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Abstract A convex non-convex variational model is proposed for multiphase image
segmentation.We consider a specially designed non-convex regularization termwhich
adapts spatially to the image structures for a better control of the segmentation bound-
ary and an easy handling of the intensity inhomogeneities. The nonlinear optimization
problem is efficiently solved by an alternating directions methods of multipliers pro-
cedure. We provide a convergence analysis and perform numerical experiments on
several images, showing the effectiveness of this procedure.

Mathematics Subject Classification 65K10 · 65K15 · 47N10 · 52A41 · 90C26

1 Introduction

The fundamental taskof image segmentation is the partitioningof an image into regions
that are homogeneous according to a certain feature, such as intensity or texture, and
to identify more meaningful high level information in the image. This process plays
a fundamental role in many important application fields like computer vision, e.g.
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object detection, recognition,measurement and tracking.Many successfulmethods for
image segmentation are based on variational models where the regions of the desired
partition, or their edges, are obtained by minimizing suitable energy functions. The
most popular region-based segmentation model, the Mumford–Shah model, is a non-
convex variational model which pursues a piecewise constant/smooth approximation
of the given image where the boundaries are the transition between adjacent patches
of the approximation [25]. Many convex relaxation models have been proposed in the
literature to overcome the numerical difficulties of the non-convex problem [4–6,22]
at the same time accepting a compromise in terms of segmentation quality.

In this work we propose the following Convex Non-Convex (CNC) variational
segmentation model given by the sum of a smooth convex (quadratic) fidelity term
and a non-smooth non-convex regularization term:

min
u∈Rn

J (u; λ, T, a), J (u; λ, T, a) : =λ

2
‖u − b‖22 +

n∑

i=1
φ (‖(∇u)i‖2; T, a) ,

(1.1)

where λ > 0 is the regularization parameter, b ∈ R
n is the (vectorized) observed

image, (∇u)i ∈ R
2 represents the discrete gradient of the image u ∈ R

n at pixels
i , ‖ · ‖2 denotes the �2 norm and φ( · ; T, a) : [ 0,+∞) → R is a parameterized,
piecewise-defined non-convex penalty function with parameters T > 0, a > 0 and
with properties that will be outlined in Sect. 2. In particular, the parameter a allows to
tune the degree of non-convexity of the regularizer, while the parameter T is devised to
represent a given gradient magnitude threshold above which the boundaries surround-
ing the features in the image are considered salient in a given context. This parameter
plays a fundamental role in selecting which pixels do not have to be considered as
boundaries of segmented regions in the image. The role of the penalty function φ in the
regularization term of functional J in (1.1) is twofold. When the gradient magnitudes
fall within the first interval [0, T ), φ smooths the image values, since the correspond-
ing pixels belong to the inner parts of the regions to be segmented. In the interval
[T,+∞), φ is non-convex and then flat and hence it penalizes, in approximately the
same way, all the possible gradient magnitudes.

The functionalJ in (1.1) is non-smooth and canbe convexor non-convexdepending
on the parameters λ and a. In fact, the quadratic fidelity term is strongly convex and
its positive second-order derivatives hold the potential for compensating the negative
second-order derivatives in the regularization term.

The idea of constructing and then optimizing convex functionals containing non-
convex (sparsity-promoting) terms, referred to as CNC strategy, was first introduced
by Blake and Zisserman in [2], then proposed by Nikolova in [27] for the denoising
of binary images and was studied very recently by Selesnik and others for different
purposes, see [9,17,20,21,28,32,33] for more details. The attractiveness of such CNC
approach resides in its ability to promote sparsity more strongly than it is possible by
using only convex terms while at the same time maintaining convexity of the total
optimization problem, so that well-known reliable convex minimization approaches
can be used to compute the (unique) solution.
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Convex non-convex image segmentation 637

In this paper, we propose a two-stage variational segmentation method inspired by
the piecewise smoothing proposal in [5] which is a convex variant of the classical
Mumford–Shah model. In the first stage of our method an approximate solution u∗ of
the optimization problem (1.1) is computed. Once u∗ is obtained, then in the second
stage the segmentation is carried out by thresholding u∗ into different phases. The
thresholds can be set by the user or can be obtained automatically using any clustering
method, such as the K-means algorithm. As discussed in [5], this allows for a K-
phase segmentation (K ≥ 2) by choosing (K − 1) thresholds after u∗ is computed
in the first stage. In contrast, many multiphase segmentation methods such as those
in [15,23,24,38] require K to be set in advance which implies that if K changes, the
minimization problem has to be solved again.

The main contributions of this paper are summarized as follows.

• A new variational CNCmodel for multiphase segmentation of images is proposed,
where a unique non-convex regularization term allows for simultaneously penal-
izing both the non-smoothness of the inner segmented parts and the length of the
boundaries;

• Sufficient conditions for convexity are derived for the proposed model;
• A specially designed ADMM-based numerical algorithm is introduced together
with a specific multivariate proximal map;

• The proof of convergence of the minimization algorithm is provided which paves
the way to analogous proofs for similar CNC algorithms.

1.1 Related work

Image segmentation is a relevant problem in the understanding of high level infor-
mation from image vision. There exist many different ways to define the task of
segmentation ranging from template matching, component labelling, thresholding,
boundary detection, texture segmentation just to mention a few, and there is no univer-
sally accepted best segmentation procedure. The proposed work belongs to the class
of region-based (rather than edge-based) variational models for multiphase segmen-
tation without supervision constraints. Many variational models have been studied
for image segmentation since the Mumford–Shah functional was introduced in [25].
A prototypical example is the Chan–Vese [7] model, which seeks the desired seg-
mentation as the best piecewise constant approximation to a given image via a level
set formulation. A variety of methods have been developed to generalize it and over-
come the problem to solve nonconvex optimization problems. Specifically, in [22],
the piecewise constant Mumford–Shah model was convexified by using fuzzy mem-
bership functions. In [31], a new regularization term was introduced which allows to
choose the number of phases automatically. In [37,38], efficient methods based on the
fast continuous max-flow method were proposed. The segmentation method recently
proposed by Cai et al. in [5] aims to minimize a convex version of the Mumford–Shah
functional [25] by finding an optimal approximation of the image based on a piecewise
smooth function. The main difference between our method and the approach in [5] is
the regularization term: in [5], it consists of the sum of a smoothing term and a total
variation term, where the latter replaces the non-convex term measuring the boundary
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638 R. Chan et al.

length in the originalMumford–Shahmodel. However, it is well known that using non-
convex penalties instead of the total variation regularizer holds the potential for more
accurate penalizations [16,18,19]. In our variational model (1.1) we devise a unique
regularization function which forces at the same time the smoothing of the approxi-
mate solution in the inner parts and the preservation of the features (corners, edges,..)
along the boundaries of the segmented parts. This latter property is achieved by means
of a non-convex regularizer. However, the CNC strategy applied to the solution of the
optimization problem allows us to overcome the well-known numerical problems for
the solution of the non-convex piecewise smooth Mumford–Shah original model.

Thiswork is organized as follows. In Sect. 2we characterize the non-convex penalty
functions φ( · ; T, a) considered in the proposed model. In Sect. 3 we provide a suf-
ficient condition for strict convexity of the cost functional in (1.1) and in Sect. 4 we
illustrate in detail the ADMM-based numerical algorithm used to compute approxi-
mate solutions of (1.1). A proof of convergence of the numerical algorithm is given in
Sect. 5. Some segmentation results are illustrated in Sect. 6. Conclusions are drawn
in Sect. 7.

2 Design of the non-convex penalty functions

In the rest of the paper, we denote the sets of non-negative and positive real numbers
by R+ : = { t ∈ R : t ≥ 0} and R

∗+ : = { t ∈ R : t > 0}, respectively, and we
indicate by Id the d × d identity matrix.

In this section, we design a penalty function φ : R+ → R suitable for our purposes.
In particular, the regularization term in the proposed model (1.1) has a twofold aim: in
the first interval [0, T ) it has to behave like a smoothing regularizer, namely a quadratic
penalty, and in the second interval [T,∞) it serves to control the length of the region
boundaries, and is realized by a concave penalty function prolonged with a horizontal
line.

To fulfill the above requirements we used a piecewise polynomial function defined
over three subdomains [0, T ), [T, T2) and [T2,∞), with the following properties:

• φ continuously differentiable for t ∈ R+
• φ twice continuously differentiable for t ∈ R+\{T, T2}
• φ convex and monotonically increasing for t ∈ [0, T )

• φ concave and monotonically non-decreasing for t ∈ [T, T2)
• φ constant for t ∈ [T2,∞)

• inf t∈R+\{T,T2}φ′′ = −a.

Recalling that the independent variable t of φ(t; T, a) represents the gradient mag-
nitude, the free parameter T allows us to control the segmentation, in particular it
defines the lower slope considered as acceptable boundary for the segmentation pro-
cess. The parameter a is used to make the entire functional J in (1.1) convex, as will
be detailed in Sect. 3. Finally, the parameter T2 is defined to allow for a good balancing
between the two terms in the functional. In particular, the graph of the penalty function
φ must be pushed down when a increases. Towards this aim, we set T2 as T2(a) in
such a way that the slope in T given by φ′(T ; T, a) = (T2 − T )a is a monotonically
decreasing function of the parameter a. In this work we set φ′(T ; T, a) = 1/a so that
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Fig. 1 Plots of the penalty function φ defined in (2.1) for different values of the concavity parameter a.
The solid dots indicate the point which separates the subdomains [0, T ) and [T,∞)

T2 is set to be T2 = T + 1
a2
. Therefore, in the following we restrict the number of free

parameters to a and T only.
The minimal degree polynomial function fulfilling the above requirements, turns

out to be the following piecewise quadratic penalty function:

φ(t; T, a) : =

⎧
⎪⎨

⎪⎩

φ1(t; T, a) := a(T2−T )
2 T t2 t ∈ [0, T )

φ2(t; T, a) := − a
2 t

2 + aT2t − aT T2
2 t ∈ [T, T2)

φ3(t; T, a) := aT2(T2−T )
2 t ∈ [T2,∞)

(2.1)

which has been obtained by imposing the following constraints:

• φ1(0; T, a) = φ′1(0; T, a) = 0
• φ1(T ; T, a) = φ2(T ; T, a)

• φ′1(T ; T, a) = φ′2(T ; T, a)

• φ′2(T2; T, a) = 0
• φ′′2 (t; T, a) = −a ∀t ∈ [T, T2)
• φ3 constant ∀t ∈ [T2,∞)

In Figure 1 we show the plots of the penalty functions φ(t; T, a) for three different
values of a ∈ {3, 5, 7} with fixed T = 0.2. The solid dots in the graphs represent the
points (T, φ(T ; T, a)) which separate the convex segment φ1 from the non-convex
ones φ2 and φ3.

This choice of a simple second-order piecewise polynomial as penalty function is
motivated by computational efficiency issues as detailed in Sect. 4.
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3 Convexity analysis

In this section, we analyze convexity of the optimization problem in (1.1). More
precisely, we seek for sufficient conditions on the parameters λ, T, a ∈ R

∗+ such
that the objective functional J ( · ; λ, T, a) in (1.1) is strictly convex. In the previous
section we designed the penalty function φ( · ; T, a) in (2.1) in such a way that it
is continuously differentiable but not everywhere twice continuously differentiable.
This choice, that was motivated by the higher achievable flexibility in the shape of the
function, prevents us from using only arguments based on second-order differential
quantities for the following analysis of convexity.

We rewrite J ( · ; λ, T, a) in (1.1) in explicit double-indexed form:

J (u; λ, T, a) =
∑

(i, j)∈�

λ

2

(
ui, j − bi, j

)2

+
∑

(i, j)∈�

φ

(√(
ui+1, j − ui, j

)2+ (
ui, j+1 − ui, j

)2 ; T, a

)
, (3.1)

where � represents the image lattice defined by

� : =
{
(i, j) ∈ Z

2 : i = 1, . . . , n1, j = 1, . . . , n2
}

, (3.2)

with n1 and n2 denoting the image height and width, respectively. In (3.1) we used a
standard first-order forward finite difference scheme for discretization of the first-order
horizontal and vertical partial derivatives. We notice that convexity conditions for the
functional J depend on the particular finite difference scheme used for discretization
of the gradient. Nevertheless, the procedure used below for deriving such conditions
can be adapted to other discretization choices.

In the following, we give four lemmas which allow us to reduce convexity anal-
ysis from the original functional J ( · ; λ, T, a) of n variables to simpler functions
f ( · ; λ, T, a), g( · ; λ, T, a) and h( · ; λ, T, a) of three, two and one variables, respec-
tively. Then in Theorem 3.5 we finally state conditions for strict convexity of our
functional J ( · ; λ, T, a) in (1.1).

Lemma 3.1 The function J ( · ; λ, T, a) : Rn → R defined in (3.1) is strictly convex
if the function f ( · ; λ, T, a) : R3 → R defined by

f (x1, x2, x3; λ, T, a) = λ

6

(
x21 + x22 + x23

)

+φ

(√
(x2 − x1)2+ (x3 − x1)2 ; T, a

)
(3.3)

is strictly convex.
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Proof First, we notice that the functional J in (3.1) can be rewritten as

J (u; λ, T, a) = A(u)+
∑

(i, j)∈�

λ

2
u2i, j

+
∑

(i, j)∈�

φ

(√(
ui+1, j − ui, j

)2+ (
ui, j+1 − ui, j

)2 ; T, a

)
, (3.4)

whereA(u) is an affine function of u. Then, we remark that each term of the last sum
in (3.4) involves three different pixel locations and that, globally, the last sum involves
each pixel location three times. Hence, we can clearly write

J (u; λ, T, a) = A(u)+
∑

(i, j)∈�

λ

6

(
u2i, j + u2i+1, j + u2i, j+1

)

+
∑

(i, j)∈�

φ

(√(
ui+1, j − ui, j

)2+ (
ui, j+1 − ui, j

)2 ; T, a

)

= A(u)+
∑

(i, j)∈�

f (ui, j , ui+1, j , ui, j+1; λ, T, a). (3.5)

Since the affine function A(u) does not affect convexity, we can conclude that the
functional J in (3.5) is strictly convex if the function f is strictly convex. ��
Lemma 3.2 The function f ( · ; λ, T, a) : R3 → R defined in (3.3) is strictly convex
if the function g( · ; λ, T, a) : R2 → R defined by

g(y1, y2; λ, T, a) = λ

18

(
y21 + y22

)
+ φ

(√
y21 + y22 ; T, a

)
(3.6)

is strictly convex.

