicitly specify the normal
DoFs on each edge andDoFs at each vertex. For a non-corner boundary vertex, we only
specify the normal component and for a corner boundary vertex, we should specify
both components at that vertex.

We denote the number of boundary vertices by V0 and the number of non-corner
boundary vertices by V s

0 . Then the following dimension count holds:

dim
(
P̊1,pΛ

0(T 2
h )

)
= dim

(
P1,pΛ

0(T 2
h )

)
− (p − 3)E0 − 3V0 + V s

0 ,

dim
(
P̊1,pΛ

1(T 2
h )

)
= dim

(
P1,pΛ

1(T 2
h )

)
− (p − 1)E0 − 2V0 + V s

0 ,

and

dim
(
P̊1,pΛ

2(T 2
h )

)
= dim

(
P1,pΛ

2(T 2
h )

)
− 1.

In fact, for P̊1,pΛ
0(T 2

h ), we remove p − 3 function value DoFs on each bound-
ary edge, three vertex DoFs at each corner boundary vertex and two DoFs at each
non-corner boundary vertex (one function value and one tangential derivative). For
P̊1,pΛ

1(T 2
h ), we remove p − 1 normal DoFs on each boundary edge, two normal

DoFs at each corner boundary vertex and one normal DoF at each non-corner bound-
ary vertex.

On contractible domains the number of boundary vertices equals that of boundary
edges, i.e. E0 = V0. Therefore we have

dim
(
P̊1,p+2Λ

0(T 2
h )

)
+ dim

(
P̊1,pΛ

2(T 2
h )

)
− dim

(
P̊1,p+1Λ

1(T 2
h )

)

= dim
(
P1,p+2Λ

0(T 2
h )

)
+ dim

(
P1,pΛ

2(T 2
h )

)

− dim
(
P1,p+1Λ

1(T 2
h )

)
+ (E0 − V0) − 1

= dim
(
P1,p+2Λ

0(T 2
h )

)
+ dim

(
P1,pΛ

2(T 2
h )

)
− dim

(
P1,p+1Λ

1(T 2
h )

)
− 1 = 0.

This shows that the dimension condition of exactness holds for (12). Checking the
exactness at P̊1,p+2Λ

0(T 2
h ) and P̊1,pΛ

2(T 2
h ) as the casewithout boundary conditions,

we obtain the exactness of (12).
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Boundary conditions for the family r = 2 are similar. We refer to [21] for detailed
discussions.

4.2 Three space dimensions

For simplicity of presentation, we assume that the boundary ofΩ is homeomorphic to
the sphere S2 ⊂ R

3. Sobolev spaces with vanishing boundary conditions are defined
by

H1
0 (Ω) :=

{
v ∈ H1(Ω) : v|∂Ω = 0

}
,

H0(curl;Ω) := {u ∈ H(curl;Ω), u|∂Ω × ν = 0} ,

H0(div;Ω) := {w ∈ H(div;Ω), w|∂Ω · ν = 0} ,

where ν is the unit normal vector of ∂Ω , and as a convention,

L2
0(Ω) :=

{
q ∈ L2(Ω) :

∫

Ω

q = 0

}
.

On the continuous level, the complex

0 � H1
0 (Ω)

grad� H0(curl;Ω)
curl� H0(div;Ω)

div� L2
0(Ω) � 0

is exact on any contractible domain Ω .
As we have seen in the 2D case, whether a boundary vertex is a corner or not

depends on the number of independent edges (i.e. edges with linearly independent
directions) sharing this vertex. This motivates us to give a similar definition in 3D.

Definition 2 Aboundary vertex is called a corner vertex in 3D if the adjacent boundary
edges sharing this vertex are not coplanar.

Below we take the scalar element space P2,pΛ
0(Ω) ⊂ H1

0 (Ω) as an example
to explain how the boundary geometry should be taken into consideration when we
impose boundary conditions.

