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Abstract This paper is concerned with a priori error estimates for the piecewise linear
finite element approximation of the classical obstacle problem. We demonstrate by
means of two one-dimensional counterexamples that the L2-error between the exact
solution u and the finite element approximation uh is typically not of order two even
if the exact solution is in H2(Ω) and an estimate of the form ‖u− uh‖H1 ≤ Ch holds
true. This shows that the classical Aubin–Nitsche trick which yields a doubling of
the order of convergence when passing over from the H1- to the L2-norm cannot be
generalized to the obstacle problem.

Mathematics Subject Classification 65K15 · 65N15 · 65N30

1 Introduction

While H1- and L∞-error estimates for the piecewise linear finite element approxima-
tion of the unilateral obstacle problem

min
1

2

∫
Ω

∇v · ∇v dx − 〈 f, v〉
s.t. v ∈ H1

0 (Ω) and v ≥ ψ a.e. in Ω

are classical (see, e.g., [1,2,4,11]), there are still several open questions regarding the
behavior of the finite element error in lower L p-norms. Especially the question of
whether a duality argument similar to that of the well-known Aubin–Nitsche trick can
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be used in the case of the obstacle problem to obtain an L2-error estimate of order
two appears frequently in the literature (see, e.g., [7,9,12,13,15]). In this paper, we
clarify that such an estimate can in general not be obtained even if the exact solution u
and the obstacle ψ possess H2-regularity and the order of convergence in the energy
norm is one. We will proceed as follows:

In Sect. 2, we construct a first counterexample which illustrates that a general a
priori error estimate of the form ‖u − uh‖L p ≤ Chβ , 1 ≤ p ≤ ∞, cannot hold
true for a one-dimensional obstacle problem with u, ψ ∈ W 2,q(Ω), q ≥ 2, unless
β ≤ 2 − 1/q. This shows that the order of an a priori error estimate in an arbitrary
L p-space cannot be higher than that typically obtained with an a priori error estimate
in L∞(Ω) and that W 2,∞-regularity has to be assumed to prove an L2-error estimate
of order two. The discretization method that we employ in our first counterexample
is that most commonly found in the literature: We approximate the space H1

0 (Ω)

by means of piecewise linear finite elements and use the Lagrange interpolant of the
obstacle ψ to discretize the inequality constraint v ≥ ψ .

In Sect. 3, we demonstrate by means of a second counterexample that the results
of Sect. 2 are still valid when the original obstacle ψ appears in the side condition
of the discrete problems used for the finite element approximation, i.e., that the order
2 − 1/q is still optimal when the function space is discretized but the obstacle is
not modified at all. This illustrates that the discretization of the obstacle ψ is not
solely responsible for the behavior of the approximation error observed in our first
example.

Lastly, in Sect. 4, we compare our findings with known results.Wewill see here that
L∞-error estimates can detect the effects observed in our model problems surprisingly
well.

The appendix of this paper contains a result about one-sided finite element approx-
imations that is needed for the discussion of the example in Sect. 3. The theorem
found there essentially goes back to Mosco and Strang [8]. We include a proof for the
convenience of the reader.

In what follows, wewill use the standard notation H1
0 (Ω),Wm,q(Ω),Cm,γ (Ω) etc.

for the Sobolev and Hölder spaces on a bounded Lipschitz domain Ω (or the closure
of Ω , respectively). The dual of H1

0 (Ω) with respect to the L2-inner product and the
associated dual pairing will be denoted with H−1(Ω) and 〈., .〉. In one dimension, a
prime will always denote a (weak) derivative.

2 A first counterexample

As a first counterexample, we consider an obstacle problem of the form

min
1

2

∫ 1

−1
(v′)2dx

s.t. v ∈ H1
0 (−1, 1) and v ≥ ψα a.e. in (−1, 1),

⎫⎪⎬
⎪⎭ (Pα)
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A note on a priori Lp-error estimates for the obstacle… 29

i.e., Ω = (−1, 1) and f ≡ 0. The obstacle ψα appearing in (Pα) is defined by

ψα(x) :=
⎧⎨
⎩

φ
(
x + 1

2

) (
3
2 − 12

∣∣x + 1
2

∣∣2−α
)

− 1
2 , if x ∈ (−1, 0]

φ
(
x − 1

2

) (
3
2 − 12

∣∣x − 1
2

∣∣2−α
)

− 1
2 , if x ∈ (0, 1),

(1)

where α ∈ (0, 1/2) is a given constant and φ ∈ C∞
c (R) denotes an arbitrary but fixed

even cut-off function satisfying

0 ≤ φ(x) ≤ 1, φ ≡ 1 in (−0.3, 0.3) and suppφ ⊂ [−0.4, 0.4].

Note that it follows from (1) that ψα is smooth in (−1, 1)\{±0.5}, smaller than one
(almost) everywhere in (−1, 1), and an element of W 2,q(−1, 1) for all q ∈ [2, 1/α).
It is further easy to see that only the non-positive part of ψα is affected by the choice
of φ in the above situation. This will ensure that our results are independent of the
cut-off function appearing in the construction.