The proof is provided in the “Appendix”.

Lemma 3.3 Let ψ : R2 → R be a radially symmetric function defined as

ψ(x) : = z (‖x‖2) , z: R+ → R, z ∈ C1 (R+) . (3.7)

Then, ψ is strictly convex in x if and only if the function z̃: R→ R defined by

z̃(t) : = z(|t |) (3.8)

is strictly convex in t.

The proof is provided in the “Appendix”.

Lemma 3.4 The function g( · ; λ, T, a) : R2 → R defined in (3.6) is strictly convex
if and only if the function h( · ; λ, T, a) : R→ R defined by
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h(t; λ, T, a) = λ

18
t2 + φ (|t |; T, a) (3.9)

is strictly convex.

The proof is immediate by applying Lemma 3.3 to the function g in (3.6).

Theorem 3.5 Let φ( · ; T, a) : R+ → R be the penalty function defined in (2.1).
Then, a sufficient condition for the functional J ( · ; λ, T, a) in (1.1) to be strictly
convex is that the pair of parameters (λ, a) ∈ R

∗+× R
∗+ satisfies:

λ > 9 a ⇐⇒ λ = τc 9 a, τc ∈ (1,+∞) . (3.10)

Proof It follows from Lemmas 3.1, 3.2 and 3.4 that a sufficient condition for the
functionalJ ( · ; λ, T, a) in (1.1) to be strictly convex is that the function h( · ; λ, T, a)

in (3.9) is strictly convex. Recalling the definition of the penalty function φ( · ; T, a)

in (2.1), h( · ; λ, T, a) in (3.9) can be rewritten in the following explicit form:

h(t; λ, T, a) =

⎧
⎪⎨

⎪⎩

h1(t; λ, T, a) := (
λ
18 − a

2 + a T2
2T

)
t2 |t | ∈ [0, T )

h2(t; λ, T, a) := (
λ
18 − a

2

)
t2 + aT2|t | − aT T2

2 |t | ∈ [T, T2)

h3(t; λ, T, a) := λ
18 t2 + aT2(T2−T )

2 |t | ∈ [T2,+∞)

(3.11)

Clearly, the function h above is even and piecewise quadratic; and, as far as regularity
is concerned, it is immediate to verify that h ∈ C∞(R \ {±T,±T2}) ∩ C1(R). In par-
ticular, the first-order derivative function h′ : R→ R and the second-order derivative
function h′′ : R \ {±T,±T2} → R are as follows:

h′(t; λ, T, a) =

⎧
⎪⎪⎨

⎪⎪⎩

h′1(t; λ, T, a) =
(

λ
9 − a + a T2

T

)
t |t | ∈ [0, T )

h′2(t; λ, T, a) = (
λ
9 − a

)
t + aT2 sign(t) |t | ∈ [T, T2)

h′3(t; λ, T, a) = λ
9 t |t | ∈ [T2,+∞)

(3.12)

h′′(t; λ, T, a) =

⎧
⎪⎨

⎪⎩

h′′1(t; λ, T, a) = λ
9 − a + a T2

T |t | ∈ [0, T )

h′′2(t; λ, T, a) = λ
9 − a |t | ∈ (T, T2)

h′′3(t; λ, T, a) = λ
9 |t | ∈ (T2,+∞)

. (3.13)

We notice that the functions h in (3.11) and h′ in (3.12) are both continuous at points
t ∈ {±T,±T2}, whereas for the function h′′ in (3.13) we have at points t ∈ {T, T2}
(analogously at points t ∈ {−T,−T2}):

T : lim
t↑T h′′1(t; λ, T, a) = λ

9 − a + a T2
T �= λ

9 − a = lim
t↓T h′′2(t; λ, T, a)

T2 : lim
t↑T2

h′′2(t; λ, T, a) = λ
9 − a �= λ

9 = lim
t↓T2

h′′3(t; λ, T, a)
. (3.14)
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Convex non-convex image segmentation 643

After recalling that λ, T, a > 0 and T2 > T , we notice that

h′′1(t; λ, T, a) = λ

9
+ a

T
(T2 − T ) > 0, h′′3(t; λ, T, a) = λ

9
> 0, (3.15)

hence the function h is strictly convex for |t | ∈ [0, T ) and |t | ∈ (T2,∞). A sufficient
condition (it is also a necessary condition since the function is quadratic) for h to be
strictly convex in |t | ∈ (T, T2) is that the second-order derivative h′′2(t; λ, T, a) defined
in (3.13) is positive. This clearly leads to condition (3.10) in the theorem statement.
We have thus demonstrated that if (3.10) is satisfied then h is strictly convex for
t ∈ R \ {±T,±T2}.

It remains to handle the points±T,±T2 where the function h does not admit second-
order derivatives. Since h is even and continuously differentiable, it is sufficient to
demonstrate that if condition (3.10) is satisfied then the first-order derivative h′ is
monotonically increasing at points t ∈ {T, T2}. In particular, we aim to prove:

T :
{
h′(t1; λ, T, a) < h′(T ; λ, T, a) ∀t1 ∈ (0, T )

h′(t2; λ, T, a) > h′(T ; λ, T, a) ∀t2 ∈ (T, T2)
(3.16)

T2 :
{
h′(t2; λ, T, a) < h′(T2; λ, T, a) ∀t2 ∈ (T, T2)

h′(t3; λ, T, a) > h′(T2; λ, T, a) ∀t3 ∈ (T2,+∞)
(3.17)

Recalling the definition of h′ in (3.12), we obtain:

T :
⎧
⎨

⎩

(
λ
9 − a + a T2

T

)
t1 <

(
λ
9 − a

)
T + aT2 ∀t1 ∈ (0, T )

(
λ
9 − a

)
t2 + aT2 >

(
λ
9 − a

)
T + aT2 ∀t2 ∈ (T, T2)

(3.18)

T2 :
{(

λ
9 − a

)
t2 + aT2 < λ

9T2 ∀t2 ∈ (T, T2)
λ
9 t3 > λ

9T2 ∀t3 ∈ (T2,+∞)
(3.19)

and, after simple algebraic manipulations:

T :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
λ
9 − a
︸ ︷︷ ︸

>0

+ a T2
T︸︷︷︸

>0

)
(t1 − T )︸ ︷︷ ︸

<0

< 0 ∀t1 ∈ (0, T )

(
λ
9 − a

)
︸ ︷︷ ︸

>0

(t2 − T )︸ ︷︷ ︸
>0

> 0 ∀t2 ∈ (T, T2)
(3.20)

T2 :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
λ
9 − a

)
︸ ︷︷ ︸

>0

(t2 − T2)︸ ︷︷ ︸
<0

< 0 ∀t2 ∈ (T, T2)

λ
9︸︷︷︸

>0

(t3 − T2)︸ ︷︷ ︸
>0

> 0 ∀t3 ∈ (T2,+∞)
(3.21)

Since λ, T, a > 0 and we are assuming λ > 9a and 0 < t1 < T < t2 < T2 < t3,
inequalities in (3.20) and (3.21) are clearly satisfied, hence the proof is completed.

��
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We conclude this section by highlighting some important properties of the func-
tional J ( · ; λ, T, a) in (1.1).

Definition 3.6 Let Z : Rn → R be a (not necessarily smooth) function. Then, Z is
said to be μ-strongly convex if and only if there exists a constant μ > 0, called the
modulus of strong convexity of Z , such that the function Z(x)− μ

2 ‖x‖22 is convex.
Proposition 3.7 Let φ( · ; T, a) : R+ → R be the penalty function defined in
(2.1) and let the pair of parameters (λ, a) ∈ R

∗+× R
∗+ satisfy condition (3.10).

Then, the functional J ( · ; λ, T, a) in (1.1) is proper,1 continuous (hence, lower
semi-continuous), bounded from below by zero, coercive and μ-strongly convex with
modulus of strong convexity (at least) equal to

μ = λ − 9 a = 9 a (τc − 1) . (3.22)

The proof is provided in the “Appendix”.

4 Applying ADMM to the proposed CNC model

In this section, we illustrate in detail the ADMM-based [3] iterative algorithm used to
numerically solve the proposedmodel (1.1) in case that the pair of parameters (λ, a) ∈
R
∗+× R

∗+ satisfies condition (3.10), so that the objective functional J (u; λ, T, a) in
(1.1) is strongly convexwithmodulus of strong convexity given in (3.22). Towards this
aim, first we resort to the variable splitting technique [1] and introduce the auxiliary
variable t ∈ R

2n , such thatmodel (1.1) is rewritten in the following linearly constrained
equivalent form:

{ u∗, t∗} ← argmin
u,t

{
λ

2
‖u − b‖22 +

n∑

i=1
φ
(‖ti‖2; T, a

) }
(4.1)

subject to : t = D u, (4.2)

where the matrix D ∈ R
2n×n is defined by

D : = (DT
h , DT

v )T , (4.3)

with Dh, Dv ∈ R
n×n the unscaled finite difference operators approximating the first-

order horizontal and vertical partial derivatives of an n1 × n2 image (with n1n2 = n)
in vectorized column-major form, respectively, according to the unscaled first-order
forward scheme considered in the previous section. More precisely, matrices Dh , Dv

are defined by
Dh = Ln2 ⊗ In1 , Dv = In2 ⊗ Ln1, (4.4)

where ⊗ is the Kronecker product operator and Lz ∈ R
z×z denotes the unscaled for-

ward finite difference operator approximating the first-order derivative of a z-samples

1 A convex function is proper if it nowhere takes the value −∞ and is not identically equal to +∞.
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1D signal. In particular, we assume periodic boundary conditions for the unknown
image u, such that matrix Lz takes the form

Lz =

⎡

⎢⎢⎢⎢⎢⎣

−1 1 0
0 −1 1
...

. . .
. . .

0 −1 1
1 0 . . . 0 −1

⎤

⎥⎥⎥⎥⎥⎦
. (4.5)

In (4.1) we defined as ti : =
(
(Dhu)i , (Dvu)i

)T ∈ R
2 the discrete gradient of the

image u at pixel i , obtained by selecting from the vector t the i−th and (i + n)−th
entries. We remark that the auxiliary variable t has been introduced in (4.1)–(4.2)
to transfer the discrete gradient operators (∇u)i in (1.1) out of the non-convex non-
smooth regularization term φ(‖ · ‖2; T, a).

To solve problem (4.1)–(4.2), we define the augmented Lagrangian functional

L(u, t; ρ) = λ

2
‖u − b‖22 +

n∑

i=1
φ
(‖ti‖2; T, a

)

− 〈 ρ, t − Du 〉 + β

2
‖t − Du‖22, (4.6)

where β > 0 is a scalar penalty parameter and ρ ∈ R
2n is the vector of Lagrange

multipliers associated with the system of linear constraints in (4.2). We then consider
the following saddle-point problem:

Find (u∗, t∗; ρ∗) ∈ R
n× R

2n× R
2n

s.t. L (u∗, t∗; ρ) ≤ L (u∗, t∗; ρ∗) ≤ L (u, t; ρ∗)
∀ (u, t; ρ) ∈ R

n× R
2n× R

2n, (4.7)

with the augmented Lagrangian functional L defined in (4.6).
Given the previously computed (or initialized for k = 1) vectors t (k−1) and ρ(k),

the k-th iteration of the proposed ADMM-based scheme applied to the solution of the
saddle-point problem (4.6)–(4.7) reads as follows:

u(k) ← arg min
u∈Rn

L(u, t (k−1); ρ(k)), (4.8)

t (k) ← arg min
t∈R2n

L(u(k), t; ρ(k)), (4.9)

ρ(k+1) ← ρ(k) − β
(
t (k) − Du(k) ). (4.10)

In Sect. 5 we will show that, under mild conditions on the penalty parameter β, the
iterative scheme in (4.8)–(4.10) converges to a solution of the saddle-point problem
(4.7), that is to a saddle point (u∗, t∗; ρ∗) of the augmented Lagrangian functional in
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(4.6), with u∗ representing the unique solution of the strongly convex minimization
problem (1.1).

In the following subsections we show in detail how to solve the two minimization
sub-problems (4.8) and (4.9) for the primal variables u and t , respectively, then we
present the overall iterative ADMM-based minimization algorithm.

