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Abstract In this paper we consider the approximation of noisy scattered data on
the sphere by radial basis functions generated by a strictly positive definite kernel.
The approximation is the minimizer in the native space for that kernel of a quadratic
functional in which the smoothing term is a multiple of the square of the native space
norm. The balance between data fitting and smoothness is controlled by a smoothing
parameter, the choice of which should depend on the nature and magnitude of the
noise. The main results concern the choice of that smoothing parameter, under the
assumption that the noise is deterministic rather than random. Four strategies for
choosing the smoothing parameter are considered: Morozov’s discrepancy principle,
and three a priori strategies. For each of these strategies we derive an L2 error bound.
The error bounds are similar, with the discrepancy principle giving marginally the best
bound. A numerical example supports the theoretical results.
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1 Introduction

This paper is a contribution to the approximation of noisy scattered data on the
d-dimensional unit sphere Sd . The most important case in practice is the case d = 2,
for which there are numerous geophysical problems in which the need is to fit noisy
data available only at scattered points. Some examples are gravitational potential,
magnetic field intensity, topography, and ground or sea level temperature or pressure
(see for example [8]). Often a series of independent local approximations on patches
will suffice, but here we seek a single global approximation.

Our ultimate approximation consists of radial basis functions centered at the given
data points, thus allowing a finer approximation wherever the data points are concen-
trated, perhaps because of greater variability of the physical quantity in that region.
The radial basis functions are generated by a single strictly positive definite kernel.

The approximation is defined (see Sect. 3) to be the minimizer in the native space
for that kernel of a certain quadratic functional. This functional is the sum of the
squared �2 norm of the discrepancy between the values of the approximation and the
noisy data values at the data points, and a smoothing term (or regularization term)
consisting of a smoothing parameter (or regularization parameter) λ multiplied by the
squared native space norm of the approximation.

Themain results (see Theorem 4.1) concern the choice of that smoothing parameter.
The choice should depend on the nature andmagnitude of the noise. The statistical and
simulation literatures contain a large number of strategies for choosing the smoothing
parameter for ill-posed problems and variable selection, see for example [4,32]. In this
paper the data errors are considered to be deterministic rather than random. By this we
mean that we assume that the data errors at the N data sites x1, x2, . . . , xN ∈ S

d are
given by an error vector (or noise vector) ε = (ε1, ε2, . . . , εN )T , with the assumption
that only ‖ε‖2 is known. (Here for k = 1, 2, . . . , N , εk is the data error at xk , and
‖ε‖2 is the Euclidean norm of the noise vector). We do not assume that this noise has
a known or unknown stochastic distribution, and our error estimates are deterministic
and not in terms of expectation values.

For a given level of data error, we consider four strategies for choosing the smooth-
ing parameter λ, namely Morozov’s discrepancy principle (which is an a posteriori
strategy) and three a priori strategies. In all four cases we obtain, under the requirement
that the native space is equivalent to a Sobolev space Hs with s > d/2, L2 bounds on
the approximation error, see Theorem 4.1, that are a sum of two terms. One term is of
the order hsX and the other one is of the order hd/2

X ‖ε‖2, where hX is the mesh norm
of the set X = {x1, x2, . . . , xN } of the data sites.

The theoretical results, which make essential use of an L2 sampling inequality for
the sphere, slightly favor the discrepancy principle.

The theory developed in this paper is especially relevant to the compactly supported
radial basis functions ofWendland (see [28–30]), for which the native space is in every
case equivalent to a Sobolev space. The compactness of the support allows the use of
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Radial basis function approximation of noisy scattered… 581

sparse matrix technology in solving the resulting linear systems, greatly increasing
the efficiency of the approximation scheme.

