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Abstract We prove strong convergence of order 1/4−ε for arbitrarily small ε > 0 of
the Euler–Maruyama method for multidimensional stochastic differential equations
(SDEs) with discontinuous drift and degenerate diffusion coefficient. The proof is
based on estimating the difference between the Euler–Maruyama scheme and another
numerical method, which is constructed by applying the Euler–Maruyama scheme to
a transformation of the SDE we aim to solve.
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1 Introduction

We consider time-homogeneous stochastic differential equations (SDEs) of the form

d Xt = μ(Xt )dt + σ(Xt )dWt , X0 = x , (1)
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where x ∈ R
d is the initial value, μ : Rd −→ R

d is the drift and σ : Rd −→ R
d×d

is the diffusion coefficient.
The Euler–Maruyama approximation with step-size δ > 0 of the solution to (1) is

given by

X δ
t = x +

∫ t

0
μ(X δ

s )ds +
∫ t

0
σ(X δ

s )dWs , (2)

with s = jδ for s ∈ [ jδ, ( j + 1)δ), j = 0, . . . , (T − δ)/δ. In particular, for t ∈ { jδ :
j = 0, . . . , (T − δ)/δ}, we have

X δ
t+δ = X δ

t + μ(X δ
t )δ + σ(X δ

t )(Wt+δ − Wt ) .

For μ, σ Lipschitz, Itô [9] proved existence and uniqueness of the solution of (1).
In this case the Euler–Maruyama method (2) converges with strong order 1/2 to the
true solution, see [12, Theorem 10.2.2]. Higher order algorithms exist, but require
stronger conditions on the coefficients.

In applications, frequently SDEs with less regular coefficients appear. For exam-
ple in stochastic control theory, whenever the optimal control is of bang–bang type,
meaning that the strategy is of the form 1S(X) for a measurable set S ⊆ R

d , the drift
of the controlled dynamical system is discontinuous. Furthermore, there are models
which involve only noisy observations of a signal that has to be filtered. After apply-
ing filtering theory the diffusion coefficient typically is degenerate in the sense that
‖σ(x)�v‖ = 0, for some x, v ∈ R

d . This motivates the study of SDEs with these kind
of irregularities in the coefficients.

If μ is bounded and measurable, and σ is bounded, Lipschitz, and uniformly non-
degenerate, i.e. if there exists a constant c0 > 0 such that for all x ∈ R

d and all
v ∈ R

d it holds that ‖σ(x)�v‖ ≥ c0‖v‖, Zvonkin [29] and Veretennikov [25,26]
prove existence and uniqueness of a solution. Veretennikov [27] extends these results
by allowing a part of the diffusion to be degenerate.

In [16] existence and uniqueness of a solution for the case where the drift is discon-
tinuous at a hyperplane, or a special hypersurface and where the diffusion coefficient
is degenerate is proven, and in [23] it is shown how these results extend to the non-
homogeneous case.

Currently, research on numerical methods for SDEs with irregular coefficients is
highly active. Hutzenthaler et al. [8] introduce the tamed Euler–Maruyama scheme
and prove strong order 1/2 convergence for SDEs with continuously differentiable
and polynomially growing drift that satisfy a one-sided Lipschitz condition. Saba-
nis [22] proves strong convergence of the tamed Euler–Maruyama scheme from a
different perspective and also considers the case of locally Lipschitz diffusion coef-
ficient. Gyöngy [4] proves almost sure convergence of the Euler–Maruyama scheme
for the case where the drift satisfies a monotonicity condition.

Halidias and Kloeden [7] show that the Euler–Maruyama scheme converges
strongly for SDEs with a discontinuous monotone drift coefficient. Kohatsu-Higa
et al. [13] show weak convergence with rates smaller than 1 of a method where they
first regularize the discontinuous drift and then apply the Euler–Maruyama scheme.
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Convergence of the EM method for SDEs with discontinuous drift 221

Étoré andMartinez [1,2] introduce an exact simulation algorithm for one-dimensional
SDEs with a drift coefficient which is discontinuous in one point, but differentiable
everywhere else. For one-dimensional SDEs with piecewise Lipschitz drift and pos-
sibly degenerate diffusion coefficient, in [14] an existence and uniqueness result is
proven, and a numerical method, which is based on applying the Euler–Maruyama
scheme to a transformation of (1), is presented. This method converges with strong
order 1/2. In [15] a (non-trivial) extension of the method is introduced, which con-
vergeswith strong order 1/2 also in themultidimensional case. The paper also contains
an existence and uniqueness result for themultidimensional setting undermore general
conditions than, e.g., the ones stated in [16].

The method introduced in [15] is the first numerical method that is proven to con-
verge with positive strong rate for multidimensional SDEs with discontinuous drift
and degenerate diffusion coefficient. It requires application of a transformation and
its numerical inverse in each step, which makes the method rather slow in practice.
Furthermore, the method requires specific inputs about the geometry of the discon-
tinuity of the drift to calculate this transformation. This is a drawback, if, e.g., the
method shall be applied for solving control problems, since the control is usually not
explicitly known. So a method is preferred that can deal with the discontinuities in the
drift automatically.

First results in this direction are contained in a series of papers by Ngo and Taguchi.
In [21] they show convergence of order up to 1/4 of the Euler–Maruyama method
for multidimensional SDEs with discontinuous bounded drift that satisfies a one-
sided Lipschitz condition and with Hölder continuous, bounded, and uniformly non-
degenerate diffusion coefficient. In [19] they extend this result to cases where the drift
is not necessarily one-sided Lipschitz for one-dimensional SDEs, and in [20] they
extend the result for one-dimensional SDEs by allowing for discontinuities also in the
diffusion coefficient. For many applications, their results fail to be applicable, since
they only hold for one-dimensional SDEs and their method of proof relies on uniform
non-degeneracy of the diffusion coefficient.

Contrasting the above, there are several delimiting results which state that even
equations with infinitely often differentiable coefficients cannot always be solved
approximately in finite time, even if the Euler–Maruyama method converges, cf.
Hairer et al. [6], Jentzen et al. [10],Müller-Gronbah andYaroslavtseva [18], Yaroslavt-
seva [28]. However, there is still a big gap between the assumptions on the coefficients
under which convergence with strong convergence rate has been proven and the prop-
erties of the coefficients of the equation presented in [6].