4.1 Solving the sub-problem for u

Given t (k−1) and ρ(k), and recalling the definition of the augmented Lagrangian func-
tional in (4.6), the minimization sub-problem for u in (4.8) can be rewritten as follows:

u(k) ← arg min
u∈Rn

{
λ

2
‖u − b‖22 +

〈
ρ(k), Du

〉+ β

2

∥∥t (k−1) − Du
∥∥2
2

}
, (4.11)

where constant terms have been omitted. The quadratic minimization problem (4.11)
has first-order optimality conditions which lead to the following linear system:

(
In + β

λ
DT D

)
u = b + β

λ
DT

(
t (k−1) − 1

β
ρ(k)

)
. (4.12)

We remark that from the definition (4.3) of matrix D ∈ R
2n×n , it follows that

DT D ∈ R
n×n in (4.12) canbewritten as DT

h Dh+DT
v Dv ,with Dh, Dv ∈ R

n×n defined
in (4.4)–(4.5). Hence, DT D represents a 5-point stencil finite difference discretization
of the negative 2D Laplace operator. Since, moreover, β/λ > 0, the coefficient matrix
of the linear system (4.12) is symmetric, positive definite and highly sparse, there-
fore (4.12) can be solved very efficiently by the iterative (preconditioned) conjugate
gradient method.

However, under appropriate assumptions about the solution u near the image bound-
ary, the linear system can be solved even more efficiently by a direct method.

In particular, since we are assuming periodic boundary conditions for u, the matrix
DT D is block circulant with circulant blocks, so that the coefficient matrix (I +
β
λ
DT D) in (4.12) can be completely diagonalized by the 2Ddiscrete Fourier transform

(FFT). It follows that at any ADMM iteration the u-subproblem, i.e. the linear system
(4.12), can be solved explicitly by one forward and one inverse 2D FFT, each at a cost
of O(n log n) operations.

We remark that the same computational cost can be achieved by using reflective or
anti-reflective boundary conditions, see [10,12,26].

4.2 Solving the sub-problem for t

Given u(k) and ρ(k), and recalling the definition of thepr augmented Lagrangian
functional in (4.6), after some simple algebraic manipulations the minimization sub-
problem for t in (4.9) can be rewritten in the following component-wise (or pixel-wise)
form:
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t (k) ← arg min
t∈R2n

n∑

i=1

(
φ
(‖ti‖2; T, a

)+ β

2

∥∥ ti − r (k)
i

∥∥2
2

)
, (4.13)

where the n vectors r (k)
i ∈ R

2, i = 1, . . . , n, which are constant with respect to the
optimization variable t , are defined by:

r (k)
i = (

Du(k))
i +

1

β

(
ρ(k))

i , (4.14)

with
(
Du(k)

)
i ,

(
ρ(k)

)
i ∈ R

2 denoting the discrete gradient and the associated pair of
Lagrange multipliers at pixel i , respectively. The minimization problem in (4.13) is
thus equivalent to the following n independent 2-dimensional problems:

t (k)i ← arg min
ti∈R2

{
θi (ti ) : =φ

(‖ti‖2; T, a
) + β

2

∥∥ ti − r (k)
i

∥∥2
2

}
, i = 1, . . . , n,

(4.15)
where, for future reference, we introduced the cost functions θi : R2 → R, i =
1, . . . , n.

Since we are imposing that condition (3.10) is satisfied, such that the original
functional J (u; λ, T, a) in (1.1) is strictly convex, we clearly aim at avoiding non-
convexity of the ADMM sub-problems (4.15). In the first part of Proposition 4.1
below, whose proof is provided in the “Appendix”, we give a necessary and sufficient
condition for strict convexity of the cost functions in (4.15).

Proposition 4.1 Let T, a, β∈ R
∗+ and r ∈ R

2 be given constants, and let φ( · ; T, a) :
R+ → R be the penalty function defined in (2.1). Then:

(1) The function

θ(x) : =φ (‖x‖2; T, a)+ β

2
‖x − r‖22, x ∈ R

2, (4.16)

is strictly convex (convex) if and only if the following condition holds:

β > a (β ≥ a ). (4.17)

(2) In case that (4.17) holds, the strictly convex minimization problem

arg min
x∈R2

θ(x) (4.18)

admits the unique solution x∗∈ R
2 given by the following shrinkage operator:

x∗ = ξ∗r, with ξ∗ ∈ (0, 1] (4.19)
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equal to
a) ξ∗ = κ1 if ‖r‖2 ∈

[
0, κ0

)

b) ξ∗ = κ2 − κ3/‖r‖2 if ‖r‖2 ∈
[
κ0, T2

)

c) ξ∗ = 1 if ‖r‖2 ∈ [T2,+∞)

(4.20)

and with

κ0 = T + a

β
(T2 − T ), κ1 = T

κ0
, κ2 = β

β − a
, κ3 = aT2

β − a
. (4.21)

Based on (4.16)–(4.17) in Proposition 4.1, we can state that all the problems in
(4.15) are strictly convex if and only if

β > a . (4.22)

In case that (4.22) is satisfied, the unique solutions of the strictly convex problems
(4.15) can be obtained based on (4.19) in Proposition 4.1, that is:

t (k)i = ξ
(k)
i r (k)

i , i = 1, . . . , n, (4.23)

where the shrinkage coefficients ξ
(k)
i ∈ (0, 1] are computed according to (4.20). We

notice that coefficients κ0, κ1, κ2, κ3 in (4.21) are constant during the ADMM itera-
tions, hence they can be precomputed once and for all at the beginning. The solutions
of problems (4.15) can thus be determined very efficiently by the closed forms given
in (4.20), with computational cost O(n).

4.3 ADMM-based minimization algorithm

To summarize previous results, inAlgorithm1we report themain steps of the proposed
ADMM-based iterative scheme used to solve the saddle-point problem (4.6)–(4.7) or,
equivalently (as it will be proven in the next section), the minimization problem (1.1).
We remark that the constraint on the ADMM penalty parameter β in Algorithm 1
is more stringent than that in (4.22) which guarantees the convexity of the ADMM
subproblem for the primal variable t . Indeed, the more stringent requirement is needed
for the analysis of convergence that will be carried out in Sect. 5.

5 Convergence analysis

In this section, we analyze convergence of the proposed ADMM-based minimization
approach, whose main computational steps are reported in Algorithm 1. In particular,
we prove convergence of Algorithm 1 in case that conditions (3.10) and (5.16) are
satisfied.

To simplify the notations in the subsequent discussion, we give the following defi-
nitions concerning the objective functional in the (u, t)-split problem (4.1)–(4.2):
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Algorithm 1 ADMM-based scheme for the solution of CNC problem (1.1)

input: observed image b ∈ R
n

output: approximate solution u∗∈ R
n of (1.1)

parameters: MODEL: T > 0 and λ > 0

1. initialization: t(0) = D b, ρ(1) = 0

set a s.t. λ > 9 a according to (3.10),

set β > 0 s.t. β ≥ max{2a , a λ
λ−8a } according to (5.16)

2. for k = 1, 2, 3, . . . until convergence do:

3. · update primal variables:

4. · compute u(k) by solving (4.12)

5. · compute t(k) by (4.14), (4.20) and (4.23)

6. · update dual variable:
7. · compute ρ(k+1) by (4.10)

8. end for

9. u∗ = u(k)

G(u, t) : = λ

2
‖u − b‖22

︸ ︷︷ ︸
F(u)

+
n∑

i=1
φ
(‖ti‖2; T, a

)

︸ ︷︷ ︸
R(t)

, (5.1)

where the parametric dependencies of the fidelity term F(u) on λ and of the regu-
larization term R(t) on T and a are dropped for brevity. The augmented Lagrangian
functional in (4.6) can thus be rewritten more concisely as

L(u, t; ρ) = F(u)+ R(t) − 〈 ρ, t − Du 〉 + β

2
‖t − Du‖22, (5.2)

and the regularization term in the original proposed model (1.1), referred to asR(u),
reads

R(u) = R(Du). (5.3)

To prove convergence, we follow the same methodology used, e.g., in [35], for
convex optimization problems, based on optimality conditions of the augmented
Lagrangian functional with respect to the pair of primal variables (u, t) and on the
subsequent construction of suitable Fejér-monotone sequences. However, in [35] and
other works using the same abstract framework for proving convergence, such as [36]
where convex non-quadratic fidelity terms are considered, the regularization term of
the convex objective functional is also convex (Total Variation semi-norm in [35,36]).
In contrast, in our CNC model (1.1) the total objective functional J is convex but the
regularizer is non-convex. This calls for a suitable adaptation of the above mentioned
proofs, in particular of the proof in [35], where the same �2 fidelity term as in our
model (1.1) is considered.
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Our proof will be articulated into the following parts:

1. derivation of optimality conditions for problem (1.1);
2. derivation of convexity conditions for the augmented Lagrangian in (5.2);
3. demonstration of equivalence (in terms of solutions) between the split problem

(4.1)–(4.2) and the saddle-point problem (4.6)–(4.7);
4. demonstration of convergence of Algorithm 1 to a solution of the saddle-point

problem (4.6)–(4.7), hence to the unique solution of (1.1).

5.1 Optimality conditions for problem (1.1)

Since the regularization term in our model (1.1) is non-smooth non-convex, unlike
in [35] we need to resort also to concepts from calculus for non-smooth non-convex
functions, namely the generalized (or Clarke) gradients [11]. In the following we will
denote by ∂x [ f ](x∗) and by ∂̄x [ f ](x∗) the subdifferential (in the sense of convex
analysis [29,30]) and the Clarke generalized gradient [11], respectively, with respect
to x of the function f calculated at x∗.

In Lemma 5.1 below we give some results on locally Lipschitz continuity for the
functions involved in the subsequent demonstrations, which are necessary for the
generalized gradients being defined. Then, in Proposition 5.2, whose proof is given in
[20], we give the first-order optimality conditions for problem (1.1).

Lemma 5.1 For any pair of parameters (λ, a) satisfying condition (3.10), the func-
tional J in (1.1) and, separately, the regularization termR in (5.3) and the quadratic
fidelity term, are locally Lipschitz continuous functions.

Proof The proof is immediate by considering that the quadratic fidelity term and,
under condition (3.10), the total functional J in (1.1), are both convex functions,
hence locally Lipschitz, and that the regularization termR in (5.3) is the composition
of locally Lipschitz functions (note that the penalty functionφ( · ; T, a) defined in (2.1)
is globally L-Lipschitz continuous with L = a(T2 − T )), hence locally Lipschitz. ��

Proposition 5.2 For any pair of parameters (λ, a) satisfying condition (3.10), the
functional J : Rn → R in (1.1) has a unique (global) minimizer u∗ which satisfies

0 ∈ ∂u [J ] (u∗), (5.4)

where 0 denotes the null vector in R
n and ∂u

[J ]
(u∗) ⊂ R

n represents the subdif-
ferential (with respect to u, calculated at u∗) of functional J . Moreover, it follows
that

0 ∈ DT ∂̄t [ R ] (Du∗) + λ (u∗ − b), (5.5)

where ∂̄t
[
R

]
(Du∗) ⊂ R

2n denotes the Clarke generalized gradient (with respect to
t , calculated at Du∗) of the non-convex non-smooth regularization function R defined
in (5.1).
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5.2 Convexity conditions for the augmented Lagrangian in (5.2)

Subsequent parts 3. and 4. of our convergence analysis require that the augmented
Lagrangian functional in (5.2) is jointly convex with respect to the pair of primal
variables (u, t). In [35,36], where the regularization term is convex, such property
is clearly satisfied for any positive value of the penalty parameter β. In our case,
where the regularization term is non-convex, this is not trivially true and needs some
investigation, which is the subject of Lemma 5.3 and Proposition 5.4 below.

Lemma 5.3 Let F : Rn → R be the fidelity function defined in (5.1), D ∈ R
2n×n the

finite difference matrix defined in (4.3)–(4.5), b ∈ R
n, v ∈ R

2n given constant vectors
and λ ∈ R

∗+, γ ∈ R free parameters. Then, the function Z : Rn → R defined by

Z(u; λ, γ ) : = F(u) − γ

2
‖Du − v‖22 =

λ

2
‖u − b‖22 −

γ

2
‖Du − v‖22 (5.6)

is convex in u if and only if

γ ≤ λ

8
. (5.7)

Moreover, if the parameter λ satisfies condition (3.10), (5.7) becomes

γ ≤ τc
9

8
a, τc ∈ (1,+∞). (5.8)

Proof The function Z in (5.6) is quadratic in u, hence it is convex in u if and only if
its Hessian HZ ∈ R

n×n is at least positive semidefinite, that is if and only if

HZ = λ In − γ DT D � 0, (5.9)

where, for a given real symmetric matrix M , the notation M � 0 indicates that M
is positive semidefinite. Since the matrix DT D ∈ R

n×n is symmetric and positive
semidefinite, it admits the eigenvalue decomposition

DT D = V EV T , E = diag(e1, e2, . . . , en), V T V = VV T = I, (5.10)

with ei ∈ R+, i = 1, . . . , n, indicating the real non-negative eigenvalues of DT D.
Replacing (5.10) into (5.9), we obtain:

HZ = λ I − γ V T EV = V T (λI − γ E) V

= V T diag(λ− γ e1, λ− γ e2, . . . , λ− γ en) V � 0. (5.11)

Condition (5.11) is equivalent to

λ− γ ei ≥ 0 ∀i ∈ {1, . . . , n} ⇐⇒ λ− γ max
i

ei ≥ 0 ⇐⇒ γ ≤ λ

maxi ei
. (5.12)
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As previously highlighted, the matrix DT D ∈ R
n×n represents a 5-point stencil

unscaled finite difference approximation of the negative Laplace operator applied to
an n1 × n2 vectorized image, with n = n1n2. In order to obtain an upper bound for
the maximum eigenvalue maxi ei of DT D, first we recall definitions (4.3)–(4.4) and
rewrite DT D as

DT D = DT
h Dh + DT

v Dv

= (
Ln2 ⊗ In1

)T (
Ln2 ⊗ In1

)+ (
In2 ⊗ Ln1

)T (
In2 ⊗ Ln1

)

= (
LT
n2Ln2

) ⊗ In1 + In2 ⊗
(
LT
n1Ln1

)
(5.13)

= (
LT
n2Ln2

) ⊕ (
LT
n1Ln1

)
, (5.14)

where (5.13) follows fromproperties of theKronecker product operator and⊕ in (5.14)
denotes theKronecker sumoperator. It thus follows from (5.14) and from the properties
of the eigenvalues of the Kronecker sum of twomatrices that the maximum eigenvalue
of DT D is equal to the sum of the maximum eigenvalues of LT

n1Ln1 ∈ R
n1×n1 and

LT
n2Ln2 ∈ R

n2×n2 , with the prototypical matrix Lz ∈ R
z×z defined in (4.5). From

(4.5), we have that matrix LT
z Lz ∈ R

z×z takes the form

LT
z Lz =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 0 . . . 0 −1
−1 2 −1 0

0 −1 . . .
. . .

