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Abstract This paper introduces a new algorithm for solving large-scale continuous-
time algebraic Riccati equations (CARE). The advantage of the new algorithm is in
its immediate and efficient low-rank formulation, which is a generalization of the
Cholesky-factored variant of the Lyapunov ADI method. We discuss important imple-
mentation aspects of the algorithm, such as reducing the use of complex arithmetic and
shift selection strategies. We show that there is a very tight relation between the new
algorithm and three other algorithms for CARE previously known in the literature—all
of these seemingly different methods in fact produce exactly the same iterates when
used with the same parameters: they are algorithmically different descriptions of the
same approximation sequence to the Riccati solution.
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zbujanov@math.hr

Jens Saak
saak@mpi-magdeburg.mpg.de

1 Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany

2 Department of Mathematics, Faculty of Science, University of Zagreb, Zagreb, Croatia

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00211-017-0907-5&domain=pdf


302 P. Benner et al.

1 Introduction

The continuous-time algebraic Riccati equation,

A∗X + X A + Q − XGX = 0, (1)

where

Q = C∗C, G = BB∗, A ∈ R
n×n, B ∈ R

n×m, C ∈ R
p×n,

appears frequently in various aspects of control theory, such as linear-quadratic opti-
mal regulator problems, H2 and H∞ controller design and balancing-related model
reduction. While the equation may have many solutions, for such applications one is
interested in finding a so-called stabilizing solution: the unique positive semidefinite
solution X ∈ C

n×n such that the matrix A − GX is stable (i.e. all of its eigenvalues
belong to C−, the left half of the complex plane). If the pair (A,G) is stabilizable
(i.e. rank[A−λI, G] = n, for all λ in the closed right half plane), and the pair (A, Q)

is detectable (i.e. (A∗, Q∗) is stabilizable), then such a solution exists [11,19]. These
conditions are fulfilled generically, and we assume they hold throughout the paper.

There are several algorithms for finding the numerical solution of (1). In the case
when n is small enough, one can compute the eigen- or Schur decomposition of the
associated Hamiltonian matrix

H =
[
A G
Q −A∗

]
, (2)

and use an explicit formula for X , see [11,20]. However, if the dimensions of the
involved matrices prohibit the computation of a full eigenvalue or Schur decompo-
sition, specialized large-scale algorithms have to be constructed. In such scenarios,
Riccati equations arising in applications have additional properties: A is sparse, and
p,m � n, thus making the matrices Q and G of very-low rank compared to n. In
practice, this often implies that the sought-after solution X will have a low numer-
ical rank [3], and allows for construction of iterative methods that approximate X
with a series of matrices stored in low-rank factored form. Most of these methods are
engineered as generalized versions of algorithms for solving a large-scale Lyapunov
equation [10,33], which is a special case of (1) with G = 0.

The alternating directions implicit (ADI) method [35] is a well established itera-
tive approach for computing solutions of Lyapunov and other linear matrix equations.
There exists an array of ADI methods [7,8,21,22,27,30,35,36], covering both the
ordinary and the generalized case. All of these methods have simple statements and
efficient implementations [27]. One particular advantage of ADI methods is that they
are verywell suited for large-scale problems: the default formulationwhichworkswith
full-size dense matrices can be transformed into a series of iteratively built approxi-
mations to the solution. Such approximations are represented in factored form, each
factor having a very small rank compared to the dimensions of the input matrices. This
makes ADI methods very suitable for large-scale applications.
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Recently,Wong and Balakrishnan [37,38] suggested a so-called quadratic ADIme-
thod (qADI) for solving the algebraic Riccati equation (1). Their method is a direct
generalization of the Lyapunov ADI method, but only when considering the formu-
lation working with full-size dense matrices. However, in the setting of the qADI
algorithm, it appears impossible to apply a so-called “Li–White trick” [22], which is
the usual method of obtaining a low-rank formulation of an ADI method. Wong and
Balakrishnan do provide a low-rank variant of their algorithm, but this variant has
an important drawback: in each step, all the low-rank factors have to be rebuilt from
scratch. This has a large negative impact on the performance of the algorithm.

Apart from the qADI method, there are several other methods for solving the large-
scale Riccati equation that have appeared in the literature recently. Amodei andBuchot
[1] derive an approximation of the solution by computing small-dimensional invariant
subspaces of the associated Hamiltonian matrix (2). Lin and Simoncini [23] also con-
sider theHamiltonianmatrix, and construct the solution by running subspace iterations
on its Cayley transforms. Massoudi et al. [24] have shown that the latter method can
be obtained from the control theory point of view as well.

In this paper, we introduce a new ADI-type iteration for Riccati equations, RADI.
The derivation of RADI is not related to qADI, and it immediately gives the low-rank
algorithmwhich overcomes the drawback from [37,38]. The low-rank factors are built
incrementally in the new algorithm: in each step, each factor is expanded by several
columns and/or rows, while keeping the elements from the previous steps intact. By
setting the quadratic coefficient B in (1) to zero, our method reduces to the low-rank
formulation of the Lyapunov ADI method, see, e.g., [4,7,22,27].

A surprising result is that, despite their completely different derivations, all of the
Riccati methods we mentioned so far are equivalent: the approximations they produce
in each step are the same. This was already shown [3] for the qADI algorithm, and
the algorithm of Amodei and Buchot. In this paper we extend this equivalence to our
new low-rank RADI method and the method of Lin and Simoncini. Among all these
different formulations of the same approximation sequence, RADI offers a compact
and efficient implementation, and is very well suited for effective computation.

This paper is organized as follows: in Sect. 2, we recall the statements of the Lya-
punov ADI method and the various Riccati methods, and introduce the new low-rank
RADI algorithm.The equivalence of all aforementionedmethods is shown inSect. 3. In
Sect. 4 we discuss important implementation issues, and in particular, various strate-
gies for choosing shift parameters. Finally, Sect. 5 compares the effect of different
options for the algorithm on its performance via several numerical experiments. We
compare RADI with other algorithms for computing low-rank approximate solutions
of (1) as well: the extended [16] and rational Krylov subspace methods [34], and the
low-rank Newton–Kleinman ADI iteration [7,9,15,29].

The following notation is used in this paper: C− and C+ are the open left and right
half plane, respectively, while Re (z) , Im (z), z = Re (z) − i Im (z), |z| denote the
real part, imaginary part, complex conjugate, and absolute value of a complex quantity
z. For the matrix A, we use A∗ and A−1 for the complex conjugate transpose and the
inverse, respectively. In most situations, expressions of the form x = A−1b are to
be understood as solving the linear system Ax = b of equations for b. The relations
A > (≥)0, A < (≤)0 stand for the matrix A being positive or negative (semi)definite.
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Likewise, A ≥ (≤)B refers to A − B ≥ (≤)0. If not stated otherwise, ‖ · ‖ is the
Euclidean vector or subordinate matrix norm, and κ(·) is the associated condition
number.

2 A new low-rank factored iteration

We start this section by stating various methods for solving Lyapunov and Riccati
equations, which will be used throughout the paper. First, consider the Lyapunov
equation

A∗X lya + X lyaA + Q = 0, Q = C∗C, A ∈ R
n×n, C ∈ R

p×n . (3)

Here we assume that n is much larger than p. When A is a stable matrix, the solution
X lya is positive semidefinite. The Lyapunov ADI algorithm [36] generates a sequence
of approximations (X lya

k )k to X lya defined by

X lya
k+1/2(A + σk+1 I ) = −Q − (A∗ − σk+1 I )X

lya
k ,

(A∗ + σk+1 I )X
lya
k+1 = −Q − X lya

k+1/2(A − σk+1 I ).

}
Lyapunov ADI (4)

We will assume that the initial iterate X lya
0 is the zero matrix, although it may be set

arbitrarily. The complex numbers σk ∈ C− are called shifts, and the performance of
ADI algorithms depends strongly on the appropriate selection of these parameters [30];
this is further discussed in the context of the RADI method in Sect. 4.5. Since each
iteration matrix X lya

k is of order n, formulation (4) is unsuitable for large values of n,

due to the amount ofmemory needed for storing X lya
k ∈ C

n×n and to the computational
time needed for solving n linear systems in each half-step. The equivalent low-rank
algorithm [4,6] generates the same sequence, but represents X lya

k in factored form

X lya
k = Z lya

k (Z lya
k )∗ with Z lya

k ∈ C
n×pk :

Rlya
0 = C∗,

V lya
k = √−2Re (σk) · (A∗ + σk I )−1Rlya

k−1,

Rlya
k = Rlya

k−1 + √−2Re (σk) · V lya
k ,

Z lya
k =

[
Z lya
k−1 V lya

k

]
.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

low-rank Lyapunov ADI (5)

Initially, the matrix Z lya
0 is empty. This formulation is far more efficient for large

values of n, since the right-hand side of the linear system in each step involves only
the tall-and-skinny matrix Rlya

k−1 ∈ C
n×p.