In this paperweprove strong convergence of order 1/4−ε for arbitrarily small ε > 0
of the Euler–Maruyama method for multidimensional SDEs with discontinuous drift
satisfying a piecewise Lipschitz condition and with a degenerate diffusion coefficient.
Note that we do not impose a one-sided Lipschitz condition on the drift. So even
for SDEs with non-degenerate diffusion coefficient, which do not have a one-sided
Lipschitz drift, this result is novel.

Our convergence proof is based on estimating the difference between the Euler–
Maruyama scheme and the scheme presented in [15]. Close to the set of discontinuities
of the drift, we have no tight estimate of this difference, so we need to study the
occupation time of an Itô process with degenerate diffusion coefficient there. Away
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from the set of discontinuities, it is essential to estimate the probability that during
one step the distance between the interpolation of the Euler–Maruyama method and
the previous Euler–Maruyama step becomes greater than some threshold.

This paper’s result is the first one that gives strong convergence and also a strong
convergence rate of a fully explicit scheme for multidimensional SDEs with discontin-
uous drift and degenerate diffusion coefficient, and the first one for multidimensional
SDEs with discontinuous drift that does not satisfy a one-sided Lipschitz condition.

2 Preliminaries

In this section we first state the assumptions on the coefficients of SDE (1), under
which the result of this paper is proven, then we study the occupation time of an Itô
process close to a hypersurface, and finally we recall the transformation from [15],
which is also essential for our proof.

2.1 Definitions and assumptions

We want to prove strong convergence of the Euler–Maruyama method for SDEs with
discontinuous drift coefficient. Instead of the usual requirement of Lipschitz continuity
we only assume that the drift is a piecewise Lipschitz function on the Rd .

Definition 2.1 ([15, Definitions 3.1 and 3.2]) Let A ⊆ R
d .

1. For a continuous curve γ : [0, 1] −→ R
d , let �(γ ) denote its length,

�(γ ) = sup
n,0≤t1<···<tn≤1

n∑
k=1

‖γ (tk) − γ (tk−1)‖ .

The intrinsic metric ρ on A is given by

ρ(x, y) := inf{�(γ ) : γ : [0, 1] −→ A is a continuous curve satisfying γ (0)

= x, γ (1) = y} ,

where ρ(x, y) := ∞, if there is no continuous curve from x to y.
2. Let f : A −→ R

m be a function. We say that f is intrinsic Lipschitz, if it is
Lipschitz w.r.t. the intrinsic metric on A, i.e. if there exists a constant L such that

∀x, y ∈ A : ‖ f (x) − f (y)‖ ≤ Lρ(x, y) .

The prototypical examples for intrinsic Lipschitz function are given, like in the
one-dimensional case, by differentiable functions with bounded derivative.

Lemma 2.2 ([15, Lemma 3.8]) Let A ⊆ R
d be open and let f : A −→ R

m be a
differentiable function with ‖ f ′‖ < ∞. Then f is intrinsic Lipschitz with Lipschitz
constant ‖ f ′‖.
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Definition 2.3 ([15, Definition 3.4]) A function f :Rd −→ R
m is piecewise Lipschitz,

if there exists a hypersurface�with finitely many connected components and with the
property, that the restriction f |Rd\� is intrinsic Lipschitz. We call � an exceptional
set for f , and we call

sup
x,y∈Rd\�

‖ f (x) − f (y)‖
ρ(x, y)

the piecewise Lipschitz constant of f .

In this paper�will be a fixedC3-hypersurface, andwewill only consider piecewise
Lipschitz functions with exceptional set�. In the following, L f denotes the piecewise
Lipschitz constant of a function f , if f is piecewise Lipschitz, and it denotes the
Lipschitz constant, if f is Lipschitz.

We define the distance d(x,�) between a point x and the hypersurface � by
d(x,�) := inf{‖x − y‖ : y ∈ �}, and for every ε > 0 we define �ε := {x ∈ R

d :
d(x,�) < ε}.

Recall that, since � ∈ C3, for every ξ ∈ � there exists an open environment
U ⊆ � of ξ and a continuously differentiable function n: U −→ R

d such that for
every ζ ∈ U the vector n(ζ ) has length 1 and is orthogonal to the tangent space of �

in ζ . On a given connected open subset of � the local unit normal vector n is unique
up to a factor ±1.

We recall a definition from differential geometry.

Definition 2.4 Let � ∈ R
d be any set.

1. An environment �ε is said to have the unique closest point property, if for every
x ∈ R

d with d(x,�) < ε there is a unique p ∈ � with d(x,�) = ‖x − p‖.
Therefore, we can define a mapping p:�ε −→ � assigning to each x the point
p(x) in � closest to x .

2. � is said to be of positive reach, if there exists ε > 0 such that �ε has the unique
closest point property. The reach of � is the supremum over all such ε if such an
ε exists, and 0 otherwise.

Now, we give assumptions which are sufficient for the results in [15] to hold and
which we need to prove the main result here.

Assumption 2.1 We assume the following for the coefficients of (1):

1. μ and σ are bounded;
2. the diffusion coefficient σ is Lipschitz;
3. the drift coefficientμ is a piecewise Lipschitz functionRd −→ R

d . Its exceptional
set � is a C3-hypersurface of positive reach;

4. non-parallelity condition: there exists a constant c0 > 0 such that ‖σ(ξ)�n(ξ)‖ ≥
c0 for all ξ ∈ �;

5. the function α:� −→ R
d defined by

α(ξ) := lim
h→0

μ(ξ − hn(ξ)) − μ(ξ + hn(ξ))

2‖σ(ξ)�n(ξ)‖2 (3)

is C3 and all derivatives up to order three are bounded.
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Theorem 2.5 ([15, Theorem 3.21]) Let Assumption 2.1 hold. Then SDE (1) has a
unique strong solution.

Remark on Assumption 2.1:

1. For existence and uniqueness of a solution to (1), in [15, Theorem 3.21] instead of
Assumption 2.1.1 only boundedness in an ε-environment of� is needed. However,
for the proof of our convergence result we require global boundedness. Note that
other results in the literature on numerical methods for SDEs with discontinuous
drift also rely on boundedness of the coefficients, cf. [19–21].

