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1 Introduction

Let� be an open bounded connected domain inR
d , d ∈ {2, 3}with polygonal bound-

ary ∂� and f ∈ H1(�)
∗ := H−1(�) be given. We consider the following elliptic

boundary value problem

−∇ · (q∇�
) = f in �, (1.1)

q∇� · �n = j† on ∂� and (1.2)

� = g† on ∂�, (1.3)

where �n is the unit outward normal on ∂�.
The system (1.1)–(1.3) is overdetermined, i.e. if the Neumann and Dirichlet bound-

ary conditions j† ∈ H−1/2(∂�) := H1/2(∂�)
∗
, g† ∈ H1/2(∂�) and the conductivity

q ∈ Q :=
{
q ∈ L∞(�)

∣∣ q ≤ q(x) ≤ q a.e. in �
}

(1.4)

are given, then there may be no � satisfying this system. Here q and q are some given
positive constants.

In this paper we assume that the system is consistent and our aim is to identify the
conductivity q† ∈ Q and the electric potential �† ∈ H1(�) in the system (1.1)–(1.3)
from current and voltage, i.e. Neumann and Dirichlet measurements at the boundary
( jδ, gδ) ∈ H−1/2(∂�) × H1/2(∂�) of the exact

(
j†, g†

)
satisfying

∥
∥ jδ − j†

∥
∥
H−1/2(∂�)

+ ∥∥gδ − g†
∥
∥
H1/2(∂�)

≤ δ with δ > 0.

Note that using the H−1/2(∂�) × H1/2(∂�) topology for the data is natural from
the point of view of solution theory for elliptic PDEs but unrealistic with regard to
practical measurements. We will comment in this issue in Remark 2.2 below.

For the purpose of conductivity identification—a problemwhich is verywell known
in literature and practice as electrical impedance tomography EIT, see below for some
references—we simultaneously consider the Neumann problem

−∇ · (q∇u) = f in � and q∇u · �n = jδ on ∂� (1.5)

and the Dirichlet problem

−∇ · (q∇v) = f in � and v = gδ on ∂� (1.6)

and respectively denote by Nq jδ , Dqgδ the unique weak solutions of the problems
(1.5), (1.6), which depend nonlinearly on q, whereNq jδ is normalized with vanishing
mean on the boundary. We adopt the variational approach of Kohn and Vogelius in
[30–32] to the identification problem. In fact, for estimating the conductivity q from
the observation ( jδ, gδ) of the exact data

(
j†, g†

)
, we use the functional
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Identifying conductivity in electrical impedance… 725

Jδ(q) :=
∫

�

q∇ (Nq jδ − Dqgδ

) · ∇ (Nq jδ − Dqgδ

)
dx .

For simplicity of exposition we restrict ourselves to the case of just one Neumann–
Dirichlet pair, while the approach described here can be easily extended to multiple
measurements

(
j iδ , g

i
δ

)
i=1,...,I , see also Example 5.3 below. It is well-known that such

a finite number of boundary data in general only allows to identify conductivities
taking finitely many different values in the domain �, see, e.g., [2].

Indeed, we are interested in estimating such piecewise constant conductivities and
therefore use total variation regularization, i.e. we consider the minimization problem

min
q∈Qad

Jδ(q) + ρ

∫

�

|∇q| , (1.7)

whereQad := Q∩ BV (�) is the admissible set of the sought conductivities, BV (�)

is the space of all functions with bounded total variation (see §2.1 for its definition)
and ρ > 0 is the regularization parameter, and consider a minimizer qρ,δ of (1.7) as
reconstruction.

For each q ∈ Q letN h
q jδ andDh

q gδ be corresponding approximations ofNq jδ and

Dqgδ in the finite dimensional spaceVh
1 of piecewise linear, continuous finite elements

and qhρ,δ denote aminimizer of the discrete regularized problem corresponding to (1.7),
i.e. of the following minimization problem

min
q∈Qh

ad

∫

�

q∇
(
N h

q jδ − Dh
q gδ

)
· ∇
(
N h

q jδ − Dh
q gδ

)
dx + ρ

∫

�

√
|∇q|2 + εh (1.8)

withQh
ad := Qad ∩Vh

1 and εh being a positive functional of the mesh size h satisfying
limh→0 εh = 0.

In Sect. 4 we will show the stability of approximations for fixed positive ρ. Fur-
thermore as h, δ → 0 and with an appropriate a priori regularization parameter choice
ρ = ρ(h, δ), there exists a subsequence of

(
qhρ,δ

)
converging in the L1(�)-norm to a

total variation-minimizing solution q† defined by

q† ∈ arg min{
q∈Qad | Nq j†=Dq g†

}

∫

�

|∇q|.

In particular, if q† is uniquely defined, then this convergence holds for the whole

sequence
(
qhρ,δ

)
. The corresponding state sequences

(
N h

qhρ,δ

jδ
)
and

(
Dh

qhρ,δ

gδ

)
con-

verge in the H1(�)-norm to �† = �†(q†, j†, g†) solving the system (1.1)–(1.3).
Finally, for the numerical solution of the discrete regularized problem (1.8), in Sect. 5
we employ a projected Armijo algorithm. Numerical results show the efficiency of the
proposed method and illustrate our theoretical findings.

We conclude this introduction with a selection of references from the vast literature
onEIT,whichhas evolved to ahighly relevant imaging anddiagnostics tool in industrial
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726 M. Hinze et al.

and medical applications and has attracted great attention of many scientists in the last
few decades.

To this end, for any fixed q ∈ Q we define the Neumann-to-Dirichlet map �q :
H−1/2(∂�) → H1/2(∂�), by

j 
→ �q j := γNq j,

where γ : H1(�) → H1/2(∂�) is the Dirichlet trace operator. Calderón in 1980
posed the question whether an unknown conductivity distribution inside a domain
can be determined from an infinite number of boundary observations, i.e. from the
Neumann-to-Dirichlet map �q :

p, q ∈ Q ⊂ L∞(�) with �p = �q ⇒ p = q ? (1.9)

Calderón did not answer his question (1.9); however, in [15] he proved that the problem
linearized at constant conductivities has a unique solution. In dimensions three and
higher Sylvester and Uhlmann [41] proved the unique identifiability of a C∞-smooth
conductivity. Päivärinta et al. [37] and Brown and Torres [12] established uniqueness
in the inverse conductivity problem for W 3/2,p-smooth conductivities with p = ∞
and p > 2d, respectively. In the two dimensional setting, Nachman [34] and Brown
andUhlmann [13] proved uniqueness results for conductivities which are inW 2,p with
p > 1 andW 1,p with p > 2, respectively. Finally, in 2006 the question (1.9) has been
answered to be positive by Astala and Päivärinta [3] in dimension two. For surveys on
the subject, we refer the reader to [10,17,20,33,43] and the references therein.

Although there exists a large number of papers on the numerical solution of the
inverse problems of EIT, among these also papers considering the Kohn–Vogelius
functional (see, e.g., [28,29]) and total variation regularization (see, e.g., [21,36]),
we have not yet found investigations on the discretization error in a combination of
both functionals for the fully nonlinear setting, a fact which motivated the research
presented in this paper.

Throughout the paperwe use the standard notion of Sobolev spaces H1(�), H1
0 (�),

Wk,p(�), etc from, for example, [1]. If not stated otherwise we write
∫
�

· · · instead
of
∫
�

· · · dx .

2 Problem setting and preliminaries

2.1 Notations

Let us denote by

γ : H1(�) → H1/2(∂�)

the continuous Dirichlet trace operator while

γ −1 : H1/2(∂�) → H1(�)

123



Identifying conductivity in electrical impedance… 727

is the continuous right inverse operator of γ , i.e. (γ ◦γ −1)g = g for all g ∈ H1/2(∂�).
With f ∈ H−1(�) (with a slight abuse of notation) in (1.1) being given, let us denote

c f := ( f, 1),

where the expression ( f, ϕ) denotes the value of the functional f ∈ H−1(�) at
ϕ ∈ H1(�). We also denote

H−1/2
−c f (∂�) :=

{
j ∈ H−1/2(∂�)

∣∣ 〈 j, 1〉 = −c f

}
,

where the notation 〈 j, g〉 stands for the value of the functional j ∈ H−1/2(∂�) at
g ∈ H1/2(∂�). Similarly, we denote

H1/2
� (∂�) :=

{
g ∈ H1/2(∂�)

∣∣∣
∫

∂�

g(s) = 0

}

while H1� (�) is the closed subspace of H1(�) consisting of all functions with zero
mean on the boundary, i.e.

H1� (�) :=
{
u ∈ H1(�)

∣∣∣
∫

∂�

γ u = 0

}
.

Let us denote by C�� the positive constant appearing in the Poincaré–Friedrichs
inequality (see, for example, [38])

C��
∫

�

ϕ2 ≤
∫

�

|∇ϕ|2 for all ϕ ∈ H1� (�). (2.1)

Then for all q ∈ Q defined by (1.4), the coercivity condition

‖ϕ‖2H1(�)
≤ 1 + C��

C��

∫

�

|∇ϕ|2 ≤ 1 + C��
C�� q

∫

�

q∇ϕ · ∇ϕ (2.2)

holds for all ϕ ∈ H1� (�). Furthermore, since H1
0 (�) := {

u ∈ H1(�)
∣
∣ γ u = 0

} ⊂
H1� (�), the inequality (2.2) remains valid for all ϕ ∈ H1

0 (�).
Finally, for the sake of completeness we briefly introduce the space of functions

with bounded total variation; formore details onemay consult [4,24].A scalar function
q ∈ L1(�) is said to be of bounded total variation if

T V (q):=
∫

�

|∇q| := sup

{∫

�

qdiv �
∣∣ � ∈ C1

c (�)d , |�(x)|∞ ≤ 1, x ∈ �

}
< ∞.

Here |·|∞ denotes the �∞-norm on R
d defined by |x |∞ = max

1≤i≤d
|xi | and C1

c (�) the

space of continuously differentiable functions with compact support in �. The space
of all functions in L1(�) with bounded total variation is denoted by

123



728 M. Hinze et al.

BV (�) =
{
q ∈ L1(�)

∣
∣∣
∫

�

|∇q| < ∞
}

which is a Banach space with the norm

‖q‖BV (�) := ‖q‖L1(�) +
∫

�

|∇q|.

Furthermore, if � is an open bounded set with Lipschitz boundary, then W 1,1(�) �

BV (�).

2.2 Neumann operator, Dirichlet operator and Neumann-to-Dirichlet map

2.2.1 Neumann operator

We consider the following Neumann problem

−∇ · (q∇u) = f in � and q∇u · �n = j on ∂�. (2.3)

By the coercivity condition (2.2) and the Riesz representation theorem, we conclude
that for each q ∈ Q and j ∈ H−1/2

−c f (∂�) there exists a unique weak solution u of the

problem (2.3) in the sense that u ∈ H1� (�) and satisfies the identity

∫

�

q∇u · ∇ϕ = 〈 j, γ ϕ〉 + ( f, ϕ) (2.4)

for all ϕ ∈ H1� (�). By the imposed compatibility condition 〈 j, 1〉 = −c f , i.e.

〈 j, 1〉 + ( f, 1) = 0, (2.5)

and the fact that H1(�) = H1� (�) + span{1}, equation (2.4) is satisfied for all ϕ ∈
H1(�). Furthermore, this solution satisfies the following estimate

‖u‖H1(�) ≤ 1 + C��
C�� q

(
‖γ ‖L(H1(�),H1/2(∂�)

) ‖ j‖H−1/2(∂�) + ‖ f ‖H−1(�)

)

≤ CN
(‖ j‖H−1/2(∂�) + ‖ f ‖H−1(�)

)
, (2.6)

where

CN := 1 + C��
C�� q

max

(
1, ‖γ ‖L(H1(�),H1/2(∂�)

)
)

.

Then for any fixed j ∈ H−1/2
−c f (∂�) we can define the Neumann operator

N : Q → H1� (�) with q 
→ Nq j
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Identifying conductivity in electrical impedance… 729

which maps each q ∈ Q to the unique weak solution Nq j := u of the problem (2.3).