...
...

. . .
. . . −1 0

0 −1 2 −1
−1 0 . . . 0 −1 2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5.15)

By using Gershgorin’s theorem [39], we can state that all the real eigenvalues of the
matrix LT

z Lz in (5.15) belong to the interval [0, 4] independently of the order z. It
follows that the eigenvalues of both matrices LT

n1Ln1 and LT
n2Ln2 are bounded from

above by 4 and, hence, the maximum eigenvalue maxi ei of DT D is bounded from
above by 8. Substituting 8 for maxi ei in (5.12), condition (5.7) and condition (5.8)
follow. ��
Proposition 5.4 For any given vector of Lagrange multipliers ρ ∈ R

2n, the aug-
mented Lagrangian functional L(u, t; ρ) in (5.2) is proper, continuous and coercive
jointly in the pair of primal variables (u, t). Moreover, in case that condition (3.10)
is satisfied, L(u, t; ρ) is jointly convex in (u, t) if the penalty parameter β satisfies

β ≥ a
λ

λ− 8a
, (5.16)

or, equivalently

β ≥ 9 a
τc

9τc − 8
, τc ∈ (1,+∞). (5.17)
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Proof Functional L(u, t; ρ) in (5.2) is clearly proper and continuous in (u, t). For
what concerns coercivity, we rewrite L(u, t; ρ) as follows:

L(u, t; ρ) = F(u) + R(t) + β

2
‖t − Du‖22 − 〈ρ, t − Du〉 (5.18)

= F(u) + R(t) + β

2

∥∥∥t − Du − 1

β
ρ

∥∥∥
2

2
− 1

2β
‖ρ‖22. (5.19)

We notice that the second term in (5.19) is bounded and the last term does not depend
on (u, t), hence they do not affect coercivity of L(u, t; ρ) with respect to (u, t). Then,
the first and third terms in (5.19) are jointly coercive in u and the third term is coercive
in t , hence L(u, t; ρ) is coercive in (u, t).

Starting from (5.18), we have:

L(u, t; ρ) = F(u) − γ1

2
‖Du‖22 + R(t)+ γ2

2
‖t‖22

+γ1

2
‖Du‖22 −

γ2

2
‖t‖22 +

β

2
‖t − Du‖22 − 〈ρ, t − Du〉

= − 〈ρ, t − Du〉︸ ︷︷ ︸
L1(u,t)

+ F(u) − γ1

2
‖Du‖22

︸ ︷︷ ︸
L2(u)

+ R(t)+ γ2

2
‖t‖22

︸ ︷︷ ︸
L3(t)

+ β + γ1

2
‖Du‖22 − β 〈Du, t〉 + β − γ2

2
‖t‖22

︸ ︷︷ ︸
L4(u,t)

, (5.20)

where γ1 and γ2 are scalars satisfying

γ1 ≤ τc
9

8
a, γ2 ≥a, (5.21)

such that, according to condition (5.8) in Lemma 5.3 and condition (4.17) in Proposi-
tion 4.1, the termsL2(u) andL3(t) in (5.20) are convex in u and t (hence also in (u, t)),
respectively. The term L1(u, t) is affine in (u, t), hence convex. For what concerns
L4(u, t), it is jointly convex in (u, t) if it can be reduced to the form+∥∥ c1Du− c2t

∥∥2
2

with c1, c2 > 0. We thus impose that the coefficients of the terms ‖Du‖22 and ‖t‖22 in
(5.20) are positive and that twice the product of the square roots of these coefficients
is equal to the coefficient of the term −〈Du, t〉 in (5.20), that is:

β > − γ1, β > γ2 , β (γ1 − γ2) = γ1γ2. (5.22)

Simple calculations prove that conditions in (5.21)–(5.22) are equivalent to the fol-
lowing:

β = γ1γ2

γ1− γ2
, (γ1, γ2)∈ � : =

{
(γ1, γ2)∈ R

2 : γ1 > γ2, γ1 ≤ τc
9

8
a, γ2 ≥ a

}
.

(5.23)
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We notice that the set � in (5.23) is not empty and contains only strictly positive pairs
(γ1, γ2). Hence, there exist triplets (β, γ1, γ2) such that (5.23) is satisfied and the
augmented Lagrangian functional in (5.20) is convex. By simple analysis, we can see
that the range of the function β(γ1, γ2) = γ1γ2/(γ1−γ2) with (γ1, γ2) ∈ � coincides
with (5.17) and, after recalling that λ = τc9a, with (5.16). This completes the proof.

��

5.3 Equivalence between problems (4.1)–(4.2) and (4.6)–(4.7)

The optimality conditions derived in Sect. 5.1, together with the convexity conditions
in Sect. 5.2 and the results in the following Lemmas 5.5–5.6 allow us to demonstrate
in Theorem 5.7 that the saddle-point problem in (4.6)–(4.7) is equivalent (in terms of
solutions) to the minimization problem in (4.1)–(4.2). In particular, we prove that, for
any pair (λ, a) satisfying (3.10) and any β satisfying (5.17), the saddle-point problem
(4.6)–(4.7) has at least one solution and, very importantly, all its solutions will provide
pairs of primal variables (u∗, t∗) with t∗ = Du∗, which solve the split problem (4.1)–
(4.2), and thus u∗ represents the unique global minimizer of the strongly convex
functional J in (1.1).

Lemma 5.5 Assume that Z = Q + S, Q and S being lower semi-continuous convex
functions from R

n into R, S being Gâteaux-differentiable with differential S′. Then,
if p∗ ∈ R

n, the following two conditions are equivalent to each other:

(1) p∗ ∈ arg inf p∈Rn Z(p) ;
(2) Q(p)− Q(p∗)+ 〈

S′(p∗), p − p∗
〉 ≥ 0 ∀p ∈ R

n.

Moreover, in case that the function Q has a (separable) structure of the type Q(p) =
Q(p1, p2) = Q1(p1) + Q2(p2) with p1 ∈ R

n1 and p2 ∈ R
n2 (and n1 + n2 = n)

being two disjoint subsets of independent variables, then conditions (1) and (2) above
are also both equivalent to the following condition:

(3)

{
p∗1 ∈ arg inf p1∈Rn1

{
Z1(p1) : = Z(p1, p∗2)

}

p∗2 ∈ arg inf p2∈Rn2

{
Z2(p2) : = Z(p∗1, p2)

} with (p∗1, p∗2) = p∗.

Proof Equivalence of conditions (1) and (2) is demonstrated in [14, Proposition 2.2].
If condition (1) is true, that is p∗ is a global minimizer of the function Z over its
domain R

n , then clearly p∗ is also a global minimizer of the restriction of Z to any
subset ofRn containing p∗. Hence, condition (1) implies condition (3). To demonstrate
that condition (3) implies condition (2), which completes the proof, first we rewrite in
explicit form the two objective functions Z1 and Z2 defined in condition (3):

Z1(p1) = Q1(p1)+ Q2(p
∗
2)+ S1(p1), S1(p1) : = S(p1, p

∗
2), (5.24)

Z2(p2) = Q1(p
∗
1)+ Q2(p2)+ S2(p2), S2(p2) : = S(p∗1, p2). (5.25)

Assume now that condition (3) holds. Then, by applying the equivalence of conditions
(1) and (2), condition (3) can be rewritten as follows:
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{
Q1(p1)+����Q2(p∗2)− Q1(p∗1)−����Q2(p∗2)+

〈
S′1(p∗1), p1 − p∗1

〉 ≥ 0 ∀p1 ∈ R
n1

����Q1(p∗1)+ Q2(p2)−����Q1(p∗1)− Q2(p∗2)+
〈
S′2(p∗2), p2 − p∗2

〉 ≥ 0 ∀p2 ∈ R
n2

.

(5.26)
By summing up the two inequalities in (5.26), we obtain:

Q1(p1)+ Q2(p2)− Q1(p
∗
1)− Q2(p

∗
2)

+ 〈 (
S′1(p∗1), S′2(p∗2)

)
,
(
p1 − p∗1, p2 − p∗2

) 〉 ≥ 0 ∀ (p1, p2) ∈ R
n1× R

n2

≡ Q(p1, p2)− Q(p∗1, p∗2)
+ 〈 (

S′1(p∗1), S′2(p∗2)
)
,
(
p1, p2)−

(
p∗1, p∗2

) 〉 ≥ 0 ∀ (p1, p2) ∈ R
n1× R

n2

≡ Q(p)− Q(p∗)+ 〈
S′(p∗), p − p∗

〉 ≥ 0 ∀ p ∈ R
n, (5.27)

which coincides with condition 2), thus completing the proof. ��
Lemma 5.6 For any pair of parameters (λ, a) satisfying condition (3.10), any penalty
parameter β fulfilling condition (5.17) and any vector of Lagrange multipliers ρ, the
augmented Lagrangian functional L in (5.2) satisfies the following:

(u∗, t∗) ∈ argmin
u,t

L (u, t; ρ) ⇐⇒
{
u∗ ∈ argmin

u
L (u, t∗; ρ)

t∗ ∈ argmin
t

L (u∗, t; ρ)
. (5.28)

Proof According to the results in Proposition 5.4, in case that the parameters (λ, a)

and β satisfy conditions (3.10) and (5.17), respectively, the augmented Lagrangian
L(u, t; ρ) in (5.2) is proper, continuous, coercive and convex jointly in the pair of
primal variables (u, t). In particular, within the proof of Proposition 5.4we highlighted
how for anyβ satisfying (5.17) there exist at least one pair of scalar coefficients (γ1, γ2)

such that the augmented Lagrangian functional can be written in the form

L(u, t; ρ) = − 〈 ρ, t − Du 〉︸ ︷︷ ︸
L1(u,t)

+ F(u) − γ1

2
‖Du‖22

︸ ︷︷ ︸
L2(u)

+ R(t)+ γ2

2
‖t‖22

︸ ︷︷ ︸
L3(t)

+‖c1Du − c2t‖22︸ ︷︷ ︸
L4(u,t)

, (5.29)

with functions L1,L2,L3,L4 being convex in (u, t). In order to apply Lemma 5.5,
we rewrite (5.29) in the following equivalent form:

L(u, t; ρ) =
Q1(u)︷ ︸︸ ︷

F(u) − γ1

2
‖Du‖22 + 〈 ρ, Du 〉+

Q2(t)︷ ︸︸ ︷
R(t)+ γ2

2
‖t‖22 − 〈 ρ, t 〉

︸ ︷︷ ︸
Q(u,t)

+‖c1Du − c2t‖22︸ ︷︷ ︸
S(u,t)

. (5.30)
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From the convexity of functions L2 and L3 in (5.29), it clearly follows that Q1 and
Q2, and hence Q, in (5.30) are convex as well. Moreover, function S in (5.30) is
clearly convex and Gâteaux-differentiable. Hence, by simply applying the property of
equivalence of conditions 1) and 3) in Lemma 5.5, statement (5.28) follows and the
proof is completed. ��
Theorem 5.7 For any pair of parameters (λ, a) satisfying condition (3.10) and any
parameter β fulfilling condition (5.17), the saddle-point problem (4.6)–(4.7) admits at
least one solution and all the solutions have the form (u∗, Du∗; ρ∗), with u∗ denoting
the unique global minimizer of functional J in (1.1).

The proof is postponed to the “Appendix”.

5.4 Convergence of Algorithm 1 towards a solution of (4.6)–(4.7)

Given the existence and the good properties of the saddle points of the augmented
Lagrangian functional in (5.2), highlighted in Theorem 5.7, it remains to demonstrate
that the ADMM iterative scheme outlined in Algorithm 1 converges towards one of
these saddle points, that is towards a solution of the saddle-point problem (4.6)–(4.7).
This is the goal of Theorem 5.8 below.

Theorem 5.8 Assume that (u∗, t∗; ρ∗) is a solution of the saddle-point problem (4.6)–
(4.7). Then, for any pair of parameters (λ, a) satisfying condition (3.10) and any
parameter β fulfilling condition

β > β̄ : =max
{
2a, 9a

τc

9τc − 8

}
, (5.31)

the sequence
{
(u(k), t (k); ρ(k))

}+∞
k=1 generated by Algorithm 1 satisfies:

lim
k→+∞ u(k) = u∗, (5.32)

lim
k→+∞ t (k) = t∗ = Du∗. (5.33)

The proof is postponed to the “Appendix”.
We conclude this analysis with the following final theorem, whose proof is imme-

diate given Theorem 5.7 and Theorem 5.8 above.

Theorem 5.9 Let the pair of parameters (λ, a) satisfy condition (3.10) and let
the parameter β satisfy condition (5.31). Then, for any initial guess, the sequence{
u(k)}+∞k=1 generated by Algorithm 1 satisfies:

lim
k→+∞ u(k) = u∗, (5.34)

with u∗ denoting the unique solution of problem (1.1).
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6 Experimental results

In this section, we investigate experimentally the performance of the proposed CNC
segmentation approach, named CNCS, on 2D synthetic and real images. In particu-
lar, in the first two examples we compare CNCS with the most relevant alternative
approach, namely the two-step convex segmentation method presented in [5]. Then,
in the third example we extend the comparison to some other recent state-of-the-art
multiphase segmentation approaches. In the visual results of all the presented exper-
iments, the boundaries of the segmented regions are superimposed on the original
images.