The structure of the paper is as follows: In Sect. 2 we introduce the required notation
and background material on the sphere, function spaces on the sphere, and radial basis
functions. In Sect. 3 the approximation is introduced, and discussed in the context of
penalized least squares approximation (see, for example, [1,25] for a general discus-
sion of penalized least squares approximation, [2] for a particular polynomial variant,
and [6,24] for this topic in the context of learning theory). In Sect. 4 we present the
main result, Theorem 4.1, on L2 error estimates for the smoothing approximation from
noisy scattered data on the sphere using radial basis functions. In Sect. 5 we state the
L2 sampling inequality for the sphere and sketch its proof. Using the method from
[15] we can lift the L2 sampling inequality from [3, Theorem 4.1] by the use of charts
to the sphere, and so obtain an analogous L2 sampling inequality for the sphere. This
is an essential part of the proof of our main result. In Sect. 6 we finally give the proof
of the main result, Theorem 4.1. In Sect. 7 we give a numerical illustration of the
different strategies and discuss their practical implementation.

2 Notation and background

In this section, the general notation and background material are introduced.
Throughout the paper generic positive constants are denoted by c, c̃, . . ., and may

have different values at different places. They may depend on the sphere dimension d,
the Sobolev space index s, and the choice of the radial basis function in our approxi-
mation scheme.

For two sequences {an} and {bn}, the notation an � bn means that there exist
positive constants c and c̃ such that can ≤ bn ≤ c̃an for all n.

2.1 The sphere, spherical geometry, and the mesh norm

For x, y ∈ R
d+1, let x · y denote the Euclidean inner product and let ‖x‖2 = √

x · x
denote the Euclidean norm. The unit sphere Sd in Rd+1 is given by

S
d :=

{
x ∈ R

d+1 : ‖x‖2 = 1
}

.

The unit sphere Sd has the (Lebesgue) surface area

|Sd | = 2π(d+1)/2

Γ
(
(d + 1)/2

) .

The separation between any two points x and y on S
d is measured by the geodesic

distance dist(x, y) ∈ [0, π ], defined by

dist(x, y) := arccos(x · y).
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Let X = {x1, x2, . . . , xN } ⊂ S
d denote a set of N distinct points on S

d . The mesh
norm of X is defined by

hX := sup
y∈Sd

min
x j∈X

dist(y, x j ).

2.2 Function spaces on the sphere

The space L2 = L2(S
d) is the usual Hilbert space of square-integrable functions on

S
d endowed with the inner product

( f, g)L2 :=
∫

Sd
f (x)g(x) dωd(x),

and the induced norm is ‖ f ‖L2 := √
( f, f )L2 . Here dωd denotes the (Lebesgue)

surface measure on S
d . The space of continuous functions on S

d is denoted by C =
C(Sd) and is endowed with the supremum norm

‖ f ‖C := sup
x∈Sd

| f (x)|.

The space PL = PL(Sd) of all spherical polynomials on Sd of degree ≤ L consists
of the restrictions to Sd of all polynomials on Rd+1 of degree ≤ L . The dimension of
PL is given by

dL = dim
(
PL

) = (2L + d)Γ (L + d)

Γ (d + 1)Γ (L + 1)
� (L + 1)d .

A spherical harmonic of degree � ∈ N0 is the restriction to S
d of a harmonic

homogeneous polynomial of exact degree � on R
d+1 (see [7, Section 11.2]). The

space H� = H�(S
d) of spherical harmonics of degree � ∈ N0 (together with the zero

function) has the dimension Z(d, �) = dim(H�), given by

Z(d, 0) = 1; Z(d, �) = (2� + d − 1)Γ (� + d − 1)

Γ (d)Γ (� + 1)
, � ∈ N.

Note that Z(d, �) � (� + 1)d−1. In this paper, for any � ∈ N0, the set

{
Y�,k : k = 1, 2, . . . , Z(d, �)

}
(2.1)

denotes a real L2-orthonormal basis of H�. Furthermore, PL = ⊕L
�=0 H�, and, in

particular, the union over � = 0, 1, . . . , L of the sets (2.1) forms an L2-orthonormal
basis of PL .