For a corner boundary vertex in 3D, there are three linearly independent edges
(precisely, three edges with linearly independent directions) connected to it. Therefore
all derivatives (three first order derivatives and six second order derivatives) at a corner
boundary vertex can be derived from given boundary value. On the other hand, at a
non-corner boundary vertex, there are only two linearly independent directions along
the boundary. Therefore at a non-corner boundary vertex, two tangential first order
derivatives along the boundary and three tangential second order derivatives (∂2τ1 ,
∂2τ2 and ∂τ1∂τ2 , where τ1 and τ2 are the two tangent vectors lying on the boundary
∂Ω) can be determined from given boundary data and the corresponding degrees of
freedom should be specified to impose boundary conditions. The degrees of freedom
corresponding to the normal first order derivative (∂ν) and the three second order
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Fig. 5 e′ is a corner edge, while e is not

derivatives related to the normal direction, i.e. ∂2ν , ∂τi ∂ν, i = 1, 2, should be treated
as unknowns.

For edges in 3D, we similarly define:

Definition 3 A boundary edge is called a corner edge in 3D if the two adjacent faces
(2D cells) on the boundary sharing this edge are not coplanar.

In Fig. 5, e′ is a corner edge, while e is not. On a corner edge, derivatives of a
function along the two normal directions can be determined by the function value
on the boundary. Therefore all DoFs on corner edges should be specified from given
boundary data. On the other hand, for a non-corner edge, derivative DoFs in the normal
direction of the plane cannot be determined from given boundary data. In this case,
such normal DoFs should be treated as unknowns in the algebraic system.

Boundary conditions for other spaces are similar. The general principle is that we
specify all DoFs which can be obtained from given boundary data.

4.3 Non-homogeneous boundary conditions

Paying attention to the geometry of boundaries discussed above, it is trivial to impose
vanishing Dirichlet boundary conditions by setting all relevant DoFs zero. However,
for non-homogeneous boundary conditions, extra complication may arise. This is
usually due to the construction of basis functions.

For DoFs which should be specified, coefficients in front of the dual basis should
be determined by linear combinations of boundary data. For example, in Fig. 6, Q
is a corner vertex. We use e1 and e2 to denote the two canonical basis vectors in
R
2 and use τ 1, τ 2 to denote the vectors corresponding to the two edges sharing Q.

Assume that e1 = a1τ 1+a2τ 1 and e2 = b1τ 1+b2τ 2. Then the directional derivatives
satisfy

∂e1 = a1∂τ 1 + a2∂τ 2 , (13)
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Fig. 6 Tangential/normal DoFs
and derivatives along edges

and

∂e2 = b1∂τ 1 + b2∂τ 2 . (14)

Hence given u|∂Ω , one can obtain ∂τ 1u and ∂τ 2u by taking derivatives on ∂Ω . Then
∂e1 (u|∂Ω) and ∂e2 (u|∂Ω) can be obtained from (13) and (14). This gives the coeffi-
cients in front of the dual basis of ∂e1 and ∂e2 .

Boundary conditions for other spaces are analogous.

5 Geometric decomposition

The geometric locations of the DoFs are essential to define a finite element. Based on
this observation, the global finite element space can be decomposed according to the
topological entities (c.f. [7]). Specifically, on a simplex Δ, the dual basis of the DoFs
spans a local space with vanishing trace on the boundary of the patch associated to Δ.
This space is independent of the choice of basis.

This idea is used as the definition of finite elements in Christiansen et al. [16]. In
the finite element systems proposed in [16], differential complexes are considered on
all the simplexes with different dimensions. The interelement continuity is guaranteed
by requiring that the pull back to each simplex is single-valued, which is enforced
by taking an inverse limit. Then the global function spaces can be decomposed as
a sequence of Whiney forms, which has the lowest polynomial degrees but lives on
different topological entities, and sequences of bubble functions, each of which lives
in the same patch. Although with different names, such a decomposition plays an
important role in the study of high order methods, e.g. local complete sequences in
Schöberl and Zaglmayr [40], bounded commuting interpolations in Falk and Winther
[22,23].

In this section,we give a similar decomposition of the new sequenceswith regularity
r = 1 and r = 2. Each local space is the span of the dual basis of the DoFs on a
topological entity.