As an example, we have plotted the obstacle ψα for α = 0.4 in Fig. 1. Here, the
cut-off function was chosen to be

φ(x) :=

⎧⎪⎪⎨
⎪⎪⎩

0, if |x | ≥ 0.4,

1, if |x | ≤ 0.3,

exp
(

− exp
(

0.1
0.3−|x | + 0.1

0.4−|x |
))

, else.

(2)

Using standard results about elliptic variational inequalities as found, e.g., in [6,
Chapter II], we obtain:

Proposition 1 There is one and only one solution uα to (Pα). This solution is uniquely
determined by the variational inequality

uα ∈ K ,

∫ 1

−1
u′

α(u′
α − v′)dx ≤ 0 ∀ v ∈ K

with

K := {v ∈ H1
0 (−1, 1) : v ≥ ψα a.e. in (−1, 1)}.

Due to the special structure of the obstacle ψα , we can give an explicit formula for
the solution uα of (Pα):

Proposition 2 The unique solution uα to (Pα) satisfies uα ∈ W 2,q(−1, 1) for all
q ∈ [2, 1/α). It is given by
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Fig. 1 The obstacle ψα and the solution uα for α = 0.4 with φ as in (2)

uα(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψα(−0.5 − εα)
x + 1

0.5 − εα

, if x ∈ (−1,−0.5 − εα)

ψα(x), if x ∈ [−0.5 − εα,−0.5)

1, if x ∈ [−0.5, 0.5)

ψα(x), if x ∈ [0.5, 0.5 + εα)

ψα(0.5 + εα)
1 − x

0.5 − εα

, if x ∈ [0.5 + εα, 1).

(3)

Here, εα is uniquely determined by the equation

1 − 6(2 − α)ε1−α
α + 12(1 − α)ε2−α

α = 0, εα ∈ (0, 0.3). (4)

Proof Define ηα(s) := 1 − 6(2 − α)s1−α + 12(1 − α)s2−α , s ∈ [0, 0.3]. Then, it is
easy to see that for all α ∈ (0, 1/2) it holds ηα(0) = 1, ηα(0.3) < −1 and η′

α(s) < 0
for all s ∈ (0, 0.3). This shows that (4) admits a unique solution εα ∈ (0, 0.3).

From formula (1), we obtain that (4) is equivalent to the equation

ψα(0.5 + εα) = (εα − 0.5)ψ ′
α(0.5 + εα).

The above identity yields that the function uα in (3) is in C1([−1, 1]) and, as a
consequence of the regularity ofψα and the zero boundary conditions, in H1

0 (−1, 1)∩
W 2,q(−1, 1) for all q ∈ [2, 1/α). Consider now an arbitrary but fixed v ∈ H1

0 (−1, 1)
that is feasible for (Pα). Then, we may use integration by parts, the concavity of ψα

in [−0.5 − εα,−0.5] ∪ [0.5, 0.5 + εα], (3) and the inequality v ≥ ψα to obtain

∫ 1

−1
u′

α(u′
α − v′)dx = −

∫ 1

−1
u′′

α(uα − v)dx

=
∫ −0.5

−0.5−εα

ψ ′′
α(v − ψα)dx +

∫ 0.5+εα

0.5
ψ ′′

α(v − ψα)dx ≤ 0.
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A note on a priori Lp-error estimates for the obstacle… 31

Since uα is also feasible for (Pα), the claim now follows immediately from Proposition
1. This completes the proof. ��

For brevity’s sake, in the following we will frequently suppress the index α and
simply write u instead of uα etc.

We now turn our attention to the discretization: to approximate (Pα), we employ a
standard finite element method with piecewise linear continuous ansatz functions and
equidistant meshes. The finite-dimensional problems that we use as discrete counter-
parts to (Pα) read as follows:

min
1

2

∫ 1

−1
(v′

h)
2dx

s.t. vh ∈ V 0
h and vh ≥ Ihψα in (−1, 1).

⎫⎪⎬
⎪⎭ (Pα,h)

Here,

• h := 1/N for some N ∈ N,
• Th := {[xl , xl+1] : l = 0, . . ., 2N − 1} with xl := −1 + l h, l = 0, . . ., 2N ,
• Vh := {v ∈ C([−1, 1]) : v|T is affine for all cells T ∈ Th},
• V 0

h := Vh ∩ H1
0 (−1, 1),

• Ih : C([−1, 1]) → Vh : Lagrange interpolation operator associated with Vh .

Note that, in the above, the inequality constraint in (Pα) is discretized by replacing
the continuous obstacle ψα with the Lagrange interpolant Ihψα . This is equivalent
to imposing the constraint only in the nodes of the mesh Th and constitutes the most
common approach found in the literature (see, e.g., [3,5,7]). Using again the theorem
of Lions-Stampacchia and a well-known variant of Céa’s lemma (cf. [4]), we obtain:

Proposition 3 For all h = 1/N, N ∈ N, there is one and only one solution uα,h to
(Pα,h). This solution is uniquely determined by the variational inequality

uα,h ∈ Kh,

∫ 1

−1
u′

α,h(u
′
α,h − v′

h)dx ≤ 0 ∀ vh ∈ Kh (5)

with

Kh := {vh ∈ V 0
h : vh ≥ Ihψα in (−1, 1)}.