For fixed α, β > −1, P(α,β)
� denotes the Jacobi polynomial of degree �with indices

α and β (see [23, Chapter IV]). The Jacobi polynomials {P(α,β)
� }�∈N0 are orthogonal
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on the interval [−1, 1] with respect to the weighted inner product

( f, g)
L(α,β)
2 ([−1,1]) :=

∫ 1

−1
f (t)g(t)(1 − t)α(1 + t)β dt,

and the induced norm is ‖ f ‖
L(α,β)
2 ([−1,1]) = √

( f, f )
L(α,β)
2 ([−1,1]), where the normal-

ization is such that (see [23, (4.1.1)])

P(α,β)
� (1) = Γ (� + α + 1)

Γ (α + 1)Γ (� + 1)
(2.2)

and (see [23, (4.3.3)])

∥∥P(α,β)
�

∥∥2
L(α,β)
2 ([−1,1]) = 2α+β+1

(2� + α + β + 1)

Γ (� + α + 1)Γ (� + β + 1)

Γ (� + 1)Γ (� + α + β + 1)
. (2.3)

Wedenote the spaceof allmeasurable functions f on [−1, 1] forwhich‖ f ‖
L(α,β)
2 ([−1,1])

< ∞ by L(α,β)
2 ([−1, 1]). The Jacobi polynomials {P(α,β)

� }�∈N0 form a complete

orthogonal system in L(α,β)
2 ([−1, 1]).

The spherical harmonics on Sd of degree � satisfy the addition theorem (see [7, Sec-
tion 11.4] and [20, Section 4.1, Lemma 4.5 and Theorem4.7]): for any L2-orthonormal
basis (2.1) of H� we have

Z(d,�)∑
k=1

Y�,k(x)Y�,k(y) = Z(d, �)

|Sd |
P((d−2)/2,(d−2)/2)

� (x · y)
P((d−2)/2,(d−2)/2)

� (1)
. (2.4)

The union over all � ∈ N0 of the L2-orthonormal bases (2.1) ofH� forms a complete
orthonormal system for L2. Thus any function f ∈ L2 can be expanded into a Fourier
series (or Laplace series) with respect to this orthonormal system: in the L2 sense

f =
∞∑

�=0

Z(d,�)∑
k=1

f̂�,kY�,k,

with the Fourier coefficients given by

f̂�,k = (
f,Y�,k

)
L2

=
∫

Sd
f (x)Y�,k(x) dωd(x).

The Sobolev space Hs = Hs(Sd), where s ≥ 0, is defined as the space of those
functions in L2 for which the norm

‖ f ‖Hs :=
⎛
⎝

∞∑
�=0

(� + 1)2s
Z(d,�)∑
k=1

| f̂�,k |2
⎞
⎠

1/2

(2.5)
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is finite (see [9, Sections 5.1 and 5.2] for the case of S2 and [20, Section 6.1, Defini-
tion 6.2 and Theorem 6.3]). The space Hs is a Hilbert space with the inner product

( f, g)Hs =
∞∑

�=0

(� + 1)2s
Z(d,�)∑
k=1

f̂�,k ĝ�,k,

which induces the norm (2.5).
For s > d/2, the space Hs is embedded into C , that is, Hs ⊂ C and there exists a

positive constant c such that ‖ f ‖C ≤ c‖ f ‖Hs for all f ∈ Hs . For s > d/2, the space
Hs is a reproducing kernel Hilbert space, that is, there exists a kernel Ks : Sd ×S

d →
R such that (i) Ks(x, y) = Ks(y, x) for all x, y ∈ S

d , (ii) Ks(·, x) ∈ Hs for any fixed
x ∈ S

d , and (iii) the reproducing property holds

(
f, Ks(·, x)

)
Hs = f (x) for all x ∈ S

d and all f ∈ Hs .

It is easily verified that the reproducing kernel of Hs is

Ks(x, y) =
∞∑

�=0

Z(d,�)∑
k=1

Y�,k(x)Y�,k(y)
(� + 1)2s

, x, y ∈ S
d .