Remark 2.1 We note that the restriction j ∈ H−1/2
−c f (∂�) instead of j ∈ H−1/2(∂�)

preserves the compatibility condition (2.5) for the pure Neumann problem. In case
this condition fails, the strong form of the problem (2.3) has no solution. This is the
reason why we require j ∈ H−1/2

−c f (∂�). However, its weak form, i.e. the variational
equation (2.4), attains a unique solution independently of the compatibility condition.
By working with the weak form only, all results in the present paper remain valid for
j ∈ H−1/2(∂�).

2.2.2 Dirichlet operator

We now consider the following Dirichlet problem

−∇ · (q∇v) = f in � and v = g on ∂�. (2.7)

For each q ∈ Q and g ∈ H1/2(∂�), by the coercivity condition (2.2), the problem
(2.7) attains a unique weak solution v in the sense that v ∈ H1(�), γ v = g and
satisfies the identity

∫

�

q∇v · ∇ψ = ( f, ψ) (2.8)

for all ψ ∈ H1
0 (�). We can rewrite

v = v0 + G, (2.9)

where G = γ −1g and v0 ∈ H1
0 (�) is the unique solution to the following variational

problem

∫

�

q∇v0 · ∇ψ = ( f, ψ) −
∫

�

q∇G · ∇ψ

for all ψ ∈ H1
0 (�). Since

‖G‖H1(�) ≤
∥
∥∥γ −1

∥
∥∥
L
(
H1/2(∂�),H1(�)

) ‖g‖H1/2(∂�) ,

we thus obtain the priori estimate

‖v‖H1(�) ≤ ‖v0‖H1(�) + ‖G‖H1(�)

≤ 1 + C��
C�� q

‖ f ‖H−1(�) + 1 + C��
C�� q

q ‖G‖H1(�) + ‖G‖H1(�)

≤ CD
(‖g‖H1/2(∂�) + ‖ f ‖H−1(�)

)
, (2.10)
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730 M. Hinze et al.

where

CD := max

(
1 + C��
C�� q

,

(
1 + C��
C�� q

q + 1

)∥∥∥γ −1
∥∥∥
L
(
H1/2(∂�),H1(�)

)

)

.

The Dirichlet operator is for any fixed g ∈ H1/2(∂�) defined as

D : Q → H1(�) with q 
→ Dqg

which maps each q ∈ Q to the unique weak solution Dqg := v of the problem (2.7).

2.2.3 Neumann-to-Dirichlet map

For any fixed q ∈ Q we can define the Neumann-to-Dirichlet map

�q : H−1/2
−c f (∂�) → H1/2

� (∂�)

j 
→ �q j := γNq j.

Since
∫

�

q∇Nq j · ∇ψ = ( f, ψ)

for all ψ ∈ H1
0 (�), in view of (2.8) we conclude that

�q j = g if and only if Nq j = Dqg.

2.3 Identification problem

The inverse problem is stated as follows.

Given f ∈H−1(�),
(
j†, g†

)
∈H−1/2

−c f (∂�) × H1/2
� (∂�)with�q† j

†=g†, find q†∈Q.

In other words, the problem of interest is, given f ∈ H−1(�), and a single Neumann–
Dirichlet pair

(
j†, g†

) ∈ H−1/2
−c f (∂�) × H1/2

� (∂�), to find q† ∈ Q and �† ∈ H1� (�)

such that the system (1.1)–(1.3) is satisfied in the weak sense.

2.4 Total variation regularization

Assume that ( jδ, gδ) ∈ H−1/2
−c f (∂�) × H1/2

� (∂�) is the measured data of the exact

boundary values ( j†, g†) with

∥∥ jδ − j†
∥∥
H−1/2(∂�)

+ ∥∥gδ − g†
∥∥
H1/2(∂�)

≤ δ (2.11)
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Identifying conductivity in electrical impedance… 731

for somemeasurement error δ > 0. Our problem is now to reconstruct the conductivity
q† ∈ Q from this perturbed data ( jδ, gδ). For this purpose we consider the cost
functional

Jδ(q) :=
∫

�

q∇ (Nq jδ − Dqgδ

) · ∇ (Nq jδ − Dqgδ

)
, (2.12)

where Nq jδ and Dqgδ is the unique weak solutions of the problems (2.3) and (2.7),
respectively, with j in (2.3) and g in (2.7) being replaced by jδ and gδ . Furthermore,
to estimate the possibly discontinuous conductivity, we here use the total variation
regularization (cf., e.g., [14,21,22]), i.e. we consider the minimization problem

min
q∈Qad

ϒρ,δ(q) := min
q∈Qad

(
Jδ(q) + ρ

∫

�

|∇q|
)

, (Pρ,δ)

where

Qad := Q ∩ BV (�)

is the admissible set of the sought conductivities.

Remark 2.2 The noise model (2.11) is to some extent an idealized one, since in prac-
tice, measurement precision might be different for the current j and the voltage g,
and, more importantly, it will first of all be given with respect to some L p norm (e.g.,
p = 2 corresponding to normally and p = ∞ to uniformly distributed noise) rather
than in H−1/2(∂�) × H1/2(∂�). While the Neumann data part is unproblematic, by
continuity of the embedding of L p(∂�) in H−1/2(∂�) for p ≥ 2 d−1

d , we can obtain
an H1/2(∂�) version of the originally L p(∂�) Dirichlet data e.g. by Tikhonov reg-
ularization (cf. [22] and the references therein) as follows. For simplicity, we restrict
ourselves to the Hilbert space case p = 2 and assume that we have measurements
g̃δg ∈ L2(∂�) such that

‖g̃δg − g†‖L2(∂�) ≤ δg

Tikhonov regularization applied to the embedding operator K : H1/2(∂�) → L2(∂�)

amounts to finding a minimizer g
δg
α of

min
g∈H1/2(∂�)

‖Kg − g̃δg‖2L2(∂�)
+ α‖g‖2H1/2(∂�)

,

where we use

‖g‖H1/2(∂�) := ‖γ −1g‖H1(�) =
(∫

�

(|∇γ −1g|2 + |γ −1g|2) dx
)1/2
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as a norm on H1/2(∂�). The first order optimality conditions for this quadratic mini-
mization problem yield

∫

∂�

φ(g
δg
α − g̃δg ) ds + α

∫

�

(∇γ −1g
δg
α · ∇γ −1φ + γ −1g

δg
α γ −1φ) dx

= 0 for all φ ∈ H1/2(∂�),

which is equivalent to

∫

∂�

γ ϕ(γw − g̃δg ) ds + α

∫

�

(∇w · ∇ϕ + wϕ) dx = 0 for all ϕ ∈ H1(�),

for w = γ −1g
δg
α , i.e. the weak form of the Robin problem

{
−�w + w = 0 in �,

α∇w · �n + w = g̃δg on ∂�.
(2.13)

Thus, according to well-known results from regularization theory (cf., e.g. [22]), the

smoothed version gδ := g
δg
α = γw (where w weakly solves (2.13)) of g̃δg converges

to g† as δg tends to zero, provided the regularization parameter α = α(δg, g̃δg ) is
chosen appropriately. The latter can, e.g., be done by the discrepancy principle, where
α is chosen such that

‖Kg
δg
α − g̃δg‖2L2(∂�)

=
∫

∂�

|gδg
α − g̃δg |2 dx ∼ δ2g.

We also wish to mention the complete electrode model cf., e.g., [40], which fully takes
into account the fact that current and voltage are typically not measured pointwise on
the whole boundary, but via a set of finitely many electrodes with finite geometric
extensions as well as contact impedances.

2.5 Auxiliary results

Now we summarize some useful properties of the Neumann and Dirichlet operators.
The proof of the following result is based on standard arguments and therefore omitted.

Lemma 2.3 Let ( j, g) ∈ H−1/2
−c f (∂�) × H1/2

� (∂�) be fixed.

(i) The Neumann operator N : Q ⊂ L∞(�) → H1� (�) is continuously Fréchet
differentiable on the setQ. For each q ∈ Q the action of the Fréchet derivative in
direction ξ ∈ L∞(�) denoted by ηN := N ′

q j (ξ) := N ′(q)ξ is the unique weak

solution in H1� (�) to the Neumann problem

−∇ · (q∇ηN ) = ∇ · (ξ∇Nq j) in � and q∇ηN · �n = −ξ∇Nq j · �n on ∂�
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Identifying conductivity in electrical impedance… 733

in the sense that the identity

∫

�

q∇ηN · ∇ϕ = −
∫

�

ξ∇Nq j · ∇ϕ (2.14)

holds for all ϕ ∈ H1� (�). Furthermore, the following estimate is fulfilled

‖ηN ‖H1(�) ≤
(
1 + C��

)
CN

C�� q

(‖ j‖H−1/2(∂�) + ‖ f ‖H−1(�)

) ‖ξ‖L∞(�). (2.15)

(ii) The Dirichlet operator D : Q ⊂ L∞(�) → H1� (�) is continuously Fréchet
differentiable on the setQ. For each q ∈ Q the action of the Fréchet derivative in
direction ξ ∈ L∞(�) denoted by ηD := D′

qg(ξ) =: D′(q)ξ is the unique weak

solution in H1
0 (�) to the Dirichlet problem

−∇ · (q∇ηD) = ∇ · (ξ∇Dqg) in � and ηD = 0 on ∂�

in the sense that it satisfies the equation

∫

�

q∇ηD · ∇ψ = −
∫

�

ξ∇Dqg · ∇ψ

for all ψ ∈ H1
0 (�). Furthermore, the following estimate is fulfilled

‖ηD‖H1(�) ≤
(
1 + C��

)
CD

C�� q

(‖g‖H1/2(∂�) + ‖ f ‖H−1(�)

) ‖ξ‖L∞(�).

Lemma 2.4 If the sequence (qn) ⊂ Q converges to q in the L1(�)-norm, then q ∈ Q
and for any fixed ( jδ, gδ) ∈ H−1/2

−c f (∂�) × H1/2
� (∂�) the sequence

(
Nqn jδ,Dqn gδ

)

converges to
(
Nq jδ,Dqgδ

)
in the H1(�) × H1(�)-norm. Furthermore, there holds

lim
n→∞Jδ (qn) = Jδ

(
q
)
,

where the functional Jδ is defined in (2.12).

Proof Since (qn) ⊂ Q converges to q in the L1(�)-norm, up to a subsequence we
assume that it converges to q a.e. in �, which implies that q ∈ Q. For all ϕ ∈ H1� (�)

we infer from (2.4) that

∫

�

qn∇Nqn jδ · ∇ϕ = 〈 jδ, γ ϕ〉 + ( f, ϕ) =
∫

�

q∇Nq jδ · ∇ϕ

and so that
∫

�

qn∇
(
Nqn jδ − Nq jδ

) · ∇ϕ =
∫

�

(q − qn) ∇Nq jδ · ∇ϕ. (2.16)
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734 M. Hinze et al.

Taking ϕ = Nqn jδ − Nq jδ , by (2.2), we get

C�� q

1 + C��

∥
∥Nqn jδ − Nq jδ

∥
∥2
H1(�)

≤
∫

�

qn∇
(Nqn jδ − Nq jδ

) · ∇ (Nqn jδ − Nq jδ
)

=
∫

�

(q − qn)∇Nq jδ · ∇ (Nqn jδ − Nq jδ
)

≤
(∫

�

|q − qn |2
∣
∣∇Nq jδ

∣
∣2
)1/2 (∫

�

∣
∣∇ (Nqn jδ − Nq jδ

)∣∣2
)1/2

and so that

∥∥Nqn jδ − Nq jδ
∥∥
H1(�)

≤ 1 + C��
C�� q

(∫

�

|q − qn|2
∣∣∇Nq jδ

∣∣2
)1/2

.