We recall that the proposed CNCS method consists of two steps. In the first step an
approximate solution of the minimization problem (1.1) is computed by means of the
ADMM-based iterative procedure illustrated in Algorithm 1; iterations are stopped
as soon as two successive iterates satisfy ‖u(k) − u(k−1)‖2/‖u(k−1)‖2 < 10−4. In the
second step the segmented regions are obtained bymeans ofF a thresholding procedure.

For what concerns the parameters of the CNCS approach, first we used in all
the experiments a fixed value τc = 1.01 of the convexity coefficient in (3.10), so
as to always use an almost maximally non-convex regularizer with the constraint
that the total functional is convex. Then, the regularization parameter λ has been
hand-tuned in each experiment—as usually done in most of the variational methods
in image processing—so as to produce the best possible results. We remark that,
once τc and λ have been set, the parameter a and, then, the lower bound β̄ of the
ADMM penalty parameter β are automatically obtained based on (3.10) and (5.31),
respectively.Moreover, we noticed from the experiments that using β = 1.1 · β̄ always
yields a satisfactory convergence behavior of the ADMM-based algorithm.

For what finally concerns the model parameter T , it has been devised exactly to let
the user control the salient parts to be segmented. More precisely, as already pointed
out, T should be selected as the maximum expected magnitude of the gradient in the
inner segmented part. However, users which are not expert in the field can be easily
assisted by automatic procedures based on image gradient estimation, provided in
MATLAB and in public image processing software packages such as GIMP.

Example 1
In this example we demonstrate the performance of the proposed CNCS approach in
comparison with the convex two-phase model proposed by Cai et al. in [5], referred to
asCCZ in the following. For all the experiments, the two parametersλ andη of theCCZ
approach have been hand-tuned so as to produce the best possible results. In order to
highlight the benefits of using a non-convex penalty function, we applied bothmethods
to the segmentation of a noisy synthetic image, named geometric, containing four
basic shapes, with three different gray intensities, on a white background.

In the first row of Fig. 2, from left to right, we show the given image corrupted by
additive Gaussian noise with noise level 0.02, the approximate solution u∗ obtained
by Algorithm 1 (CNCS) in 7 iterations and by the convex two-phase algorithm (CCZ)
in 31 iterations, and the difference between the u∗’s obtained by CNCS and CCZ
algorithms. For the second thresholding step in both algorithms the thresholds were
fixed to be ρ1 = 0.85 , ρ2 = 0.90 and ρ3 = 0.99.
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original CNCS u∗ CCZ u∗ difference

CCZ region 1 CCZ region 2 CCZ region 3 CCZ region 4

CNCS region 1 CNCS region 2 CNCS region 3 CNCS region 4

Fig. 2 Segmentation of the geometric image

The four different regions segmented by the CCZ and CNCS methods are shown
in the second and third rows of Fig. 2, respectively. The boundaries of the segmented
regions are shown with red color and superimposed on the given images. CCZ fails to
detect region 3 (light gray shapes) and it smooths out the boundaries. This behavior
is justified from the fact that the well-known TV regularizer used in [5] is defined
as the �1-norm, which inevitably curtails originally salient boundaries to penalize
their magnitudes. In particular, as discussed in [34], the TV of a feature is directly
proportional to its boundary size, so that one way of minimizing the TV of that feature
would be to reduce its boundary size, in particular by smoothing corners. Moreover,
the change in intensity due to TV regularization is inversely proportional to the scale
of the feature, so that very small-scale features are removed, thus causing failures in
the segmentation procedure.

By exploiting the penalty term φ introduced in our model, the pixels whose gradient
is above the threshold T are identified by the function pieces φ2 and φ3 defined in
(2.1) that represent a very good approximation of the perimeter function introduced
in the Mumford–Shah original model. Therefore our model well preserves the sharp
boundary shapes as illustrated in Fig. 2 (third row).

In Fig. 3 we highlight the effects of the parameter T on the segmentations obtained
by CNCS. In particular, we depict in blue the pixels treated by the functions φ2 and
φ3 for different values of the parameter T : T = 0.1 first column, T = 0.05 second
column, and T = 8 × 10−4 third column. The largest T allows one to detect clearly
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φ2 + φ3 (T=0.1) φ2 + φ3 (T = 0.05) φ2 + φ3 (T = 8 × 10−4)

Fig. 3 Segmentation of the geometric image by CNCS for different T values

only the boundary of the darkest rectangle, with the other T values we can distinguish
the two gray darker rectangles, Fig. 3 (middle), and with the smallest T we can easily
detect the four simple shapes.

Example 2
In this example we demonstrate the benefit of the penalty function introduced in the
proposedmodel to allow for segmentations that reproduce sharp boundaries and detect
inhomogeneous regions.

Figure 4a shows the image rectangles of dimension 400×400, that we want to
segment into K = 2 parts: vertical rectangles and background,where the rectangles are
characterized by magnitude inhomogeneity. The segmentation results obtained by the
proposed method are shown in Fig. 4b using yellow-colored boundaries. The penalty
function used in our model allows for preserving the sharp features of the boundaries
(e.g., corners) even in the darker regions where the intensity gradient characterizing
the boundary is very small.

This is a simple example belonging to the class of piecewise smooth segmentation
problems for which the model CCZ in [5] has been devised. The segmentation results
obtained by CCZ are shown in Fig. 4c, d using, in the second phase, a manually tuned
optimal threshold value ρ = 0.19 and a K-means algorithm, respectively. The for-
mer can better reproduce the segmented boundaries, however both the results present
rounded corners. This effect is again motivated by the approximation of the perimeter
with the �1-norm regularization term in the CCZ model.

A set of state-of-the-art two-phase segmentation methods, including the unsuper-
vised model by Sandberg et al. [31], the max-flow model by Yuan et al. [38], the
Chan–Vese [7] and the frame-based variational framework by Dong. et al. [13] are
evaluated and compared with our model. The codes we used are provided by the
authors, and the parameters in the codes were chosen by trial and error to produce
the best results of each method. In Fig. 4e–h the resulting segmentations are superim-
posed on the original image by using yellow-colored boundaries. We can observe that
all the methods fail in segmenting the darker upper part of the two rectangles in the
synthetic image, the method CCZ (Fig. 4d) fails only when the automatic K-means
post-processing is applied, while our method achieves extremely accurate results.
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Fig. 4 Segmentation of the rectangles image. a Original, b CNCS, c CCZ (ρ = 0.19), d CCZ and
K-means, e Sandberg et al. [31], f Bae et al. [38], g Chan–Vese [7], h Dong et al. [13]
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Fig. 5 Segmentation of brain image into K = 3 regions: dark gray, light gray, white. a Original, b
CNCS, c CCZ, d Sandberg et al. [31], e Yuan et al. [38], f Chan–Vese [7]

Example 3
In this example, we test the CNCS approach on real, more complex, images and
compare it with some state-of-the-art alternative approaches for multi-region image
segmentation. Figure 5 shows segmentation results obtained on a real image brain,
a MRI brain scan of dimension 583 × 630. The multiphase segmentation is applied
to detect the three regions (K = 3) characterized by white, gray and black pixel color
values. For multiphase segmentation, the thresholds ρi used in the second stage can
be chosen according to the ones obtained by K-means or can be tuned, in both cases
without recomputing the solution of the first more expensive minimization problem,
in order to achieve specific segmentation results. In particular, for this example we
used the thresholds ρ1 = 0.18 and ρ2 = 0.56 for both methods CNCS and CCZ.

By comparing images in Fig. 5b, c, we can observe that more detailed and complete
small features are detected by CNCS model, which, nevertheless, gives comparable
result to CCZ model. Other comparisons are illustrated in the second row of Fig. 5.
We notice that the results obtained by the methods proposed by Sandberg et al. [31]
(Fig. 5d), Yuan et al. [38] (Fig. 5e), and Chan–Vese [8] (Fig. 5f) are less satisfactory
than those achieved by CNCS and CCZ.

Another challenging segmentation problem is presented in Fig. 6: the multiphase
segmentation of the anti-mass image with dimension 480×384 pixels into K = 3
regions (see Fig. 6a) identified as light gray, dark gray and black. Also in this case, we
compared the proposed CNCS method with alternative state-of-the-art segmentation
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Fig. 6 Segmentation of anti-mass image into K = 3 regions: light gray (region 1), dark gray (region
2), black (region 3). a Original, b Sandberg et al. [31], c Yuan et al. [38], d Chan–Vese [8], e CNCS region
1, f CNCS region 2, g CNCS region 3, h CNCS

methods. In particular, in the first row of Fig. 6, the segmentation results obtained by
the Sandberg et al. [31] (Fig. 6b), the Yuan et al. [38] (Fig. 6c), and the Chan–Vese
[8] models (Fig. 6d) are reported.

Figure 6e–g show the regions segmented by CNCSmethod, and in Fig. 6h the three
detected regions are shown by visualizing the three gray levels.We can appreciate how
our method can reveal different meaningful high-level structures in the image which
are not captured by the other over-detailed segmentations.

7 Conclusions

We presented a CNC variational model for multiphase image segmentation. The min-
imized energy functional is made of a standard strictly convex quadratic fidelity term
and a new non-convex regularization term designed for penalizing simultaneously the
non-smoothness of the segmented inner regions and the length of the boundaries. A
sufficient condition for strict convexity of the functional has been derived. This result
allows us to benefit from the advantages of using such non-convex regularizer while,
at the same time, maintaining strict (or, better, strong) convexity of the optimiza-
tion problem to be solved. An efficient iterative minimization procedure based on the
ADMM algorithm has been proposed, where we have derived a new proximity opera-
tor associated with the proposed regularization function. An analysis of convergence
of the minimization algorithm has been presented which paves the way for analogous
demonstrations for other CNC models. Experiments demonstrate the effectiveness
of the proposed approach, also in comparison with some alternative state-of-the-art
segmentation methods.
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Appendix

Proof of Lemma 3.2 Let x : =(x1, x2, x3)T ∈ R
3. Then, the function f ( · ; λ, T, a)

in (3.3) can be rewritten in a more compact form as follows:

f (x; λ, T, a) = λ

6
xT x + φ

(√
xT Q x ; T, a

)
, (7.1)

with the matrix Q ∈ R
3×3 defined as

Q =
⎡

⎣
2 −1 −1
−1 1 0
−1 0 1

⎤

⎦ . (7.2)

We introduce the eigenvalue decomposition of the matrix Q in (7.2):

Q = V� V T , � = diag(3, 1, 0), VV T = V T V = I3 , (7.3)

where orthogonality of the modal matrix V in (7.3) follows from symmetry of matrix
Q. Then, we decompose the diagonal eigenvalues matrix � in (7.3) as follows:

� = Z�̃Z , Z = diag(
√
3, 1, 1), �̃ = diag(1, 1, 0). (7.4)

Substituting (7.4) into (7.3), then (7.3) into (7.1), we obtain the following equivalent
expression for the function f :

f (x; λ, T, a) = λ

6
xT x + φ

(√
xT V Z�̃Z V T x ; T, a

)
. (7.5)

Recalling that the property of convexity for a function is invariant under non-singular
linear transformations of its domain, we introduce the following one for the domain
R
3 of function f above:

x = T y, T : =V Z−1 ∈ R
3×3 , (7.6)

which is non-singular due to V and Z being non-singular matrices. By defining as
fT : = f ◦ T the function f in the transformed domain, we have:

fT (y; λ, T, a) = λ

6
yT Z−2y + φ

(√
yT �̃ y ; T, a

)
. (7.7)
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Recalling the definitions of Z and �̃ in (7.4), we can write (7.7) in the explicit form:

fT (y; λ, T, a) = λ

6

(
y21
3
+ y22 + y23

)
+ φ

(√
y21 + y22 ; T, a

)

= λ

6

(
2

3
y22 + y23

)
+ λ

18

(
y21 + y22

)
+ φ

(√
y21 + y22 ; T, a

)

= λ

6

(
2

3
y22 + y23

)
+ g(y1, y2; λ, T, a) , (7.8)

where the function g in (7.8) is defined in (3.6). Since thefirst term in (7.8) is (quadratic)
convex, a sufficient condition for the function fT in (7.8) to be strictly convex is that
the function g in (3.6) is strictly convex. This concludes the proof after recalling that
the function f is strictly convex if and only if the function fT is strictly convex. ��

Proof of Lemma 3.3 It follows immediately from the definition of strict convexity that
a function fromR

2 intoR is strictly convex if andonly if the restrictionof the function to
any possible straight line ofR2 is strictly convex. Due to the radial symmetry property
of function ψ in (3.7), the restriction of ψ to a generic straight line l is identical to
the restriction of ψ to any other straight line obtained by rotating l around the origin.
Hence, ψ is strictly convex if and only if all its restrictions to horizontal straight lines
(any other direction, e.g. vertical, could be chosen as well) with non-negative intercept
are strictly convex.