Since the continuity involved is usually higher than the natural regularity of the
existing de Rham elements in finite element exterior calculus, we will use jets, besides
differential forms, in our discussions. A r -jetmeans a function together with its Taylor
expansion up to order r in a coordinate-freeway [39]. This is a generalisation of the dif-
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ferential forms to higher continuity. Jets and differential operators can be represented
in local coordinates. For example, a 1-jet for a 2D 1-form v can be represented in the
coordinate form (v1, v11, v

1
2, v

2, v21, v
2
2), where v1 and v2 are the two components of v

and vij is the j-th derivative of the i-th component. In the definition of jets, vi and vij
are considered to be independent. With such a representation, a differential operator
can be identified with its symbol. In the above example, the divergence operator on
1-form v has the coordinate representation div v = v11 + v22. The operators grad and
curl can be represented in a similar way.

Below we consider the geometric decomposition of the complex

R −−−−−−−→ Pr,pΛ
0(T n

h )
d−−−−−−−→ Pr,p−1Λ

1(T n
h )

d−−−−−−−→ · · · d−−−−−−−→ Pr,p−nΛ
n(T n

h ) −−−−−−−→ 0. (15)

Although our examples are in nDwhere n ≤ 3, the local exactness will be verified for
any n ≥ 1 below.

– Case r = 1.

The vertex sequence can be written as

R −−−−→ J 1Λ0(v,Ω)
d−−−−→ J 0Λ1(v,Ω)

d−−−−→ 0 −−−−→ · · · −−−−→ 0.
(16)

Here J l(v,Ω) is the l-jet at vertex v imbedded in n dimensional space Ω . We note
that dim(J 1Λ0(v,Ω)) = n + 1 and dim(J 0Λ1(v,Ω)) = n in n dimensions. In local
coordinates, u ∈ J 1Λ0(v,Ω) and w ∈ J 0Λ1(v,Ω) have the form (u, u1, . . . , un)
and (w1, w2, . . . , wn), where ui = ∂i u is considered as an independent variable. By
counting the dimensions, (16) is exact.

The edge bubble sequence coincides with the bubble complex of the 1D Hermite–
Lagrange pairs:

0 −−−−→ P̊1,pΛ
0(e)

d−−−−→ P̊1,p−1Λ
1(e)/R −−−−→ 0. (17)

Here e ∈ E is a one dimensional simplex. If e is an interior edge, P̊1,pΛ
0(e) contains

functions with vanishing values and derivatives at the vertices and P̊1,p−1Λ
1(e)/R

contains functions with vanishing values at the vertices of e and vanishing integration
along e.

The face and interior bubble sequences are the same as the standard finite element
de Rham sequences:

0 −−−−→ P̊pΛ
0( f )

d−−−−→ P̊p−1Λ
1( f )

d−−−−→ Pp−2Λ
2( f )/R −−−−→ 0,

(18)

0 −−−−−−−→ P̊pΛ
0(t)

d−−−−−−−→ P̊p−1Λ
1(t)

d−−−−−−−→ P̊p−2Λ
2(t)

d−−−−−−−→ Pp−3Λ
3(t)/R −−−−−−−→ 0. (19)

The vanishing boundary conditions of (18)–(19) are the same as the standard case and
(17)–(19) are exact.

– Case r = 2.
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The vertex sequence can be written as

R −−−−→ J 2Λ0(v,Ω)
d−−−−→ J 1Λ1(v,Ω)

d−−−−→ J 0Λ2(v,Ω) −−−−→ 0.
(20)

As discussed above, J l(v,Ω) is the l-jet on vertex v imbedded in an n dimensional
domain Ω . We have dim(J 2Λ0(v,Ω)) = (1/2)(n2 + 3n + 2), dim(J 1Λ1(v,Ω)) =
n(n + 1) and dim(J 0Λ2(v,Ω)) = (n

2

) = (1/2)n(n − 1) in n spatial dimensions.
In 1D, the complex is exact (no two-forms involved). In 2D, the kernel of curl