Hence, by the Lebesgue dominated convergence theorem, we deduce from the last
inequality that

lim
n→∞

∥∥Nqn jδ − Nq jδ
∥∥
H1(�)

= 0. (2.17)

Similarly to (2.16), we also get

∫

�

qn∇
(
Dqn gδ − Dqgδ

) · ∇ψ =
∫

�

(q − qn)∇Dqgδ · ∇ψ

for all ψ ∈ H1
0 (�). Since γDqn gδ = γDqgδ = gδ , taking ψ = Dqn gδ − Dqgδ ∈

H1
0 (�) in the last equation, we also obtain the limit

lim
n→∞

∥∥Dqn gδ − Dqgδ

∥∥
H1(�)

= 0. (2.18)

Next, we rewrite the functional Jδ as follows

Jδ (qn) =
∫

�

qn∇Nqn jδ · ∇Nqn jδ − 2
∫

�

qn∇Nqn jδ · ∇Dqn gδ

+
∫

�

qn∇Dqn gδ · ∇Dqn gδ

= 〈 jδ, γNqn jδ
〉+ ( f,Nqn jδ

)− 2
(〈 jδ, gδ〉 + ( f,Dqn gδ

))

+
∫

�

qn∇Dqn gδ · ∇Dqn gδ (2.19)

and, by (2.17)–(2.18), have that

〈
jδ, γNqn jδ

〉+ ( f,Nqn jδ − 2Dqn gδ

)→ 〈
jδ, γNq jδ

〉+ ( f,Nq jδ − 2Dqgδ

)
(2.20)
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as n tends to ∞. We now consider the difference
∫

�

qn∇Dqn gδ · ∇Dqn gδ −
∫

�

q∇Dqgδ · ∇Dqgδ

=
∫

�

qn∇
(
Dqn gδ − Dqgδ

) · ∇ (Dqn gδ + Dqgδ

)

−
∫

�

(q − qn)∇Dqgδ · ∇Dqgδ

and note that
∫

�

(q − qn)∇Dqgδ · ∇Dqgδ → 0

as n goes to ∞, by the Lebesgue dominated convergence theorem. Furthermore, then
applying the Cauchy–Schwarz inequality, we also get that

∣∣∣∣

∫

�

qn∇
(
Dqn gδ − Dqgδ

) · ∇ (Dqn gδ + Dqgδ

)
∣∣∣∣

≤ q

(∫

�

∣∣∇ (Dqn gδ − Dqgδ

)∣∣2
)1/2 (∫

�

∣∣∇ (Dqn gδ + Dqgδ

)∣∣2
)1/2

≤ q
∥∥Dqn gδ − Dqgδ

∥∥
H1(�)

(∥∥Dqn gδ

∥∥
H1(�)

+ ∥∥Dqgδ

∥∥
H1(�)

)
→ 0

as n approaches ∞, here we used (2.10) and (2.18). We thus obtain that

∫

�

qn∇Dqn gδ · ∇Dqn gδ →
∫

�

q∇Dqgδ · ∇Dqgδ (2.21)

as n tends to ∞. Then we deduce from (2.19)–(2.21) that

lim
n→∞Jδ (qn) = 〈 jδ, γNq jδ

〉+ ( f,Nq jδ
)− 2 〈 jδ, gδ〉 − 2

(
f,Dqgδ

)

+
∫

�

q∇Dqgδ · ∇Dqgδ

=
∫

�

q∇Nq jδ · ∇Nq jδ − 2
∫

�

q∇Nq jδ · ∇Dqgδ

+
∫

�

q∇Dqgδ · ∇Dqgδ

= Jδ

(
q
)
,

which finishes the proof. ��
Lemma 2.5 ([24]).

(i) Let (qn) be a bounded sequence in the BV (�)-norm. Then a subsequence which
is denoted by the same symbol and an element q ∈ BV (�) exist such that (qn)
converges to q in the L1(�)-norm.
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(ii) Let (qn) be a sequence in BV (�) converging to q in the L1(�)-norm. Then
q ∈ BV (�) and

∫

�

|∇q| ≤ lim inf
n→∞

∫

�

|∇qn|. (2.22)

We mention that equality need not be achieved in (2.22). Here is a counterexample
from [24]. Let � = (0, 2π) and qn(x) = 1

n sin nx for x ∈ � and n ∈ N. Then
‖qn‖L1(�) → 0 as n → ∞, but

∫
�

|∇qn| = 4 for each n ∈ N.
Let us quote the following useful result on approximation of BV -functions by

smooth functions.

Lemma 2.6 ([5,16]). Assume that w ∈ BV (�). Then for all α > 0 an element
wα ∈ C∞(�) exists such that

∫

�

|w − wα| ≤ α

∫

�

|∇w|,
∫

�

|∇wα| ≤ (1 + Cα)

∫

�

|∇w| and
∫

�

|D2wα|

≤ Cα−1
∫

�

|∇w|,

where the positive constant C is independent of α.

Now, we are in a position to prove the main result of this section

Theorem 2.7 The problem
(
Pρ,δ

)
attains a solution qρ,δ , which is called the regular-

ized solution of the identification problem.

Proof Let (qn) ⊂ Qad be a minimizing sequence of the problem
(
Pρ,δ

)
, i.e.

lim
n→∞

(
Jδ (qn) + ρ

∫

�

|∇qn|
)

= inf
q∈Qad

(
Jδ(q) + ρ

∫

�

|∇q|
)

. (2.23)

Then, due to Lemma 2.5, a subsequence which is not relabelled and an element q ∈
Qad exist such that (qn) converges to q in the L1(�)-norm and

∫

�

|∇q| ≤ lim inf
n→∞

∫

�

|∇qn|. (2.24)

Using Lemma 2.4 and by (2.23)–(2.24), we obtain that

Jδ(q) + ρ

∫

�

|∇q| ≤ lim
n→∞Jδ (qn) + lim inf

n→∞ ρ

∫

�

|∇qn|

= lim inf
n→∞

(
Jδ (qn) + ρ

∫

�

|∇qn|
)

= inf
q∈Qad

(
Jδ(q) + ρ

∫

�

|∇q|
)

.

This means that q is a solution of the problem
(
Pρ,δ

)
, which finishes the proof. ��
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3 Finite element method for the identification problem

Let
(
T h
)
0<h<1 be a family of regular and quasi-uniform triangulations of the domain

� with the mesh size h such that each vertex of the polygonal boundary ∂� is a node
of T h . For the definition of the discretization space of the state functions let us denote

Vh
1 :=

{
vh ∈ C(�)

∣
∣ vh |T ∈ P1(T ), ∀T ∈ T h

}

and

Vh
1,� := Vh

1 ∩ H1� (�) and Vh
1,0 := Vh

1 ∩ H1
0 (�) ⊂ Vh

1,�,

where P1 consists of all polynomial functions of degree less than or equal to 1.
Togo further,we introduce the followingmodifiedClément’s interpolation operator,

see [19].

Lemma 3.1 An interpolation operator �h� : L1(�) → Vh
1,� exists such that

�h�ϕh = ϕh for all ϕh ∈ Vh
1,� and �h�

(
H1
0 (�)

) ⊂ Vh
1,0 ⊂ Vh

1,�.

Furthermore, it satisfies the properties

lim
h→0

∥∥ϑ − �h�ϑ
∥∥
H1(�)

= 0 for all ϑ ∈ H1� (�) (3.1)

and ∥∥ϑ − �h�ϑ
∥∥
H1(�)

≤ Ch‖ϑ‖H2(�) for all ϑ ∈ H1� (�) ∩ H2(�) (3.2)

with the positive constant C being independent of h and ϑ .

Proof It is well known (see [19] and some generalizations [6,7,39]) that there is an
interpolation operator

�h : L1(�) → Vh
1 with �hϕh = ϕh for all ϕh ∈ Vh

1 and �h(H1
0 (�)

) ⊂ Vh
1,0

which satisfies the following properties

lim
h→0

∥∥ϑ − �hϑ
∥∥
H1(�)

= 0 for all ϑ ∈ H1(�) (3.3)

and ∥∥ϑ − �hϑ
∥∥
H1(�)

≤ Ch‖ϑ‖H2(�) for all ϑ ∈ H2(�). (3.4)

We then define for each ϑ ∈ L1(�)

�h�ϑ := �hϑ − 1

|∂�|
∫

∂�

γ�hϑ ∈ Vh
1,�.

123



738 M. Hinze et al.

Then �h�
(
L1(�)

) ⊂ Vh
1,�, �h�ϕh = ϕh for all ϕh ∈ Vh

1,� and �h�
(
H1
0 (�)

) ⊂ Vh
1,0.

Furthermore, since ∇�h�ϑ = ∇�hϑ for all ϑ ∈ L1(�), the properties (3.1), (3.2) are
deduced from (3.3), (3.4), respectively. The proof is completed. ��
We remark that the operator �h in the above proof satisfies the estimate ‖ϑ −
�hϑ‖Hk (�) ≤ Chl−k‖ϑ‖Hl (�) for 0 ≤ k ≤ l ≤ 2 and ϑ ∈ Hl(�) (see [19])
which implies that

∥∥∥�h�ϑ
∥∥∥
H1(�)

≤ C ‖ϑ‖H1(�) for all ϑ ∈ H1(�), (3.5)

an estimate that is required for the proof of part (ii) of the following proposition.
Similarly to the continuous case we have the following result.

Proposition 3.2 (i) Let q be in Q and j be in H−1/2
−c f (∂�). Then the variational

equation

∫

�

q∇uh · ∇ϕh =
〈
j, γ ϕh

〉
+
(
f, ϕh

)
for all ϕh ∈ Vh

1,� (3.6)

admits a unique solution uh ∈ Vh
1,�. Furthermore, there holds

∥
∥uh
∥
∥
H1(�)

≤ CN
(‖ j‖H−1/2(∂�) + ‖ f ‖H−1(�)

)
. (3.7)

(ii) Let q be in Q and g be in H1/2
� (∂�). Then the equation

∫

�

q∇vh · ∇ψh =
(
f, ψh

)
for all ψh ∈ Vh

1,0 (3.8)

with γ vh = γ
(
�h�(γ −1g)

)
has a unique solution vh ∈ Vh

1,�. Furthermore, the
stability estimate

∥∥vh
∥∥
H1(�)

≤ C̄D
(‖g‖H1/2(∂�) + ‖ f ‖H−1(�)

)
(3.9)

is satisfied, where C̄D := max

(
1+C��
C�� q

,

(
1+C��
C�� q

q + 1

)∥∥�h�
∥∥
L
(
H1(�),H1(�)

)

∥∥γ −1
∥∥
L
(
H1/2(∂�),H1(�)

)
)
.

Let u and uh be solutions to (2.4) and (3.6), respectively. Due to the standard theory
of the finite element method (see, for example, [11,18]), the estimate

‖u − uh‖H1(�) ≤ Ch‖u‖H2(�) (3.10)

holds in case u ∈ H2(�), where the positive constant C is independent of h and u.
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Assume that v and vh are the solutions to (2.8) and (3.8), where v ∈ H2(�), we
then have (see, for example, [11, Section 5.4]) that

‖v − vh‖H1(�) ≤ inf
ψh∈Vh

1,0

‖v − γ −1g − ψh‖H1(�) + 2‖γ −1g − �h�(γ −1g)‖H1(�).

Since v ∈ H2(�), it follows that g = γ v ∈ H3/2(�) and so γ −1g ∈ H2(�). Due
to the approximation property of the finite dimensional spaces Vh

1,0 ⊂ H1
0 (�) (which

states that infψh∈Vh
1,0

‖ψ −ψh‖H1(�) ≤ Ch‖ψ‖H2(�) for eachψ ∈ H2(�)∩H1
0 (�),

where the constant C is independent of h and ψ) and (3.4), we deduce

‖v − vh‖H1(�) ≤ Ch
(
‖v‖H2(�) + ‖γ −1g‖H2(�)

)
. (3.11)

We also mention that above we approximate the Dirichlet boundary condition g by
gh := γ

(
�h�(γ −1g)

)
. There exist some different choices for the approximation gh ; for

example, the L2-projection of g on the set Sh
∂� := {γ ϕh | ϕh ∈ Vh

1 }, or the Lagrange
interpolation of g in Sh

∂� in case g being smooth enough (see [23] for more details).

Definition 3.3 (i) For any fixed j ∈ H−1/2
−c f (∂�) the operator N h : Q → Vh

1,�
mapping each q ∈ Q to the unique solution uh =: N h

q j of the variational equation
(3.6) is called the discrete Neumann operator.

(ii) For any fixed g ∈ H1/2
� (∂�) the operator Dh : Q → Vh

1,� mapping each q ∈ Q
to the unique solution vh =: Dh

q g of the variational equation (3.8) is called the
discrete Dirichlet operator.

Next, the discretization space for the sought conductivity is defined by

Qh
ad := Q ∩ Vh

1 ⊂ Q ∩ BV (�) = Qad .

Then, using the discrete operators N h and Dh in Definition 3.3, we introduce the
discrete cost functional

ϒh
ρ,δ(q) := J h

δ (q) + ρ

∫

�

√
|∇q|2 + εh, (3.12)

where q ∈ Qh
ad , ε

h is a positive function of the mesh size h satisfying limh→0 εh = 0
and

J h
δ (q) :=

∫

�

q∇
(
N h

q jδ − Dh
q gδ

)
· ∇
(
N h

q jδ − Dh
q gδ

)
with q ∈ Q. (3.13)

The positive function εh above acts as a smoothing parameter for the total variation.