2. Assumption 2.1.2 is a technical condition; the focus in this paper is on other types
of irregularities in the coefficients. There are results in the literature, where the
authors deal with a non-globally Lipschitz diffusion coefficient, see, e.g., [5], but
in contributions where only Hölder continuity is required for σ , usually uniform
non-degeneracy is assumed.

3. Assumption 2.1.3 is a geometrical condition which we require in order to locally
flatten �, i.e. to map � to a hyperplane in a regular way. This is crucial in many
places in [15] and here, in particular for the proof of Theorem 2.7 below. In
addition to that, Assumption 2.1.3 implies that there exists a constant c1 such that
‖n′(ξ)‖ ≤ c1 for every ξ ∈ � and every orthonormal vector n on �, see [15,
Lemma 3.10].

4. Assumption 2.1.4 means that the diffusion coefficient must have a component
orthogonal to � in all ξ ∈ �. This condition is significantly weaker than uni-
form non-degeneracy, and it is essential: in [16] we give a counterexample for the
case where the non-parallelity condition does not hold. Then, even existence of a
solution is not guaranteed.

5. Assumption 2.1.5 is a technical condition, which is required for our transformation
method to work. Boundedness of α and α′ is needed for proving the local invert-
ibility of our transform. Existence and boundedness of α′′ and α′′′ is required for
the multidimensional version of Itô’s formula to hold for the transform, see [15].
Moreover, it has been shown in [15, Proposition 3.13] that α is a well-defined
function on �, i.e. it does not depend on the choice of the normal vector n and, in
particular, on its sign.

Example 2.6 Suppose � is the finite and disjoint union of orientable compact C3-
manifolds. Then � is of positive reach by the lemma in [3], and each connected
component of� separates theRn into two open connected components by the Jordan–
Brouwer separation theorem, see [17].

Thus Rd\� is the union of finitely many disjoint open connected subsets of Rd ;
we can write Rd\� = A1 ∪ · · · ∪ An .

Suppose there exist bounded and Lipschitz C3-functions μ1, . . . , μn : Rd −→ R
d

such thatμ = ∑n
k=1 1Ak μk , and suppose thatσ : Rd −→ R

d×d is bounded, Lipschitz,

and C3 with σ(ξ)�n(ξ) 
= 0 for every ξ ∈ �.
Then it is readily checked that μ and σ satisfy Assumption 2.1.

In Sect. 4 we present a number of concrete examples which satisfy Assumption 2.1
and we perform numerical tests on the associated SDEs.
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2.2 Occupation time close to a hypersurface

In this section we study the occupation time of an Itô process close to a C3-
hypersurface. In the proof of our main theorem, the Euler–Maruyama approximation
X δ in equation (2) will play the role of that Itô process.

Theorem 2.7 Let � be a C3-hypersurface of positive reach and let ε0 > 0 be such
that the closure of �ε0 has the unique closest point property. Let further X = (Xt )t≥0
be an R

d -valued Itô process

Xt = X0 +
∫ t

0
Asds +

∫ t

0
BsdWs ,

with progressively measurable processes A = (At )t≥0, B = (Bt )t≥0, where A is
R

d-valued and B is Rd×d-valued. Let the coefficients A, B be such that

1. there exists a constant cAB such that for almost all ω ∈ � it holds that

∀t ∈ [0, T ] : Xt (ω) ∈ �ε0 �⇒ max(‖At (ω)‖, ‖Bt (ω)‖) ≤ cAB ;

2. there exists a constant c0 such that for almost all ω ∈ � it holds that

∀t ∈ [0, T ] : Xt (ω) ∈ �ε0 �⇒ n(p(Xt (ω)))�Bt (ω)Bt (ω)�n(p(Xt (ω))) ≥ c0 .

Then there exists a constant C such that for all 0 < ε < ε0/2,

∫ T

0
P

({Xs ∈ �ε}) ds ≤ Cε .

For the proof we will construct a one-dimensional Itô process Y with the property
that Y is close to 0, if and only if X is close to �. For the construction of Y we
decompose the path of X into pieces close to � and pieces farther away. These pieces
are then mapped to R by using a signed distance of X from � and pasted together in
a continuous way.

A signed distance to � is locally given by D(x) := n(p(x))�(x − p(x)), where n
is a local unit normal vector.

Lemma 2.8 For all x ∈ �ε0 it holds that D′(x) = n(p(x))�.

Proof Fix x ∈ �ε0\� and consider the function h defined by h(b) := ‖x− p(x+b)‖2.
By definition of the projection map p, h has a minimum in b = 0, such that h′(0) = 0.
Hence from h′(b) = −2(x − p(x + b))� p′(x + b), we get (x − p(x))� p′(x) = 0.
This implies n(p(x))� p′(x) = 0, since (x − p(x)) is a scalar multiple of n(p(x)).

Using that D(x) = a‖x − p(x)‖ for an a ∈ {−1, 1}, we compute

D′(x) = a‖x − p(x)‖−1(x − p(x))�(idRd − p′(x)) = a n(p(x))�(idRd − p′(x))

= a
(
n(p(x))� − n(p(x))� p′(x)

) = an(p(x))� . (4)
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226 G. Leobacher, M. Szölgyenyi

For ψ ∈ R with |ψ | small we get

D(x + ψn(p(x))) = n
(

p
(
x + ψn(p(x))

))�(
x + ψn(p(x)) − p

(
x + ψn(p(x))

))

= n(p(x))�(x + ψn(p(x)) − p(x)) = D(x) + ψ ,

such that the directional derivative of D in direction n(p(x)) in x is 1. From this and
from (4) it follows that D′(x) = n(p(x))�. This also holds for x ∈ � by the continuity
of D′. ��

The following lemma states that for any continuous curve γ in �ε0 there is a
continuous path of unit normal vectors, such that to every point of γ we can assign a
signed distance in a continuous way.

Lemma 2.9 Let γ : [a, b] −→ �ε0 be a continuous function. Then there exists
m : [a, b] −→ R

d such that

1. m is continuous;
2. ‖m(t)‖ = 1 for all t ∈ [a, b];
3. m(t) is orthogonal to � in the point p(γ (t)) for all t ∈ [a, b].