We now turn our attention to the Riccati equation (1). Once again we assume that
p,m � n, and seek to approximate the stabilizing solution X .Wong andBalakrishnan
[37,38] suggest the following quadratic ADI iteration (abbreviated as qADI):
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Xadi
k+1/2

(
A + σk+1 I − GXadi

k

) = −Q − (A∗ − σk+1 I )Xadi
k ,(

A∗ + σk+1 I − Xadi
k+1/2G

)
Xadi
k+1 = −Q − Xadi

k+1/2 (A − σk+1 I ) .

}
quadratic ADI

(6)
Again, the initial approximation is usually set to Xadi

0 = 0. Note that by inserting
G = 0 in the quadratic iteration we obtain the Lyapunov ADI algorithm (4). As
mentioned in the introduction, we will develop a low-rank variant of this algorithm
such that inserting G = 0 will reduce it precisely to (5). To prepare the terrain, we
need to introduce two more methods for solving the Riccati equation.

In the small scale setting, the Riccati equation (1) is usually solved by computing
the stable invariant subspace of the associated 2n × 2n Hamiltonian matrix (2). To be
more precise, let 1 ≤ k ≤ n, and

H

[
Pk
Qk

]
=
[
A G
Q −A∗

] [
Pk
Qk

]
=
[
Pk
Qk

]
Λk, (7)

where Pk, Qk ∈ C
n×k and the matrix Λk ∈ C

k×k is stable. For k = n, the stabilizing
solution of (1) is given by X = −Qk P

−1
k . In the large scale setting, it is computation-

ally too expensive to compute the entire n-dimensional stable invariant subspace of
H . Thus an alternative approach was suggested in [1]: for k � n, one can compute
only a k-dimensional, stable, invariant subspace and use an approximation given by
the formula

X inv
k = −Qk(Q

∗
k Pk)

−1Q∗
k .

}
invariant subspace approach (8)

Clearly, X inv
n = X . This approach was further studied and justified in [3], where it

was shown that

X inv
k = Xadi

k , for all k,

if p = 1 and the shifts used for the qADI iteration coincide with the Hamiltonian
eigenvalues of the matrix Λk . In fact, properties of the approximate solution X inv

k
given in [3] have lead us to the definition of the low-rank variant of the qADI iteration
that is described in this paper.

The final method we consider also uses the Hamiltonian matrix H . The Cayley
transformed Hamiltonian subspace iteration introduced in [23] generates a sequence
of approximations (Xcay

k )k for the stabilizing solution of the Riccati equation defined
by

[
Mk

Nk

]
= (H − σk I )−1(H + σk I )

[
I

−Xcay
k−1

]
,

Xcay
k = −NkM

−1
k ,

⎫⎬
⎭ Cayley subspace iteration (9)

Here Xcay
0 is some initial approximation and σk ∈ C− are any chosen shifts (Here we

have adapted the notation to fit the one of this paper). In Sect. 3 we will show that this
method is also equivalent to the qADI and the new low-rank RADI iterations.
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2.1 Derivation of the algorithm

The common way of converting ADI iterations into their low-rank variants is to per-
form a procedure similar to the one originally done by Li and White [22] for the
Lyapunov ADI method. A crucial assumption for this procedure to succeed is that
the matrices participating in the linear systems in each of the half-steps mutually
commute for all k. For the Lyapunov ADI method this obviously holds true for the
matrices A∗ + σk+1 I . However, in the case of the quadratic ADI iteration (6), the
matrices A∗ + σk+1 I − Xadi

k G do not commute in general, for all k, and neither do
A∗ + σk+1 I − Xadi

k+1/2G.
Thus we take a different approach in constructing the low-rank version. A common

way to measure the quality of the matrixΞ ∈ C
n×n as an approximation to the Riccati

solution is to compute the norm of its residual matrix

R(Ξ) = A∗Ξ + Ξ A + Q − ΞGΞ.

The idea for our method is to repetitively update the approximation Ξ by forming
a so-called residual equation, until its solution converges to zero. The background is
given in the following simple result.

Theorem 1 Let Ξ ∈ C
n×n be an approximation to a solution of (1).

(a) Let X = Ξ + X̃ be an exact solution of (1). Then X̃ is a solution to the residual
equation

Ã∗ X̃ + X̃ Ã + Q̃ − X̃G X̃ = 0, (10)

where Ã = A − GΞ and Q̃ = R(Ξ).
(b) Conversely, if X̃ is a solution to (10), then X = Ξ + X̃ is a solution to the original

Riccati equation (1). Moreover, if Ξ ≥ 0 and X̃ is a stabilizing solution to (10),
then X = Ξ + X̃ is the stabilizing solution to (1).

(c) If Ξ ≥ 0 andR(Ξ) ≥ 0, then the residual equation (10) has a unique stabilizing
solution.

(d) If Ξ ≥ 0 andR(Ξ) ≥ 0, then Ξ ≤ X, where X is the stabilizing solution of (1).

Proof

(a) This is a straightforward computation which follows by inserting X̃ = X −Ξ

and the formula for the residual of Ξ into (10), see also [2,25].
(b) The first part follows as in (a). IfΞ ≥ 0 and X̃ is a stabilizing solution to (10),

then X = Ξ + X̃ ≥ 0 and A−GX = Ã−GX̃ is stable, which makes X the
stabilizing solution to (1).

(c), (d) The claims follow directly from (a) and [19, Theorem 9.1.1].


�
Our algorithm will have the following form:

1. Let Ξ = 0.
2. Form the residual equation (10) for the approximation Ξ .
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3. Compute an approximation X̃1 ≈ X̃ , where X̃ is the stabilizing solution of (10).
4. Accumulate Ξ ← Ξ + X̃1, and go to Step 2.

To complete the derivation, we need to specify Step 3 in a way that X̃1 ≥ 0
and R(Ξ + X̃1) ≥ 0. With these two conditions imposed, Theorem 1 ensures that
the residual equation in Step 2 always has a unique stabilizing solution and that the
approximation Ξ is kept positive semidefinite and monotonically increasing towards
the stabilizing solution of (1). Thematrix X̃1 fulfilling these conditions can be obtained
by computing a 1-dimensional invariant subspace for the Hamiltonian matrix associ-
ated with the residual equation, and plugging it into formula (8).

More precisely, assume that R(Ξ) = C̃∗C̃ ≥ 0, G = BB∗, and that r, q ∈ C
n

satisfy
[

Ã BB∗
C̃∗C̃ − Ã∗

] [
r
q

]
= λ

[
r
q

]
,

where λ ∈ C− is such that −λ is not an eigenvalue of Ã. Equivalently,

Ãr + BB∗q = λr,

C̃∗C̃r − Ã∗q = λq.

From the second equation we get q = ( Ã∗ + λI )−1C̃∗(C̃r). Let

Ṽ1 = √−2Re (λ)( Ã∗ + λI )−1C̃∗.

Multiply the first equation by q∗ from the left, and the transpose of the second by r
from the right; then add the terms to obtain

q∗r = 1

2Re (λ)
(q∗BB∗q + r∗C̃∗C̃r)

= 1

2Re (λ)
(C̃r)∗

(
I − 1

2Re (λ)

(
Ṽ ∗
1 B
) (

Ṽ ∗
1 B
)∗)

(C̃r).

Expression (8) has the form X̃1 = −q(q∗r)−1q∗. When p = 1 and C̃r �= 0, the terms
containing C̃r cancel out, and we get

Ṽ1 = √−2Re (λ) · ( Ã∗ + λI )−1C̃∗,
Ỹ1 = I − 1

2Re(λ)

(
Ṽ ∗
1 B
) (

Ṽ ∗
1 B
)∗

,

X̃1 = Ṽ1Ỹ
−1
1 Ṽ ∗

1 .

⎫⎪⎬
⎪⎭ (11)

The derivation above is valid when λ is an eigenvalue of the Hamiltonian matrix,
similarly as in [3, Theorem 7] which also studies residual Riccati equations related to
invariant subspaces ofHamiltonianmatrices. Nevertheless, the expression (11) is well-
defined even when λ is not an eigenvalue of the Hamiltonian matrix, and for p > 1 as
well. The Hamiltonian argument here serves only as a motivation for introducing (11),
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and the following proposition shows that the desired properties of the updated matrix
Ξ + X̃1 still hold for any λ in the left half-plane which is not an eigenvalue of − Ã,
and for all p.