Theorem 3.4 For any fixed h, ρ and δ the minimization problem

min
q∈Qh

ad

ϒh
ρ,δ(q) (Ph

ρ,δ)
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attains a solution qhρ,δ , which is called the discrete regularized solution of the identi-
cation problem.

Proof We first note that Qh
ad is a compact subset of the finite dimensional space Vh

1 .

Let (qn) ⊂ Qh
ad be a minimizing sequence of the problem

(
Ph

ρ,δ

)
, i.e.

lim
n→∞ ϒh

ρ,δ (qn) = inf
q∈Qh

ad

ϒh
ρ,δ(q). (3.14)

Then a subsequence of (qn) which is denoted by the same symbol and an element
q ∈ Qh

ad exist such that (qn) converges to q in the H1(�)-norm. We have that

∣∣∣∣

∫

�

√
|∇qn|2 + εh −

∫

�

√
|∇q|2 + εh

∣∣∣∣ ≤
∫

�

∣
∣|∇qn|2 − |∇q|2∣∣

√
|∇qn|2 + εh +

√
|∇q|2 + εh

≤ 1

2
√

εh

∫

�

|∇qn − ∇q| |∇qn + ∇q|

≤ 1

2
√

εh

(∫

�

|∇qn − ∇q|2
)1/2 (∫

�

|∇qn + ∇q|2
)1/2

≤ 1

2
√

εh
‖qn − q‖H1(�)

(‖qn − q‖H1(�) + 2 ‖q‖H1(�)

)→ 0 as n → ∞.

(3.15)

On the other hand, similarly to Lemma 2.4, we can prove that the sequence(
N h

qn jδ,D
h
qn gδ

)
converges to

(
N h

q jδ,Dh
q gδ

)
in the H1(�)× H1(�)-norm as n goes

to ∞ and then obtain

lim
n→∞J h

δ (qn) = J h
δ (q). (3.16)

Thus, it follows from (3.14)–(3.16) that

ϒh
ρ,δ(q) = lim

n→∞ ϒh
ρ,δ (qn) = inf

q∈Qh
ad

ϒh
ρ,δ(q),

which finishes the proof. ��

4 Convergence

From now on C is a generic positive constant which is independent of the mesh size h
of T h , the noise level δ and the regularization parameter ρ. The following result shows
the stability of the finite element method for the regularized identification problem.

Theorem 4.1 Let (hn)n be a sequence with limn→∞ hn = 0 and
(
jδn , gδn

)
be a

sequence in H−1/2
−c f (∂�) × H1/2

� (∂�) converging to ( jδ, gδ) in the H−1/2(∂�) ×
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H1/2(∂�)-norm. For a fixed regularization parameter ρ > 0 let qhnρ,δn
∈ Qhn

ad be a

minimizer of
(
Phn

ρ,δn

)
for each n ∈ N. Then a subsequence of

(
qhnρ,δn

)
not relabelled

and an element qρ,δ ∈ Qad exist such that

lim
n→∞

∥∥qhnρ,δn
− qρ,δ

∥∥
L1(�)

= 0 and lim
n→∞

∫

�

∣∣∇qhnρ,δn

∣∣ =
∫

�

∣∣∇qρ,δ

∣∣ .

Furthermore, qρ,δ is a solution to
(
Pρ,δ

)
.

To prove the theorem, we need the auxiliary results, starting with the following
estimates.

Lemma 4.2 Let ( j1, g1) and ( j2, g2) be arbitrary in H−1/2
−c f (∂�) × H1/2

� (∂�). Then
the estimates

∥
∥∥N h

q j1 − N h
q j2
∥
∥∥
H1(�)

≤ 1 + C��
C�� q

‖γ ‖L(H1(�),H1/2(∂�)
) ‖ j1 − j2‖H−1/2(∂�) (4.1)

and
∥∥
∥Dh

q g1 − Dh
q g2
∥∥
∥
H1(�)

≤
(
1 + C��
C�� q

q + 1

)∥
∥∥�h�

∥
∥∥L
(
H1(�),H1(�)

)
∥
∥∥γ −1

∥
∥∥L
(
H1/2(∂�),H1(�)

) ‖g1 − g2‖H1/2(∂�)

(4.2)

hold for all q ∈ Q and h > 0.

Proof According to the definition of the discrete Neumann operator, we have for all
ϕh ∈ Vh

1,� that

∫

�

q∇N h
q ji · ∇ϕh =

〈
ji , γ ϕh

〉
+
(
f, ϕh

)
with i = 1, 2.

Thus, �h
N := N h

q j1 − N h
q j2 is the unique solution to the variational problem

∫

�

q∇�h
N · ∇ϕh =

〈
j1 − j2, γ ϕh

〉

for all ϕh ∈ Vh
1,� and so that (4.1) follows. Similarly, we also obtain (4.2), which

finishes the proof. ��
Lemma 4.3 Let (hn)n be a sequence with limn→∞ hn = 0 and

(
jδn , gδn

) ⊂
H−1/2

−c f (∂�) × H1/2
� (∂�) be a sequence converging to ( jδ, gδ) in the H−1/2(∂�) ×

H1/2(∂�)-norm. Then for any fixed q ∈ Q the limit

lim
n→∞J hn

δn
(q) = Jδ(q) (4.3)
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holds. Furthermore, if (qn) is a sequence inQwhich converges to q in the L1(�)-norm,

then the sequence
(
N hn

qn jδn ,D
hn
qn gδn

)
converges to

(
Nq jδ,Dqgδ

)
in the H1(�) ×

H1(�)-norm and the limit

lim
n→∞J hn

δn
(qn) = Jδ(q) (4.4)

also holds.

Proof We get for any fixed q ∈ Q that

N hn
q jδn − Dhn

q gδn = (Nq jδ − Dqgδ

)+
(
N hn

q jδn − Nq jδ + Dqgδ − Dhn
q gδn

)
.

Thus, with �n := N hn
q jδn − Nq jδ + Dqgδ − Dhn

q gδn we have

J hn
δn

(q) =
∫

�

q∇
(
N hn

q jδn − Dhn
q gδn

)
· ∇
(
N hn

q jδn − Dhn
q gδn

)

= Jδ(q) +
∫

�

q∇�n · ∇�n + 2
∫

�

q∇ (Nq jδ − Dqgδ

) · ∇�n .

Applying Lemma 4.2, we infer that

∥∥∥N hn
q jδn − Nq jδ

∥∥∥
H1(�)

≤
∥∥∥N hn

q jδ − Nq jδ
∥∥∥
H1(�)

+
∥∥∥N hn

q jδn − N hn
q jδ

∥∥∥
H1(�)

≤
∥∥∥N hn

q jδ − Nq jδ
∥∥∥
H1(�)

+ C
∥∥ jδn − jδ

∥∥
H−1/2(∂�)

→ 0 as n → ∞,

where we used the limit

lim
n→∞

∥∥∥N hn
q jδ − Nq jδ

∥∥∥
H1(�)

= 0,

due to the standard theory (see, for example, [11,18]). Similarly, we also have

∥∥∥Dhn
q gδn − Dqgδ

∥∥∥
H1(�)

→ 0 as n → ∞.

We thus get that

‖�n‖H1(�) ≤
∥∥∥N hn

q jδn − Nq jδ
∥∥∥
H1(�)

+
∥∥∥Dqgδ − Dhn

q gδn

∥∥∥
H1(�)

→ 0 as n → ∞.

Therefore, we obtain that

lim
n→∞

∣∣∣∣

∫

�

q∇�n · ∇�n + 2
∫

�

q∇ (Nq jδ − Dqgδ

) · ∇�n

∣∣∣∣
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≤ C lim
n→∞

(
‖�n‖2H1(�)

+ ‖�n‖H1(�)

)
= 0

and (4.3) then follows.
Next, for qn converging to q in L1(�), hence, along a subsequence again denoted

by (qn)n , pointwise almost everywhere, by (3.6) and (2.4), we have

∫

�

qn∇N hn
qn jδn · ∇ϕhn = 〈 jδn , γ ϕhn

〉+ ( f, ϕhn
) = 〈 jδ, γ ϕhn

〉+ ( f, ϕhn
)

+ 〈 jδn − jδ, γ ϕhn
〉

=
∫

�

q∇Nq jδ · ∇ϕhn + 〈 jδn − jδ, γ ϕhn
〉

for all ϕhn ∈ Vhn
1,� which implies that

∫

�

qn∇
(
N hn

qn jδn − �
hn� Nq jδ

)
· ∇ϕhn

=
∫

�

q∇Nq jδ · ∇ϕhn −
∫

�

qn∇�
hn� Nq jδ · ∇ϕhn + 〈 jδn − jδ, γ ϕhn

〉

=
∫

�

(
q − qn

)∇Nq jδ · ∇ϕhn +
∫

�

qn∇
(
Nq jδ − �

hn� Nq jδ
)

· ∇ϕhn

+ 〈 jδn − jδ, γ ϕhn
〉
, (4.5)

where the operator �
hn� is defined according to Lemma 3.1. Taking ϕhn = N hn

qn jδn −
�

hn� Nq jδ ∈ Vh
1,�, by (2.2) and using the Cauchy–Schwarz inequality, we get

C�� q

1 + C��

∥
∥∥N hn

qn jδn − �
hn� Nq jδ

∥
∥∥
2

H1(�)

≤
(∫

�

|q − qn|2
∣
∣∇Nq jδ

∣
∣2
)1/2 ∥

∥∥N hn
qn jδn − �

hn� Nq jδ
∥
∥∥
H1(�)

+ q
∥∥∥Nq jδ − �

hn� Nq jδ
∥∥∥
H1(�)

∥∥∥N hn
qn jδn − �

hn� Nq jδ
∥∥∥
H1(�)

+ ‖γ ‖L(H1(�),H1/2(∂�)
) ∥∥ jδn− jδ

∥∥
H−1/2(∂�)

∥
∥∥N hn

qn jδn−�
hn� Nq jδ

∥
∥∥
H1(�)

and so that

C�� q

1 + C��

∥∥∥N hn
qn jδn − �

hn� Nq jδ
∥∥∥
H1(�)

≤
(∫

�

|q − qn|2
∣∣∇Nq jδ

∣∣2
)1/2

+ q
∥∥
∥Nq jδ − �

hn� Nq jδ
∥∥
∥
H1(�)

+ ‖γ ‖L(H1(�),H1/2(∂�)
) ∥∥ jδn

− jδ‖H−1/2(∂�) → 0 as n → ∞,
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by the Lebesgue dominated convergence theorem and (3.1). Thus, we infer from the
triangle inequality that

∥∥
∥N hn

qn jδn − Nq jδ
∥∥
∥
H1(�)

≤
∥∥
∥N hn

qn jδn − �
hn� Nq jδ

∥∥
∥
H1(�)

+
∥∥∥�hn� Nq jδ − Nq jδ

∥∥∥
H1(�)

→ 0 as n → ∞.

Similarly, using (2.8) and (3.8), for all ψhn ∈ Vhn
1,0 we arrive at

∫

�

qn∇
(
Dhn

qn gδ − �
hn� Dqgδ

)
· ∇ψhn =

∫

�

(
q − qn

)∇Dqgδ · ∇ψhn

+
∫

�

qn∇
(
Dqgδ − �

hn� Dqgδ

)
· ∇ψhn . (4.6)

We have

γDhn
qn gδ = γ

(
�

hn� (γ −1gδ)
)
, (4.7)

by Proposition 3.2 (ii). On the other hand, in view of (2.9), we getDqgδ = v0+γ −1gδ

with v0 ∈ H1
0 (�), and therefore

γ
(
�

hn� Dqgδ

) = γ
(
�

hn� (v0 + γ −1gδ)
) = γ

(
�

hn� v0
)+ γ

(
�

hn� (γ −1gδ)
)

= γ
(
�

hn� (γ −1gδ)
)
, (4.8)

since γ
(
�

hn� v0
) = 0. It follows from (4.7)–(4.8) that

ψhn∗ := Dhn
qn gδ − �

hn� Dqgδ ∈ Vhn
1,0.