Proof For ξ ∈ � we denote the tangent space to � in ξ by tangξ . Let

S := {a ≤ s ≤ b : ∃m : [a, s] −→ R
d continuous, ‖m(t)‖

= 1, m(t)⊥tangp(γ (t)) ∀t ∈ [a, s]}.

The set S is nonempty and its elements are bounded by b. Let s1 := sup S. There
exists an open and connected subset U ⊆ � such that p(γ (s1)) ∈ U , and a unit
normal vector n1 : U −→ R

d .
Since U is open and p ◦ γ is continuous, there exists η > 0 such that p(γ ([s1 −

η, s1])) ⊆ U . By the definition of s1 there exists s ∈ (s1−η, s1) andm : [a, s] −→ R
d

continuous, with ‖m(t)‖ = 1 and m(t)⊥tangp(γ (t)) for all t ∈ [a, s].
Since n1 is unique up to a factor±1, the mapping n1 ◦ p ◦γ either coincides with m

or −m on (s1 − η, s). Without loss of generality we may assume that the former is the
case. Thus we can extend m continuously to [a, s1] by defining m(t) := n1(p(γ (t)))
for all t ∈ (s, s1].

Now, if s1 was strictly smaller than b, thenwe could use the samemapping n1◦ p◦γ

to extend m continuously beyond s1, contradicting the definition of s1. ��
We will need the following estimate on the local time of a one-dimensional Itô

process.

Lemma 2.10 Let Y = (Yt )t≥0 be an Itô process with bounded and progressively
measurable coefficients Â = ( Ât )t≥0, B̂ = (B̂t )t≥0.

Then supy∈R E(L y
T (Y )) ≤

(
3T 2‖ Â‖2∞ + 3

2T ‖B̂s‖2∞
)1/2

.

The claim is a special case of [19, Lemma 3.2]. We give a proof for the convenience
of the reader.
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Proof From the Meyer–Tanaka formula [11, Section 3.7, Eq. (7.9)] we have

2L y
T (Y ) = |YT − y| − |Y0 − y| −

∫ T

0

(
1{Ys>y} − 1{Ys<y}

)
dYs

≤ |YT − Y0| +
∣∣∣∣
∫ T

0

(
1{Ys>y} − 1{Ys<y}

)
dYs

∣∣∣∣
≤

∣∣∣∣
∫ T

0
Âsds

∣∣∣∣ +
∣∣∣∣
∫ T

0
B̂sdWs

∣∣∣∣ +
∣∣∣∣
∫ T

0

(
1{Ys>y} − 1{Ys<y}

)
Âsds

∣∣∣∣
+

∣∣∣∣
∫ T

0

(
1{Ys>y} − 1{Ys<y}

)
B̂sdWs

∣∣∣∣
≤ 2

∫ T

0
| Âs |ds +

∣∣∣∣
∫ T

0
B̂sdWs

∣∣∣∣ +
∣∣∣∣
∫ T

0

(
1{Ys>y} − 1{Ys<y}

)
B̂sdWs

∣∣∣∣ .

Using the inequality (a + b + c)2 ≤ 3(a2 + b2 + c2) we get

4L y
T (Y )2 ≤ 12‖ Â‖2∞T 2 + 3

∣∣∣∣
∫ T

0
B̂sdWs

∣∣∣∣
2

+ 3

∣∣∣∣
∫ T

0

(
1{Ys>y} − 1{Ys<y}

)
B̂sdWs

∣∣∣∣
2

,

and, using Itô’s L2-isometry,

4E
(

L y
T (Y )2

)
≤ 12‖ Â‖2∞T 2 + 6

∫ T

0
B̂2

s ds ≤ 12‖ Â‖2∞T 2 + 6T ‖B̂‖2∞ .

The claim now follows by applying the Cauchy–Schwarz-inequality and taking the
supremum over all y ∈ R. ��

We are ready to prove the result of this section.

Proof of Theorem 2.7 Let ε1 = ε0/2. Define a mapping λ : R −→ R by

λ(z) =

⎧⎪⎨
⎪⎩

z − 2
3ε21

z3 + 1
5ε41

z5 |z| ≤ ε1

8ε1
15 z > ε1

− 8ε1
15 z < −ε1 .

Note that λ′(0) = 1 and λ′(±ε1) = λ′′(±ε1) = 0, so that λ ∈ C2.
Next we decompose the path of X : let τ0 := inf{t ≥ 0 : Xt ∈ �ε1}. In particular

we have τ0 = 0, if X0 ∈ �ε1 . For k ∈ N0, define

κk+1 := inf{t ≥ τk : Xt /∈ �2ε1} ∧ T ,

τk+1 := inf{t ≥ κk+1 : Xt ∈ �ε1} ∧ T .

By Lemma 2.9 there exist continuous mk : [τk, κk+1] −→ R
d , with ‖mk(t)‖ = 1 and

mk(t)⊥tangp(Xt )
for all t ∈ [τk, κk+1]. Without loss of generality m0 can be chosen
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such that m0(τ0)
�(Xτ0 − p(Xτ0)) ≥ 0. We construct a one-dimensional process Y as

follows:

Yt =

⎧⎪⎨
⎪⎩

λ(m0(τ0)
�(Xτ0 − p(Xτ0))) t ≤ τ0

λ(mk(t)�(Xt − p(Xt ))) t ∈ [τk, κk+1]
λ(mk(κk)

�(Xκk − p(Xκk ))) t ∈ [κk, τk] ,

where without loss of generality the mk are chosen such that

λ(mk+1(τk+1)
�(Xτk+1 − p(Xτk+1))) = λ(mk(κk)

�(Xκk − p(Xκk ))) . (5)

Note that by construction both sides of (5) can only take the values ±λ(ε1).
We have thus constructed a continuous [λ(−ε1), λ(ε1)]-valued process Y with the

property that the occupation time of Y in an environment of 0 is the same as the
occupation time of X in an environment of �, i.e. Y ∈ (−λ(ε), λ(ε)), iff X ∈ �ε for
all 0 < ε < ε1.