We denote by h0 and hk the functions fromR intoR corresponding to the restriction
ofψ to the horizontal straight linewith null intercept, namely the horizontal coordinate
axis, and to any horizontal straight line with positive intercept k > 0, respectively.
From the definition of the function ψ in (3.7), we have:

h0(t) = ψ (t, 0) = z (|t |) , t ∈ R, (7.9)

hk(t) = ψ (t, k) = z
(√

t2 + k2
)

, t ∈ R, k > 0. (7.10)

Since the function ψ in (3.7) is strictly convex if and only if both h0 in (7.9) and
hk in (7.10) are strictly convex, it is clear that a necessary condition for ψ to be
strictly convex is that h0 in (7.9) is strictly convex. It thus remains to demonstrate that
h0 being strictly convex is also a sufficient condition for ψ to be strictly convex or,
equivalently, that strict convexity of h0 in (7.9) implies strict convexity of hk in (7.10)
for any positive k.

The functions h0 and hk in (7.9)–(7.10) are clearly even and, since we are assuming
z ∈ C1(R+), we have that hk ∈ C1(R) and h0 ∈ C0(R) ∩ C1(R \ {0}). In particular,
the first-order derivatives of h0 and hk are as follows:

h′0(t) = z′ (|t |) sign(t), t ∈ R \ {0}, (7.11)

h′k(t) = z′
(√

t2 + k2
) t√

t + k2
, t ∈ R. (7.12)
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We note that h0 is continuously differentiable also at the point t = 0 if and only if the
right-sided derivative of the function z at 0 is equal to 0.

We now assume that the function h0 in (7.9) is strictly convex. This implies that
the first-order derivative function h′0 is monotonically increasing on its entire domain
R\ {0}. It thus follows from the definition of h′0 in (7.11) that the first-order derivative
function z′ is nonnegative and monotonically increasing on R+. We then notice that,
for any given k > 0, the first-order derivative function h′k in (7.12) is continuous
(since z′ is continuous on R+ by assumption) and odd (hence h′k(0) = 0). Finally, by
recalling that the composition and the product of positive, monotonically increasing
functions is monotonically increasing, it follows that h′k in (7.12) is monotonically
increasing on the entire real line, hence hk in (7.10) is strictly convex. This completes
the proof. ��
Proof of Proposition 3.7 The functionalJ ( · ; λ, η, a) in (1.1) is clearly proper.More-
over, since the functions φ( · ; T, a) and ‖ · ‖2 are both continuous and bounded from
below by zero, J is also continuous and bounded from below by zero. In particular,
we notice that J achieves the zero value only for u = b with b a constant image.
The penalty function φ( · ; T, a) is not coercive, hence the regularization term in J is
not coercive. However, since the fidelity term is quadratic and strictly convex, hence
coercive, and the regularization term is bounded from below by zero, J is coercive.

As far as strong convexity is concerned, it follows from Definition 3.6 that the
functional J ( · ; λ, T, a) in (1.1) is μ-strongly convex if and only if the functional
J̃ (u; λ, T, a, μ) defined as

J̃ (u; λ, T, a, μ) := λ

2
‖u − b‖22 +

n∑

i=1
φ (‖(∇u)i‖2; T, a)

︸ ︷︷ ︸
J (u;λ,T,a)

− μ

2
‖u‖22

= A(u)+ λ− μ

2
‖u‖22 +

n∑

i=1
φ (‖(∇u)i‖2; T, a) (7.13)

is convex, where A(u) is an affine function of u. We notice that the functional J̃ in
(7.13) almost coincides with the original functional J in (1.1), the only difference
being the coefficient is λ−μ instead of λ. Hence, we can apply the results in Theorem
3.5 and state that J̃ in (7.13) is convex if condition (3.10) is satisfied with λ − μ

in place of λ. By substituting λ − μ for λ in condition (3.10), deriving the solution
interval for μ and then taking the maximum, one obtains equality (3.22). ��
Proof of Proposition 4.1. The demonstration of condition (4.17) for strict convexity
of the function θ in (4.16) is straightforward. In fact, the function θ can be equivalently
rewritten as

θ(x) = φ (‖x‖2; T, a)+ β

2
‖x‖22

︸ ︷︷ ︸
θ̄ (x)

+A(x), x ∈ R
2, (7.14)

with A(x) an affine function, so that a necessary and sufficient condition for θ to be
strictly convex is that the function θ̄ in (7.14) is strictly convex.We then notice that θ̄ is
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almost identical to the function g in (3.6), the only difference being the coefficient β/2
that for g now reads λ/18. By setting λ/18 = β/2 ⇐⇒ λ = 9β, the two functions
coincide. Condition for strict convexity of g in (3.10) reads as λ > 9 a, hence by
substituting λ = 9β in it we obtain condition (4.17) for strict convexity of θ .

We remark that condition β > a reduces to β ≥ a when only convexity is required.
For the proof of statement (4.19), according to which the unique solution x∗ of the

strictly convex problem (4.18) is obtained by a shrinkage of vector r , we refer the
reader to [20, Proposition 4.5].

We now prove statement (4.20). First, we notice that if ‖r‖2 = 0, i.e. r is the null
vector, the minimization problem in (4.18) with the objective function θ(x) defined in
(4.16) reduces to

arg min
x∈R2

{
φ (‖x‖2; T, a)+ β

2
‖x‖22

}
. (7.15)

Since the former and the latter terms of the cost function in (7.15) are a monotonically
non-decreasing and a monotonically increasing functions of ‖x‖2, respectively, the
solution of (7.15) is clearly x∗ = 0. Hence, the case ‖r‖2 = 0 can be easily dealt with
by taking any value ξ∗ in formula (4.19). We included the case ‖r‖2 = 0 in formula
a) of (4.20). In the following, we consider the case ‖r‖2 > 0.

Based on the previously demonstrated statement (4.19), by setting x = ξ r , ξ ≥ 0,
we turn the original unconstrained 2-dimensional problem in (4.18) into the following
equivalent constrained 1-dimensional problem:

ξ∗← arg min
0≤ξ≤1

{
φ (‖ξr‖2 ; T, a)+ β

2
‖ξr − r‖22

}

← arg min
0≤ξ≤1

{
f (ξ) : =φ (‖r‖2 ξ ; T, a)+ β

2
‖r‖22

(
ξ2 − 2ξ

)}
, (7.16)

where in (7.16) we omitted the constants and introduced the cost function f : R+ →
R for future reference. Since the function φ in (7.16), which is defined in (2.1), is
continuously differentiable on R+, the cost function f in (7.16) is also continuously
differentiable on R+. Moreover, f is strictly convex since it represents the restriction
of the strictly convex function θ in (4.16) to the half-line ξ r, ξ ≥ 0. Hence, the
first-order derivative f ′(ξ) is a continuous, monotonically increasing function and a
necessary and sufficient condition for an inner point 0 < ξ < 1 to be the global
minimizer of f is that f ′(ξ) = 0. From the definition of f in (7.16) we have:

f ′(ξ) = ‖r‖2
[
φ′ (‖r‖2ξ ; T, a)+ β‖r‖2(ξ − 1)

]
, (7.17)

and, in particular:

f ′(0+) = −β ‖r‖22 < 0, f ′(1) = ‖r‖2 φ′ (‖r‖2; T, a) ≥ 0. (7.18)

It follows from (7.18) that the solution of (7.16) can not be ξ∗ = 0, hence it is either
ξ∗ = 1 or an inner stationary point.
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Recalling the definition of φ( · ; T, a) in (2.1), after some simple manipulations the
function f ′(ξ) in (7.17) can be rewritten in the following explicit form:

f ′(ξ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f ′1(ξ) = ‖r‖2
[
a T2−T

T ‖r‖2ξ + β‖r‖2(ξ − 1)
]
, ‖r‖2ξ ∈ [0, T ]

f ′2(ξ) = ‖r‖2
[
− a‖r‖2ξ + aT2 + β‖r‖2(ξ − 1)

]
, ‖r‖2ξ ∈ (T, T2]

f ′3(ξ) = ‖r‖2
[
0+ β‖r‖2(ξ − 1)

]
, ‖r‖2ξ ∈ (T2,+∞)

(7.19)

that is:

f ′(ξ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f ′1(ξ) = ‖r‖22
[ (

β − a + a T2
T

)
ξ −β

]
, ξ ∈ D1 : =

[
0, T
‖r‖2

]

f ′2(ξ) = ‖r‖22
[
(β − a)ξ + a T2‖r‖2 −β

]
, ξ ∈ D2 : =

(
T
‖r‖2 ,

T2‖r‖2
)

f ′3(ξ) = ‖r‖22
[
βξ −β

]
, ξ ∈ D3 : =

[
T2‖r‖2 ,+∞

)

(7.20)
Denoting by ξ∗1 , ξ∗2 , ξ∗3 the points where f ′1, f ′2, f ′3 in (7.20) equal zero, respectively,
we have:

ξ∗1 =
T

T + (T2 − T ) a
β

, ξ∗2 =
β

β − a
− aT2

β − a

1

‖r‖2 , ξ∗3 = 1. (7.21)

However, for ξ∗1 , ξ∗2 and ξ∗3 in (7.21) to be acceptable candidate solutions of problem
(7.16), they must belong to the domains D1, D2, D3 of f ′1, f ′2, f ′3, respectively, and
obviously also to the optimization domain O : =[0, 1] of problem (7.16). We have:

{
ξ∗1 ∈ D1 if ‖r‖2 ∈

(
0, T + (T2 − T ) a

β

]

ξ∗1 ∈ O ∀ ‖r‖2
 ⇒ ξ∗1 ∈ D1 ∩O if

‖r‖2 ∈
(
0, T + (T2 − T ) a

β

]

(7.22)⎧
⎨

⎩
ξ∗2 ∈ D2 if ‖r‖2 ∈

(
T + (T2 − T ) a

β
, T2

)

ξ∗2 ∈ O if ‖r‖2 ∈
[
a
β
T2, T2

]  ⇒ ξ∗2 ∈ D2 ∩O if

‖r‖2 ∈
(
T + (T2 − T ) a

β
, T2

)

(7.23){
ξ∗3 ∈ D3 if ‖r‖2 ∈

[
T2,+∞

)

ξ∗3 ∈ O ∀ ‖r‖2  ⇒ ξ∗3 ∈ D3 ∩O if
‖r‖2 ∈

[
T2,+∞

) (7.24)

The proof of statement (4.20) is thus completed. ��

Proof of Theorem 5.7 Based on the definition of the augmentedLagrangian functional
in (5.2), we rewrite in explicit form the first inequality of the saddle-point condition
in (4.7):
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L (u∗, t∗; ρ) = ���F(u∗)+���R(t∗)+�������β

2
‖t∗ − Du∗‖22 − 〈 ρ, t∗ − Du∗ 〉

≤ L (u∗, t∗; ρ∗) = ���F(u∗)+���R(t∗)+�������β

2
‖t∗ − Du∗‖22 − 〈 ρ∗, t∗ − Du∗ 〉

⇐⇒ 〈 ρ∗ − ρ, t∗ − Du∗ 〉 ≤ 0 ∀ ρ ∈ R
2n , (7.25)

and, similarly, the second inequality:

L (u∗, t∗; ρ∗) = F(u∗)+ R(t∗)+ β

2
‖t∗ − Du∗‖22 − 〈 ρ∗, t∗ − Du∗ 〉

≤ L (u, t; ρ∗) = F(u) + R(t) + β

2
‖t − Du‖22 − 〈 ρ∗, t − Du 〉

∀ (u, t) ∈ R
n× R

2n . (7.26)

In the first part of the proof, we prove that if (u∗, t∗; ρ∗) is a solution of the saddle-
point problem (4.6)–(4.7), that is it satisfies the two inequalities (7.25) and (7.26), then
u∗ is a global minimizer of the functional J in (1.1).

Since (7.25) must be satisfied for any ρ ∈ R
2n , we have:

t∗ = Du∗ . (7.27)

The second inequality (7.26) must be satisfied for any (u, t) ∈ R
n× R

2n . Hence, by
taking t = Du in (7.26) and, at the same time, substituting in (7.26) the previously
derived condition (7.27), we obtain:

J (u∗; λ, T, a) = F(u∗)+ R(Du∗)
≤ J (u; λ, T, a) = F(u) + R(Du) ∀ u ∈ R

n . (7.28)

Inequality (7.28) indicates that u∗ is a global minimizer of the functional J in (1.1).
Hence, we have proved that all the saddle-point solutions of problem (4.6)–(4.7), if
there exists one, are of the form (u∗, Du∗; ρ∗) , with u∗ denoting a global minimizer
of J .

In the second part of the proof, we prove that at least one solution of the saddle-
point problem exists. In particular, we prove that if u∗ is a global minimizer of J in
(1.1), then there exists at least one pair (t∗, ρ∗)∈ R

2n×R
2n such that (u∗, t∗; ρ∗) is a

solution of the saddle-point problem (4.6)–(4.7), that is it satisfies the two inequalities
(7.25) and (7.26). The proof relies on a suitable choice of the vectors t∗ and ρ∗. We
take:

t∗ = Du∗, (7.29)

ρ∗ ∈∂̄t [ R ] (Du∗) such that DT ρ∗ + λ
(
u∗ − b

) = 0, (7.30)

where the term ∂̄t [ R ] (Du∗) indicates the Clarke generalized gradient (with respect
to t , calculated at Du∗) of the nonconvex regularization function R defined in (5.1).
We notice that a vector ρ∗ satisfying (7.30) is guaranteed to exist thanks to Proposition
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5.2. In fact, since here we are assuming that u∗ is a global minimizer of functional J ,
the first-order optimality condition in (5.5) holds true.