Taking ψhn := ψ
hn∗ in the above equation (4.6), it is deduced that

lim
n→∞

∥∥
∥Dhn

qn gδ − �
hn� Dqgδ

∥∥
∥
H1(�)

= 0.

Using Lemma 4.2, we therefore obtain that

∥∥∥Dhn
qn gδn − Dqgδ

∥∥∥
H1(�)

≤
∥∥∥Dhn

qn gδn − Dhn
qn gδ

∥∥∥
H1(�)

+
∥∥∥Dhn

qn gδ − �
hn� Dqgδ

∥∥∥
H1(�)

+
∥
∥∥�hn� Dqgδ − Dqgδ

∥
∥∥
H1(�)

≤ C
∥∥gδn − gδ

∥∥
H1/2(∂�)

+
∥∥
∥Dhn

qn gδ − �
hn� Dqgδ

∥∥
∥
H1(�)
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+
∥
∥∥�hn� Dqgδ − Dqgδ

∥
∥∥
H1(�)

→ 0 as n → ∞.

Since
(
qn
)
converges to q in the L1(�)-norm while the sequence

(
N hn

qn jδn ,D
hn
qn gδn

)

converges to
(
Nq jδ,Dqgδ

)
in the H1(�) × H1(�)-norm, we conclude, similarly to

the proof of Lemma 2.4 that

lim
n→∞J hn

δn

(
qn
) = Jδ(q),

which finishes the proof. ��
Proof of Theorem 4.1 To simplify notation we write qn := qhnρ,δn

. Let q ∈ Qad be
arbitrary. Using Lemma 2.6, for any fixed α ∈ (0, 1) an element qα ∈ C∞(�) exists
such that

∥∥q − qα
∥∥
L1(�)

≤ Cα and
∫

�

∣∣∇qα
∣∣ ≤ Cα +

∫

�

|∇q| , (4.9)

where the positive constant C is independent of α. Setting

qα
P := max

(
q,min

(
qα, q

)) ∈ W 1,∞(�) ∩ Q ⊂ Qad and qα
n := I hn1 qα

P ∈ Qhn
ad ,

where

I h1 : W 1,p(�) ↪→ C(�) → Vh
1 with p > d

is the usual nodal value interpolation operator. Since the sequence
(
qα
n

)
converges to

qα
P in the H1(�)-norm as n tends to∞ (see, for example, [11,18]), we get the equation

lim
n→∞

∫

�

√∣∣∇qα
n

∣∣2 + εhn =
∫

�

|∇qα
P |. (4.10)

Indeed, we have that

∣∣∣∣

∫

�

√∣∣∇qα
n

∣∣2 + εhn −
∫

�

∣∣∇qα
n

∣∣
∣∣∣∣ ≤

∫

�

εhn
√∣
∣∇qα

n

∣
∣2 + εhn + ∣∣∇qα

n

∣
∣

≤ |�|
√

εhn → 0 as n → ∞

and by the reverse triangle as well as the Cauchy–Schwarz inequality

∣∣∣∣

∫

�

∣∣∇qα
n

∣∣−
∫

�

|∇qα
P |
∣∣∣∣ ≤

∥∥∇qα
n − ∇qα

P

∥∥
L1(�)

≤ |�|1/2 ∥∥∇qα
n − ∇qα

P

∥∥
L2(�)

→ 0 as n → ∞
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so that (4.10) follows from the triangle inequality. By (4.9) and the fact that qα
P is

constant on {x ∈ � | qα
P (x) �= qα(x)}, we have that

∫

�

|∇qα
P | =

∫

{x∈� | qα
P (x)=qα(x)}

|∇qα
P | ≤

∫

�

|∇qα| ≤ Cα +
∫

�

|∇q|. (4.11)

By the optimality of qn , we get for all n ∈ N that

J hn
δn

(qn) + ρ

∫

�

√
|∇qn|2 + εhn ≤ J hn

δn

(
qα
n

)+ ρ

∫

�

√
|∇qα

n |2 + εhn , (4.12)

where, by (3.7) and (3.9),

J hn
δn

(
qα
n

) ≤ C

holds for some C independent of n and α. We then deduce from (4.10)–(4.12) that

∫

�

|∇qn| ≤
∫

�

√
|∇qn|2 + εhn ≤ C(ρ)

for another constantC(ρ) independent of n and α, but depending on ρ, so the sequence
(qn) is bounded in the BV (�)-norm. Thus, by Lemma 2.5, a subsequence which is
denoted by the same symbol and an element q̂ ∈ Qad exist such that (qn) converges
to q̂ in the L1(�)-norm and

∫

�

|∇q̂| ≤ lim inf
n→∞

∫

�

|∇qn| ≤ lim inf
n→∞

∫

�

√
|∇qn|2 + εhn . (4.13)

Furthermore, due to Lemma 4.3 we get that

Jδ(q̂) = lim
n→∞J hn

δn
(qn) (4.14)

and

Jδ

(
qα
P

) = lim
n→∞J hn

δn

(
qα
n

)
. (4.15)

Therefore, by (4.10)–(4.15), we have that

Jδ(q̂) + ρ

∫

�
|∇q̂| ≤ lim

n→∞J hn
δn

(qn) + lim inf
n→∞ ρ

∫

�

√
|∇qn |2 + εhn , by (4.14) and (4.13)

= lim inf
n→∞

(
J hn

δn
(qn) + ρ

∫

�

√
|∇qn |2 + εhn

)

≤ lim inf
n→∞

(
J hn

δn

(
qα
n
)+ ρ

∫

�

√
|∇qα

n |2 + εhn

)
, by (4.12)

123



Identifying conductivity in electrical impedance… 747

= Jδ

(
qα
P
)+ ρ

∫

�
|∇qα

P |, by (4.15) and (4.10)

≤ Jδ

(
qα
P
)+ ρ

∫

�
|∇q| + Cαρ, by (4.11). (4.16)

Now, by the definition of qα
P , we get |qα

P − q| ≤ |qα − q| a.e. in � and therefore

∥∥qα
P − q

∥∥
L1(�)

≤ ∥∥qα − q
∥∥
L1(�)

≤ Cα.

Sending α to zero in the last inequality and applying Lemma 2.4, we arrive at

Jδ(q̂) + ρ

∫

�

|∇q̂| ≤ Jδ(q) + ρ

∫

�

|∇q| ,

where q̂ ∈ Qad and q ∈ Qad is arbitrary. This means that q̂ is a solution to
(
Pρ,δ

)

and (qn) converges to q̂ in the L1(�)-norm.
Next, as above, from q̂ we can obtain q̂α , q̂α

P , q̂
α
n and note that

(
q̂α
n

)
converges to q̂α

P
in the H1(�)-norm, so also in the L1(�)-norm, as n tends to∞while

(
q̂α
P

)
converges

to q̂ in the L1(�)-norm as α tends to 0. Then, by the optimality of qn , we have that

J hn
δn

(qn) + ρ

∫

�

√
|∇qn|2 + εhn ≤ J hn

δn

(
q̂α
n

)+ ρ

∫

�

√
|∇q̂α

n |2 + εhn . (4.17)

By (4.14), we then obtain that

ρ lim sup
n→∞

∫

�
|∇qn | = lim

n→∞J hn
δn

(qn) + ρ lim sup
n→∞

∫

�
|∇qn | − Jδ(q̂)

≤ lim sup
n→∞

(
J hn

δn
(qn) + ρ

∫

�

√
|∇qn |2 + εhn

)
− Jδ(q̂)

≤ lim sup
n→∞

(
J hn

δn

(
q̂α
n
)+ ρ

∫

�

√
|∇q̂α

n |2 + εhn

)
− Jδ(q̂), by (4.17)

= Jδ(q̂
α
P ) + ρ

∫

�
|∇q̂α

P | − Jδ(q̂), by Lemma 4.3

≤ Jδ(q̂
α
P ) + ρ

∫

�
|∇q̂| + Cαρ − Jδ(q̂).

Sending α to zero, we obtain from the last inequality that lim supn→∞
∫
�

|∇qn| ≤∫
�

|∇q̂|. Combining this with (4.13), we conclude limn→∞
∫
�

|∇qn| = ∫
�

|∇q̂|,
which finishes the proof. ��

Next we show convergence of the regularized finite element approximations to a
solution of the identification problem. Before doing so, we introduce the notion of the
total variation-minimizing solution.

Lemma 4.4 The problem

min
q∈IQad ( j

†,g†)

∫

�

|∇q| (IP)
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attains a solution, which is called the total variation-minimizing solution of the iden-
tification problem, where

IQad

(
j†, g†

)
:=
{
q ∈ Qad

∣∣ �q j
† = g†

}
=
{
q ∈ Qad

∣∣ Nq j
† = Dqg

†
}

. (4.18)

Proof By our assumption on consistency of the exact boundary data, the set
IQad

(
j†, g†

)
is non-empty. Let (qn) ⊂ IQad

(
j†, g†

)
be a minimizing sequence

of the problem (IP), i.e.

lim
n→∞

∫

�

|∇qn| = inf
q∈IQad ( j

†,g†)

∫

�

|∇q| . (4.19)

Then due to Lemma 2.5, a subsequence which is denoted by the same symbol and an
element q̃ ∈ Qad exist such that (qn) converges to q̃ in the L1(�)-norm and

∫

�

|∇q̃| ≤ lim
n→∞

∫

�

|∇qn|. (4.20)

On the other hand, by Lemma 2.4, we have that

(
Nqn j

†,Dqn g
†
)

→
(
Nq̃ j

†,Dq̃ g
†
)
in the H1(�) × H1(�)-norm.

By the definition of the set IQad

(
j†, g†

)
, we get that Nqn j

† = Dqn g
† which implies

Nq̃ j† = Dq̃ g†. Combining this with (4.19) and (4.20), we conclude that

∫

�

|∇q̃| ≤ inf
q∈IQad ( j

†,g†)

∫

�

|∇q| ,

where q̃ ∈ IQad

(
j†, g†

)
, which finishes the proof. ��

Remark 4.5 Note that due to the lack of strict convexity of the cost functional and the
admissible set, a solution of (IP) may be nonunique.

Lemma 4.6 For any fixed q ∈ Qad an element q̂h ∈ Qh
ad exists such that

∥∥q̂h − q
∥∥
L1(�)

≤ Ch| log h| (4.21)

and

lim
h→0

∫

�

∣∣∇q̂h
∣∣ =

∫

�

|∇q|. (4.22)

In case q ∈ W 1,p(�) ↪→ C(�) with p > d the above element q̂h can be taken as
I h1 q.

123



Identifying conductivity in electrical impedance… 749

Proof According to Lemma 2.6, for any fixed α ∈ (0, 1) an element qα ∈ C∞(�)

exists such that

∥∥q−qα
∥∥
L1(�)

≤Cα,

∫

�

∣∣∇qα
∣∣ ≤ Cα+

∫

�

|∇q| and
∫

�

|D2qα| ≤ Cα−1
∫

�

|∇q|,

where the positive constant C is independent of α. Setting

qα
P := max

(
q,min

(
qα, q

)) ∈ W 1,∞(�) ∩ Q ⊂ Qad and q̂h := I h1 q
α
P ∈ Qh

ad ,

we then have

∣∣̂qh(x) − q(x)
∣∣ = ∣∣I h1 qα(x) − q(x)

∣∣ a.e. in �1 := {x ∈ � | q ≤ qα ≤ q}

and

∣∣̂qh(x) − q(x)
∣∣ ≤ ∣∣qα(x) − q(x)

∣∣ a.e. in � \ �1.