Further, there exists a constant C independent of h such that

‖uα − uα,h‖H1 ≤ C h. (6)

Proof The existence of the solution and its characterization bymeans of the variational
inequality (5) are obtained analogously to the continuous case. We refer to [5]. The
H1-error estimate follows from standard estimates for the Lagrange interpolant and a
well-known theorem of Falk (see [4]). A complete derivation of (6) can be found in
[3, Theorem 9.1, 9.2]. ��
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32 C. Christof, C. Meyer

Analogously to the continuous setting, in what follows we often drop the index α

and simply write uh instead of uα,h etc.
As Proposition 3 shows, in case of our model problem the qualitative behavior of

the H1-error is exactly the same as for the Poisson equation. The L2-error, however,
behaves differently. To see this, we observe the following:

Proposition 4 If hk := 1/(2k + 1), k ∈ N, then it holds

uhk ≡ 1 − 12

(
hk
2

)2−α

in

(
−0.5 − hk

2
, 0.5 + hk

2

)
. (7)

Proof Since any partition of the interval (0, 1) with width hk , k ∈ N, has an odd
number of cells, the point 0.5 has to be the midpoint of some [xl , xl+1] ∈ Thk . The
same, of course, holds true for the point −0.5. This means that the maxima of the
obstacle ψα are cut off by the Lagrange interpolation operator and that the interpolant
Ihkψα satisfies

(Ihkψα)(x) ≤ ψα

(
0.5 + hk

2

)
= 1 − 12

(
hk
2

)2−α

=: C(k, α) ∈ (0,∞)

in [−1, 1]. Moreover, from the feasibility of uhk and the symmetry of the problem, it
follows that

uhk

(
−0.5 − hk

2

)
= uhk

(
0.5 + hk

2

)
≥ C(k, α), (8)

and using the test function

vhk (x) :=
{
uhk

(
0.5 + 1

2hk
)
, if x ∈ [−0.5 − 1

2hk, 0.5 + 1
2hk

]
uhk (x), else

in (5) yields that uhk is constant in [−0.5 − hk/2, 0.5 + hk/2]. Consider now the
function whk ∈ V 0

hk
defined by

whk (xi ) := min{uhk (xi ),C(k, α)}, i = 0, . . ., 4k + 2.

Then, whk is a feasible test function for (5) and we may deduce that

0 ≥
∫ 1

−1

(
uhk − C(k, α)

)′
(uhk − whk )

′dx . (9)

Let us denote the standard nodal basis of Vhk by ϕi
hk
, i = 0, . . ., 4k + 2, i.e.,

ϕi
hk

(x j ) = δi j for all nodes x j , j = 0, . . ., 4k + 2. Then, it is easy to check that

Ai j :=
∫ 1

−1
(ϕi

hk )
′(ϕ j

hk
)′dx ≤ 0 ∀i �= j,
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i.e., the stiffness matrix A := (Ai j ) is a Z-matrix. Taking this into account, we obtain
from (9) that

0 ≥
4k+2∑
i, j=0

Ai j (uhk (xi ) − C(k, α)) max{0, uhk (x j ) − C(k, α)}

≥
4k+2∑
i, j=0

Ai j max{0, uhk (xi ) − C(k, α)} max{0, uhk (x j ) − C(k, α)}

=
∫ 1

−1
(u′

hk − w′
hk )

2dx .

Poincaré’s inequality now yields uhk = whk and thus uhk ≤ C(k, α) in (−1, 1).
Combining this inequality with (8) and the fact that uhk is constant in the interval
[−0.5 − hk/2, 0.5 + hk/2], we obtain (7) as claimed. ��

From Propositions 2 and 4, it readily follows

‖u − uhk‖L p(−1,1) ≥ ‖u − uhk‖L p(−0.5,0.5) = 12

(
hk
2

)2−α

(10)

for all 1 ≤ p ≤ ∞. This shows that, in the situation of our model problem, the order
of convergence in any L p-norm cannot be higher than 2−α despite the optimal order
of the H1-error in (6) and the H2-regularity of the exact solution. Taking into account
that u, ψα ∈ W 2,q(−1, 1) for all q ∈ [2, 1/α), our findings can be summarized as
follows:

Theorem 5 In case of the one-dimensional obstacle problemand the above discretiza-
tion technique (i.e., linear finite elements and Lagrange interpolation of the obstacle),
an a priori error estimate of the form

If the obstacle and the solution are functions in W 2,q(Ω),
then it holds ‖u − uh‖L p ≤ Chβ

for some 1 ≤ p ≤ ∞ and q ≥ 2 cannot hold true unless β ≤ 2 − 1/q. In particular,
an L2-error estimate of order two can in general only be obtained if the obstacle and
the solution are assumed to possess W 2,∞-regularity.