(rotation of grad) consists of constants and div (rot): J 1Λ1(v,Ω) → J 0Λ2(v,Ω)

is onto, since for w ∈ J 0Λ2(v,Ω) with the coordinate representation (w), we
can consider v = (u1, (1/2)w, u12, u

2, u21, (1/2)w) ∈ J 1Λ1(v). From the def-
inition of jets and the differential operators, we see div v = w. By analogous
argument, we have in 3D: ker(grad) = R, and curl: J 1Λ1(v,Ω) → J 0Λ2(v,Ω)

is onto, because for w = (w1, w2, w3) ∈ J 0Λ2(v,Ω), we can define u =
(u1, u11, 0, 0, u

2, w3, u22,−w1, u3,−w2, 0, u33), and curl u = w.
To verify the exactness at J 1Λ1(v,Ω), it suffices to check the dimensions. In n

spatial dimensions where n ≥ 1, we have the dimension count

0 → 1 → 1

2

(
n2 + 3n + 2

)
→ n(n + 1) → 1

2
(n − 1)n → 0,

which verifies the exactness of the vertex sequences (20).
The edge bubbles of the family r = 2 reads (p ≥ 2):

0 −−−−→ J̊ 1pΛ
0(e,Ω)

d−−−−→ J̊ 0p−1Λ
1(e,Ω)/R −−−−→ 0. (21)

Here J̊ 1pΛ
0(e,Ω) is the 1-jet on the edge ewith vanishing vertex DoFs, i.e. derivatives

up to the second order. The space J̊ 0p−1Λ
1(e,Ω)/R is the 0-jet on e with vanishing

vertex DoFs, i.e. derivatives up to the first order, and vanishing integration.
For 0-forms, there are p − 5 DoFs for the function value and (n − 1)(p − 4) DoFs

for the normal derivatives on each edge. For 1-forms, we have n components and p−4
DoFs for each component on each edge. Therefore we have the dimension count

0 → (p − 5) + (n − 1) · (p − 4) → n(p − 4) − 1 → 0,

which implies the exactness.
The face bubbles can be formally written as

0 −−−−→ P̊2,pΛ
0( f )

d−−−−→ P̊2,p−1Λ
1( f )

d−−−−→ P̊2,p−2Λ
2( f )/R −−−−→ 0.

The vanishing boundary conditions can be defined as follows. The element P̊pΛ
0( f )

has vanishing values and derivatives up to the second order at the vertices and vanishing
values and first order derivatives on the edges. The element P̊p−1Λ

1( f ) has vanishing
values and first order derivatives at the vertices and vanishing values on the edges. The
element P̊p−2Λ

2( f )/R takes zero values at the vertices and has vanishing integral on
f .
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The interior bubbles coincide with the standard finite element de Rham complexes
which are exact:

0 −−−−−→ P̊pΛ
0(t)

d−−−−−→ P̊p−1Λ
1(t)

d−−−−−→ P̊p−2Λ
2(t)

d−−−−−→ Pp−3Λ
3(t)/R −−−−−→ 0.

6 Bernstein–Gelfand–Gelfand (BGG) constructions

Arnold, Falk andWinther [4] introduced the Bernstein–Gelfand–Gelfand (BGG) con-
structions into numerical analysis to derive finite elements of symmetric tensors from
the well-known de Rham elements. Later, Hu and Zhang [30] designed a new family
in a straightforward way. In this section, we re-construct the 2D Hu–Zhang stress ele-
ment using BGG and the families discussed in this paper. We hope that the discussions
below could build some connections between these two approaches, and further shed
some light on the construction of other tensor valued elements and complexes. There
is a unified construction in any spatial dimension (c.f. [29]), but based on the de Rham
families in this paper we only re-construct the 2D case.

Most of the discussions in this section are routine following [4]. The key observation
is that we use the Hermite element for both the 2D P1,pΛ

0 space and each component
of the 2D r = 2 H(div) space, therefore S0 below is an isomorphism between the
finite element spaces.

We construct the 2D Hu–Zhang element step by step based on the following dia-
gram.