We thus have, using for example [11, Theorem 4.4.20], with an another positive con-
stant C independent of α that

∥
∥q̂h − q

∥
∥
L1(�)

≤ ∥∥I h1 qα − q
∥
∥
L1(�1)

+ ∥∥qα − q
∥
∥
L1(�\�1)

≤ ∥∥I h1 qα − qα
∥∥
L1(�)

+ ∥∥q − qα
∥∥
L1(�1)

+ ∥∥qα − q
∥∥
L1(�\�1)

≤ Ch
∫

�

∣∣∇qα
∣∣+ ∥∥q − qα

∥∥
L1(�)

≤ Ch

(
Cα +

∫

�

|∇q|
)

+ Cα ≤ C(h + α)

≤ Ch| log h|

for α ∼ h| log h|. To establish the limit (4.22) we first note that

∫

�

∣∣∇ I h1 q
α
P

∣∣ ≤
∫

�

∣∣∇ I h1 q
α
∣∣. (4.23)

Indeed, we rewrite

∫

�

∣
∣∇ I h1 q

α
P

∣
∣=

∑

T∈T h
1

∫

T

∣
∣∇ I h1 q

α
P

∣
∣+

∑

T∈T h
2

∫

T

∣
∣∇ I h1 q

α
P

∣
∣+

∑

T∈T h\
(
T h
1 ∪T h

2

)

∫

T

∣
∣∇ I h1 q

α
P

∣
∣,

(4.24)

where T h
1 includes all triangles T ∈ T h with its vertices x1, . . . , xd , xd+1 at which

either qα(x1), . . . , q
α(xd+1) < q or qα(x1), . . . , q

α(xd+1) > q
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while T h
2 consists all triangles T ∈ T h with its vertices x1, . . . , xd , xd+1 at which

qα(x1), . . . , q
α(xd+1) ∈ [q, q].

We then have that

∑

T∈T h
1

∫

T

∣∣∇ I h1 q
α
P

∣∣ = 0 and
∑

T∈T h
2

∫

T

∣∣∇ I h1 q
α
P

∣∣ =
∑

T∈T h
2

∫

T

∣∣∇ I h1 q
α
∣∣. (4.25)

Now let T ∈ T h \ (T h
1 ∪ T h

2

)
be arbitrary. In Cartesian coordinate system Oxz with

x ∈ R
d we consider plane surfaces z = I h1 q

α
P (x) and z = I h1 q

α(x) with x ∈ T
and denote by �mP and �m the constant unit normals on these surfaces in the upward z

direction, respectively. By the definition of the projection qα
P , we get 0 < ̂(Oz, �mP ) ≤

̂(Oz, �m) < π/2 and so that 0 < cos ̂(Oz, �m) ≤ cos ̂(Oz, �mP ) < 1. Since

cos ̂(Oz, �m) = 1
√∣∣∇ I h1 q

α
∣∣2 + 1

and cos ̂(Oz, �mP ) = 1
√∣∣∇ I h1 q

α
P

∣∣2 + 1
,

it follows that
∣
∣∇ I h1 q

α(x)
∣
∣ ≥ ∣∣∇ I h1 q

α
P (x)

∣
∣ for all x ∈ T . We thus have that

∑

T∈T h\
(
T h
1 ∪T h

2

)

∫

T

∣∣∇ I h1 q
α
P

∣∣ ≤
∑

T∈T h\
(
T h
1 ∪T h

2

)

∫

T

∣∣∇ I h1 q
α
∣∣. (4.26)

The inequality (4.23) is then directly deduced from (4.24)–(4.26). We therefore have
with a constant C independent of α that

∫

�

∣∣∇q̂h
∣∣−
∫

�

∣∣∇q
∣∣ =

∫

�

∣∣∇ I h1 q
α
P

∣∣−
∫

�

∣∣∇q
∣∣ ≤

∫

�

∣∣∇ I h1 q
α
∣∣−
∫

�

∣∣∇q
∣∣

≤
∫

�

∣∣∇(I h1 qα − qα
)∣∣+

∫

�

∣∣∇qα
∣∣−
∫

�

∣∣∇q
∣∣

≤ Ch
∫

�

∣∣D2qα
∣∣+ Cα

≤ CChα−1
∫

�

|∇q| + Cα

≤ C
(| log h|−1 + h| log h|)→ 0 as h → 0 and for α ∼ h| log h|.

Combining this with (4.21) and Lemma 2.5, we obtain that

∫

�

|∇q| ≤ lim inf
h→0

∫

�

∣
∣∇q̂h

∣
∣ ≤ lim sup

h→0

∫

�

∣
∣∇q̂h

∣
∣ ≤

∫

�

|∇q|,

which finishes the proof. ��
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Lemma 4.7 Let (q, j, g) ∈ Qad × H−1/2
−c f (∂�) × H1/2

� (∂�) be arbitrary. Then the
convergence

�̂h
q ( j, g) :=

∥∥
∥N h

q̂h j − Nq j
∥∥
∥
H1(�)

+
∥∥
∥Dh

q̂h g − Dqg
∥∥
∥
H1(�)

→ 0 as h → 0

holds, where q̂h is generated from q according to Lemma 4.6.

Proof The assertion follows directly from Lemmas 4.3 and 4.6. ��
Additional smoothness assumptions enable an error estimate of �̂h

q ( j, g).

Lemma 4.8 Let (q, j, g) ∈ Qad × H−1/2
−c f (∂�) × H1/2

� (∂�) be arbitrary. Assume

that Nq j,Dqg ∈ H2(�). Then

�̂h
q ( j, g) ≤ Cr

(
h| log h|)r with

{
r < 1/2 if d = 2 and

r = 1/3 if d = 3.
(4.27)

Proof Due to Lemma 3.1, since Nq j ∈ H2(�), we get that

∥∥∥Nq j − �h�Nq j
∥∥∥
H1(�)

≤ Ch. (4.28)

Furthermore, it follows from Lemma 4.6 that

∥∥q − q̂h
∥∥
L p(�)

=
(∫

�

|q − q̂h | |q − q̂h |p−1
)1/p

≤
(
(2q)p−1 Ch| log h|

)1/p

≤ C
(
h| log h|)1/p (4.29)

for p ∈ [1,∞). Like in (4.5), using (3.6) and (2.4), we infer that

∫

�

q̂h∇N h
q̂h j · ∇ϕh = 〈 j, γ ϕh 〉+

(
f, ϕh

)
=
∫

�

q∇Nq j · ∇ϕh

for all ϕh ∈ Vh
1,� and obtain that

∫

�

q̂h∇
(
N h

q̂h j − �h�Nq j
)

· ∇ϕh =
∫

�

(
q − q̂h

)∇Nq j · ∇ϕh

+
∫

�

q̂h∇
(
Nq j − �h�Nq j

)
· ∇ϕh . (4.30)

Since H2(�) is embedded in W 1,s(�) with

s

{
< ∞ if d = 2

= 6 if d = 3
(4.31)
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(see, for example, [1, Theorem 5.4]), it follows from Cauchy–Schwarz and Hölder’s
inequality that

∫

�

(
q − q̂h

)∇Nq j · ∇ϕh ≤
(∫

�

(
q − q̂h

)2|∇Nq j |2
)1/2 (∫

�

∣∣∇ϕh
∣∣2
)1/2

≤ ∥∥q − q̂h
∥
∥
L2s/(s−2)(�)

∥
∥∇Nq j

∥
∥
Ls (�)

∥
∥ϕh

∥
∥
H1(�)

≤ C
∥∥q − q̂h

∥∥
L2s/(s−2)(�)

∥∥ϕh
∥∥
H1(�)

.

Then taking ϕh = N h
q̂h

j − �h�Nq j ∈ Vh
1,� and using (2.2), we infer from (4.30) that

∥∥∥N h
q̂h j − �h�Nq j

∥∥∥
H1(�)

≤ C

(∥∥q − q̂h
∥∥
L2s/(s−2)(�)

+
∥∥∥Nq j − �h�Nq j

∥∥∥
H1(�)

)

≤ C
(
h| log h|)(s−2)/(2s) + Ch ≤ C

(
h| log h|)(s−2)/(2s)

,

by (4.28)–(4.29). Thus, applying the triangle inequality and (4.28) again, we infer that

∥∥
∥Nq j − N h

q̂h j
∥∥
∥
H1(�)

≤
∥∥
∥Nq j − �h�Nq j

∥∥
∥
H1(�)

+
∥∥
∥�h�Nq j − N h

q̂h j
∥∥
∥
H1(�)

≤ C
(
h| log h|)(s−2)/(2s)

.

Similarly, we also get
∥∥∥Dqg − Dh

q̂h
g
∥∥∥
H1(�)

≤ C
(
h| log h|)(s−2)/(2s) and so that

�̂h
q ( j, g) ≤ C

(
h| log h|)(s−2)/(2s)

for s as in (4.31), which yields the assertion. ��

With an appropriate a priori choice of the regularization parameter we get conver-
gence under conditions similar to those stated, e.g., in [35] in the Hilbert space setting.

Theorem 4.9 Let (hn)n, (δn)n and (ρn)n be any positive sequences such that

ρn → 0,
δn√
ρn

→ 0 and
�̂
hn
q
(
j†, g†

)

√
ρn

→ 0 as n → ∞, (4.32)

where q is any solution to Nq j† = Dqg†. Moreover, assume that
(
jδn , gδn

)
is a

sequence satisfying

∥∥ jδn − j†
∥∥
H−1/2(∂�)

+ ∥∥gδn − g†
∥∥
H1/2(∂�)

≤ δn
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and that qn := qhnρn ,δn
is an arbitrary minimizer of

(
Phn

ρn ,δn

)
for each n ∈ N. Then a

subsequence of (qn) which is not relabelled and a solution q† to (IP) exist such that

lim
n→∞

∥∥qn − q†
∥∥
L1(�)

= 0 and lim
n→∞

∫

�

|∇qn| =
∫

�

∣∣∇q†
∣∣. (4.33)

Furthermore,
(
N hn

qn jδn
)
and

(
Dhn

qn gδn

)
converge to the unique weak solution �† =

�†(q†, j†, g†) of the boundary value problem (1.1)–(1.3) in the H1(�)-norm. If q†

is unique, then convergence (4.33) holds for the whole sequence.

Uniform L∞ boundedness of (qn) together with interpolation implies that conver-
gence actually takes place in any L p space with p ∈ [1,∞].

Remark 4.10 In case Nq j†,Dqg† ∈ H2(�) Lemma 4.8 shows that �̂h
q

(
j†, g†

) ≤
C
(
h| log h|)r with r as in (4.27). Therefore, in view of (4.32), convergence is obtained

if the sequence (ρn) is chosen such that

ρn → 0,
δn√
ρn

→ 0 and

(
hn| log hn|

)r
√

ρn
→ 0 as n → ∞.

By regularity theory for elliptic boundary value problems (see, for example, [26,42]),
if j† ∈ H1/2(�), g† ∈ H3/2(�), q ∈ C0,1(�), f ∈ L2(�) and either ∂� is C1,1-
smooth or the domain � is convex, then Nq j†,Dqg† ∈ H2(�).

Proof of Theorem 4.9 We have from the optimality of qn that

J hn
δn

(qn) + ρn

∫

�

√
|∇qn|2 + εhn ≤ J hn

δn

(
q̂hn
)+ ρn

∫

�

√∣∣∇q̂hn
∣∣2 + εhn , (4.34)

where q̂hn is generated from q according to Lemma 4.6, and

J hn
δn

(
q̂hn
) =

∫

�

q̂hn∇
(
N hn

q̂hn
jδn − Dhn

q̂hn
gδn

)
· ∇
(
N hn

q̂hn
jδn − Dhn

q̂hn
gδn

)

≤ q
∥∥∥N hn

q̂hn
jδn − Dhn

q̂hn
gδn

∥∥∥
2

H1(�)

= q
∥∥∥N hn

q̂hn
jδn − N hn

q̂hn
j† + N hn

q̂hn
j† − Dhn

q̂hn
g† − Nq j

†

+Dqg
† + Dhn

q̂hn
g† − Dhn

q̂hn
gδn

∥∥
∥
2

H1(�)

≤ 4q
(∥∥
∥N hn

q̂hn
jδn − N hn

q̂hn
j†
∥∥
∥
2

H1(�)
+
∥∥
∥Dhn

q̂hn
g† − Dhn

q̂hn
gδn

∥∥
∥
2

H1(�)

+
∥∥
∥N hn

q̂hn
j† − Nq j

†
∥∥
∥
2

H1(�)
+
∥∥
∥Dhn

q̂hn
g† − Dqg

†
∥∥
∥
2

H1(�)

)
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≤ C

(∥
∥∥ jδn − j†

∥
∥∥
2

H−1/2(∂�)
+
∥
∥∥gδn − g†

∥
∥∥
2

H−1/2(∂�)

)
+ C �̂hn

q

(
j†, g†

)2

≤ C

(
δ2n + �̂hn

q

(
j†, g†

)2)
,

where we have used Lemma 4.2 and the fact Nq j† = Dqg†. Moreover, by Lemma
4.6, we have that

lim
n→∞

∫

�

√∣∣∇q̂hn
∣∣2 + εhn = lim

n→∞

∫

�

∣∣∇q̂hn
∣∣ =

∫

�

|∇q|. (4.35)

We therefore conclude from (4.34) and (4.32) that

lim
n→∞

J hn
δn

(
q̂hn
)

ρn
= 0, lim

n→∞J hn
δn

(qn) = 0 (4.36)

and

lim sup
n→∞

∫

�
|∇qn | ≤ lim sup

n→∞

∫

�

√∣∣∇qn
∣∣2 + εhn ≤ lim sup

n→∞

∫

�

√∣∣∇q̂hn
∣∣2 + εhn =

∫

�
|∇q|.
(4.37)

Thus, (qn) is bounded in the BV (�)-norm. A subsequence which is denoted by the
same symbol and an element q† ∈ Qad exist such that (qn) converges to q† in the
L1(�)-norm and

∫

�

∣∣∇q†
∣∣ ≤ lim inf

n→∞

∫

�

|∇qn|. (4.38)

Using Lemma 4.2 again, we infer that

∥∥∥N hn
qn j† − Dhn

qn g
†
∥∥∥
2

H1(�)

≤ 3

(∥∥∥N hn
qn j† − N hn

qn jδn

∥∥∥
2

H1(�)
+
∥∥∥Dhn

qn g
† − Dhn

qn gδn

∥∥∥
2

H1(�)

+
∥
∥∥N hn

qn jδn − Dhn
qn gδn

∥
∥∥
2

H1(�)

)

≤ Cδ2n + 3
∥∥∥N hn

qn jδn − Dhn
qn gδn

∥∥∥
2

H1(�)

≤ C
(
δ2n + J hn

δn
(qn)

)
.