Due to (7.29), the first saddle-point condition in (7.25) is clearly satisfied. Proving
the second condition (7.26) is less straightforward: we need to investigate the optimal-
ity conditions of the functional L (u, t; ρ∗) with respect to the pair of primal variables
(u, t). We follow the same procedure used, e.g., in [35], which requires L (u, t; ρ∗) to
be jointly convex in (u, t). According to Proposition 5.4, in our case this requirement
is fulfilled if the penalty parameter β satisfies condition (5.17), which has thus been
taken as an hypothesis of this theorem. Hence, we can apply Lemma 5.6 and state that
(7.26) is satisfied if and only if both the following two optimality conditions are met:

u∗ ∈ argmin
u

L (u, t∗; ρ∗) = argmin
u

L(u) (u), (7.31)

t∗ ∈ argmin
t

L (u∗, t; ρ∗) = argmin
t

L(t) (t), (7.32)

where in (7.31)–(7.32) we introduced the two functions L(u) and L(t) representing the
restrictions of functions L (u, t∗; ρ∗) and L (u∗, t; ρ∗) to only the terms depending
on the optimization variables u and t , respectively. In particular, after recalling the
definition of the augmented Lagrangian functional in (5.2), we have

L(u)(u) = F(u) − β1

2
‖t − Du‖22

︸ ︷︷ ︸
Q(u)(u)

+ β + β1

2
‖t − Du‖22 + 〈 ρ∗, Du 〉

︸ ︷︷ ︸
S(u)(u)

, (7.33)

L(t)(t) = R(t)+ β2

2
‖t − Du‖22

︸ ︷︷ ︸
Q(t)(t)

+ β − β2

2
‖t − Du‖22 − 〈 ρ∗, t 〉

︸ ︷︷ ︸
S(t)(t)

, (7.34)

where, like in [35],L(u) andL(t) have been split into the sum of two functions with the
aim of then deriving optimality conditions for L(u) and L(t) by means of Lemma 5.5.
Unlike in [35], the ADMMquadratic penalty term β

2 ‖t−Du‖22 has been split into two
parts (differently in L(u) and L(t)) in order to deal with the nonconvex regularization
term. In particular, the coefficients β1, β2 introduced in (7.33)–(7.34) satisfy

− β < β1 ≤ τc
9

8
a, a ≤ β2 < β, (7.35)

such that the terms S(u), S(t) in (7.33)–(7.34) are clearly convex and the terms Q(u),
Q(t) are convex due to results in Lemma 5.3 and Proposition 4.1, respectively. We
also notice that all the functions Q(u), Q(t), S(u), S(t) are proper and continuous and
that S(u), S(t) are Gâteaux-differentiable. Hence, we can apply Lemma 5.5 separately
to (7.33) and (7.34), to check if the pair (u∗, t∗) satisfies the optimality conditions
in (7.31) and (7.32), so that the second saddle-point condition (7.26) holds true. We
obtain:
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F(u) − β1

2
‖t∗ − Du‖22 − F(u∗)+ β1

2
‖t∗ − Du∗‖22

− 〈
(β + β1)D

T (t∗ − Du∗︸ ︷︷ ︸
0

)− DT ρ∗, u − u∗
〉≥ 0 ∀ u ∈ R

n, (7.36)

R(t)+ β2

2
‖t − Du∗‖22 − R(t∗) − β2

2
‖t∗ − Du∗‖22

+ 〈
(β − β2)(t

∗ − Du∗︸ ︷︷ ︸
0

)− ρ∗, t − t∗
〉 ≥ 0 ∀ t ∈ R

2n, (7.37)

where the term t∗ − Du∗ in (7.36)–(7.37) is zero due to the setting (7.29). We rewrite
conditions (7.36)–(7.37) as follows:

F(u) − β1

2
‖t∗ − Du‖22 −

(
F(u∗) − β1

2
‖t∗ − Du∗‖22

)

− 〈
λ(u∗ − b)− λ(u∗ − b)− DT ρ∗︸ ︷︷ ︸

0

+ β1D
T (t∗ − Du∗), u − u∗

〉≥ 0 ∀ u ∈ R
n,

(7.38)

R(t)+ β2

2
‖t − Du∗‖22 −

(
R(t∗)+ β2

2
‖t∗ − Du∗‖22

)

−
〈
ρ∗ + β2 (t∗ − Du∗), t − t∗

〉
≥ 0 ∀ t ∈ R

2n, (7.39)

where in (7.38) we added and subtracted the term λ (u∗ − b) and added the null term
β1DT (t∗ − Du∗), and in (7.39) we added the null term β2 (t∗ − Du∗). The term
−λ (u∗ −b)− DT ρ∗ in (7.38) is null due to the setting (7.30). By introducing the two
functions

U (u) : = F(u) − β1

2
‖t∗ − Du‖22, T (t) : =R(t) + β2

2
‖t−Du∗‖22, (7.40)

which are convex under conditions (7.35) for the same reason for which the functions
Q(u), Q(t) in (7.33)–(7.34) are convex, conditions (7.38)–(7.39) can be rewritten as

U (u) − U (u∗)−
〈 ∂u

[
U

]
(u∗)

︷ ︸︸ ︷
λ (u∗ − b)+ β1D

T (t∗ − Du∗), u − u∗
〉
≥ 0 ∀ u ∈ R

n,

(7.41)

T (t) − T (t∗) −
〈
ρ∗ + β2 (t∗ − Du∗)︸ ︷︷ ︸

∈ ∂t
[
T
]
(t∗)

, t − t∗
〉
≥ 0 ∀ t ∈ R

2n, (7.42)

where we highlighted that the left side of the scalar product in (7.41) represents the
subdifferential (actually, the standard gradient) of function U calculated at u∗ and
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that the left side of the scalar product in (7.42) is a particular vector belonging to the
subdifferential of function T calculated at t∗. This second statement comes from the
definition of function T in (7.40) and from settings (7.29)–(7.30).

Optimality conditions in (7.41)–(7.42) are easily proved by noticing that the left-
hand sides of (7.41)–(7.42) represent the Bregman distances associated with functions
U and T , respectively, which are known to be non-negative for convex functions.
Hence, the second saddle-point condition in (7.26) is satisfied and, finally, the second
and last part of the proof is completed. ��
Proof of Theorem 5.8 Let us define the following errors:

ū(k) = u(k) − u∗, t̄ (k) = t (k) − t∗, ρ̄(k) = ρ(k) − ρ∗. (7.43)

Since (u∗, t∗; ρ∗) is a saddle-point of the augmented Lagrangian functional in (4.6), it
follows from Theorem 5.7 that t∗ = D∗u. This relationship, together with the ADMM
updating formula for the vector of Lagrange multipliers in (4.10), yields:

ρ̄(k+1) = ρ̄(k) − β
(
t̄ (k) − Dū(k)). (7.44)

It then follows easily from (7.44) that

∥∥ρ̄(k)
∥∥2
2 −

∥∥ρ̄(k+1)∥∥2
2 = 2β

〈
ρ̄(k), t̄ (k) − Dū(k)〉 − β2

∥∥t̄ (k) − Dū(k)
∥∥2
2. (7.45)

Computation of a lower bound for the right-hand side of (7.45)
Since (u∗, t∗; ρ∗) is a saddle-point of the augmented Lagrangian functional in

(4.6), it satisfies the following optimality conditions [see (7.36)–(7.37) in the proof of
Theorem 5.7]:

F(u) − β1

2
‖t∗ − Du‖22 − F(u∗)+ β1

2
‖t∗ − Du∗‖22

−
〈
DT

(
(β + β1)

(
t∗ − Du∗

)− ρ∗
)
, u − u∗

〉
≥ 0 ∀ u ∈ R

n, (7.46)

R(t)+ β2

2
‖t − Du∗‖22 − R(t∗) − β2

2
‖t∗ − Du∗‖22

+ 〈
(β − β2)(t

∗ − Du∗)− ρ∗, t − t∗
〉 ≥ 0 ∀ t ∈ R

2n . (7.47)

Similarly, by the construction of
(
u(k), t (k)

)
in Algorithm 1, we have:

F(u) − β1

2
‖t (k−1) − Du‖22 − F(u(k))+ β1

2
‖t (k−1) − Du(k)‖22

−
〈
DT

(
(β + β1)

(
t (k−1) − Du(k))− ρ(k)

)
, u − u(k)

〉
≥ 0 ∀ u ∈ R

n , (7.48)

R(t)+ β2

2
‖t − Du(k)‖22 − R(t (k)) − β2

2
‖t (k) − Du(k)‖22

+ 〈
(β − β2)(t

(k) − Du(k))− ρ(k), t − t (k)
〉 ≥ 0 ∀ t ∈ R

2n . (7.49)
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Taking u = u(k) in (7.46), u = u∗ in (7.48) and recalling that 〈DTw, z〉 = 〈w, Dz〉 ,
by addition we obtain:

− 〈
ρ̄(k), Dū(k) 〉

︸ ︷︷ ︸
A1

+β
〈
t̄ (k−1), Dū(k) 〉

︸ ︷︷ ︸
B1

− (β + β1)
∥∥Dū(k)

∥∥2
2︸ ︷︷ ︸

C1

≥ 0. (7.50)

Similarly, taking t = t (k) in (7.47) and t = t∗ in (7.49), after addition we have:

〈
ρ̄(k), t̄ (k)

〉
︸ ︷︷ ︸

A2

+β
〈
t̄ (k), Dū(k) 〉

︸ ︷︷ ︸
B2

− (β − β2)
∥∥t̄ (k)

∥∥2
2︸ ︷︷ ︸

C2

≥ 0, (7.51)

where, we recall, the parameters β1 and β2 in (7.50)–(7.51) satisfy the constraints in
(7.35).

By summing up (7.50) and (7.51), we obtain:

〈
ρ̄(k), t̄ (k) − Dū(k) 〉− β

〈
t̄ (k) − t̄ (k−1), Dū(k) 〉

−
(
(β − β2)

∥∥t̄ (k)
∥∥2
2 − 2β

〈
t̄ (k), Dū(k) 〉+ (β + β1)

∥∥Dū(k)
∥∥2
2

)
≥ 0

that is

〈
ρ̄(k), t̄ (k) − Dū(k) 〉− β

〈
t̄ (k) − t̄ (k−1), Dū(k) 〉− β + β3

2

∥∥t̄ (k) − Dū(k)
∥∥2
2

−
((
−β2 − β3

2
+ β

2

) ∥∥t̄ (k)
∥∥2
2 − (β − β3)

〈
t̄ (k), Dū(k) 〉

+
(

β1 − β3

2
+ β

2

) ∥∥Dū(k)
∥∥2
2

)
≥ 0, (7.52)

where we introduced the positive coefficient β3 > 0 (the reason will be clear later
on). We want that the last term in (7.52) takes the form − ∥∥ c1 t̄ (k) − c2Dū(k)

∥∥2
2 with

c1, c2 > 0. Hence, first we impose that the coefficients of
∥∥t̄ (k)

∥∥2
2 and

∥∥Dū(k)
∥∥2
2 in

(7.52) are strictly positive, which yields:

β1 >
β3

2
− β

2
, β2 < −β3

2
+ β

2
. (7.53)

Combining (7.53) with conditions (7.35), we obtain:

β3

2
− β

2
< β1 ≤ τc

9

8
a, a ≤ β2 < −β3

2
+ β

2
, 0 < β3 < β − 2a. (7.54)

From condition on β3 in (7.54), the following constraint for β is derived:

β > 2a. (7.55)
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We notice that condition (7.55) can be more stringent than (5.17), depending on τc,
hence it has been taken as an hypothesis of this theorem and will be considered,
together with (5.17), in the rest of the proof. From condition on β3 in (7.54) it also
follows that the coefficient β − β3 of the scalar product in (7.52) is positive.

Then, we have to impose that the coefficient of the term −〈
t̄ (k), Dū(k)

〉
in (7.52)

is twice the product of the square roots of the (positive) coefficients of
∥∥t̄ (k)

∥∥2
2 and∥∥Dū(k)

∥∥2
2, that is:

β − β3 = 2

√(
−β2 − β3

2
+ β

2

)(
β1 − β3

2
+ β

2

)
 ⇒ β = β3 + 2

β1β2

β1 − β2
.