P2,p+3Λ
0(T 2

h ,K)
d0� P2,p+2Λ

1(T 2
h ,K)

d1� P2,p+1Λ
2(T 2

h ,K) � 0

P1,p+2Λ
0(T 2

h ,V)
d0�

S0
�

P1,p+1Λ
1(T 2

h ,V)
d1�

S1
�

P1,pΛ
2(T 2

h ,V) � 0

(22)

Here Pr,pΛ
k(T 2

h ,V) is the space of differential forms taking values in the 2D vector
space V = R

2. Similarly, Pr,pΛ
k(T 2

h ,K) is the space of skew-symmetric matrix
valued differential forms. In 2D, skew-symmetric matrices can be identified with
scalars. We denote the skew-symmetric matrix basis

χ :=
(
0 −1
1 0

)
.

The vector valued 0-, 1- and 2-forms in the second row of (22) can be represented as

(
u1
u2

)
,

(
w11
w21

)
dx1 +

(
w12
w22

)
dx2,

(
v1
v2

)
dx1 ∧ dx2,
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respectively. These vector valued differential forms can be identified with the
matrix/vector form:

(
u1
u2

)
,

(−w12 w11
−w22 w21

)
,

(
v1
v2

)
.

The vector valued 1-form P1,p+1Λ
1(T 2

h ,V) is identified with a matrix and each row
is a Stenberg vector element.

Similarly, the skew-symmetric matrix valued differential forms

uχ , w1χdx
1 + w2χdx

2, vχdx1 ∧ dx2

can be identified with

uχ ,
(−w2, w1

)
χ , −vχ .

With these identifications, the exterior derivatives d0 and d1 correspond to curl and
div for each row.

Following [4,5], we define S0 : P1,p+2Λ
0(T 2

h ,V) �→ P1,p+2Λ
1(T 2

h ,K) and S1 :
P1,p+1Λ

1(T 2
h ,V) �→ P1,p+1Λ

2(T 2
h ,K) by

S0 :
(
u1
u2

)
∼

(
u1
u2

)
�→ −u2χdx

1 + u1χdx
2 ∼ − (

u1, u2
)
χ ,

S1 :
(

w11
w21

)
dx1 +

(
w12
w22

)
dx2 ∼

(−w12 w11
−w22 w21

)

�→ −(w11 + w22)χdx
1 ∧ dx2 ∼ (w11 + w22)χ ,

where the tilde denotes the correspondence between the differential form and the
vector form. The operator S0 is an isomorphism while the operator S1 is surjective.
With the vector proxy, S0 is the identity operator (up to a sign and the skew-symmetric
matrix basis χ) and S1 is the skew-symmetrization. The identity d1S0 + S1d0 = 0
holds.

We are ready to introduce the BGG construction now.
Step 1. Complex of product spacesDefineΞ k

p = P2,p+1Λ
k(T 2

h ,K)×P1,pΛ
k(T 2

h ,V).
The first step is to establish a new complex of Ξ k

p with certain operators.

To do this, we define Ak : Ξ k
p+1 �→ Ξ k+1

p by

Ak :=
(
dk −Sk
0 dk

)
.

For (ω,μ) ∈ Ξ k
p , Ak(ω,μ) = (dkω − Skμ, dkμ). By straightforward calculations,

we have A1A0 = 0, and the complex

· · · −−−−→ Ξ0
p+2

A0−−−−→ Ξ1
p+1

A1−−−−→ Ξ2
p −−−−→ 0 (23)
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is exact on contractible domains.
Step 2. Projection to a subcomplex The second step is to project (23) to a subcomplex.
Following [4], we define

Γ 0
p = {(ω,μ) ∈ Ξ0

p : d0ω = S0μ}, Γ 1
p = {(ω,μ) ∈ Ξ1

p : ω = 0},

and

π0(ω,μ) = (ω, S−1
0 d0ω), π1(ω,μ) = (0, μ + d0S

−1
0 ω).

Then it is straightforward to check that the following diagram is commuting, and
therefore the bottom complex is exact on contractible domains:

· · · � Ξ0
p+2

A0� Ξ1
p+1

A1� Ξ2
p

� 0

· · · � Γ 0
p+2

π0

� A0� Γ 1
p+1

π1

� A1� Ξ2
p

id
�

� 0.