To show that Y is an Itô process, we want to use Itô’s formula. For this we recognize
that Y , depending on its proximity to �, is either constant or locally of the form
Yt = λ(n(p(Xt ))

�(Xt − p(Xt ))) for a suitable choice of the unit normal vector.
Denote D(x) = n(p(x))�(x − p(x)). The function D is locally a signed distance to
� and D ∈ C2. This can be seen by following the proof of [3, Theorem 1]. Hence,
we may apply Itô’s formula to get

dYt = λ′(D(Xt ))D′(Xt )At dt + λ′(D(Xt ))D′(Xt )Bt dWt + 1

2
tr

(
B�

t λ′′(D(Xt ))Bt

)
dt .

By Lemma 2.8 we have D′(x) = n(p(x))�, and hence

(λ(D(x)))′′ = (λ′(D(x))n(p(x))�)′ = λ′′(D(x))n(p(x))n(p(x))� + λ′(D(x))n′(p(x)) .

Since λ′ and λ′′ are bounded by construction, ‖n(p(x))n(p(x))�‖ = 1, ‖n′‖ is
bounded (c.f. the remark on Assumption 2.1.3), and by Assumption 1 of the theo-
rem, the coefficients of Y are uniformly bounded. Therefore dYt = Ât dt + B̂t dWt ,
with bounded and progressively measurable Â, B̂.

Let 0 < ε ≤ ε1/2. For all |z| ≤ ε, we have λ′(z) ≥ ( 3
4

)2
. Thus by Assumption 2

of the theorem,

(
3

4

)2
c20

∫ t

0
1{Xs∈�ε}ds =

(
3

4

)2
c20

∫ t

0
1{Ys∈(−λ(ε),λ(ε))}ds

≤
∫ t

0
1{Ys∈(−λ(ε),λ(ε))}λ′ (D(Xs))

2 n(p(Xs))
�Bs B�

s n(p(Xs))ds

=
∫ t

0
1{Ys∈(−λ(ε),λ(ε))}d [Y ]s .

By the occupation time formula [11, Chapter 3, 7.1 Theorem] for one-dimensional
continuous semimartingales, we get
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∫ T

0
P

({Xs ∈ �ε}) ds ≤
(

4

3c0

)2

E

(∫ T

0
1{Ys∈(−λ(ε),λ(ε))}d [Y ]s

)

= 2

(
4

3c0

)2

E

(∫
R

1(−λ(ε),λ(ε))(y)L y
T (Y ) dy

)

≤ 43

32c20
sup
y∈R

E
(
L y

T (Y )
)
ε .

��

2.3 The transformation

The proof of convergence is based on a transformation that removes the discontinuity
from the drift and makes the drift Lipschitz while preserving the Lipschitz property of
the diffusion coefficient. A suitable transform is presented in [15]. We recall it here.

Define G:Rd −→ R
d ,

G(x) =
{

x + φ̃(x)α(p(x)) x ∈ �ε0

x x ∈ R
d\�ε0 ,

where ε0 > 0 is smaller than the reach of �, see Assumption 2.1.3, α is the function
defined in Assumption 2.1.5, and

φ̃(x) = n(p(x))�(x − p(x))‖x − p(x)‖φ
(‖x − p(x)‖

c

)
,

with positive constant c and

φ(u) =
{

(1 + u)3(1 − u)3 |u| ≤ 1

0 |u| > 1.

Note that G ′′ is piecewise Lipschitz with exceptional set �.
If c is chosen sufficiently small, see [15, Lemma 3.18], G is invertible by [15,

Theorem 3.14]. Furthermore, Itô’s formula holds for G and G−1 by [15, Theorem
3.19].

With this we can define a process Z = (Zt )t≥0 by Zt = G(Xt ), which solves the
SDE

d Zt = μ̃(Zt )dt + σ̃ (Zt )dWt , (6)

where

μ̃(z) = G ′(G−1(z))μ(G−1(z)) + 1

2
tr

(
σ(G−1(z))�G ′′(G−1(z))σ (G−1(z))

)
,

σ̃ (z) = G ′(G−1(z))σ (G−1(z)) .

From [15, Theorem 3.20] we know that μ̃ and σ̃ are Lipschitz, and hence the solution
to (6) can be approximated with strong order 1/2 using the Euler–Maruyama scheme.
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3 Main result

We are ready to formulate the main result.

Theorem 3.1 Let Assumption 2.1 hold. Then the Euler–Maruyama method (2) con-
verges to the solution of SDE (1) with strong order 1/4−ε for arbitrarily small ε > 0,
i.e. there exists a constant C such that for all ε > 0 it holds that for sufficiently small
step size δ > 0,

E

(
sup

t∈[0,T ]
‖Xt − X δ

t ‖2
)1/2

≤ Cδ1/4−ε .

In preparation of the proof of the main result, we prove two lemmas.

Lemma 3.2 Let Assumption 2.1.1 hold. Then there exists a constant C such that for
sufficiently small step size δ

E

(∫ T

0
‖X δ

s − X δ
s ‖2ds

)
≤ Cδ .

Proof By the definition of the Euler–Maruyama method (2) we have

E

(∫ T

0
‖X δ

s − X δ
s ‖2ds

)
=

T/δ−1∑
j=0

E

(∫ ( j+1)δ

jδ
‖X δ

jδ − X δ
s ‖2ds

)

≤ T

δ
sup

t∈{ jδ: j=0,...,T/δ−1}
E

(∫ t+δ

t
‖X δ

t − X δ
s ‖2ds

)

= T

δ
sup

t∈{ jδ: j=0,...,T/δ−1}
E

(∫ t+δ

t
‖X δ

t − X δ
t − μ(X δ

t )δ − σ(X δ
t )(Ws − Wt )‖2ds

)

≤ 2T

δ
sup

t∈{ jδ: j=0,...,T/δ−1}
E

(∫ t+δ

t
‖μ(X δ

t )δ‖2ds +
∫ t+δ

t
‖σ(X δ

t )(Ws − Wt )‖2ds

)

≤ 2T

δ

(
‖μ‖2∞δ3 + ‖σ‖2∞ sup

t∈{ jδ: j=0,...,(T −δ)/δ}

∫ t+δ

t
E(‖Ws − Wt‖2)ds

)

= 2T

δ

(
‖μ‖2∞δ3 + d‖σ‖2∞ sup

t∈{ jδ: j=0,...,(T −δ)/δ}

∫ t+δ

t
(s − t)ds

)

= 2T

δ

(
‖μ‖2∞δ3 + d

2
‖σ‖2∞δ2

)
≤ Cδ .