Remark 6 It should be noted that the positive part (u − uh)+ := max(0, u − uh)
of the approximation error is responsible for the comparatively slow convergence in
(10). In fact, using an approach of Mosco [9], it is possible to prove that the norm
‖(u − uh)−‖L2 converges to zero with order two in our example, i.e., the rate of
convergence typically obtained for the Poisson equation can be recovered if only the
negative part of the error is considered. We point out that the argumentation used in
[9, Section 7] fails for the error component (u − uh)+. The reason for this is that,
in the situation of our counterexample, it holds u − uhk > 0 on parts of the contact
set {u = ψα}. As a consequence, the conditions needed on the top of [9, p. 234] are
violated and the analysis of Mosco cannot be employed.

123



34 C. Christof, C. Meyer

0 20 40 60 80 100 120 140 160 180 200
1.4

1.45

1.5

1.55

1.6

1.65

1.7

1.75

1.8

1.85

hk
−1

L2
−E

O
C

Fig. 2 L2-EOC for (Pα) in the case α = 0.4. The results scatter around 2 − α
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Fig. 3 The obstacle Ihψα and the FE-solution uh for α = 0.4 and h = 1/17 with φ as in (2)

We conclude this section with a numerical experiment that confirms our theoretical
findings: Fig. 2 shows the experimental order of convergence in L2(−1, 1), i.e., the
quantity

(L2-EOC)k := log ‖u − uhk+1‖L2 − log ‖u − uhk‖L2

log hk+1 − log hk
,

that is achieved when (Pα,h) is solved by means of an active set algorithm for the
widths hk = 1/(2k + 1) and α = 0.4. It can be seen that the L2-EOC scatters around
2 − α. This behavior agrees well with our analytical predictions.

The reason for the loss of the factor hα observed in (10) is intuitively clear: The
maxima of the obstacle ψα are not reproduced accurately enough by the Lagrange
interpolants Ihkψα appearing in the discrete problems (Pα,hk ) and thus the finite ele-
ment solutions uhk do not reach the height that would be necessary to obtain, e.g., the
order two in the L2-norm (see Fig. 3). This demonstrates that in case of the obstacle
problem a special pollution effect may occur: local inaccuracies in the approxima-
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A note on a priori Lp-error estimates for the obstacle… 35

tion of the obstacle—in our example the error between ψα and Ihkψα at ± 0.5—can
propagate and are able to affect the rate of convergence globally.

3 A second counterexample

In view of the analysis in the last section, it is tempting to think that an L2-error
estimate of order two can be recovered if better approximations of the obstacle are
used in the discrete problems that characterize the finite element solutions uh . But
this is not the case. Even if the continuous obstacle itself is used in the inequality
constraint of the approximate problems, we cannot expect the rate of convergence in
any L p-norm to be higher than the threshold 2 − 1/q appearing in Theorem 5. Note
that this is a purely theoretical result since there is no way to handle a constraint of
the type vh ≥ ψ numerically if ψ is an arbitrary function.

To see that an L2-estimate of order two cannot be obtained even if the obstacle is
not discretized at all, we consider the following one-dimensional model problem:

min
1

2

∫ 1

−1
(v′)2dx − 〈 fα, v〉

s.t. v ∈ H1
0 (−1, 1) and v ≥ ψα a.e. in (−1, 1).

⎫⎪⎬
⎪⎭ (Qα)

The inhomogeneity fα appearing in (Qα) is defined to be−u′′
α , where uα is the solution

to the problem (Pα) discussed in the last section, i.e., the function defined in (3). The
obstacle ψα is the same as before. This construction ensures that the following holds:

Proposition 7 The problem (Qα) admits a unique solution. Furthermore, the solutions
to (Qα) and (Pα) coincide.

Proof The unique solvability of (Qα) can be proved analogously to (Pα). To obtain
that the solution is exactly uα , one rewrites (Qα) as a variational inequality. The claim
then follows from fα = −u′′

α and integration by parts. ��

The finite-dimensional problems that we will use to approximate (Qα) are chosen
to be

min
1

2

∫ 1

−1
(v′

h)
2dx − 〈 fα, vh〉

s.t. vh ∈ V 0
h and vh ≥ ψα a.e. in (−1, 1),

⎫⎪⎬
⎪⎭ (Qα,h)

where V 0
h and the underlying meshes Th are defined as in Sect. 2. Note that the exact

obstacle ψα appears in the inequality constraint of (Qα,h)—only the function space is
discretized. Similarly to the proof of Proposition 3, we obtain:

Proposition 8 The problem (Qα,h) is uniquely solvable for all h = 1/N, N ∈ N.
Furthermore, the solution to (Qα,h) (which we again denote with uh) is uniquely
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determined by the variational inequality

uh ∈ Kh,

∫ 1

−1
u′
h(u

′
h − v′

h)dx ≤ 〈 fα, uh − vh〉 ∀ vh ∈ Kh (11)

with

Kh := {vh ∈ V 0
h : vh ≥ ψα in (−1, 1)}

and there exists a constant C independent of h such that the error between the exact
solution to (Qα) (which we again denote with u) and uh satisfies