2.3 Strictly positive definite functions and the native space

A function Φ ∈ L((d−2)/2,(d−2)/2)
2 ([−1, 1]) has the Jacobi series expansion

Φ =
∞∑

�=0

a�

Z(d, �)

|Sd |
P((d−2)/2,(d−2)/2)

�

P((d−2)/2,(d−2)/2)
� (1)

,

with the coefficients (see (2.2) and (2.3) for the normalization)

a� := 2πd/2 Γ (� + 1)

Γ (� + d/2)

∫ 1

−1
Φ(t)P((d−2)/2,(d−2)/2)

� (t)(1 − t2)(d−2)/2 dt.

Then the kernel φ : Sd × S
d → R, defined by

φ(x, y) := Φ(x · y) =
∞∑

�=0

a�

Z(d, �)

|Sd |
P((d−2)/2,(d−2)/2)

� (x · y)
P((d−2)/2,(d−2)/2)

� (1)

=
∞∑

�=0

a�

Z(d,�)∑
k=1

Y�,k(x)Y�,k(y), (2.6)

is a zonal function, that is, its values depend only on the inner product of x and y
(or equivalently, on the geodesic distance dist(x, y)). The last representation in (2.6)
follows from the addition theorem (2.4).
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If a� ≥ 0 for all � ∈ N0, and if a� > 0 for infinitely many even indices � and for
infinitely many odd indices �, then (see [5,21,31]) the kernel φ, defined by (2.6), is
strictly positive definite, that is, for any N ∈ N, for any set X = {x1, x2, . . . , xN } ⊂ S

d

of N distinct points, and for any α = (α1, α2, . . . , αN )T ∈ R
N ,

N∑
j=1

N∑
k=1

α jαkφ(x j , xk) ≥ 0,

and equality occurs only if α = 0 = (0, 0, . . . , 0)T . In other words, the kernel φ is
strictly positive definite if for any N ∈ N and for any set X = {x1, x2, . . . , xN } ⊂ S

d

of N distinct points the matrix
[
φ(x j , xk)

]
j,k=1,2,...,N is positive definite.

A strictly positive definite zonal function φ, given by (2.6), is also called a radial
basis function (RBF) (for the sphere) or a spherical (radial) basis function, since the
value φ(x, y) depends only on the geodesic distance between x and y on Sd .

For a continuous function f : Sd → R, and a given set X = {x1, x2, . . . , xN } of
N distinct points on Sd , an RBF approximant of f is a function of the form

N∑
j=1

α jφ(·, x j ), (2.7)

where the coefficients α1, α2, . . . , αN ∈ R are suitably chosen. In this paper, we
approximate a function f given in the form of noisy scattered data on a finite point
set X = {x1, x2, . . . , xN } by an RBF approximant (2.7), that is, the centers x j in (2.7)
are at the points where the data of f is given.

Let φ be a strictly positive definite zonal kernel, given by (2.6), and assume that the
coefficients a� satisfy a� > 0 for all � ∈ N0 and that

∑∞
�=0 a�Z(d, �) < ∞. Define

the linear space

Fφ :=
⎧
⎨
⎩

N∑
j=1

α jφ(·, x j ) : α j ∈ R, x j ∈ S
d , j = 1, 2, . . . , N , and N ∈ N

⎫
⎬
⎭ .

The native space Nφ is defined to be the closure of Fφ with respect to the norm
‖ f ‖φ := √

( f, f )φ, f ∈ Fφ , induced by the inner product

⎛
⎝

N∑
j=1

α jφ(·, x j ),

M∑
k=1

βkφ(·, yk)
⎞
⎠

φ

:=
N∑
j=1

M∑
k=1

α jβkφ(x j , yk).