Proposition 1 Let Ξ ≥ 0 be such that R(Ξ) = C̃∗C̃ ≥ 0, and let λ ∈ C− not be
an eigenvalue of − Ã. The following holds true for the update matrix X̃1 as defined
in (11):

(a) X̃1 ≥ 0, i.e. Ξ + X̃1 ≥ 0.
(b) R(Ξ + X̃1) = Ĉ∗Ĉ ≥ 0, where Ĉ∗ = C̃∗ + √−2Re (λ) · Ṽ1Ỹ−1

1 .

Proof

(a) Positive definiteness of Ỹ1 (and then the semi-definiteness of X̃1 as well) follows
directly from Re (λ) < 0.

(b) Note that Ã∗Ṽ1 = √−2Re (λ) · C̃∗ − λṼ1, and (Ṽ ∗
1 B)(Ṽ ∗

1 B)∗ = 2Re (λ) I −
2Re (λ) Ỹ1. We use these expressions to obtain:

R(Ξ + X̃1) = Ã∗ X̃1 + X̃1 Ã + R(Ξ) − X̃1BB
∗ X̃1

=
(
Ã∗Ṽ1

)
Ỹ−1
1 Ṽ ∗

1 + Ṽ1Ỹ
−1
1

(
Ã∗Ṽ1

)∗ + C̃∗C̃

− Ṽ1Ỹ
−1
1

(
Ṽ ∗
1 B
) (

Ṽ ∗
1 B
)∗

Ỹ−1
1 Ṽ ∗

1

= √−2Re (λ) · C̃∗Ỹ−1
1 Ṽ ∗

1 +√−2Re (λ) · Ṽ1Ỹ−1
1 C̃ + C̃∗C̃

− 2Re (λ) Ṽ1Ỹ
−1
1 Ỹ−1

1 Ṽ ∗
1

=
(
C̃∗ +√−2Re (λ) · Ṽ1Ỹ−1

1

)
·
(
C̃∗ +√−2Re (λ) · Ṽ1Ỹ−1

1

)∗
.


�
We are now ready to state the new RADI algorithm. Starting with the initial

approximation X0 = 0 and the residual R(X0) = C∗C , we continue by select-
ing a shift σk ∈ C− and computing the approximation Xk = ZkY

−1
k Z∗

k with
the residual R(Xk) = Rk R∗

k , for k = 1, 2, . . .. The transition from Xk−1 to
Xk = Xk−1 + VkỸ

−1
k V ∗

k is computed via (11), adapted to approximate the solu-
tion of the residual equation with Ξ = Xk−1, i.e. with Ã = A − BB∗Xk−1 and
C̃∗ = Rk−1. Proposition 1 provides a very efficient update formula for the low-rank
factor Rk of the residual. The whole procedure reduces to the following:

R0 = C∗,
Vk = √−2Re (σk) · (A∗ − Xk−1BB∗ + σk I )−1Rk−1,

Ỹk = I − 1
2Re(σk )

(
V ∗
k B
) (

V ∗
k B
)∗ ; Yk =

[
Yk−1

Ỹk

]
,

Rk = Rk−1 + √−2Re (σk) · VkỸ−1
k ,

Zk = [
Zk−1 Vk

]
.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
RADI iteration (12)

Note that any positive semi-definite X0 can be used as an initial approximation, as
long as its residual is positive semi-definite as well, and its low-rank Cholesky fac-
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torization can be computed. From the derivation of the RADI algorithm we have
that

Xk =
k∑

i=1

Vi Ỹ
−1
i V ∗

i ;

in formulation (12) of the method we have collected V1, . . . , Vk into the matrix Zk ,
and Ỹ1, . . . , Ỹk into the block-diagonal matrix Yk .

When p = 1 and all the shifts are chosen as eigenvalues of the Hamiltonian matrix
associated with the initial Riccati equation (1), the update described in Proposition 1
reduces to [3, Theorem 5]. Thus in that case, the RADI algorithm reduces to the
invariant subspace approach (8).

Furthermore, iteration (12) clearly reduces to the low-rank Lyapunov ADI
method (5) when B = 0; in that case Yk = I . The relation to the original qADI
iteration (6) is not clear unless p = 1 and the shifts are chosen as eigenvalues of H ,
in which case both of these methods coincide with the invariant subspace approach.
We discuss this further in the following section.

3 Equivalences with other Riccati methods

In this section we prove that all Riccati solvers introduced in Sect. 2 in fact compute
exactly the same iterations, which we will refer to as the Riccati ADI iterations in the
remaining text. This result is collected in Theorem 2; we begin with a simple technical
lemma that provides different representations of the residual factor.

Lemma 1 Let

R(1)
k = 1√−2Re (σk)

· (A∗ − XkG − σk I )Vk,

R(2)
k = 1√−2Re (σk+1)

· (A∗ − XkG + σk+1 I )Vk+1.

Then R(1)
k = R(2)

k = Rk.

Proof From the definition of the RADI iteration (12) it is obvious that R(2)
k = Rk .

Using Xk = Xk−1 + VkỸ
−1
k V ∗

k , and V ∗
k GVk = 2Re (σk) I − 2Re (σk) Ỹk , we have

Rk = Rk−1 +√−2Re (σk)VkỸ
−1
k

= 1√−2Re (σk)
· (A∗ − Xk−1G + σk I )Vk +√−2Re (σk)VkỸ

−1
k

= 1√−2Re (σk)
· (A∗ − XkG − σk I )Vk + 1√−2Re (σk)

VkỸ
−1
k V ∗

k GVk

−√−2Re (σk)Vk +√−2Re (σk)VkỸ
−1
k

= R(1)
k . 
�
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Theorem 2 If the initial approximation in all algorithms is zero, and the same shifts
are used, then for all k,

Xk = Xadi
k = Xcay

k .

If rankC = 1 and the shifts are equal to distinct eigenvalues of H , then for all k,

Xk = Xadi
k = Xcay

k = X inv
k .

Proof We first use induction to show that Xk = Xadi
k , for all k.

Assume that Xk−1 = Xadi
k−1.We need to show that Xk = Xk−1+VkỸ

−1
k V ∗

k satisfies
the defining equality (6) of the qADI iteration, i.e. that

(
A∗ + σk I − Xadi

k−1/2G
) (

Xk−1 + VkỸ
−1
k V ∗

k

)
= −Q − Xadi

k−1/2(A − σk I ), (13)

where
Xadi
k−1/2(A + σk I − GXk−1) = −Q − (A∗ − σk I )Xk−1. (14)

First, note that (14) can be rewritten as

A∗Xk−1 + Xadi
k−1/2A + Q − Xadi

k−1/2GXk−1 + σk

(
Xadi
k−1/2 − Xk−1

)
= 0.

Subtracting this from the expression for the Riccati residual,

A∗Xk−1 + Xk−1A + Q − Xk−1GXk−1 = R(Xk−1),

we obtain
Xadi
k−1/2 − Xk−1 = −R(Xk−1) · (A − GXk−1 + σk I )

−1 . (15)

Equation (13) can be reorganized as

(A∗ + σk I )
(
Xk−1 + VkỸ

−1
k V ∗

k

)
− Xadi

k−1/2GVkỸ
−1
k V ∗

k

= −Q − Xadi
k−1/2(A + σk I − GXk−1) + 2Re (σk) X

adi
k−1/2.

Replace the second term on the right-hand side with the right-hand side of (14). Thus,
it remains to prove

(A∗ + σk I )
(
Xk−1 + VkỸ

−1
k V ∗

k

)
− Xadi

k−1/2GVkỸ
−1
k V ∗

k

= (A∗ − σk I )Xk−1 + 2Re (σk) X
adi
k−1/2,

or after some rearranging, and by using (15),

(A∗ − Xk−1G + σk I )VkỸ
−1
k V ∗

k
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=
(
Xadi
k−1/2 − Xk−1

)
·
(
2Re (σk) I + GVkỸ

−1
k V ∗

k

)

= −R(Xk−1) · (A − GXk−1 + σk I )
−1 ·

(
2Re (σk) I + GVkỸ

−1
k V ∗

k

)
. (16)

Next we use the expression R(Xk−1) = R(2)
k−1(R

(2)
k−1)

∗ of Lemma 1. The right-hand
side of (16) is, thus, equal to

1

2Re (σk)
· (A∗ − Xk−1G + σk I )VkV

∗
k ·
(
2Re (σk) I + GVkỸ

−1
k V ∗

k

)
,

which turns out to be precisely the same as the left-hand side of (16) once we use the
identity

V ∗
k GVk = 2Re (σk) I − 2Re (σk) Ỹk .

This completes the proof of Xk = Xadi
k .