‖u − uh‖H1 ≤ C h. (12)

Proof The unique solvability of the problem (Qα,h) and the characterization of uh
by means of the variational inequality (11) again follow from the theorem of Lions-
Stampacchia. To obtain the H1-error estimate (12), we note that according to [4,
Theorem 9.1] there exists a constant C > 0 independent of h such that

‖u − uh‖H1 ≤ C
(
‖uh − v‖L2 + ‖u − vh‖L2 + ‖u − vh‖2H1

) 1
2

(13)

holds for all vh ∈ Kh and all v ∈ K . Choosing v = uh and vh = zh in (13), where
u ≤ zh ∈ V 0

h is a unilateral finite element approximation of u as constructed in
Theorem A1 in the appendix, yields (12) as desired. ��

As the above result shows, in case of the problems (Qα) and (Qα,h) the order of
convergence in H1(−1, 1) is exactly the same as in our first example. The following,
however, can also be observed:

Proposition 9 Let εα be defined as in Proposition 2. Then, for all mesh widths hk =
1/(2k + 1), k ∈ N, with hk/2 < εα it is true that

uhk ≥ 1 + 6

(
hk
2

)2−α

in

[
−0.5 + hk

2
, 0.5 − hk

2

]
. (14)

Proof Since we consider mesh widths of the form hk = 1/(2k+1), k ∈ N, there exist
mesh cells T1 = [xi−1, xi ] and T2 = [x j , x j+1] in Thk such that

xi = −0.5 + hk
2

and x j = 0.5 − hk
2

.

From the symmetry of the problem (Qα,hk ) w.r.t. the origin, it follows further that
uhk (xi ) = uhk (x j ) has to hold and from the definition ofψα we readily obtainψα(x) ≤
ψα(xi ) for all x ∈ [xi , x j ] (cf. Fig. 1). Combining the above yields that the function

vhk (x) :=
{
uhk (xi ), x ∈ [xi , x j ]
uhk (x), else
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A note on a priori Lp-error estimates for the obstacle… 37

Fig. 4 The functions ψα and
uhk near the point − 0.5. The
situation near 0.5 is analogous fα

ψα

uhk

xi−1 −0.5 xi

hk

xi+1

is feasible for (Qα,hk ). Using that fα = −u′′
α ≡ 0 in (−0.5, 0.5), cf. (3), it now follows

analogously to the proof of Proposition 4 that

0 ≥
∫ 1

−1
u′
hk (u

′
hk − v′

hk ) + fα(vhk − uhk )dx =
∫ x j

xi
(u′

hk )
2dx .

Thus, the function uhk is constant in [xi , x j ] and the situation near the maxima of the
obstacle ψα is that depicted in Fig. 4.

Let us again denote the element of the nodal basis of Vhk associated with xi by ϕi
hk
.

Then, we may choose the function vhk := uhk + ϕi
hk

in (11) to obtain

−
∫ 1

−1
u′
hk (ϕ

i
hk )

′dx ≤ −
∫ 1

−1
fαϕi

hkdx .

Thanks to suppϕi
hk

= [xi−1, xi+1], u′
hk

≡ 0 in [xi , x j ], hk/2 < εα , u = ψα in
(−0.5−εα,−0.5)∪ (0.5, 0.5+εα), (1), and the definition of fα , the above inequality
yields

uhk (xi ) − uhk (xi−1)

hk
≥

∫ −0.5

xi−1

fαϕi
hkdx

=
∫ −0.5

−0.5− hk
2

12(2 − α)(1 − α)(−x − 0.5)−α
(x + 0.5 + hk

2 )

hk
dx

= 12

hk

(
hk
2

)2−α

.

This implies

uhk (xi ) ≥ uhk (xi−1) + 12

(
hk
2

)2−α

. (15)

To prove the claim, we now consider two different cases:
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Fig. 5 The situation in the
second case considered in the
proof of Proposition 9

ψα

uhk

Tα

xi−1 −0.5− δαhk −0.5

hk

xi

1. Case: uhk (xi−1) ≥ 1 − 6 (hk/2)2−α

In this case, we deduce from (15) that

uhk (x) = uhk (xi ) ≥ uhk (xi−1) + 12

(
hk
2

)2−α

≥ 1 + 6

(
hk
2

)2−α

∀ x ∈ [xi , x j ],

giving in turn (14).
2. Case: uhk (xi−1) < 1 − 6 (hk/2)2−α

Define

δα :=
(

1

22−α(2 − α)

) 1
1−α ∈

[
1

18
,
1

8

]
∀α ∈

(
0,

1

2

)

and consider the tangent Tα to ψα in the point −0.5 − δαhk ∈ [xi−1,−0.5], i.e., the
function

Tα(x) = 1 − 12(δαhk)
2−α + 12(2 − α)(δαhk)

1−α(x + 0.5 + δαhk).