(We note that (·, ·)φ is indeed an inner product for Fφ because of the strict positive
definiteness of φ.) The spaceNφ is a Hilbert space with the inner product

( f, g)φ =
∞∑

�=0

1

a�

Z(d,�)∑
k=1

f̂�,k ĝ�,k
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and the induced norm

‖ f ‖φ = √
( f, f )φ =

⎛
⎝

∞∑
�=0

1

a�

Z(d,�)∑
k=1

| f̂�,k |2
⎞
⎠

1/2

, (2.8)

where a�, � ∈ N0, are the coefficients of the kernel φ, see (2.6).
The native space Nφ is a reproducing kernel Hilbert space, with the reproducing

kernel φ, since φ is symmetric and φ(·, x) ∈ Nφ for every fixed x ∈ S
d , and

(
f, φ(·, x))

φ
= f (x) for all x ∈ S

d and all f ∈ Nφ.

For s > d/2 we see from (2.8) and (2.5) that Nφ can be identified with Hs if
a� � (� + 1)−2s , and that the norms ‖ · ‖φ and ‖ · ‖Hs are then equivalent.

3 Smoothing approximation

In this section the smoothing approximation is introduced. We assume that (inexact)
real number data values F1, F2, . . . , FN are given at points x1, x2, . . . , xN ∈ S

d .
Also given is a radial basis function φ. The smoothing approximation is the uniquely
determined minimizer in the native space Nφ of a certain quadratic functional. This
functional contains two terms: the first one (the discrepancy) measures how well the
data values are fitted, and the second one is a smoothing term, given by the square
of the native space norm multiplied by a smoothing parameter λ ≥ 0. Strategies for
choosing λ are considered in the next section; for the present λ is assumed given.
The next theorem shows that the function in the native space Nφ that minimizes the
quadratic functional is a radial basis function approximant, with the RBFs centered at
the data points. The characterization of a smoothing approximation as the minimizer
of a quadratic functional is, of course, well known, see [26]. See also [1,25] for a
discussion of penalized least squares approximation, which is another name for the
smoothing approximation approach.

Theorem 3.1 Let φ be a strictly positive definite zonal kernel, given by (2.6) with
a� > 0 for all � ∈ N0 and such that

∑∞
�=0 a�Z(d, �) < ∞, and let Nφ denote

the native space of φ with norm ‖ · ‖φ . Let λ ∈ R
+
0 , let N ∈ N, and let X =

{x1, x2, . . . , xN } ⊂ S
d be a set of N distinct points. Assume that approximate data

values at X, namely F = (F1, F2, . . . , FN )T ∈ R
N , are given. Define the quadratic

functional

μλ(g) :=
N∑
i=1

[
g(xi ) − Fi

]2 + λ‖g‖2φ, g ∈ Nφ. (3.1)

If λ > 0, then μλ has a unique minimizer fλ inNφ , given by

fλ =
N∑
j=1

α jφ(·, x j ), (3.2)
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with coefficients uniquely determined by the conditions fλ(xi ) + λαi = Fi , i =
1, . . . , N, that is,

N∑
j=1

φ(xi , x j )α j + λαi = Fi , i = 1, . . . , N . (3.3)

If λ = 0, then there exists a unique minimizer f0 in Nφ of μ0 that has minimal norm
‖ · ‖φ . This minimizer is of the form (3.2) and is uniquely determined by the conditions
f0(xi ) = Fi for i = 1, 2, . . . , N (that is, f0(xi ) = ∑N

j=1 φ(xi , x j )α j = Fi , i =
1, . . . , N).

The nature of the functional μλ is that if λ is close to zero then much weight
is given to fitting the data, that is, we expect fλ(xi ) ≈ Fi , i = 1, 2, . . . , N , and
little importance is given to keeping the norm ‖ fλ‖φ small. We are then close to the
interpolation scenario. As λ increases, data fitting becomes less and less important,
and more importance is given to keeping the norm ‖ fλ‖φ small.

From (3.3) the coefficient vector α = (α1, α2, . . . , αN )T satisfies the linear system

(
A + λI

)
α = F, (3.4)

where F = (F1, F2, . . . , FN )T , I is the N × N identity matrix, and

A := [
φ(xi , x j )

]
i, j=1,2,...,N . (3.5)

The linear system (3.4) has a unique solution for all right hand sides F, since A + λI
is positive definite for all λ ≥ 0.