(7.56)
By imposing condition on β3 in (7.54), namely β − β3 > 2a, it is easy to verify
that (7.56) admits acceptable solutions only in case that β1 > β2. By setting in (7.56)
β1 = τc

9
8 a and β2 = a, which are acceptable values according to this last result (since

τc > 1, clearly β1 > β2) and also to conditions (7.54), we obtain:

β = β3 + 2a
9 τc

9 τc − 8
. (7.57)

We now check if there exist acceptable values for the two remaining free parameters,
namely β and β3, such that (7.57) holds. We impose that β in (7.57) satisfies its con-
straint in (5.17), which guarantees convexity of the augmented Lagrangian functional,
and the derived condition in (7.55):

⎧
⎪⎪⎨

⎪⎪⎩

β3 + 2a
9 τc

9 τc − 8
≥ a

9 τc

9 τc − 8

β3 + 2a
9 τc

9 τc − 8
> 2a

 ⇒

⎧
⎪⎪⎨

⎪⎪⎩

β3 ≥ −a 9 τc

9 τc − 8

β3 > −a 16

9 τc − 8

(7.58)

Since τc > 1 (and a > 0), both conditions in (7.58) are satisfied for any β3 > 0.
Hence, for β1 = τc

9
8 a, β2 = a and any 0 < β3 < β − 2a, with β > 2a, the last term

in (7.52) can be written in the form

− ∥∥ c1 t̄ (k) − c2Dū(k)
∥∥2
2 with

{
c1 = β−β3

2 − a

c1 = β−β3
2 + τc

9
8a

(7.59)

where c1, c2 > 0, c1 �= c2. Replacing the expression in (7.59) for the last term in
(7.52), we have:

〈
ρ̄(k), t̄ (k) − Dū(k) 〉− β + β3

2

∥∥t̄ (k) − Dū(k)
∥∥2
2 − β

〈
t̄ (k) − t̄ (k−1), Dū(k) 〉

− ∥∥ c1 t̄ (k) − c2 Dū(k)
∥∥2
2 ≥ 0

⇐⇒ 2β
〈
ρ̄(k), t̄ (k) − Dū(k) 〉− β2

∥∥t̄ (k) − Dū(k)
∥∥2
2 ≥ ββ3

∥∥t̄ (k) − Dū(k)
∥∥2
2

+ 2β2〈 t̄ (k) − t̄ (k−1), Dū(k) 〉+ 2β
∥∥ c1 t̄ (k) − c2 Dū(k)

∥∥2
2, (7.60)
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where in (7.60) we multiplied both sides by the positive coefficient 2β. We notice
that the left-hand side of (7.60) coincides with the right-hand side of (7.45), hence it
follows that:

∥∥ρ̄(k)
∥∥2
2 −

∥∥ρ̄(k+1)∥∥2
2 ≥ ββ3

∥∥t̄ (k) − Dū(k)
∥∥2
2 + 2β2 〈

t̄ (k) − t̄ (k−1), Dū(k) 〉
︸ ︷︷ ︸

T

+ 2β
∥∥ c1 t̄ (k) − c2 Dū(k)

∥∥2
2. (7.61)

Computation of a lower bound for the term T in (7.61).
We can write:

〈
t̄ (k) − t̄ (k−1), Dū(k) 〉 = 〈

t̄ (k) − t̄ (k−1), Dū(k) − Dū(k−1) 〉

+ 〈
t̄ (k) − t̄ (k−1), Dū(k−1) − t̄ (k−1)

〉

+ 〈
t̄ (k) − t̄ (k−1), t̄ (k−1)

〉
. (7.62)

First, we notice that:

〈
t̄ (k) − t̄ (k−1), t̄ (k−1)

〉 = 1

2

( ∥∥t̄ (k)
∥∥2
2 −

∥∥t̄ (k−1)
∥∥2
2 −

∥∥t̄ (k) − t̄ (k−1)
∥∥2
2

)
. (7.63)

Then, from the construction of t (k−1) (from u(k−1)), we have:

R(t)+ β2

2
‖t − Du(k−1)‖22 − R(t (k−1)) − β2

2
‖t (k−1) − Du(k−1)‖22

+ 〈
(β − β2)(t

(k−1) − Du(k−1))− ρ(k−1), t − t (k−1)
〉 ≥ 0 ∀ t ∈ R

2n . (7.64)

Taking t = t (k−1) in (7.49) and t = t (k) in (7.64), we obtain:

R(t (k−1))+ β2

2
‖t (k−1) − Du(k)‖22 − R(t (k)) − β2

2
‖t (k) − Du(k)‖22

+ 〈
(β − β2)(t

(k) − Du(k))− ρ(k), t (k−1) − t (k)
〉 ≥ 0, (7.65)

R(t (k))+ β2

2
‖t (k) − Du(k−1)‖22 − R(t (k−1)) − β2

2
‖t (k−1) − Du(k−1)‖22

+ 〈
(β − β2)(t

(k−1) − Du(k−1))− ρ(k−1), t (k) − t (k−1)
〉 ≥ 0. (7.66)

By addition of (7.65) and (7.66), we have that

β
〈
t̄ (k) − t̄ (k−1), Dū(k) − Dū(k−1) 〉+ 〈

t̄ (k) − t̄ (k−1), ρ̄(k) − ρ̄(k−1) 〉

≥ (β − β2)
∥∥t̄ (k) − t̄ (k−1)

∥∥2
2. (7.67)

Recalling that

ρ̄(k) − ρ̄(k−1) = ρ(k) − ρ(k−1) = −β
(
t̄ (k−1) − Dū(k−1)), (7.68)
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replacing (7.68) into (7.67) and then dividing by β, we obtain:

〈
t̄ (k) − t̄ (k−1), Dū(k) − Dū(k−1) 〉+ 〈

t̄ (k) − t̄ (k−1), Dū(k−1) − t̄ (k−1)
〉

≥ β − β2

β

∥∥t̄ (k) − t̄ (k−1)
∥∥2
2. (7.69)

From (7.62), (7.63) and (7.69), we have:

〈
t̄ (k) − t̄ (k−1), Dū(k) 〉 ≥ 1

2

( ∥∥t̄ (k)
∥∥2
2 −

∥∥t̄ (k−1)
∥∥2
2 −

∥∥t̄ (k) − t̄ (k−1)
∥∥2
2

)

+β − β2

β

∥∥t̄ (k) − t̄ (k−1)
∥∥2
2

= 1

2

( ∥∥t̄ (k)
∥∥2
2 −

∥∥t̄ (k−1)
∥∥2
2 +

(
β − 2β2

β

)∥∥t̄ (k) − t̄ (k−1)
∥∥2
2

)
.

(7.70)

Convergence results for sequences t(k), Du(k), ρ(k).
From (7.61) and (7.70), we obtain:

∥∥ρ̄(k)
∥∥2
2 −

∥∥ρ̄(k+1)∥∥2
2 ≥ β2

∥∥t̄ (k)
∥∥2
2 − β2

∥∥t̄ (k−1)
∥∥2
2 + β(β − 2β2)

∥∥t̄ (k) − t̄ (k−1)
∥∥2
2

+ ββ3
∥∥t̄ (k) − Dū(k)

∥∥2
2 + 2β

∥∥ c1 t̄ (k) − c2Dū(k)
∥∥2
2, (7.71)

that is:
(∥∥ρ̄(k)

∥∥2
2 + β2

∥∥t̄ (k−1)
∥∥2
2

)

︸ ︷︷ ︸
s(k)

−
(∥∥ρ̄(k+1)∥∥2

2 + β2
∥∥t̄ (k)

∥∥2
2

)

︸ ︷︷ ︸
s(k+1)

≥ β(β − 2β2)
∥∥t̄ (k) − t̄ (k−1)

∥∥2
2 + ββ3

∥∥t̄ (k) − Dū(k)
∥∥2
2

+ 2β
∥∥ c1 t̄ (k) − c2Dū(k)

∥∥2
2 ≥ 0, (7.72)

where we have introduced the scalar sequence {s(k)}, which is clearly bounded from
below by zero. We notice that the coefficient β − 2β2 in (7.72) is positive due to
the constraint β > 2a. Since the right-hand side of the first inequality in (7.72) is
nonnegative, {s(k)} is monotonically non-increasing, hence convergent. This implies
that the right-hand side of (7.72) tend to zero as k →∞. From these considerations
and (7.72) it follows that:

{
ρ̄(k)},

{
t̄ (k)

}
,
{
Dū(k)} are bounded  ⇒ {

ρ(k)},
{
t (k)

}
,
{
Du(k)} bounded ,

(7.73)

lim
k→∞

∥∥t̄ (k) − t̄ (k−1)
∥∥
2 = lim

k→∞
∥∥t (k) − t (k−1)

∥∥
2 = 0, (7.74)

lim
k→∞

∥∥t̄ (k) − Dū(k)
∥∥
2 = lim

k→∞
∥∥t (k) − Du(k)

∥∥
2 = 0, (7.75)

lim
k→∞

∥∥c1 t̄ (k) − c2Dū(k)
∥∥
2 = 0. (7.76)
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Since the two coefficients c1, c2 in (7.76) satisfy c1, c2 �= 0, c1 �= c2, then it follows
from (7.75)–(7.76) that both the sequences {t̄ (k)} and {Dū(k)} tend to zero as k →∞.
Results in (7.73)–(7.76) can thus be rewritten in the following more concise and
informative form:

{
ρ(k)} is bounded, (7.77)

lim
k→∞ t̄ (k) = 0 ⇐⇒ lim

k→∞ t (k) = t∗ = Du∗, (7.78)

lim
k→∞ Dū(k) = 0 ⇐⇒ lim

k→∞ Du(k) = Du∗, (7.79)

where the last equality in (7.78) comes from the saddle-point properties stated in
Theorem 5.7. Since it will be useful later on, we note that it follows from (7.78) that

lim
k→∞ R(t (k)) = R(t∗). (7.80)

Convergence results for sequence u(k).
We now prove that limk→∞ u(k) = u∗. Since (u∗, t∗; ρ∗) is a saddle point of the

augmented Lagrangian functional L(u, t; ρ), we have

L(u∗, t∗; ρ∗) ≤ L(u, t; ρ∗) ∀ (u, t) ∈ R
n× R

2n . (7.81)

By taking u = u(k), t = t (k) in (7.81) and recalling the definition ofL(u, t; ρ) in (5.2),
we have:

F(u∗)+ R(t∗) − 〈 ρ∗, t∗ − Du∗︸ ︷︷ ︸
0

〉 + β

2
‖ t∗ − Du∗︸ ︷︷ ︸

0

‖22

≤ F(u(k))+ R(t (k)) − 〈 ρ∗, t (k) − Du(k) 〉 + β

2
‖t (k) − Du(k)‖22

⇐⇒ F(u∗) ≤ F(u(k))+ R(t (k)) − R(t∗)

− 〈 ρ∗, t (k) − Du(k) 〉 + β

2
‖t (k) − Du(k)‖22 . (7.82)

Taking u = u∗ in (7.48) and t = t∗ in (7.49), we obtain:

F(u∗) − β1

2
‖t (k−1) − Du∗‖22 − F(u(k))+ β1

2
‖t (k−1) − Du(k)‖22

−
〈
DT

(
(β + β1)

(
t (k−1) − Du(k))− ρ(k)

)
, u∗ − u(k)

〉
≥ 0, (7.83)

R(t∗)+ β2

2
‖t∗ − Du(k)‖22 − R(t (k)) − β2

2
‖t (k) − Du(k)‖22

+ 〈
(β − β2)(t

(k) − Du(k))− ρ(k), t∗ − t (k)
〉 ≥ 0. (7.84)
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By summing up (7.83) and (7.84), we have:

F(u∗) ≥ F(u(k))+ R(t (k)) − R(t∗)+ β1

2
‖Du∗‖22 −

β1

2
‖Du(k)‖22

− β1
〈
t (k−1), Du∗ − Du(k)〉 − β2

2
‖t∗ − Du(k)‖22 +

β2

2
‖t (k) − Du(k)‖22

+ 〈
(β + β1)

(
t (k−1) − Du(k))− ρ(k), Du∗ − Du(k)〉

− 〈
(β − β2)(t

(k) − Du(k))− ρ(k), t∗ − t (k)
〉
. (7.85)

Taking lim inf of (7.82) and lim sup of (7.85), and using the results in (7.77)–(7.80),
we have

lim inf F(u(k)) ≥ F(u∗) ≥ lim sup F(u(k)). (7.86)

It follows from (7.86) that
lim
k→∞ F(u(k)) = F(u∗). (7.87)

We now manipulate F(u(k)) as follows:

F(u(k)) = λ

2
‖u(k) − b‖22 =

λ

2
〈 u(k) − b, u(k) − b 〉

= λ

2

〈
u(k) + u∗

2
− b, u(k) − b

〉
+ λ

2

〈
u(k) − u∗

2
, u(k) − b

〉

= λ

2

〈
u(k) + u∗

2
− b,

u(k) + u∗

2
− b

〉
+ λ

2

〈
u(k) + u∗

2
− b,

u(k) − u∗

2

〉

+ λ

2

〈
u(k) − u∗

2
, u(k) − b

〉

= λ

2

∥∥∥∥∥
u(k) + u∗

2
− b

∥∥∥∥∥

2

2

+ λ

2

〈
u(k) − u∗

2
,
u(k) + u∗

2
− b + u(k) − b

〉

= λ

2

∥∥∥∥∥
u(k) + u∗

2
− b

∥∥∥∥∥

2

2

+ λ

2

〈
u(k) − u∗

2
,
u(k) − u∗

2
+ u(k) + u∗ − 2b

〉

= λ

2

∥∥∥∥∥
u(k) + u∗

2
− b

∥∥∥∥∥

2

2

+ λ

2

∥∥∥∥∥
u(k) − u∗

2

∥∥∥∥∥

2

2

+λ

〈
u(k) − u∗

2
,
u(k) + u∗

2
− b

〉

≥ λ

2

∥∥∥∥∥
u(k) + u∗

2
− b

∥∥∥∥∥

2

2

+ λ

〈
u(k) − u∗

2
,
u(k) + u∗

2
− b

〉
. (7.88)
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On the other hand, we have that

〈
ρ∗, Du(k) − Du∗

〉 = 〈
ρ∗, D(u(k) − u∗)

〉 = 〈
DT ρ∗, u(k) − u∗

〉

= λ
〈
u∗ − b, u∗ − u(k) 〉, (7.89)

where in (7.89) we have used the (optimality) condition (7.30). From (7.88) and (7.89)
it follows that

F(u(k)) + 〈
ρ∗, Du(k) − Du∗

〉

≥ λ

2

∥∥∥∥∥
u(k) + u∗

2
− b

∥∥∥∥∥

2

2

+ λ

〈
u(k) − u∗

2
,
u(k) + u∗

2
− b

〉

+ λ
〈
u∗ − b, u∗ − u(k) 〉

= λ

2
‖u∗ − b‖22

︸ ︷︷ ︸
F(u∗)

+ 3

8
λ ‖u(k) − u∗‖22, (7.90)

that is

F(u(k)) − F(u∗) + 〈
ρ∗, Du(k) − Du∗

〉 ≥ 3

8
λ ‖u(k) − u∗‖22. (7.91)

Taking the limit for k → ∞ of both sides of (7.91) and recalling (7.79) and (7.87),
we obtain:

0 ≥ lim
k→∞

3

8
λ ‖u(k) − u∗‖22  ⇒ lim

k→∞ u(k) = u∗, (7.92)

thus completing the proof. �
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