Then, it holds

Tα(xi−1) ≥ 1 − 12h2−α
k

(
(2 − α)

2
δ1−α
α

)
= 1 − 6

(
hk
2

)2−α

> uhk (xi−1)

and it follows from uhk (−0.5−δαhk) ≥ ψα(−0.5−δαhk) = Tα(−0.5−δαhk) that Tα

and uhk intersect in (xi−1,−0.5) (cf. Fig. 5). This yields that we have uhk (xi ) ≥ Tα(xi )
and, consequently,

uhk (xi ) ≥ 1 + 12h2−α
k δ1−α

α

(
2 − α

2
+ (1 − α)δα

)
≥ 1 + 6

(
hk
2

)2−α

.

This completes the proof. ��
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Analogously to our first example, it follows from (14) (in combination with Propo-
sition 2) that for all sufficiently small hk and all 1 ≤ p ≤ ∞ it holds

‖u − uhk‖L p(−1,1) ≥ ‖uhk − 1‖L p(−0.25,0.25) ≥ 3

(
hk
2

)2−α

. (16)

Thus, the order two is again out of reach - no matter which L p-norm is considered.
Note that, in contrast to our first example, this time the component (u − uh)− is
responsible for the slow convergence, i.e., the discrete solutions are too big to obtain
the accuracy that is typically achieved in case of the Poisson equation. We point out
that the counterexample (Qα) is again not covered by the analysis of Mosco in [9,
Section 7] (if it was, we would obtain the L2-order two). The reason for this is the
inhomogeneity fα . Taking into account the regularity of the functions u and ψα , our
findings can be summarized as follows:

Theorem 10 In case of the one-dimensional obstacle problem and the above dis-
cretization technique (i.e., linear finite elements without any discretization of the
obstacle), an a priori error estimate of the form

If the obstacle and the solution are functions in W 2,q(Ω),
then it holds ‖u − uh‖L p ≤ C hβ

for some 1 ≤ p ≤ ∞ and q ≥ 2 cannot hold true unless β ≤ 2 − 1/q. In particular,
an L2-error estimate of order two can in general only be obtained if the obstacle and
the solution are assumed to possess W 2,∞-regularity.

The reason for the loss of the factor hα in (16) is again intuitively clear: Since neither
the contact set {u = ψα} nor the set { fα �= 0} is resolved properly by the meshes Thk
and since the obstacles in (Qα,hk ) are not piecewise linear, the error between uhk and
u at the nodes xi and x j is affected negatively. This local perturbation propagates and
spoils the rate of convergence in the L p-norms similarly to our first counterexample.

4 Concluding remarks and outlook

The behavior of the error u−uh observed in Sects. 2 and 3 can be explained as follows:
as shown in [2], the Ritz projection Rhu of the solution u to a one-dimensional obstacle
problem of the form

min
1

2

∫ 1

−1
(v′)2dx − 〈 f, v〉

s.t. v ∈ H1
0 (−1, 1) and v ≥ ψ a.e. in (−1, 1),

i.e., the unique element of V 0
h satisfying

∫ 1

−1
(Rhu)′v′

hdx =
∫ 1

−1
u′v′

hdx ∀ vh ∈ V 0
h ,
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is exactly the solution of the discrete obstacle problem

min
1

2

∫ 1

−1
(v′

h)
2dx − 〈 f, vh〉

s.t. vh ∈ V 0
h and vh ≥ Rhu + ψ − u a.e. in (−1, 1).

⎫⎪⎬
⎪⎭ (PR,h)

This implies that the difference between the Ritz projection Rhu of u and a finite
element approximation uh which is characterized by a problem of the form

min
1

2

∫ 1

−1
(v′

h)
2dx − 〈 f, vh〉

s.t. vh ∈ V 0
h and vh ≥ ψh a.e. in (−1, 1)

can be identifiedwith the change that occurs in the solution to (PR,h) when the obstacle
Rhu+ψ−u is replacedwithψh . In otherwords, the error Rhu−uh is directly related to
the sensitivity of the solution to (PR,h) w.r.t. perturbations of the obstacle Rhu+ψ −u.
Pointwise perturbations of the obstacle, however, can affect the solution of a (discrete)
one-dimensional obstacle problem globally (cf. our first example) and thus it is only
logical that the error ‖Rhu − uh‖L p is typically not of higher order than the quantity
‖Rhu+ψ−u−ψh‖L∞ . The pointwise error ‖Rhu+ψ−u−ψh‖L∞ that enters here is
responsible for the comparatively slow convergence observed in our counterexamples.