��

123



Convergence of the EM method for SDEs with discontinuous drift 231

For all δ, ε > 0 and all j = 0, . . . , T/δ − 1, define

�δ,ε, j :=
{

ω ∈ � : sup
s∈[ jδ,( j+1)δ]

∥∥∥X δ
s (ω) − X δ

s (ω)

∥∥∥ ≥ ε

}
. (7)

Lemma 3.3 Let Assumption 2.1.1 hold. Then there exists a constant C such that for
all 0 < δ ≤ 1, all ε > 0, and all j = 0, . . . , T/δ − 1, it holds that P(�δ,ε, j ) ≤
C exp(−ε/‖σ‖∞δ1/2).

Proof

P

(
sup

jδ≤s≤( j+1)δ
‖X δ

s − X δ
s ‖ ≥ ε

)
= P

(
sup

jδ≤s≤( j+1)δ
‖μ(X δ

s )(s − s) + σ(X δ
s )(Ws − Ws)‖ ≥ ε

)

≤ P

(
sup

jδ≤s≤( j+1)δ

{
‖μ‖∞δ + ‖σ‖∞‖Ws − Ws‖

}
≥ ε

)
= P

(
sup

jδ≤s≤( j+1)δ
‖Ws − Ws‖ ≥ ε − ‖μ‖∞δ

‖σ‖∞

)

= P

(
sup

0≤s≤1
‖Ws − W0‖ ≥ ε − ‖μ‖∞δ

‖σ‖∞δ1/2

)
= P

(
exp

(
sup

0≤s≤1
‖Ws‖

)
≥ exp

(
ε − ‖μ‖∞δ

‖σ‖∞δ1/2

))

≤ E (exp(‖W1‖)) exp
( ‖μ‖∞δ − ε

‖σ‖∞δ1/2

)
≤ C exp

(
− ε

‖σ‖∞δ1/2

)
,

where we applied Doob’s submartingal inequality, and in the last step used that δ ≤ 1.
��

Now, we are ready to prove our main result.

Proof of Theorem 3.1 Since G−1 is Lipschitz by the proof of [15, Theorem 3.20],

E

(
sup

0≤t≤T
‖Xt − X δ

t ‖2
)1/2 ≤ LG−1E

(
sup

0≤t≤T
‖Zt − G(X δ

t )‖2
)1/2

, (8)

with Z = G(X) as in (6). Let Z δ be the Euler–Maruyama approximation of Z . It
holds that

E

(
sup

0≤t≤T
‖Zt − G(X δ

t )‖2
)1/2 ≤ E

(
sup

0≤t≤T
‖Zt − Z δ

t ‖2
)1/2

+E

(
sup

0≤t≤T
‖Z δ

t − G(X δ
t )‖2

)1/2
. (9)

For estimating the first term in (9), recall that by [15, Theorem 3.20], the transformed
SDE (6) has Lipschitz coefficients. Since the Euler–Maruyamamethod converges with
strong order 1/2 for SDEswith Lipschitz coefficients (see [12, Theorem 10.2.2]), there
exists a constant C1 > 0 such that for sufficiently small δ > 0,

E

(
sup

0≤t≤T
‖Zt − Z δ

t ‖2
)

≤ C1δ . (10)
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We now turn to the second term in (9), i.e. we estimate the difference between
G applied to the Euler–Maruyama approximation of X and the Euler–Maruyama
approximation of Z . Denote, for all τ ∈ [0, T ],

u(τ ) := E

(
sup

0≤t≤τ

‖G(X δ
t ) − Z δ

t ‖2
)

.

With ν(x1, x2) = G ′(x1)μ(x2)+ 1
2 tr(σ (x2)�G ′′(x1)σ (x2))we have by Itô’s formula,

G(X δ
t ) = G(X δ

0) +
∫ t

0
ν(X δ

s , X δ
s )ds +

∫ t

0
G ′(X δ

s )σ (X δ
s )dWs ,

so that

u(τ ) = E

(
sup

0≤t≤τ

∥∥∥∥
∫ t

0
ν(Xδ

s , Xδ
s )ds +

∫ t

0
G′(Xδ

s )σ (Xδ
s )dWs −

∫ t

0
μ̃

(
Zδ

s

)
ds

−
∫ t

0
σ̃

(
Zδ

s

)
dWs

∥∥∥∥
2
)

≤ E

(
sup

0≤t≤τ

(
4

∥∥∥∥
∫ t

0

(
ν(Xδ

s , Xδ
s ) − ν(Xδ

s , Xδ
s )

)
ds

∥∥∥∥
2

+ 4

∥∥∥∥
∫ t

0

(
G′(Xδ

s )σ (Xδ
s )

−G′(Xδ
s )σ (Xδ

s )
)

dWs

∥∥∥2

+ 4

∥∥∥∥
∫ t

0

(
μ̃(G(Xδ

s )) − μ̃(Zδ
s )

)
ds

∥∥∥∥
2

+ 4

∥∥∥∥
∫ t

0

(
σ̃ (G(Xδ

s )) − σ̃ (Zδ
s )

)
dWs

∥∥∥∥
2
))

.

Applying the Cauchy–Schwarz inequality to the Lebesgue integrals and the d-
dimensional Burkholder–Davis–Gundy inequality [8, Lemma 3.7] to the Itô integrals,
we obtain

u(τ ) ≤ 4T E

(∫ τ

0

∥∥∥ν(X δ
s , X δ

s ) − ν(X δ
s , X δ

s )

∥∥∥2 ds

)

+ 8d E

(∫ τ

0

∥∥∥G ′(X δ
s )σ (X δ

s ) − G ′(X δ
s )σ (X δ

s )

∥∥∥2 ds

)

+ 4T E

(∫ τ

0

∥∥∥μ̃(G(X δ
s )) − μ̃(Z δ

s )

∥∥∥2 ds

)

+ 8d E

(∫ τ

0

∥∥∥σ̃ (G(X δ
s )) − σ̃ (Z δ

s )

∥∥∥2 ds

)

=: 4T E1 + 8d E2 + 4T E3 + 8d E4 . (11)

For estimating E1 in (11), we will use that
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‖ν(x1, x2) − ν(x2, x2)‖2 ≤
{(

2L2
G′ ‖μ‖2∞ + 1

2 L2
G′′ ‖σ‖4∞

)
‖x1 − x2‖2 x1 /∈ �ε , ‖x1 − x2‖ < ε

4‖μ‖2∞‖G′‖2∞ + ‖σ‖4∞‖G′′‖2∞ otherwise .