Next, we use induction once again to show Xcay
k = Xadi

k , for all k. For k = 0, the
claim is trivial; assume that Xcay

k−1 = Xadi
k−1 for some k ≥ 1. To show that Xcay

k = Xadi
k ,

let us first multiply (9) by H − σk I from the left:

[
A − σk I G

Q −A∗ − σk I

] [
Mk

Nk

]
=
[
A + σk I G

Q −A∗ + σk I

] [
I

−Xcay
k−1

]

=:
[
Mk−1/2
Nk−1/2

]
, (17)

and suggestively introduce Xcay
k−1/2 := −Nk−1/2M

−1
k−1/2. We thus have

A + σk I − GXcay
k−1 = Mk−1/2, (18)

Q − (−A∗ + σk I )X
cay
k−1 = Nk−1/2, (19)

and

Xcay
k−1/2

(
A + σk I − GXcay

k−1

)
=−Nk−1/2M

−1
k−1/2Mk−1/2 = −Q − (A∗ − σk I )X

cay
k−1.

This is the same relation as the one defining Xadi
k−1/2, and thus X

cay
k−1/2 = Xadi

k−1/2. Next,
equating the leftmost and the rightmost matrix in (17), it follows that

(A − σk I )Mk + GNk = Mk−1/2, (20)

QMk + (−A∗ − σk I )Nk = Nk−1/2. (21)

Multiply (21) from the right by M−1
k to obtain

(A∗ + σk I )X
cay
k = −Q + Nk−1/2M

−1
k , (22)
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and multiply (20) from the left by Xcay
k−1/2 and from the right by M−1

k to get

− Xcay
k−1/2GXcay

k = −Xcay
k−1/2(A − σk I ) − Nk−1/2M

−1
k . (23)

Adding (22) and (23) yields

(A∗ + σk I − Xcay
k−1/2G)Xcay

k = −Q − Xcay
k−1/2(A − σk I ),

which is the same as the defining equation for Xadi
k . Thus Xcay

k = Xadi
k , so both the

Cayley subspace iteration and the qADI iteration generate the same sequences.
In the case of rankC = 1 and shifts equal to the eigenvalues of H , the equality

X inv
k = Xadi

k is already shown in [3]. Equality among the iterates generated by the
other methods is a special case of what we have proved above. 
�

It is interesting to observe that [23] also provides a low-rank variant of the
Cayley subspace iteration algorithm: there, formulas for updating the factors of
Xcay
k = Zcay

k (Y cay
k )−1(Zcay

k )∗, where Zcay
k ∈ C

n×pk and Y cay
k ∈ C

pk×pk , are given.
The contribution of [24] was to show that the same formulas can be derived from a
control-theory point of view. The main difference in comparison to our RADI variant
of the low-rank Riccati ADI iterations is that, in order to compute Zcay

k , one uses
the matrix (A∗ + σk I )−1, instead of (A∗ − Xk−1G + σk I )−1, when computing Zk .
This way, the need for using the Sherman–Morrison–Woodbury formula is avoided.
However, as a consequence, the matrix Y cay

k looses the block-diagonal structure, and
its update formula becomes much more involved. Also, it is very difficult to derive a
version of the algorithm that would use real arithmetic. Another disadvantage is the
computation of the residual: along with Zcay

k and Y cay
k , one needs to maintain a QR-

factorization of the matrix [C∗ A∗Zcay
k Zcay

k ], which adds significant computational
complexity to the algorithm.

Each of these different statements of the sameRiccatiADI algorithmmay contribute
when studying theoretical properties of the iteration. For example, directly from our
definition (12) of the RADI iteration it is obvious that

0 ≤ X1 ≤ X2 ≤ . . . ≤ Xk ≤ . . . ≤ X.

Also, the fact that the residual matrixR(Xk) is low-rank and its explicit factorization
follows naturally from our approach. On the other hand, approaching the iteration
from the control theory point of view as in [24] is more suitable for proving that the
non-Blaschke condition for the shifts,

∞∑
k=1

Re (σk)

1 + |σk |2 = −∞,

is sufficient for achieving the convergence when A is stable, i.e.

lim
k→∞ Xk = X.
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We conclude this section by noting a relation between the Riccati ADI iteration
and the rational Krylov subspace method [34]. It is easy to see that the RADI iteration
also uses the rational Krylov subspaces as the basis for approximation. This fact also
follows from the low-rank formulation for Xcay

k as given in [23], so we only state it
here without proof.

Proposition 2 For amatrix M, (block-)vector v and a tuple−→σk = (σ1, . . . , σk) ∈ C
k−,

let

K (M, v,−→σk ) = span{(M + σ1 I )
−1v, (M + σ2 I )

−1v, . . . , (M + σk I )
−1v}

denote the rational Krylov subspace generated by M and the initial vector v. Then the
columns of Xk belong toK (A∗,C∗,−→σk ).

From the proposition we conclude the following: ifUk contains a basis for the ratio-
nal Krylov subspaceK (A∗,C∗,−→σk ), then both the approximation Xkry

k of the Riccati
solution obtained by the rational Krylov subspace method and the approximation Xadi

k
obtained by a Riccati ADI iteration satisfy

Xkry
k = UkY

kry
k U∗

k , Xadi
k = UkY

adi
k U∗

k ,

for some matrices Y kry
k ,Y adi

k ∈ C
pk×pk . The columns of both Xkry

k and Xadi
k belong

to the same subspace, and the only difference between the methods is the choice
of the linear combination of columns of Uk , i.e. the choice of the small matrix Yk .
The rational Krylov subspace method [34] generates its Y kry

k by solving the projected
Riccati equation, while the Riccati ADI methods do it via direct formulas such as the
one in (12).

4 Implementation aspects of the RADI algorithm

There are several issues with the iteration (12), stated as is, that should be addressed
when designing an efficient computational routine: how to decide when the iterates
Xk have converged, how to solve linear systems with matrices A∗ − Xk−1G + σk I ,
and how to minimize the usage of complex arithmetic. In this section we also discuss
the various shift selection strategies.

4.1 Computing the residual and the stopping criterion

Tracking the progress of the algorithm and deciding when the iterates have converged
is very simple, and can be computed cheaply thanks to the expression ‖R(Xk)‖ =
‖Rk R∗

k‖ = ‖R∗
k Rk‖. This is an advantage compared to the Cayley subspace iteration,

where computing ‖R(Xk)‖ is more expensive because a low-rank factorization along
the lines of Proposition 1 (b) is currently not known. The RADI iteration is stopped
once the residual norm has decreased sufficiently relative to the initial residual norm
‖CC∗‖ of the approximation X0 = 0.
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Algorithm 1: The RADI iteration using complex arithmetic.
Input: matrices A ∈ R

n×n , B ∈ R
n×m , C ∈ R

p×n .
Output: approximation X ≈ ZY−1Z∗ for the solution of A∗X + X A + C∗C − XBB∗X = 0.

1 R = C∗; K = 0; Y = [ ];
2 while ‖R∗R‖ ≥ tol · ‖CC∗‖ do
3 Obtain the next shift σ ;
4 if first pass through the loop then
5 Z = V = √−2Re (σ ) · (A∗ + σ I )−1R;
6 else
7 V = √−2Re (σ ) · (A∗ − K B∗ + σ I )−1R; // Use SMW if necessary
8 Z = [Z V ];
9 end

10 Ỹ = I − 1
2Re(σ )

· (V ∗B)(V ∗B)∗; Y =
[
Y
Ỹ

]
;

11 R = R + √−2Re (σ ) · (V Ỹ−1);

12 K = K + (V Ỹ−1) · (V ∗B);
13 end

4.2 Solving linear systems in RADI

During the iteration, one has to evaluate the expression (A∗ − Xk−1G +σk I )−1Rk−1.
Here the matrix A is assumed to be sparse, while Xk−1G = (Xk−1B)B∗ is low-rank.
There are different options onhow to solve this linear system; if onewants to use adirect
sparse solver, the initial expression can be adapted by using the Sherman–Morrison–
Woodbury (SMW) formula [14].We introduce the approximate feedbackmatrix Kk :=
Xk B and update it during the RADI iteration: Kk = Kk−1 + (VkỸ

−1
k )(V ∗

k B). Note
that VkỸ

−1
k also appears in the update of the residual factor, and that V ∗

k B appears in
the computation of Ỹk , so both have to be computed only once. The initial expression
is rewritten as

(A∗ − Kk−1B
∗ + σk I )

−1Rk−1 = Lk + Nk(Im − B∗Nk)
−1K ∗

k−1Lk,

[Lk, Nk] = (A∗ + σk I )
−1[Rk−1, Kk−1].