If the above informal discussion is made rigorous (i.e., when it is carefully analyzed
which error occurs when the obstacle Rhu+ψ −u in (PR,h) is replaced with a function
ψh), then the following L∞-error estimates can be obtained for the one-dimensional
obstacle problem:

Theorem 11 ([2, Theorem 11]) Let Ω be an open bounded interval. Suppose that
f ∈ H−1(Ω) and ψ ∈ C(Ω) are given such that the obstacle problem

min
1

2

∫
Ω

(v′)2dx − 〈 f, v〉
s.t. v ∈ H1

0 (Ω) and v ≥ ψ a.e. in Ω

⎫⎬
⎭ (P)

admits a unique solution u. Assume that

• {Th}h>0 is a family of partitions of Ω with max {diam T : T ∈ Th} ≤ h,
• V 0

h := H1
0 (Ω) ∩ {v ∈ C(Ω) : v|T is affine for all cells T ∈ Th},

• {ψh}h>0 is a family of C(Ω)-functions with ψh ≤ 0 on ∂Ω for all h > 0,
• There exist γ1, γ2 ∈ (0, 1] with ψh |T ∈ C1,γ1(T ) and u|T , ψ |T ∈ C1,γ2(T ) for all

T ∈ Th and all h > 0.

Then, the discrete obstacle problem

min
1

2

∫
Ω

(v′
h)

2dx − 〈 f, vh〉
s.t. vh ∈ V 0

h and vh ≥ ψh a.e. in Ω

⎫⎬
⎭ (Ph)

123



A note on a priori Lp-error estimates for the obstacle… 41

admits a unique solution uh for all 0 < h < diamΩ and it holds

‖(u − uh)
−‖L∞ ≤ ‖(u − Rhu)−‖L∞ + ‖(ψh − ψ + u − Rhu)+‖L∞

+ 1

1 + γ1
h1+γ1 max

T∈Th
|ψh |C1,γ1 (T )

(17)

and

‖(u − uh)
+‖L∞ ≤ ‖(u − Rhu)+‖L∞ + ‖(ψh − ψ + u − Rhu)−‖L∞

+ 1

1 + γ2
h1+γ2 max

T∈Th
|ψ − u|C1,γ2 (T ).

(18)

Here, Rhu again denotes the Ritz projection of u and

|v|C1,γ (T ) := sup
x1 �=x2∈T

|v′(x1) − v′(x2)|
|x1 − x2|γ .

It should be noted that the last error contribution in (17) and the second to last
contributions in (17) and (18), respectively, behave contrarily. While an accurate
approximation of the continuous obstacle ψ (possibly involving curved obstacles ψh

in the discrete problems) is favorable to reduce the error ψh − ψ , the last error contri-
bution in (17) becomes larger when the curvature of the function ψh increases. These
two effects were also observed in our two counterexamples: Whereas the pointwise
error in the approximation of the obstacle is responsible for the reduction of the order
of convergence in our first example, the curvature of the obstacle ψh induces the
problems in our second example, cf. Figs. 4 and 5.

By employing standard error estimates for the Ritz projection and Sobolev embed-
dings, one deduces the following result from Theorem 11:

Corollary 12 ([2, Corollary 14]) LetΩ be an open bounded interval and assume that:

• f ∈ Lq(Ω), ψ ∈ W 2,q(Ω) and ψ |∂Ω ≤ 0 holds for some 2 ≤ q < ∞,
• {Th}h>0 and V 0

h satisfy the assumptions of Theorem 11.

Suppose further that ψh is chosen to be the Lagrange interpolant Ihψ or that ψh is
chosen to be equal toψ . Let h < diamΩ . Then, the problems (P) and (Ph) in Theorem
11 admit unique solutions u ∈ H1

0 (Ω) ∩ W 2,q(Ω) and uh ∈ V 0
h , respectively, and

there exists a constant C > 0 independent of h such that

‖u − uh‖L∞ ≤ Ch2−1/q (‖ f ‖Lq + ‖ψ‖W 2,q
)
. (19)

Note that it follows from (19) that the examples in Sects. 2 and 3 are worst-case
scenarios. Conversely, our model problems demonstrate that an a priori estimate of the
form (19) is optimal in the sense that no general a priori L p-error estimate, 1 ≤ p ≤ ∞,
can yield an order higher than 2− 1/q in the situations that we have considered. This
answers the question what can (and, more importantly, what cannot) be expected

123



42 C. Christof, C. Meyer

when it comes to a priori L p-error estimates for the piecewise linear finite element
approximation of one-dimensional obstacle problems.

Unfortunately, the situation is much less clear in higher dimensions. If a d-
dimensional obstacle problem with a W 2,q -obstacle, max(d, 2)< q < ∞, is approx-
imated with piecewise linear finite elements, then the order of convergence obtained
with an a priori L∞-error estimate is typically 2− d/q (modulo logarithmic factors).
See, e.g., [2] for a higher-dimensional analogue of Theorem 11. On the other hand, it
is easy to construct examples similar to those in Sects. 2 and 3 (e.g., by rotation) which
demonstrate that 2 − 1/q is an upper bound for the order of an a priori L p-error esti-
mate in d dimensions when the obstacle is assumed to be in W 2,q(Ω). There is thus a
gap between what can be proved with counterexamples and what can be obtained from
the L∞-error analysis and, to the best of our knowledge, it is still an open question
whether an a priori estimate of the form

‖u − uh‖L p ≤ C hα

can be obtained for some 1 ≤ p < ∞ and some max(1, 2 − d/q) < α ≤ 2 − 1/q.
A possible way to tackle this question could be to work with duality arguments as

used, e.g., in [10,15]. The problem with this dual approach, however, is that it requires
precise information about the regularity/approximability of the solution to an appro-
priately defined dual variational inequality, cf. [15, Section 5.2]. Such information
is hard to obtain as the dual problems are typically rather complicated (and, as our
counterexamples show, cannot be expected to have good regularity properties, cf. with
[15, Theorem 5.2.1] in this context). Further research is certainly necessary here.