(24)

Step 3. Identification Identifying (ω, S−1
0 d0ω) ∈ Γ 0

p+2 withω and (0, μ) ∈ Γ 1
p+1 with

μ, the bottom sequence in (24) can be interpreted as

· · · −−−−→ P2,p+3Λ
0
(
T 2
h ,K

) d0S
−1
0 d0−−−−−→ P1,p+1Λ

1
(
T 2
h ,V

) (−S1,d1)−−−−−→ Ξ2
p −−−−→ 0,

(25)
where d0S

−1
0 d0 corresponds to the Airy operator:

dS−1
0 d(uχ) ∼ −

(
∂22u −∂2∂1u

−∂1∂2u ∂21u

)
.

Now we obtain the elasticity complex with weak symmetry.
Step 4. Imposing the symmetry constraint The matrix form M of u ∈ P1,pΛ

1
(
T 2
h ,V

)
is symmetric if and only if S1u = 0. We reduce the DoFs of the skew-symmetric part
of M to get the 2D Hu–Zhang elements.

We first re-write the DoFs for M as:

1. four DoFs of function values at each vertex v ∈ V: M(v),
2. edge DoFs:

∫
e(M · νe) · q, q ∈ (

Pp−2(e)
)2,

3. interior DoFs for the skew-symmetric part, which are the same as the interior DoFs
of P2,pΛ

2
(
T 2
h

)
(1/2p2 + 3/2p − 2 DoFs):

∫

t
skw(M) : qχ , ∀q ∈ Pp(t), q = 0 on V ,
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4. interior DoFs, which are the same as those of the 2D Hu–Zhang Hh(div,S) space
(3/2p2 − 3/2p DoFs):

∫

t
M : θ, θ ∈ {τ ∈ Pp(t,S) : τ · ν∂t = 0},

where Pp(t,S) represents the symmetric matrix valued polynomial space on t
with degree p.

The number of interior DoFs is
(
1/2p2 + 3/2p − 2

)
+

(
3/2p2 − 3/2p

)
= 2 · dim

(
P−

p−1Λ
1(t)

)
,

which coincides with the dimension of the interior bubbles of P1,pΛ
1
(
T 2
h ,V

)
. Fur-

thermore, if all the DoFs vanish, we first verify that skw(M) = 0 by the DoFs of
the skew-symmetric part, then M vanishes by the same argument as the Hu–Zhang
element [32]. This implies the unisolvence, and these DoFs define the same element
as P1,pΛ

1
(
T 2
h ,V

)
.

Finally, we can reduce the DoFs of the skew-symmetric part to get the Hu–Zhang
element:

· · · � P2,p+3Λ
0 (
T 2
h ,K

) d0S
−1
0 d0� P1,p+1Λ

1 (
T 2
h ,K

) (−S1, d1) � Ξ2
p

� 0

· · · � P2,p+3Λ
0 (
T 2
h ,V

)
id

�
d0S

−1
0 d0 � Σh

id − ihskw
�

d1 � P1,pΛ
2 (
T 2
h ,V

)
Πh �

� 0.

(26)

The operator ih is a discrete inclusion, mapping a skew-symmetric matrix K to
P1,p+1Λ

1
(
T 2
h ,V

)
, defined by setting skw(ih K ) = skw(K ) at the vertices and setting

the interior DoFs for the skew-symmetric part:

∫

t
skw (ih K ) : qχ =

∫

t
skw(K ) : qχ , ∀q ∈ Pp+1(t), q = 0 on V ,

and setting the DoFs in Item 2 and Item 4 above to zero. Defining Πh(ω,μ) :=
μ + d1ihω, we can check that (26) commutes and particularly, the bottom sequence
is exact on contractible domains, which gives the Hu–Zhang stress and displacement
elements in 2D.