Thus, in each RADI step one needs to solve a linear system with the coefficient
matrix A∗ + σk I and p + m right hand sides. A very similar technique is used in the
low-rank Newton ADI solver for the Riccati equation [7,9,15,29]. In the equivalent
Cayley subspace iteration [23,24], linear systems defined by A∗ + σk I and only p
right hand sides have to be solved, which makes their solution less expensive than
their counterparts in RADI.

The RADI algorithm, implementing the techniques described above, is listed in
Algorithm 1. Note that, if only the feedback matrix K is of interest, e.g. if the CARE
arises from an optimal control problem, there is no need to store the whole low-rank
factors Z , Y since Algorithm 1 requires only the latest blocks to continue. This is
again similar to the low-rank Newton ADI solver [7], and not possible in the current
version of the Cayley subspace iteration.

123



RADI: a low-rank ADI-type algorithm for large AREs. 315

4.3 Reducing the use of complex arithmetic

To increase the efficiency of Algorithm 1, we reduce the use of complex arithmetic.
We do so by taking shift σk+1 = σk immediately after the shift σk ∈ C \ R has been
used, and by merging these two consecutive RADI steps into a single one. This entire
procedure will have only one operation involving complex matrices: a linear solve
with the matrix A∗ − Xk−1G + σk I to compute Vk . There are two key observations
to be made here. First, by modifying the iteration slightly, one can ensure that the
matrices Kk+1, Rk+1, and Yk+1 are real and can be computed by using real arithmetic
only, as shown in the upcoming technical proposition. Second, there is no need to
compute Vk+1 at all to proceed with the iteration: the next matrix Vk+2 will once again
be computed by using the residual Rk+1, the same way as in Algorithm 1.

Proposition 3 Let Xk−1 = Zk−1Y
−1
k−1Z

∗
k−1 ∈ R

n×n denote the Riccati approximate
solution computed after k − 1 RADI steps. Assume that Rk−1, Vk−1, Kk−1 are real
and that σ := σk = σk+1 ∈ C \ R. Let:

Vr = (Re (Vk))
∗B, Vi = (Im (Vk))

∗B,

F1 =
[−Re (σ ) Vr − Im (σ ) Vi

Im (σ ) Vr − Re (σ ) Vi

]
, F2 =

[
Vr
Vi

]
, F3 =

[
Im (σ ) Ip
Re (σ ) Ip

]
.

Then Xk+1 = Zk+1Y
−1
k+1Z

∗
k+1, where:

Zk+1 = [Zk−1 Re (Vk) Im (Vk)],
Yk+1 =

[
Yk−1

Ŷk+1

]
,

Ŷk+1 =
[
Ip

1/2Ip

]
− 1

4|σ |2 Re (σ )
F1F

∗
1 − 1

4Re (σ )
F2F

∗
2 − 1

2|σ |2 F3F
∗
3 .

The residual factor Rk+1 and the matrix Kk+1 can be computed as

Rk+1 = Rk−1 +√−2Re (σ )
(
[Re (Vk) Im (Vk)]Ŷ−1

k+1

)
(:, 1 : p),

Kk+1 = Kk−1 + [Re (Vk) Im (Vk)]Ŷ−1
k+1

[
Vr
Vi

]
.

Proof The basic idea of the proof is similar to [5, Theorem 1]; however, there is a
major complication involving the matrix Y , which in the Lyapunov case is simply
equal to the identity. Due to the technical complexity of the proof, we only display
key intermediate results. To simplify notation, we use indices 0, 1, 2 instead of k − 1,
k, k + 1, respectively.
We start by taking the imaginary part of the defining relation for R(2)

0 = R0 in
Lemma 1:

0 = (A∗ − X0G + Re (σ ) I ) · Im (V1) + Im (σ ) · Re (V1) ;
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thus

V1 = Re (V1) + i Im (V1) = −1

Im (σ )
(A∗ − X0G + σ I )︸ ︷︷ ︸

A0

Im (V1) .

We use this and the Sherman–Morrison–Woodbury formula to compute V2:

V2 = √−2Re (σ )(A∗ − X1G + σ I )−1R1

= √−2Re (σ )(A∗ − X1G + σ I )−1 · 1√−2Re (σ )
· (A∗ − X1G − σ I )V1

= V1 − 2σ(A∗ − X1G + σ I )−1V1

= V1 − 2σ
(
A0 − V1Ỹ

−1
1

(
V ∗
1 G
))−1

V1

= V1 − 2σ

(
A−1
0 V1 + A−1

0 V1
(
Ỹ1 − (

V ∗
1 G
)
A−1
0 V1

)−1 (
V ∗
1 G
)
A−1
0 V1

)

= V1 + 2σ Im (V1)

⎛
⎜⎝Im (σ ) Ỹ1 + (

V ∗
1 B
)
V ∗
i︸ ︷︷ ︸

S

⎞
⎟⎠

−1

Ỹ1; (24)

where we used Im (σ ) A−1
0 V1 = − Im (V1) to obtain the last line. Next,

X2 = X0 + [ V1 V2 ]

[
Ỹ−1
1

Ỹ−1
2

]
[ V1 V2 ]∗

= X0 + [ Re(V1) Im(V1) ]
[

I I
iI iI+2σ S−1Ỹ1

]
︸ ︷︷ ︸

T

[
Ỹ−1
1

Ỹ−1
2

]

×
(
[ Re(V1) Im(V1) ]

[
I I
iI iI+2σ S−1Ỹ1

])∗

= X0 + [ Re(V1) Im(V1) ]
(
T−∗ [ Ỹ1

Ỹ2

]
T−1

︸ ︷︷ ︸
Ŷ2

)−1
[ Re(V1) Im(V1) ]∗ .

We first compute T−1 by using the SMW formula once again:

T−1 =
([

I
iI iI

]+
[
I
S−1

] [
I
2σ Ỹ1

])−1

=
[
I + i

2σ Ỹ
−1
1 S −1

2σ Ỹ
−1
1 S

−i
2σ Ỹ

−1
1 S 1

2σ Ỹ
−1
1 S

]
,

and, applying the congruence transformation with T−1 to
[
Ỹ1

Ỹ2

]
yields
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Ŷ2 =⎡
⎣ Ỹ1 + i

2σ S − i
2σ S∗ + 1

4|σ |2 S∗Ỹ−1
1 S + 1

4|σ |2 S∗Ỹ−1
1 Ỹ2Ỹ

−1
1 S −1

2σ S + i
4|σ |2 S∗Ỹ−1

1 S + i
4|σ |2 S∗Ỹ−1

1 Ỹ2Ỹ
−1
1 S

−1
2σ S∗ − i

4|σ |2 S∗Ỹ−1
1 S − i

4|σ |2 S∗Ỹ−1
1 Ỹ2Ỹ

−1
1 S 1

4|σ |2 S∗Ỹ−1
1 S + 1

4|σ |2 S∗Ỹ−1
1 Ỹ2Ỹ

−1
1 S

⎤
⎦ .

By using (24), it is easy to show

Ỹ2 = I − 1

2Re (σ )

(
V ∗
2 B
) (

V ∗
2 B
)∗

= − Ỹ1 − 1

2Re (σ )

×
(
−2σ Im (σ ) Ỹ1S

−∗Ỹ1 − 2σ Im (σ ) Ỹ1S
−1Ỹ1 + 4|σ |2Ỹ1S−∗ViV ∗

i S
−1Ỹ1

)
.

Inserting this into the formula for Ŷ2, all terms containing inverses of Ỹ1 and S cancel
out. By rearranging the terms that do appear in the formula, we get the expression
from the claim of the proposition.

Deriving the formulae for R2 and K2 is straightforward:

K2 = K0 + [ V1 V2 ]

[
Ỹ−1
1

Ỹ−1
2

]
[ V1 V2 ]∗ B

= K0 +
(
[ Re(V1) Im(V1) ] Ŷ−1

2

) (
[ Re(V1) Im(V1) ]∗ B

)
,

R2 = R0 +√−2Re (σ ) [ V1 V2 ]

[
Ỹ−1
1

Ỹ−1
2

]

= R0 +√−2Re (σ ) [ Re(V1) Im(V1) ]

(
T

[
Ỹ−1
1

Ỹ−1
2

])

= R0 +√−2Re (σ ) [ Re(V1) Im(V1) ] Ŷ−1
2 (:, 1 : p),

where the last line is due to the structure of the matrix T . Since the matrix Ŷ2 is real,
so are K2 and R2. 
�

4.4 RADI iteration for the generalized Riccati equation

Before we state the final implementation, we shall briefly mention the adaptation of
the RADI algorithm for handling generalized Riccati equations

A∗XE + E∗X A + Q − E∗XGXE = 0. (25)

Multiplying (25) by E−∗ from the left and by E−1 from the right leads to

(AE−1)∗X + X (AE−1) + E−∗C∗CE−1 − XBB∗X = 0. (26)

The generalized RADI algorithm is then easily derived by running ordinary RADI
iterations for the Riccati equation (26), and deploying standard rearrangements to
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Algorithm 2: The RADI iteration, with reduced use of complex arithmetic.
Input: matrices A, E ∈ R

n×n , B ∈ R
n×m , C ∈ R

p×n .
Output: approximation X ≈ ZY−1Z∗ for the solution of the generalized equation

A∗XE + E∗X A + C∗C − E∗XBB∗XE = 0. The matrices Z and Y are real.