With this and the definition of �c
δ,ε, j in (7), we get

E1 =
∫ τ

0
E

(∥∥∥ν(Xδ
s , Xδ

s ) − ν(Xδ
s , Xδ

s )

∥∥∥2
(

1{Xδ
s /∈�ε}1�c

δ,ε,s/δ
+ 1{Xδ

s /∈�ε}1�δ,ε,s/δ + 1{Xδ
s ∈�ε}

))
ds

≤
(
2L2

G′ ‖μ‖2∞ + 1

2
L2

G′′ ‖σ‖4∞
)

ε2T

+
(
4‖μ‖2∞‖G′‖2∞ + ‖σ‖4‖G′′‖2∞

) (∫ T

0
P(�δ,ε,s/δ)ds +

∫ T

0
P({Xδ

s ∈ �ε})ds

)
.

By Lemma 3.3,
∫ T
0 P(�δ,ε,s/δ)ds ≤ C2 exp(−ε/‖σ‖∞δ1/2), and by Theorem

2.7,
∫ T
0 P({X δ

s ∈ �ε})ds ≤ C3ε, for suitable constants C2, C3. In order to
minimize the bound on E1, we choose ε such that exp(−ε/‖σ‖∞δ1/2) + ε is
minimized for δ sufficiently small, yielding ε = −‖σ‖∞δ1/2 log(‖σ‖∞δ1/2) =
‖σ‖∞δ1/2−2ε(−δ2ε log(‖σ‖∞δ1/2)) for arbitrarily small ε > 0. Hence, with C4 =
(2L2

G ′ ‖μ‖2∞ + 1
2 L2

G ′′ ‖σ‖4∞)T , C5 = (4‖μ‖2∞‖G ′‖2∞ + ‖σ‖4‖G ′′‖2∞)C2, C6 =
(4‖μ‖2∞‖G ′‖2∞ + ‖σ‖4‖G ′′‖2∞)C3, we get

E1 ≤ C4ε
2 + C5 exp

(
− ε

‖σ‖∞δ1/2

)
+ C6ε

= C4‖σ‖2∞δ1−4ε(−δ2ε log(‖σ‖∞δ1/2))2

+ C5‖σ‖∞δ1/2 + C6‖σ‖∞δ1/2−2ε(−δ2ε log(‖σ‖∞δ1/2)) .

Thus, withC7 = C4‖σ‖2∞+C5‖σ‖∞+C6‖σ‖∞ and for arbitrarily small fixed ε > 0,
it holds that for sufficiently small δ

E1 ≤ C7δ
1/2−2ε . (12)

For estimating E2 in (11), we apply Lemma 3.2 to get

E2 ≤ L2
G ′ ‖σ‖2∞

∫ T

0
E

(∥∥∥X δ
s − X δ

s

∥∥∥2
)

ds ≤ L2
G ′ ‖σ‖2∞C8δ . (13)

For estimating E3, E4 in (11), we use that μ̃, σ̃ are Lipschitz by [15, Theorem
3.20], to get

E3 ≤ L2
μ̃

∫ τ

0
E

(∥∥∥G(X δ
s ) − Z δ

s

∥∥∥2
)

ds ≤ L2
μ̃

∫ τ

0
u(s)ds , (14)

E4 ≤ L2
σ̃

∫ τ

0
E

(∥∥∥G(X δ
s ) − Z δ

s

∥∥∥2
)

ds ≤ L2
σ̃

∫ τ

0
u(s)ds . (15)
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Combining the estimates (12), (13), (14), (15) with (11), we get

0 ≤ u(τ ) ≤ C9

∫ τ

0
u(s)ds + 4T C7δ

1/2−2ε + 8d L2
G ′ ‖σ‖2∞C8δ ,

with C9 = 4T L2
μ̃

+8d L2
σ̃
. Using that 4T C7δ

1/2−2ε +8d L2
G ′ ‖σ‖2∞C8δ ≤ C10δ

1/2−2ε

for δ ≤ 1, and applying Gronwall’s inequality yields for all τ ∈ [0, T ],

u(τ ) ≤ C10 exp(C9τ)δ1/2−2ε . (16)

Combining (10) and (16) with (9), and the result with (8), finally yields

E

(
sup

0≤t≤T
‖Xt − X δ

t ‖2
)1/2

≤ LG−1

(
C1δ

)1/2 + LG−1

(
C10 exp(C9T )δ1/2−2ε

)1/2 ≤ Cδ1/4−ε ,

for a suitably chosen constant C , for arbitrarily small ε > 0, and for δ sufficiently
small. ��

4 Examples

We ran simulations for several examples—ones of theoretical interest as well as an
example coming from applications.

When studying stochastic dynamical systems which include a noisy signal, then
filtering this signal leads to a higher dimensional system with a degenerate diffusion
coefficient. Stochastic control problems often lead to an optimal control policy which
makes the drift of the system discontinuous. Examples are models with incomplete
market information in mathematical finance where the rate with which cashflows are
paid from a firm value process change systematically when the asset-liability ratio
passes a certain threshold which then triggers a rating change.

The class of equations studied here appears frequently in several areas of applied
mathematics and the natural sciences.

Step-function

In the first example the drift is the step functionμ(x1, x2) = (3(1{x1≥0}−1{x1<0}), 1)�,
and σ ≡ idR2 . It can easily be checked that these coefficients satisfy Assumption 2.1.
In particular, note that the non-parallelity condition is trivially satisfied, since σ is
uniformly non-degenerate. Since μ does not satisfy a one-sided Lipschitz condition,
our result is the first one that gives a strong convergence rate of the Euler–Maruyama
method for this example.
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Discontinuity along the unit circle

In this example the drift has a discontinuity along the unit circle, and the diffusion
coefficient is degenerate on the whole of R2:

μ(x1, x2) =
{

(1, 1)� x21 + x22 ≥ 1

(−x1, x2)� x21 + x22 < 1 ,
σ (x1, x2) = 2

1 + x21 + x22

(
x1 0
x2 0

)
.