Thus, using Lemma 4.3, we obtain from the last inequality and (4.36) that

∥∥
∥Nq† j

† − Dq†g
†
∥∥
∥
2

H1(�)
= lim

n→∞
∥∥
∥N hn

qn j† − Dhn
qn g

†
∥∥
∥
2

H1(�)
= 0
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and so that

Nq† j
† = Dq†g

†, i.e. q† ∈ IQad

(
j†, g†

)
. (4.39)

Furthermore, it follows from (4.37)–(4.38) that

∫

�

∣∣∇q†
∣∣ ≤ lim inf

n→∞

∫

�

|∇qn| ≤ lim sup
n→∞

∫

�

|∇qn| ≤
∫

�

|∇q|

for any solution q to Nq j† = Dqg†, hence, in view of (4.39), q† is a total variation
minimizing solution of the identification problem, i.e. a solution to (IP). Moreover,
by setting q = q†, we get

∫

�

∣∣∇q†
∣∣ = lim

n→∞

∫

�

|∇qn|.

Finally, Lemma 4.3 shows that the sequence
(
N hn

qn jδn ,D
hn
qn gδn

)
converges in the

H1(�) × H1(�)-norm to
(
Nq† j

†,Dq†g
†
)
, where �† := Nq† j

† = Dq†g
† is the

unique weak solution of the elliptic system (1.1)–(1.3), which finishes the proof. ��

5 Projected Armijo algorithm and numerical test

In this section we present the projected Armijo algorithm (see [27, Chapter 5]) for

numerically solving the minimization problem
(
Ph

ρ,δ

)
. We note that many other effi-

cient solution methods are available, see for example [8].

5.1 Projected Armijo algorithm

5.1.1 Differentiability of the cost functional

Similarly toLemma2.3 one also sees that the discreteNeumann andDirichlet operators
N h , Dh are Fréchet differentiable on the set Q. For given jδ ∈ H−1/2(∂�) and each
q ∈ Q the Fréchet derivativeN h ′

(q)ξ =: N h
q

′
jδ(ξ) in the direction ξ ∈ L∞(�) is an

element of Vh
1,� and satisfies the equation

∫

�

q∇N h
q

′
jδ(ξ) · ∇ϕh = −

∫

�

ξ∇N h
q jδ · ∇ϕh (5.1)

for all ϕh ∈ Vh
1,�. Likewise, for fixed gδ ∈ H1/2(∂�) and each q ∈ Q the Fréchet

derivative Dh ′
(q)ξ =: Dh

q
′
gδ(ξ) in the direction ξ ∈ L∞(�) is an element of Vh

1,0
and satisfies the equation

∫

�

q∇Dh
q
′
gδ(ξ) · ∇ψh = −

∫

�

ξ∇Dh
q gδ · ∇ψh (5.2)
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for all ψh ∈ Vh
1,0.

The functional J h
δ is therefore Fréchet differentiable on the setQ. For each q ∈ Q

the action of the Fréchet derivative in the direction ξ ∈ L∞(�) is given by

J h
δ

′
(q)(ξ) =

∫

�

ξ∇
(
N h

q jδ − Dh
q gδ

)
· ∇
(
N h

q jδ − Dh
q gδ

)

+ 2
∫

�

q∇
(
N h

q
′
jδ(ξ) − Dh

q
′
gδ(ξ)

)
· ∇
(
N h

q jδ − Dh
q gδ

)

=
∫

�

ξ∇
(
N h

q jδ − Dh
q gδ

)
· ∇
(
N h

q jδ − Dh
q gδ

)

+ 2
∫

�

q∇N h
q

′
jδ(ξ) · ∇

(
N h

q jδ − Dh
q gδ

)
− 2

∫

�

q∇N h
q jδ · ∇Dh

q
′
gδ(ξ)

+ 2
∫

�

q∇Dh
q gδ · ∇Dh

q
′
gδ(ξ).

Since N h
q jδ,Dh

q gδ ∈ Vh
1,� and Dh

q
′
gδ(ξ) ∈ Vh

1,0 ⊂ Vh
1,�, it follows from (5.1), (3.6)

and (3.8) that

∫

�

q∇N h
q

′
jδ(ξ) · ∇

(
N h

q jδ − Dh
q gδ

)
−
∫

�

q∇N h
q jδ · ∇Dh

q
′
gδ(ξ)

+
∫

�

q∇Dh
q gδ · ∇Dh

q
′
gδ(ξ)

= −
∫

�

ξ∇N h
q jδ · ∇

(
N h

q jδ − Dh
q gδ

)
−
〈
jδ, γDh

q
′
gδ(ξ)

〉

−
(
f,Dh

q
′
gδ(ξ)

)
+
(
f,Dh

q
′
gδ(ξ)

)

= −
∫

�

ξ∇N h
q jδ · ∇

(
N h

q jδ − Dh
q gδ

)

and so that

J h
δ

′
(q)(ξ) =

∫

�

ξ∇
(
N h

q jδ − Dh
q gδ

)
· ∇
(
N h

q jδ − Dh
q gδ

)

− 2
∫

�

ξ∇N h
q jδ · ∇

(
N h

q jδ − Dh
q gδ

)

=
∫

�

ξ
(
∇Dh

q gδ · ∇Dh
q gδ − ∇N h

q jδ · ∇N h
q jδ
)

.

Therefore, the derivative of the cost functional ϒh
ρ,δ of

(
Ph

ρ,δ

)
at q ∈ Qh

ad in the

direction ξ ∈ Vh
1 is given by

ϒh
ρ,δ

′
(q)(ξ) =

∫

�

ξ
(
∇Dh

q gδ · ∇Dh
q gδ − ∇N h

q jδ · ∇N h
q jδ
)

+ ρ

∫

�

∇q · ∇ξ
√|∇q|2 + εh

.

(5.3)
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Let {N j : j = 1, . . . , Mh} be the set of nodes of the triangulation T h , then Vh
1 is a

finite dimensional vector space with dimension Mh . Let {φ1, . . . , φMh } be the basis
of Vh

1 consisting hat functions, i.e. φi (N j ) = δi j for all 1 ≤ i, j ≤ Mh , where δi j is
the Kronecker symbol. Each functional u ∈ Vh

1 then can be identified with a vector

(u1, . . . , uMh ) ∈ R
Mh

consisting of the nodal values of u, i.e.

u =
Mh∑

j=1

u jφ j with u j = u(N j ).

In Vh
1 we use the Euclidean inner product 〈·, ·〉E . For each u = (u1, . . . , uMh ) and

v = (v1, . . . , vMh ), we have 〈u, v〉E = ∑Mh

j=1 u jv j . Let us denote the gradient of

ϒh
ρ,δ at q ∈ Qh

ad by ∇ϒh
ρ,δ(q) = (ϒ1, . . . , ϒMh ). We then have from (5.3) with

ξ = (ξ1, . . . , ξMh ) ∈ Vh
1 that

Mh∑

j=1

ξ j

∫

�

(

φ j

(
∇Dh

q gδ · ∇Dh
q gδ − ∇N h

q jδ · ∇N h
q jδ
)

+ ρ∇q · ∇φ j√|∇q|2 + εh

)

=
Mh∑

j=1

ξ jϒ j

which yields

ϒ j =
∫

�

φ j

(
∇Dh

q gδ · ∇Dh
q gδ − ∇N h

q jδ · ∇N h
q jδ
)

+ ρ

∫

�

∇q · ∇φ j√|∇q|2 + εh
(5.4)

for all j = 1, . . . , Mh .

5.1.2 Algorithm

The projected Armijo algorithm is then read as: given a step size control β ∈ (0, 1),
an initial approximation qh0 ∈ Qh

ad , a smoothing parameter εh , number of iteration N
and setting k = 0.

1. Compute N h
qhk

jδ and Dh
qhk
gδ from the variational equations

∫

�

qhk ∇N h
qhk

jδ · ∇ϕh = 〈 jδ, γ ϕh 〉+
(
f, ϕh

)
for all ϕh ∈ Vh

1,� (5.5)

and

∫

�

qhk ∇Dh
qhk
gδ · ∇ψh =

(
f, ψh

)
for all ψh ∈ Vh

1,0, (5.6)

respectively, as well as ϒh
ρ,δ(q

h
k ) according to (3.12), (3.13).
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2. Compute the gradient ∇ϒh
ρ,δ(q

h
k ) with the j th-component given by

ϒ j =
∫

�

φ j

(
∇Dh

qhk
gδ · ∇Dh

qhk
gδ − ∇N h

qhk
jδ · ∇N h

qhk
jδ
)

+ ρ

∫

�

∇qhk · ∇φ j√
|∇qhk |2 + εh

,

due to (5.4).

3. Set Gh
k :=∑Mh

j=1 ϒ jφ j .
(a) Compute

q̃hk := max
(
q,min

(
qhk − βGh

k , q
))

,

N h
q̃hk

jδ ,Dh
q̃hk
gδ , according to (5.5), (5.6), ϒh

ρ,δ(q̃
h
k ), according to (3.12), (3.13),

and
L := ϒh

ρ,δ(q̃
h
k ) − ϒh

ρ,δ(q
h
k ) + τβ

∥∥q̃hk − qhk
∥∥2
L2(�)

with τ = 10−4.
(b) If L ≤ 0

go to the next step (c) below
else

set β := β
2 and then go back (a)

(c) Update qhk = q̃hk , set k = k + 1.
4. Compute

Tolerance := ∥∥∇ϒh
ρ,δ(q

h
k )
∥∥
L2(�)

− τ1 − τ2
∥∥∇ϒh

ρ,δ(q
h
0 )
∥∥
L2(�)

(5.7)

with τ1 := 10−3h1/2 and τ2 := 10−2h1/2. If Tolerance ≤ 0 or k > N , then stop;
otherwise go back Step 1.

5.2 Numerical tests

We now illustrate the theoretical result with numerical examples. For this purpose we
consider the the boundary value problem

−∇ · (q†∇�
) = f in �, (5.8)

q†∇� · �n = j† on ∂� and (5.9)

� = g† on ∂� (5.10)

with � = {x = (x1, x2) ∈ R
2 | − 1 < x1, x2 < 1}. The special constants q and q in

the definition of the set Q according to (1.4) are respectively chosen as 0.05 and 10.
We assume that the known source f is discontinuous and given by

f = 3

2
χD − 1

2
χ�\D,
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where χD is the characteristic function of D := {(x1, x2) ∈ �
∣
∣ |x1| ≤ 1/2 and |x2| ≤

1/2}. Note that ( f, 1) = 0, so that c f = 0. The sought conductivity q† in the equation
(5.8)–(5.9) is assumed to be discontinuous and given by

q† = 3χ�1 + 2χ�2 + χ�\(�1∪�2),

where

�1 :=
{
(x1, x2) ∈ �

∣∣ 9
(
x1 + 1/2

)2 + 16
(
x2 − 1/2

)2 ≤ 1

}
and

�2 :=
{
(x1, x2) ∈ �

∣∣
(
x1 − 1/2

)2 +
(
x2 + 1/2

)2 ≤ 1/16

}
.