1 R = C∗; K = 0; Y = [ ]; Z = [ ];
2 while ‖R∗R‖ ≥ tol · ‖CC∗‖ do
3 Obtain the next shift σ ;

4 if first pass through the loop then
5 V = √−2Re (σ ) · (A∗ + σ E∗)−1R;
6 else
7 V = √−2Re (σ ) · (A∗ − K B∗ + σ E∗)−1R; // Use SMW if necessary
8 end

9 if σ ∈ R then
10 Z = [Z V ];
11 Ỹ = I − 1

2Re(σ )
· (V ∗B)(V ∗B)∗; Y =

[
Y
Ỹ

]
; R = R + √−2Re (σ ) · (E∗V Ỹ−1);

12 K = K + (E∗V Ỹ−1) · (V ∗B);
13 else
14 Z = [Z Re (V ) Im (V )];
15 Vr = (Re (V ))∗B; Vi = (Im (V ))∗B;
16 F1 =

[−Re (σ ) Vr − Im (σ ) Vi
Im (σ ) Vr − Re (σ ) Vi

]
; F2 =

[
Vr
Vi

]
; F3 =

[
Im (σ ) Ip
Re (σ ) Ip

]
;

17 Ỹ =
[
Ip

1/2Ip

]
− 1

4|σ |2 Re(σ )
F1F

∗
1 − 1

4Re(σ )
F2F

∗
2 − 1

2|σ |2 F3F
∗
3 ;

18 Y =
[
Y

Ỹ

]
;

19 R = R + √−2Re (σ ) · E∗ ([Re (V ) Im (V )]Ỹ−1
)

(:, 1 : p);
20 K = K + E∗[Re (V ) Im (V )]Ỹ−1

[
Vr
Vi

]
;

21 end
22 end

lower the computational expense (such as solving systems with the matrix A∗ + σ E∗
instead of (AE−1)∗ + σ I ). Algorithm 2 shows the final implementation, taking into
account Proposition 3 and the handling of generalized Eq. (25).

4.5 Shift selection

The problem of choosing the shifts in order to accelerate the convergence of the
Riccati ADI iteration is very similar to the one for the Lyapunov ADI method. Thus
we apply and discuss the techniques presented in [3,6,27,30] in the context of the
Riccati equation, and compare them in several numerical experiments. It appears
natural to employ the heuristic Penzl shifts [27]. There, a small number of approximate
eigenvalues of A are generated. From this set the values which lead to the smallest
magnitude of the rational function associated to the ADI iteration are selected in a
heuristical manner. Simoncini and Lin [23] have shown that the convergence of the
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RiccatiADI iteration is related to a rational function built from the stable eigenvalues of
H . This suggests to carry out the Penzl approach, but to use approximate eigenvalues
for the Hamiltonian matrix H instead of A. Note that, due to the low rank of Q and
G, we can expect that most of the eigenvalues of A are close to the eigenvalues of
H , see the discussion in [3]. Thus in many cases the Penzl shifts generated by A
should suffice as well. Penzl shifts require significant preprocessing computation: in
order to approximate the eigenvalues of M = A or M = H , one has to build Krylov
subspaces with matrices M and M−1. All the shifts are computed in this preprocessing
stage, and then simply cycled during the RADI iteration. Here, we will mainly focus
on alternative approaches generating each shift just before it is used. This way we
hope to compute a shift which will better adapt to the current stage of the algorithm.

4.5.1 Residual Hamiltonian shifts

One such approach is motivated by Theorem 1 and the discussion about shift selection
in [3]. The Hamiltonian matrix

H̃ =
[

Ã G
C̃∗C̃ − Ã∗

]

is associated to the residual equation (10), where Ξ = Xk is the approximation after
k steps of the RADI iteration. If (λ,

[ r
q
]
) is a stable eigenpair of H̃ , and σk+1 = λ is

used as the shift, then

Xk ≤ Xk+1 = Xk − q(q∗r)−1q∗ ≤ X.

In order to converge as fast as possible to X , it is better to choose such an eigenvalue
λ for which the update is largest, i.e. the one that maximizes ‖q(q∗r)−1q∗‖. Note that
as the RADI iteration progresses and the residual matrix R(Ξ) = C̃∗C̃ converges
to zero, the structure of eigenvectors of H̃ that belong to its stable eigenvalues is
such that ‖q‖ becomes smaller and smaller. Thus, one can further simplify the shift
optimality condition, and use the eigenvalue λ such that the corresponding q has the
largest norm—this is also in line with the discussion in [3].

However, in practice it is computationally very expensive to determine such an
eigenvalue, since the matrix H̃ is of order 2n. We can approximate its eigenpairs
through projection onto some subspace. If U is an orthonormal basis of the chosen
subspace, then

(U∗ ÃU )∗ X̃proj + X̃proj(U∗ ÃU ) + (U∗C̃∗)(U∗C̃∗)∗

−X̃proj(U∗B)(U∗B)∗ X̃proj = 0

is the projected residual Riccati equation with the associated Hamiltonian matrix

H̃ proj =
[

U∗ ÃU (U∗B)(U∗B)∗
(U∗C̃∗)(U∗C̃∗)∗ −(U∗ ÃU )∗

]
. (27)
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Approximate eigenpairs of H̃ are (λ̂,
[
Ur̂
Uq̂

]
), where (λ̂,

[
r̂
q̂

]
) are eigenpairs of H̃ proj.

Thus, a reasonable choice for the next shift is such λ̂, for which ‖Uq̂‖ = ‖q̂‖ is the
largest.

We still have to define the subspace span{U }. One option is to use Vk (or, equiva-
lently, the last p columns of the matrix Zk), which works very well in practice unless
p = 1. When p = 1, all the generated shifts are real, which can make the convergence
slow in some cases. Then it is better to choose the last � columns of the matrix Zk ;
usually already � = 2 or � = 5 or a small multiple of p will suffice. An ultimate
option is to use the entire Zk , which we denote as � = ∞. This is obviously more
computationally demanding, but it provides fast convergence in all cases we tested.

4.5.2 Residual minimizing shifts

The two successive residual factors are connected via the formula

Rk+1 = (A∗ − Xk+1G − σk+1 I )(A
∗ − XkG + σk+1 I )

−1Rk .

Our goal is to choose the shifts so that the residual drops to zero as quickly as possible.
Locally, once Xk is computed, this goal is achieved by choosing σk+1 ∈ C− so that
‖Rk+1‖ is minimized. This concept was proposed in [6] for the low-rank Lyapunov
and Sylvester ADI methods and refined later in [18]. In complete analogy, we define
a rational function f in the variable σ by

f (σ ) := ‖(A∗ − Xk+1(σ )G − σ I )(A∗ − XkG + σ I )−1Rk‖2, (28)

and wish to find

argminσ∈C− f (σ );

note that Xk+1(σ ) = Xk + Vk+1(σ )Ỹ−1
k+1(σ )V ∗

k+1(σ ) is also a function of σ . Since f
involves large matrices, we once again project the entire equation to a chosen subspace
U , and solve the optimization problem defined by the matrices of the projected prob-
lem. The optimization problem is solved numerically. Efficient optimization solvers
use the gradient of the function f ; after a laborious computation one can obtain an
explicit formula for the case p = 1:

∇ f (σR, σI )

=
⎡
⎣ 2Re

(
R∗
k+1 ·

((
1

σR
I − Ã−1 − 1

2σR

(
Xk+1G Ã−1 + Xk+1 Ã−∗G

))
Δ
))

−2 Im
(
R∗
k+1 ·

((
− Ã−1 − 1

2σR

(
Xk+1G Ã−1 − Xk+1 Ã−∗G

))
Δ
))

⎤
⎦ .

Here σ = σR + iσI , Ã = A∗ − XkG − σ I , Xk+1 = Xk+1(σ ), Rk+1 = Rk+1(σ ), and
Δ = Rk+1(σ ) − Rk .