In the next section we consider the case Fi = f (xi ) + εi , i = 1, 2, . . . , N , for
some (unknown) function f ∈ Nφ and errors (noise) εi in the data, and explore the
question of choosing an appropriate value of λ for a given level of noise.

Given Theorem 3.1, it is clearly sufficient to restrict our attention to functions g of
the form g = ∑N

j=1 α jφ(·, x j ). In this case g(xi ) = (Aα)i and ‖g‖2φ = αTAα, and
for such g the functional (3.1) can be written as

μ̃λ(α) := μλ(g) = ‖Aα − F‖22 + λ‖α‖2A, (3.6)

where the A norm is defined by ‖α‖A := √
αTAα, and the corresponding inner

product is defined by (α,β)A := αTAβ, for α,β ∈ R
N . From (3.6) it is clear

that the functional μλ restricted to the finite dimensional approximation space VX =
span{φ(·, x j ) : j = 1, 2, . . . , N } can be interpreted as a Tikhonov functional (see
[13, Section 2.2]), and hence strategies for the choice of the regularization parameter in
Tikhonov regularization can be applied to determine λ. Indeed, the four choices for λ

in Sect. 4 are all motivated by parameter choice strategies for Tikhonov regularization.
The next lemma shows that the first term of μλ( fλ) (the discrepancy) is a strictly

monotonic increasing function of λ. This is needed in the next section. The lemma is
inspired by [13, Sections 2.2 and 2.5].
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Lemma 3.1 Let the assumptions and notation be the same as in Theorem 3.1, and
assume in addition that F �= 0. Then the discrepancy function J : R+

0 → R
+
0 defined

by

J (λ) :=
N∑
i=1

[
fλ(xi ) − Fi

]2
, λ ∈ R

+
0 ,

is continuous and strictlymonotonic increasing,with the range of J given by
[
0, ‖F‖22

)
.

Proof Wewrite temporarily αλ ∈ R
N for the coefficient vector of fλ, satisfying (3.4),

so that αλ satisfies (
A + λI

)
αλ = F. (3.7)

We note that αλ �= 0, since αλ = 0 would contradict F �= 0.
Since the matrixA+λI is invertible and continuous in λ for all non-negative λ, the

vector αλ depends continuously on λ. It follows that so too does

J (λ) =
N∑
i=1

[
fλ(xi ) − Fi

]2 = ∥∥Aαλ − F
∥∥2
2. (3.8)

To study the monotonicity of J (λ) it is convenient to write, from (3.1) and (3.6),

μλ( fλ) = J (λ) + λK (λ), (3.9)

where
K (λ) := ∥∥ fλ

∥∥2
φ

= (αλ)TAαλ = ‖αλ‖2A. (3.10)

Now let 0 ≤ λ1 < λ2. We first show that αλ1 �= αλ2 . For this purpose we write
(3.7) first with λ = λ1 and then with λ = λ2, that is

(A + λ1I)αλ1 = F and (A + λ2I)αλ2 = F,

and subtract the two equations to obtain

A(αλ1 − αλ2) + λ1α
λ1 − λ2α

λ2 = 0,

or equivalently

A(αλ1 − αλ2) + λ1(α
λ1 − αλ2) = (λ2 − λ1)α

λ2 . (3.11)

If αλ1 = αλ2 then this reduces to (λ1 − λ2)α
λ2 = 0, giving λ1 = λ2, a contradiction.

We next show that K (λ) is strictly monotonic decreasing. Multiplying (3.11) from
the left by [A(αλ1 − αλ2)]T , we obtain

∥∥A(αλ1 − αλ2)
∥∥2
2 + λ1

∥∥αλ1 − αλ2
∥∥2
A = (λ2 − λ1)

(
αλ1 − αλ2 ,αλ2

)
A. (3.12)
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Since the left-hand side of (3.12) is positive (because A(αλ1 − αλ2) �= 0 due to
αλ1 �= αλ2 and the positive definiteness of A) and λ2 > λ1, it follows that

(αλ1 − αλ2 ,αλ2)A > 0,

and hence

‖αλ2‖2A < (αλ1 ,αλ2)A ≤ ‖αλ1‖A‖αλ2‖A,

and on canceling ‖αλ2‖A,

‖αλ2‖A < ‖αλ1‖A ⇔ K (λ2) < K (λ1).