Assumption 2.1 largely follows from Example 2.6. The non-parallelity condition is
readily verified:

∥∥∥∥∥
2

(1 + x21 + x22 )(x21 + x22 )

(
x1 x2
0 0

) (
x1
x2

)∥∥∥∥∥ =
2
√

x21 + x22

(1 + x21 + x22 )(x21 + x22 )
= 1

for all points (x1, x2) that lie on the unit circle, i.e. x21 + x22 = 1.

Dividend maximization under incomplete information

In insurance mathematics, a well-studied problem is the maximization of the expected
discounted future dividend payments until the time of ruin of an insurance company,
a value which serves as a risk measure. In [24] the problem is studied in a setup that
allows for incomplete information about the market. This leads to a joint filtering and
stochastic optimal control problem, and after solving the filtering problem, the driving
dynamics are high dimensional and have a degenerate diffusion coefficient. This issue
is described in more detail in [24]. Solving the stochastic optimal control problem in
dimensions higher than three with the usual technique (solving an associated partial
differential equation) becomes practically infeasible. Therefore, one has to resort to
simulation. The SDE that has to be simulated has the coefficients

μ(x1, . . . , xd) =

⎛
⎜⎜⎜⎜⎝

ϑd + ∑d−1
i=1 (ϑi − ϑd)xi+1 − ū1[ f (x2,...,xd ),∞)(x1)

qd1 + ∑d−1
j=1(q j1 − qd1)x j+1

...

qd(d−1) + ∑d−1
j=1(q j (d−1) − qd(d−1))x j+1

⎞
⎟⎟⎟⎟⎠

σ(x1, . . . , xd) =

⎛
⎜⎜⎜⎜⎜⎝

β 0 . . . 0

x2
ϑ1−ϑd−∑d−1

j=1(ϑ j −ϑd )x j+1

β

...
...

...
...

...

xd
ϑd−1−ϑd−∑d−1

j=1(ϑ j −ϑd )x j+1

β
0 . . . 0

⎞
⎟⎟⎟⎟⎟⎠

,

where ū, β, (ϑi )
d
i=1, (qi j )

d
i, j=1 are known constants. The arguments x2, . . . , xd are

elements of the simplex {(x2, . . . , xd) ∈ [0, 1]d−1 : ∑d−1
j=1 x j+1 ≤ 1}, and the
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Fig. 1 Estimated L2-errors

corresponding processes stay within this simplex almost surely, see [24]. The func-
tion f determines the hypersurface � along which the drift is discontinuous: � =
{(x1, . . . , xd) : x1 = f (x2, . . . , xd)}. In our simulations we choose d = 5 and f
affine linear, but note that we need not restrict ourselves to affine linear f .

We need to check Assumption 2.1: Since x2, . . . , xd ∈ [0, 1], μ, σ are bounded,
and all first order derivatives of the entries of σ are bounded. Hence, σ is Lipschitz.μ is
piecewise Lipschitz, and since f is affine linear, � ∈ C3. Whether the non-parallelity
condition holds depends on the choice of the parameters, but for ours the condition
is satisfied. Assumption 2.1.5 can easily be checked. Note that the coefficients can be
extended to the whole of Rd in a way that they still satisfy our assumptions.

Error estimate

The L2-error is estimated by

errk := ē Ê

(∥∥∥X (k)
T − X (k−1)

T

∥∥∥2
)1/2

,

where X (k)
T is the numerical approximation of XT with step size δ(k), Ê is an estimator

of themean value using 214 paths, and ē is a normalizing constant so that err1 = √
1/4.

Figure 1 shows log2 of the estimated L2-error of the Euler–Maruyama approxi-
mation of XT plotted over log2 δ(k) for the examples presented above. We observe
that the theoretical convergence rate is approximately obtained for the example of a
step-function and that the other examples converge at a faster rate. In particular, for
the examples with degenerate diffusion coefficient, the convergence rate is not worse
than for the other example. Even for the step-function example, for sufficiently small
step-size the convergence rate seems to be higher than the theoretical one. Hence,
it will be an interesting topic for future research to prove sharpness, or find a sharp
bound.
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Table 1 Runtimes in seconds using sequential computation and estimated errors for the Euler–Maruyama
method (EM) and the transformation method (GM) with 512 time-steps and 1024 paths

Computation time Estimated error

EM GM EM GM

Step function 10.84 86.92 0.1324 0.3362

Unit circle 14.39 5267.37 0.0195 0.0323

Dividends 5D 45.52 7398.97 0.0026 0.0032

Even though the proven rate for the Euler–Maruyama method is lower than for the
transformation-based method from [15], the calculations are usually faster in practice
using the first method, since the simulation of a single path is faster. Table 1 confirms
this claim: we observe that computation times are higher by up to two orders of
magnitude for the transformation method, while the estimated error is of comparable
size.

For completeness, we remark that one can construct examples, where the transfor-
mation method is much faster while giving a smaller error. For example, start with
prescribing the transform G(x) = x + x |x |φ(10x) and set μ(x) = 1

2 (G
−1)′′(G(x))

and σ(x) = (G−1)′(G(x)). This leads to μ̃(z) = 0 and σ̃ (z) = 1. Hence, if we use the
transformation method with the same G, then Z δ = Z = W and the transformation
method gives the estimate G−1(W ), which is the exact solution.

5 Conclusion

In this paper we have for the first time proven strong convergence and also a pos-
itive strong convergence rate for an explicit method (the Euler–Maruyama method)
for multidimensional SDEs with discontinuous drift that has a degenerate diffusion
coefficient, or with a discontinuous drift that does not satisfy a one-sided Lipschitz
condition, or both. The Euler–Maruyama method has the advantage that it does not
need the exact form of the set of discontinuities of the drift as an input, and that in
practice, computation of one path is fast in comparison to the second method in the
literature that can deal with this class of SDEs. Our numerical experiments suggest
that in addition to these advantages, it even seems that the Euler–Maruyama method
converges at a higher than the theoretically obtained rate for many examples and it
will be a topic of future research to prove sharpness, or find a sharp bound.
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