For p > 1, a similar formula can be derived, but one should note that the function
f is not necessarily differentiable at every point σ , see, e.g., [26]. Thus, a numerically

123



RADI: a low-rank ADI-type algorithm for large AREs. 321

more reliable heuristic [18] is to artificially reduce the problem once again to the case
p = 1. This can be done in the following way: let v denote the right singular vector
corresponding to the largest singular value of the matrix Rk . Then Rk ∈ C

n×p in (28)
is replaced by the vector Rkv ∈ C

n . Since numerical optimization algorithms usually
require a starting point for the optimization, the two shift generating approaches may
be combined: the residual Hamiltonian shift can be used as the starting point in the
optimization for the second approach. However, from our numerical experience we
conclude that the additional computational effort invested in the post-optimization of
the residual Hamiltonian shifts often does not contribute to the convergence. The main
difficulty is the choice of an adequate subspace U such that the projected objective
function approximates (28) well enough. This issue requires futher investigation. The
rationale is given in the following example.

Example 1 Consider the Riccati equation given in Example 5.2 of [32]: the matrix A
is obtained by the centered finite difference discretization of the differential equation

∂t u = Δu − 10x∂xu − 1000y∂yu − 10∂zu + b(x, y) f (t),

on a unit cube with 22 nodes in each direction. Thus A is of order n = 10648; the
matrices B ∈ R

n×m and C ∈ R
p×n are generated at random, and in this example we

set m = p = 1 and B = C∗.
Suppose that 13 RADI iterations have already been computed, and that we need to

compute a shift to be used in the 14th iteration. Let thematrixU contain an orthonormal
basis for Z13.

Figure 1a shows a region of the complex plane; stars are at locations of the stable
eigenvalues of the projected Hamiltonian matrix (27). The one eigenvalue chosen as
the residual Hamiltonian shift σham is shown as ‘x’. The residual minimizing shift
σopt is shown as ‘o’. Each point σ of the complex plane is colored according to the
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Fig. 1 Each point σ of the complex plane is colored according to residual reduction obtained when σ is

taken as the shift in the 14th iteration of RADI. a Ratios ρproj(σ ) = ‖Rproj
14 (σ )‖/‖Rproj

13 ‖ for the projected
equation of dimension 13. b Ratios ρ(σ) = ‖R14(σ )‖/‖R13‖ for the original equation of dimension 10648
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ratio ρproj(σ ) = ‖Rproj
14 (σ )‖/‖Rproj

13 ‖, where Rproj is the residual for the projected
Riccati equation. The ratio ρproj(σham) ≈ 0.54297 is not far from the optimal ratio
ρproj(σopt) ≈ 0.53926.

On the other hand, Fig. 1b shows the complex plane colored according to ratios
for the original system of order 10648, ρ(σ) = ‖R14(σ )‖/‖R13‖. Neither of the
values ρ(σham) ≈ 0.71510 and ρ(σopt) ≈ 0.71981 is optimal, but they both offer a
reasonable reduction of the residual norm in the next step. In this case, σham turns
out even to give a slightly better residual reduction for the original equation than σopt,
making the extra effort in running the numerical optimization algorithm futile.

5 Numerical experiments

In this section we show a number of numerical examples, with several objectives in
mind. First, our goal is to compare different low-rank implementations of the Riccati
ADI algorithm mentioned in this paper: the low-rank qADI proposed in [37,38], the
Cayley transformed subspace iteration [23,24], and the complex and real variants of
the RADI iteration (12). Second, we compare performance of the RADI approach
against other methods for solving large-scale Riccati equations, namely the rational
Krylov subspace method (RKSM) [34], the extended block Arnoldi (EBA) method
[16,32], and the Newton-ADI algorithm [7,9,15].

Finally, we discuss various shift strategies for the RADI iteration described in the
previous section.

The numerical experiments are run on a desktop computer with a four-core Intel
Core i5-4690K processor and 16GB RAM. All algorithms and testing routines are
implemented and executed in MATLAB R2014a, running on Microsoft Windows 8.1.

Example 2 Consider again the Riccati benchmark CUBE from Example 1. We use
three versions of this example: the previous setting with n = 10648, m = p = 1 and
m = p = 10, and later on a finer discretization with n = 74088 and m = 10, p = 1.

Table 1 collects timings in seconds for four different low-rank implementations of
the Riccati ADI algorithm. The table shows only the time needed to run 80 iteration
steps; time spent for computation of the shifts used by all four variants is not included
(in this case, 20 precomputedPenzl shiftswere used).All four variants compute exactly
the same iterates, as we have proved in Theorem 2.

Table 1 Results obtained with different implementations for CUBE with n = 10648

Implementation Time, m, p = 1 Time, m, p = 10

Wong and Balakrishnan [37,38] 127.61 750.89

Cayley subspace iteration [23,24] 21.67 167.02

RADI—Algorithm 1 21.51 51.92

RADI—Algorithm 2 11.14 26.35
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Clearly, the real variant of iteration (12), implemented as in Algorithm 2, outper-
forms all the others.1 Thus we use this implementation in the remaining numerical
experiments. The RADI algorithms mostly obtain the advantage over the Cayley sub-
space iteration because of the cheap computation of the residual norm. In the latter
algorithm, costly orthogonalization procedures are required for this task, and after
some point these compensate the computational gains from the easier linear systems
(cf. Sect. 4.2). Also, the times for the algorithm of Wong and Balakrishnan shown in
the table do not include the (very costly) computation of the residuals at all, so their
actual execution times are even higher.

Next, we compare various shift strategies for RADI, as well as EBA, RKSM, and
Newton-ADI algorithms. For RADI, we have the following strategies:

– 20 precomputed Penzl shifts (“RADI—Penzl”) generated by using the Krylov
subspaces of dimensions 40 with matrices A and A−1;

– residual Hamiltonian shifts (“RADI—Ham”), with � = 2p, � = 6p, and � = ∞;
– residual minimizing shifts (“RADI—Ham+Opt”), with � = 2p, � = 6p, and

� = ∞.

For the RKSM, we have implemented the algorithm so that the use of complex arith-
metic is minimized by merging two consecutive steps with complex conjugate shifts
[28]. We use the adaptive shift strategy, implemented as described in [13]. EBA and
RKSM require the solution of a projected CARE which can become expensive if
p > 1. Hence, this small scale solution is carried out only periodically in every 5th or
every 10th step—in the results, we display the variant that was faster.

For all methods, the threshold for declaring convergence is reached once the relative
residual is less than tol = 10−11. A summary of the results for all the differentmethods
and strategies is shown in Table 3. The column “final subspace dimension” displays
the number of columns of the matrix Z , where X ≈ Z Z∗ is the final computed
approximation. Dividing this number by p (for EBA, by 2p), we obtain the number
of iterations used in a particular method. Just for the sake of completeness, we have
also included a variant of the Newton-ADI algorithm [7] with Galerkin projection [9].
Without the Galerkin projection, the Newton-ADI algorithm could not compete with
the other methods. The recent developments from [15], which make the Newton-ADI
algorithm more competitive, are beyond the scope of this study.

It is interesting to analyze the timing breakdown for RADI and RKSM methods.
These timings are listed in Table 2 for the CUBE example with m = p = 10 where a
significant amount of time is spent for tasks other than solving linear systems.

As � increases, the cost of computing shifts in RADI increases as well—the pro-
jection subspace gets larger, and more effort is needed to orthogonalize its basis and
compute the eigenvalue decomposition of the projected Hamiltonian matrix. This
effort is, in the CUBE benchmark, awarded by a decrease in the number of iterations.
However, there is a trade-off here: the extra computation does outweigh the saving
in the number of iterations for sufficiently large �. Convergence history for CUBE is
plotted in Fig. 2; to reduce the clutter, only the selected few methods are shown.