For the discretization we divide the interval (−1, 1) into � equal segments and so
that the domain � = (−1, 1)2 is divided into 2�2 triangles, where the diameter of

each triangle is h� =
√
8

�
. In the minimization problem

(
Ph

ρ,δ

)
we take h = h� and

ρ = ρ� = 0.01
√
h�. We use the projected Armijo algorithm which is described in

Sect. 5.1 for computing the numerical solution of the problem
(
Ph�

ρ�,δ�

)
. The step size

control is chosen with β = 0.75 while the smoothing parameter εh� = ρ�. The initial
approximation is the constant function defined by qh�

0 = 1.5.

Example 5.1 In this example the Neumann boundary condition j† ∈ H−1/2
−c f (∂�) in

the Eq. (5.9) is chosen to be the piecewise constant function defined by

j† = χ(0,1]×{−1} − χ[−1,0]×{1} + 2χ(0,1]×{1} − 2χ[−1,0]×{−1}
+ 3χ{−1}×(−1,0] − 3χ{1}×(0,1) + 4χ{1}×(−1,0] − 4χ{−1}×(0,1)

(5.11)

so that
〈
j†, 1

〉 = 0. The Dirichlet boundary condition g† ∈ H1/2
� (∂�) in the Eq. (5.10)

is then defined as g† = γNq† j
†,whereNq† j

† is the unique weak solution to the Neu-
mann problem (5.8)–(5.9). For the numerical solution of the pure Neumann problem
(5.8)–(5.9) we use the penalty technique, see e.g. [9,25] for more details. Furthermore,
to avoid a so-called inverse crime, we generate the data on a finer grid than those used
in the computations. To do so, we first solve the Neumann problem (5.8)–(5.9) on the
very fine grid � = 128, and then handle ( j†, g†) on this grid for our computational
process below.

We assume that noisy observations are available in the form

(
jδ�

, gδ�

) =
(
j† + θ� · R j†, g

† + θ� · Rg†

)
for some θ� > 0 depending on �,

(5.12)

where R j† and Rg† are ∂Mh� ×1-matrices of random numbers on the interval (−1, 1)
which are generated by the MATLAB function “rand” and ∂Mh� is the number of
boundary nodes of the triangulation T h� . The measurement error is then computed as
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δ� = ∥∥ jδ�
− j†

∥∥
L2(∂�)

+∥∥gδ�
− g†

∥∥
L2(∂�)

. To satisfy the condition δ� ·ρ−1/2
� → 0 as

� → ∞ in Theorem 4.9 we below take θ� = h�
√

ρ�. In doing so, we reversely mimic
the situation of a given sequence of noise levels δ� tending to zero and of choosing the
discretization level as well as the regularization parameter in dependence of the noise
level.

Our computational process will be started with the coarsest level � = 4. In each
iteration k we compute Tolerance defined by (5.7). Then the iteration is stopped if
Tolerance ≤ 0 or the number of iterations reaches the maximum iteration count of
1000. After obtaining the numerical solution of the first iteration process with respect
to the coarsest level � = 4, we use its interpolation on the next finer mesh � = 8
as an initial approximation qh�

0 for the algorithm on this finer mesh, and so on for
� = 16, 32, 64.

Let q� denote the conductivity obtained at the final iterate of the algorithm corre-
sponding to the refinement level �. Furthermore, let N h�

q�
jδ�

and Dh�
q�
gδ�

denote the
computed numerical solution to the Neumann problem

−∇ · (q�∇u) = f in � and q�∇u · �n = jδ�
on ∂�

and the Dirichlet problem

−∇ · (q�∇v) = f in � and v = g� on ∂�,

respectively. The notations N h�

q†
j† and Dh�

q†
g† of the exact numerical solutions are to

be understood similarly. We use the following abbreviations for the errors

L2
q = ∥∥q� − q†

∥∥
L2(�)

, L2
N = ∥∥N h�

q�
jδ�

− N h�

q†
j†
∥∥
L2(�)

and L2
D = ∥∥Dh�

q�
gδ�

− Dh�

q†
g†
∥∥
L2(�)

.

The numerical results are summarized in Tables 1 and 2, where we present the
refinement level �, the mesh size h� of the triangulation, the regularization parameter
ρ�, the measurement noise δ�, the number of iterations, the value of Tolerance, the
errors L2

q , L
2
N , L2

D, and their experimental order of convergence (EOC) defined by

EOC� := ln�(h1) − ln�(h2)

ln h1 − ln h2

with �(h) being an error functional with respect to the mesh size h. The convergence
history given in Tables 1 and 2 shows that the projected Armijo algorithm performs
well for our identification problem.

All figures presented hereafter correspond to the finest level � = 64. Figure 1
from left to right shows the interpolation I h�

1 q†, the numerical solution q� computed

by the algorithm at the 953th iteration, and the differences N h�
q�

jδ�
− N h�

q†
j† and

Dh�
q�
gδ�

− Dh�

q†
g†.
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Table 1 Refinement level �, mesh size h� of the triangulation, regularization parameter ρ�, measurement
noise δ�, number of iterates and value of tolerance

� h� ρ� δ� Iterate Tolerance

Convergence history

4 0.7071 8.4091e−3 0.1733 1000 0.2459

8 0.3536 5.9460e−3 8.4273e−2 1000 3.2771e−2

16 0.1766 4.2045e−3 3.4320e−2 1000 5.8479e−3

32 8.8388e−2 2.9730e−3 1.5877e−2 1000 9.4359e−5

64 4.4194e−2 2.1022e−3 6.7743e−3 953 −7.6116e−5

Table 2 Errors L2q , L
2
N , L2D , and their EOC between finest and coarsest level

� L2q L2N L2D EOCL2q
EOCL2N

EOCL2D

Convergence history and EOC

4 0.7906 0.3016 0.1371 – – –

8 0.4768 0.1546 6.2771e−2 0.7296 0.9637 1.1271

16 0.2306 6.9702e−2 2.1228e−2 1.0480 1.1497 1.5641

32 0.1271 3.0668e−2 9.9234e−3 0.8594 1.1845 1.0971

64 6.7791e−2 1.2116e−2 5.1055e−3 0.9068 1.3398 0.9588

Mean of EOC 0.8859 1.1594 1.1868

Fig. 1 Interpolation I
h�
1 q†, computed numerical solution q� of the algorithm at the 953th iteration, and

the differences N h�
q�

jδ� − N h�

q†
j† and Dh�

q�
gδ�

− Dh�

q†
g†, for � = 64, δ� = 6.7743e − 3

We observe a decrease of all errors as the noise level gets smaller, as expected from
our convergence result, however, with respect to different norms. In particular, in our
computations we use an L2 noise level, as realistic in applications.

Example 5.2 In this example we consider noisy observations in the form

(
jδ�

, gδ�

) =
(
j† + θ · R j†, g

† + θ · Rg†

)
,

where j† is defined by (5.11). This is different from (5.12), since here θ > 0 is
independent of �.

Using the computational process which was described as in Example 5.1 starting
with � = 4, in Table 3 we perform the numerical results for the finest grid � = 64 and
with different values of θ .
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Table 3 Numerical results for the finest grid � = 64 and with different values of θ

θ δ� Iterate Tolerance L2q L2N L2D

Numerical results for the finest grid � = 64

0.005 0.0167 991 −9.7239e−5 7.7012e−2 1.3085e−2 7.5847e−3

0.01 0.0316 1000 3.4160e−4 9.7971e−2 1.7896e−2 9.3278e−3

0.05 0.1567 1000 7.2599e−3 0.2467 0.1071 3.8046e−2

0.1 0.3308 1000 2.2546e−2 0.4059 0.2067 0.1077

Fig. 2 Computed numerical solution q� of the algorithm at the 991th iteration, and the differences q� −
I
h�
1 q†, N h�

q�
jδ� − N h�

q†
j† and Dh�

q�
gδ�

− Dh�

q†
g† for � = 64 and θ = 0.005, i.e. δ� = 0.0167

Fig. 3 Computed numerical solution q� of the algorithm at the 1000th iteration, and the differences q� −
I
h�
1 q†, N h�

q�
jδ� − N h�

q†
j† and Dh�

q�
gδ�

− Dh�

q†
g† for � = 64 and θ = 0.1, i.e. δ� = 0.3308

In Fig. 2 from left to right we show the computed numerical solution q� of the
algorithm at the final iteration, and the differences q� − I h�

1 q†, N h�
q�

jδ�
− N h�

q†
j† and

Dh�
q�
gδ�

−Dh�

q†
g† for � = 64 and θ = 0.005, i.e. δ� = 0.0167. Finally, Fig. 3 performs

the analog differences, but with θ = 0.1, i.e. δ� = 0.3308.

Example 5.3 In this example we assume that multiple measurements are available,

say
(
j iδ , g

i
δ

)
i=1,...,I . Then, the cost functional ϒh

ρ,δ and the problem
(
Ph

ρ,δ

)
can be

rewritten as

min
q∈Qh

ad

ϒ̄h
ρ,δ(q) := min

q∈Qh
ad

⎛

⎜⎜
⎜⎜
⎝

1

I

∑I

i=1

∫

�

q∇
(
N h

q j iδ − Dh
q g

i
δ

)
· ∇
(
N h

q j iδ − Dh
q g

i
δ

)

︸ ︷︷ ︸
:=J̄ h

δ (q)

+ρ

∫

�

√
|∇q|2 + εh

⎞

⎟⎟
⎟⎟
⎠

,
(
P̄h

ρ,δ

)
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Table 4 Numerical results for � = 64, θ = 0.1, i.e. δ� = 0.3308, and with multiple measurements
I = 1, 6, 16

Number of observations I Iterate Tolerance L2q L2N L2D

Numerical results for � = 64, θ = 0.1

1 1000 2.2546e−2 0.4059 0.2067 0.1077

6 1000 8.5684e−3 0.3159 7.4901e−2 4.4704e−2

16 1000 4.0133e−3 0.2547 5.6985e−2 3.2211e−2

Fig. 4 Computed numerical solution q� of the algorithm at the final iteration for � = 64, θ = 0.1, i.e.
δ� = 0.3308, and with multiple measurements I = 1, 6, 16, respectively

which also attains a solution q̄hρ,δ . The Neumann boundary condition in the Eq. (5.9)
is chosen in the same form of (5.11), i.e.

j†(A,B,C,D) = A · χ(0,1]×{−1} − A · χ[−1,0]×{1} + B · χ(0,1]×{1} − B · χ[−1,0]×{−1}
+ C · χ{−1}×(−1,0] − C · χ{1}×(0,1) + D · χ{1}×(−1,0] − D · χ{−1}×(0,1),

(5.13)
that depends on the constants A, B,C and D. Let g†(A,B,C,D) := γNq† j

†
(A,B,C,D) and

assume that noisy observations are given by

(
j (A,B,C,D)
δ�

, g(A,B,C,D)
δ�

)

=
(
j†(A,B,C,D) + θ · R j†

(A,B,C,D)

, g†(A,B,C,D) + θ · Rg†
(A,B,C,D)

)
with θ > 0,

(5.14)

where R j†
(A,B,C,D)

and Rg†
(A,B,C,D)

denote ∂Mh� ×1-matrices of random numbers on the

interval (−1, 1).
With θ = 0.1 and � = 64 the last line of Table 3 displays the numerical results for

the case (A, B,C, D) = (1, 2, 3, 4) and I = 1, which is repeated in the first line of
Table 4 for comparison.

We now fix D = 4. Let (A, B,C) be equal to all permutations of the set {1, 2, 3}.
Then, theEqs. (5.13)–(5.14) generate I = 6measurements. Similarly, let (A, B,C, D)

be all permutations of {1, 2, 3, 4}we get I = 16 measurements. The numerical results
for these two cases are presented in the two last lines of Table 4, respectively.
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Finally, in Fig. 4 from left to right we show the computed numerical solution q�

of the algorithm at the final iteration for � = 64, θ = 0.1, i.e. δ� = 0.3308, and
I = 1, 6, 16, respectively.

We observe that the use of multiple measurements improves the solution to yield
an acceptable result even in the presence of relatively large noise.
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