7 Concluding remarks

We discussed finite element de Rham complexes with higher continuity on sub-
simplexes, and as a result, some of these elements can be represented by Lagrange or
Hermite type bases. Motivated by the idea of finite element systems, we gave several
different combinations of local exact sequences. Actually, we found the positions of
existing elements with different initial purposes, and discovered new ones (Table 3):
the H(curl) elements with n = 3, r = 1, 2 are new. Table 4 shows the local continuity
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Table 3 Families with r = 0, 1, 2

r = 0 r = 1 r = 2

n = 1 Lagrange–DG Hermite–Lagrange Argyris–Hermite

n = 2 Lagrange–BDM–DG New, 2D Stenberg H(div) [41] Falk–Neilan Stokes [21]

n = 3 Lagrange–Nédélec–BDM–DG New New, 3D Stenberg H(div) [41]

Table 4 Local continuity of the 3D families: Cτ and Cn represent tangential and normal continuity

r=0 r=1 r=2

Vertex C0 C1–C0 C2–C1– C0

Edge C0–Cτ C0–Cτ C1–C0

Face C0–Cτ –Cn C0–Cτ –Cn C0–Cτ –Cn

in 3D: r = 0 and r = 1 have the same face bubbles, r = 0, r = 1 and r = 2 all have
the same interior bubbles.

The new elements will lead to smaller stiffness and mass matrices due to the
enhanced regularity. More importantly, the new geometric decomposition and topo-
logical structure lead to nodal type bases in some cases.

Only complete polynomials were considered. It is known that the P− family
with incomplete polynomials can also be used to construct exact sequences, i.e.
d : PpΛ

k → Pp−1Λ
k+1, d : PpΛ

k → P−
p Λk+1, d : P−

p Λk → Pp−1Λ
k+1 and

d : P−
p Λk → P−

p Λk+1 all have the same kernel (c.f. [5] Lemma 3.8). Combining
with the new complexes investigated in this paper, we have more options to construct
differential complexes, for example,

0 −−−−→ R −−−−→ P1,pΛ
0
(
T 3
h

) grad−−−−→ P1,p−1Λ
1
(
T 3
h

)
curl−−−−→ P−

p−2Λ
2
(
T 3
h

) div−−−−→ Pp−3Λ
3
(
T 3
h

) −−−−→ 0,
(27)

is also exact on contractible domains.
The dimension count for the local sequences holds for any spatial dimension n.

Therefore the results in this paper are promising to be generalised to higher spatial
dimensions and on other element geometry (e.g. tensor product elements). From the
perspective of local sequences, the results presented above could be considered as a
nontrivial generalisation of the systematic constructions in Cockburn and Fu [18].

In 3D, the discrete BGG construction with the new families in this paper will not
yield conforming finite elements for elasticity with strongly imposed symmetry. Actu-
ally the polynomial shape function spaces and the locality of the degrees of freedom
impose a strong constraint in the construction of conforming finite elements. Therefore
in the BGG construction, it seems desirable to relax these constraints. Composite ele-
ments have been developed in Christiansen and Hu [15] which relaxed the constraint
of local polynomials to allow piecewise polynomials. Another approach is to consider
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nonconforming elements. A 2D sequence with the Morley–Crouzeix–Raviart—DG
elements can be found in Brenner [12] and similar results also hold for the Morley–
Wang–Xu (MWX) family [43] in higher spatial dimensions.

The new constructions in this paper yield elements with nodal type bases and fewer
DoFs. As a result, the structure of the resulting algebraic systems differs from that of
the standard vector elements and this provides an opportunity for the construction of
well conditioned bases for high order H(curl) and H(div) elements.

On the other hand, although the number of global DoFs is reduced, the nodal bases
lead to denser stiffness and mass matrices. Therefore preconditioning and solvers for
the new elements remain an issue to be explored. For Hu–Zhang elements for linear
elasticity with nodal bases, auxiliary space preconditioners have been designed and
analyzed in [14]. Moreover, classical hybridization techniques for canonical H(div)
face elements (Raviart–Thomas or BDM elements) cannot be directly applied to the
nodal elements (Stenberg or Hu–Zhang type) discussed in this paper.

Furthermore, we hope that the study in this paper could shed some light on the
nodal element discretisation for computational electromagnetism.
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