1 Note that the generated Penzl shifts come in complex conjugate pairs.
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Table 2 Times spend in different subtasks in the RADI iteration and RKSM for CUBE with m = p = 10

Method Subtask Time

RADI—Penzl: 135 iterations Precompute shifts 5.31

Solve linear systems 43.24

Total 49.19

RADI—Ham, � = 2p: 139 iterations Solve linear systems 46.42

Compute shifts dynamically 1.76

Total 48.79

RADI—Ham, � = 6p: 100 iterations Solve linear systems 32.73

Compute shifts dynamically 2.75

Total 35.92

RADI—Ham, � = ∞: 74 iterations Solve linear systems 24.74

Compute shifts dynamically 32.44

Total 57.51

RKSM—adaptive: 79 iterations Solve linear systems 18.45

Orthogonalization 4.14

Compute shifts dynamically 12.02

Solve projected equations 15.98

Total 53.82

s

(a) (b)

Fig. 2 Algorithm performances for benchmark CUBE (n = 10648,m = p = 10). a Relative residual
versus the subspace dimension used by an algorithm. b Relative residual versus time

The fact that in each step RADI solves linear systems with p + m right hand side
vectors, compared to only p vectors in RKSM, may become noticable when m is
larger than p. This effect is shown in Table 3 for CUBE with m = 10 and p = 1.
Unlike these two methods, EBA can precompute the LU factorization of A, and win
by a large margin in this test case.
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Table 3 Results of the numerical experiments

Example Method No. iterations Final subspace dim. Time

CUBE
n = 10648,
m = p = 1

RADI—Penzl 97 97 18.96

RADI—Ham, � = 2p 119 119 17.10

RADI—Ham, � = 6p 99 99 14.15

RADI—Ham, � = ∞ 75 75 11.60

RADI—Ham+Opt, � = 2p 122 122 17.87

RADI—Ham+Opt, � = 6p 103 103 16.70

RADI—Ham+Opt, � = ∞ 108 108 18.44

RKSM—adaptive 83 83 14.80

EBA 111 222 6.23

Newton-ADI 2 outer, 296 inner 192 42.11

CUBE
n = 10648,
m = p = 10

RADI—Penzl 135 1350 49.19

RADI—Ham, � = 2p 139 1390 48.79

RADI—Ham, � = 6p 100 1000 35.92

RADI—Ham, � = ∞ 74 740 57.51

RADI—Ham+Opt, � = 2p 87 870 30.59

RADI—Ham+Opt, � = 6p 90 900 33.20

RADI—Ham+Opt, � = ∞ 90 900 119.55

RKSM—adaptive 79 790 53.82

EBA 91 1820 230.57

Newton-ADI 2 outer, 202 inner 1960 75.60

CUBE
n = 74088,
m = 10, p = 1

RADI—Penzl 139 139 1048.60

RADI—Ham, � = 2p 97 97 617.62

RADI—Ham, � = 6p 81 81 506.37

RADI—Ham, � = ∞ 72 72 446.64

RADI—Ham+Opt, � = 2p 101 101 621.38

RADI—Ham+Opt, � = 6p 93 93 571.34

RADI—Ham+Opt, � = ∞ 63 63 387.43

RKSM—adaptive 73 73 338.78

EBA 81 162 30.45

Newton-ADI 2 outer, 288 inner 968 1546.29

CHIP
n = 20082,
m = 1, p = 5

RADI—Penzl 33 165 51.57

RADI—Ham, � = 2p 36 180 30.32

RADI—Ham, � = 6p 29 145 24.36
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Table 3 continued

Example Method No. iterations Final subspace dim. Time

RADI—Ham, � = ∞ 26 130 22.64

RADI—Ham+Opt, � = 2p 29 145 23.97

RADI—Ham+Opt, � = 6p 26 130 22.26

RADI—Ham+Opt, � = ∞ 25 125 22.33

RKSM—adaptive 26 130 23.33

EBA 26 260 6.69

Newton-ADI 2 outer, 64 inner 204 54.04

IFISS
n = 66049,
m = p = 5

RADI—Penzl >50 >250

RADI—Ham, � = 2p 22 110 17.21

RADI—Ham, � = 6p 19 95 15.37

RADI—Ham, � = ∞ 20 100 17.46

RADI—Ham+Opt, � = 2p 27 135 21.12

RADI—Ham+Opt, � = 6p Did not converge

RADI—Ham+Opt, � = ∞ Did not converge

RKSM—adaptive 26 130 22.28

EBA 11 110 9.26

Newton-ADI 2 outer, 46 inner 250 38.05

RAIL
n = 317377,
m = 7, p = 6

RADI—Penzl 66 396 182.60

RADI—Ham, � = 2p 49 294 131.34

RADI—Ham, � = 6p 43 258 127.11

RADI—Ham, � = ∞ 46 276 197.06

RADI—Ham+Opt, � = 2p 46 276 124.13

RADI—Ham+Opt, � = 6p 40 240 120.04

RADI—Ham+Opt, � = ∞ 39 234 158.89

RKSM—adaptive 41 246 188.60

EBA 91 1092 916.21

Newton-ADI 1 outer, 62 inner 372 279.90

LUNG
n = 109460,
m = p = 10

RADI—Penzl Did not converge

RADI—Ham, � = 2p 31 310 30.03

RADI—Ham, � = 6p 28 280 30.22

RADI—Ham, � = ∞ 26 260 34.83

RADI—Ham+Opt, � = 2p 25 250 22.33

RADI—Ham+Opt, � = 6p 17 170 17.74

RADI—Ham+Opt, � = ∞ 17 170 19.02
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Table 3 continued

Example Method No. iterations Final subspace dim. Time

RKSM—adaptive 61 610 114.22

EBA Did not converge

Newton-ADI Did not converge

Numbers in bold indicate the smallest subspace dimensions and execution times

Example 3 Next, we run the Riccati solvers for the well-known benchmark example
CHIP. All coefficient matrices for the Riccati equation are taken as they are found
in the Oberwolfach Model Reduction Benchmark Collection [17]. Here we solve the
generalized Riccati equation (25).

The cost of precomputing shifts is very high in case of CHIP. One fact not shown in
the table is that all algorithms which compute shifts dynamically have already solved
the Riccati equation before “RADI—Penzl” has even started.

Example 4 We use the IFISS 3.2. finite-element package [31] to generate the coef-
ficient matrices for a generalized Riccati equation. We choose the provided example
T-CD 2 which represents a finite element discretization of a two-dimensional convec-
tion diffusion equation on a square domain. The leading dimension is n = 66049, with
E symmetric positive definite, and A non-symmetric. The matrix B consists ofm = 5
randomly generated columns, and C = [C1, 0] with random C1 ∈ R

5×5 (p = 5).
In this example, the RADI iteration with Penzl shifts converges very slowly. The

RADI iteration with dynamically generated shifts are quite fast, and the final subspace
dimension is smallest among all methods. On the other hand, the version with residual
minimizing shifts does not converge for � = 6p,∞: it quickly reaches the relative
residual of about 10−7, and then gets stuck by continually using shifts very close to
zero. Figure 3 shows the convergence history for some of the used shift strategies.

Example 5 The example RAIL is a larger version of the steel profile cooling model
from the Oberwolfach Model Reduction Benchmark Collection [17]. A finer finite
element discretization was used for the heat equation resulting in a generalized CARE
n = 317377, m = 7, p = 6, and E and A symmetric positive and negative definite,
respectively. Once again, there is a trade-off between (questionably) better shifts with
larger � and faster computation with lower �.

Example 6 The final example LUNG from theUFSparseMatrix Collection [12]mod-
els temperature and water vapor transport in the human lung. It provides matrices with
leading dimension n = 109460, E = I , A nonsymmetric, and B,C are generated as
random matrices with m = p = 10. This example shows the importance of proper
shift generation: precomputed shifts are completely useless, while dynamically gen-
erated ones show different rates of success. The projection based methods (RKSM,
EBA) encountered problems at the numerical solution of the projected ARE. Either
the complete algorithm broke down or convergence speed was reduced. Similar issues
were encountered at the Galerkin acceleration stage in the Newton-ADI method.

Let us summarize the findings from these and a number of other numerical examples
we used to test the algorithms. Clearly, using dynamically generated shifts for the
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(a) (b)

Fig. 3 Algorithm performances for benchmark IFISS (n = 66049,m = p = 5). a Relative residual versus
the subspace dimension used by an algorithm. b Relative residual versus time

RADI iteration has many benefits compared to the precomputed Penzl shifts. Not only
that the number of iterations and running time are reduced, but the convergence ismore
reliable. Further, there frequently exists a small value of � for which one or both of the
dynamical shift strategies converge in a number of iterations comparable to runs with
� = ∞, and in far less time. However, an a-priori method of determining a sufficiently
small � with such properties is still to be found, and a topic of our future research.
RADI appears to be quite competitive with other state of the art algorithms for solving
large scale CAREs. It frequently generates solutions using the lowest dimensional
subspace. Since RADI iterations do not require any orthogonalization nor solving
projected CAREs, the algorithm may outperform RKSM and EBA in problems where
the final subspace dimension is high. On the other hand, the later methods may have
an advantage when the running time is dominated by solving linear systems. It seems
that for now, there is no single algorithm of choice that would consistently and reliably
run fastest.

6 Conclusion

In this paper, we have presented a new low-rank RADI algorithm for computing
solutions of large scale Riccati equations. We have shown that this algorithm produces
exactly the same iterates as three previously knownmethods (for which we suggest the
common name “Riccati ADI methods”), but it does so in a computationally far more
efficient way. As with other Riccati solvers, the performance is heavily dependent
on the choice of shift parameters. We have suggested several strategies on how this
may be done; some of them show very promising results, making the RADI algorithm
competitive with the fastest large scale Riccati solvers.
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