Acknowledgements We would like to thank the two anonymous reviewers for their helpful suggestions
and comments.

Appendix: Unilateral FE-approximation in one dimension

In this section, we construct the unilateral finite element approximations that are
needed in the proof of Proposition 8. The underlying analysis essentially goes back to
Mosco and Strang, cf. [8,14]. For the convenience of the reader, we shortly recall the
arguments in the following.

Theorem A1 Let Ω be an open bounded interval and assume that {Th}0<h<h0 is a
family of partitions of Ω such that ch < diam T < min(Ch, diamΩ) holds for all
T ∈ Th and all 0 < h < h0 with constants c,C > 0 independent of h. Let

V 0
h := H1

0 (Ω) ∩ {v ∈ C(Ω) : v|T is affine for all cells T ∈ Th}

and suppose that z ∈ H1
0 (Ω)∩W 2,q(Ω), 1 < q < ∞, is a given function. Then, there

exist constants C1,C2 and C3 independent of h and functions {zh}0<h<h0 satisfying
z ≤ zh ∈ V 0

h for all 0 < h < h0 such that

‖z − zh‖Lq ≤ C1h
2|z|W 2,q , ‖z − zh‖W 1,q ≤ C2h|z|W 2,q (20)
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and

‖z − zh‖L∞ ≤ C3h
2−1/q |z|W 2,q (21)

holds for all 0 < h < h0.

Proof In what follows, we will always identify z with its C1(Ω)-representative. To
prove TheoremA1, we consider for an arbitrary but fixed 0 < h < h0 the optimization
problem

min
∑
x∈Ch

vh(x) s.t. z ≤ vh in Ω and vh ∈ V 0
h , (22)

where Ch denotes the set of all vertices of the partition Th . Using standard techniques
from finite-dimensional optimization, it is easy to see that (22) admits at least one
global minimum zh . From the definition of (22), it follows that the function values
zh(x), x ∈ Ch , of such aminimum cannot be decreasedwithout violating the constraint
z ≤ zh . This implies that for every node x ∈ Ch\∂Ω with adjacent mesh cells Tl =
[xl , x] and Tr = [x, xr ] one of the following has to be true:

(a) It holds zh(x) = z(x).
(b) There exists an a ∈ [xl , xr ]\{x} such that zh(a) = z(a) and z′h(a) = z′(a). If

a ∈ {xl , xr }, we mean the left (resp., right) limit of the derivative here.

If (b) is the case, then the fundamental theorem of calculus yields

zh(x) − z(x) =
∣∣∣∣
∫ x

a
z′′(t)(x − t)dt

∣∣∣∣

≤
(

q − 1

2q − 1

) q−1
q

(Ch)
2− 1

q

(
max

T∈Th :x∈T
|z|W 2,q (T )

)

and if (a) is true (or x ∈ ∂Ω), it trivially holds zh(x)− z(x) = 0. Thus, we obtain that
zh satisfies

0 ≤ zh(x) − Ihz(x)

≤
(

q − 1

2q − 1

) q−1
q

(Ch)
2− 1

q

(
max

T∈Th :x∈T
|z|W 2,q (T )

)
∀ x ∈ Ch . (23)

Here, Ih : H1
0 (Ω) → V 0

h again denotes the Lagrange interpolation operator. From
(23) and the piecewise linearity of the functions in V 0

h , it readily follows

‖zh − Ihz‖L∞(Ω) ≤
(

q − 1

2q − 1

) q−1
q

(Ch)
2− 1

q |z|W 2,q (Ω). (24)
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Combining (24) with the triangle inequality and standard error estimates for the
Lagrange interpolant yields (21). Further, we obtain from (23) that

‖zh − Ihz‖Lq (T ) ≤
(

q − 1

2q − 1

) q−1
q

(Ch)2

(
max

T̃∈Th :T∩T̃ �=∅
|z|W 2,q (T̃ )

)
∀ T ∈ Th .

Summation over all T ∈ Th now yields

‖zh − Ihz‖Lq (Ω) ≤ 3
1
q

(
q − 1

2q − 1

) q−1
q

(Ch)2|z|W 2,q (Ω).

Using again the triangle inequality and standard interpolation error estimates, we
obtain the first estimate in (20). To prove the W 1,q -estimate, note that

‖z′h − I ′
hz‖L∞(T ) ≤ 2

c h
‖zh − Ihz‖L∞(T ) ∀ T ∈ Th .

Proceeding as in case of the Lq -error now gives the second estimate in (20). ��
It should be noted that in higher dimensions, it is still possible to prove L∞-error

estimates for unilateral approximations provided the function z under consideration
possesses enough regularity. We refer to [2] for details.
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