Thus K (λ) is strictly monotonic decreasing.
Next, we deduce that J (λ) is strictly monotonic increasing. For suppose, to the

contrary, that for some 0 < λ1 < λ2 we have J (λ2) ≤ J (λ1). Then we have, from
(3.1) and the fact that K (λ) is strictly monotonic decreasing,

μλ1( fλ2) = J (λ2) + λ1K (λ2) < J (λ1) + λ1K (λ1) = μλ1( fλ1).

Since fλ1 is the unique minimizer of μλ1 , μλ1( fλ2) < μλ1( fλ1) is impossible. Thus
J (λ) is strictly monotonic increasing for all λ > 0. The monotonicity then extends to
all λ ≥ 0 by continuity.

It only remains to establish the range of J . For λ = 0 we see from (3.3) that

J (0) =
N∑
i=1

[ f0(xi ) − Fi ]2 = 0.

Since J is continuous and strictly monotonic increasing, we need only establish the
limit of J (λ) as λ → ∞. As λ increases to ∞ we expect the minimizer fλ of (3.1) to
become increasingly close to zero. We now show that

αλ → 0 as λ → ∞,

from which it will follow using (3.2) that fλ → 0 as λ → ∞ and thus J (λ) → ‖F‖22
as λ → ∞. Using (3.8), (3.9) and (3.10) we can write μλ( fλ) as

μλ( fλ) = J (λ) + λK (λ) = ∥∥Aαλ − F
∥∥2
2 + λ‖αλ‖2A ≤ ∥∥F∥∥22,

where the upper bound in the last step follows from the fact that fλ is the (unique)
minimizer of μλ, which justifies the replacement of αλ by 0 to get an upper bound.
It follows that λ‖αλ‖2A ≤ ‖F‖22, and in turn that αλ → 0 as λ → ∞. This completes
the proof. ��

123



590 K. Hesse et al.

4 Error of the approximation for four strategies for choosing λ

Now we can formulate the main result of this paper, Theorem 4.1. The theorem gives
an L2 error estimate of the smoothing approximation for four different strategies for
choosing the parameter λ, given values of a function f ∈ Nφ corrupted by (determin-
istic) noise. It was inspired by a similar result in [27] for the case of thin plate splines
on a bounded domain in R2 and by [14] for the third parameter choice strategy.

Theorem 4.1 Let d ≥ 2 and s > d/2, let φ be a strictly positive definite zonal kernel
given by (2.6) with a� � (�+1)−2s for all � ∈ N0, and letNφ denote the native space
of φ with norm ‖ · ‖φ . For a point set X = {x1, x2, . . . , xN } ⊂ S

d of N distinct points
and a function f ∈ Nφ with values f = ( f (x1), f (x2), . . . , f (xN ))T on X, and given
a vector of deterministic noise ε = (ε1, ε2, . . . , εN )T and given λ ≥ 0, let f ε

λ denote
for λ > 0 the uniquely determined minimizer inNφ of the quadratic functional

μλ(g) :=
N∑
i=1

[
g(xi ) − (

f (xi ) + εi
)]2 + λ

∥∥g∥∥2
φ
, g ∈ Nφ, (4.1)

and for λ = 0 the uniquely determined minimizer inNφ of (4.1) with minimal norm.
Then there exist positive constants ĉs and c′

s (dependent on d and s) such that, if the
point set X satisfies hX ≤ ĉs , then the following results hold true for all f ∈ Nφ and
all ε ∈ R

N :

(i) A priori parameter choice: Let λ = ‖ε‖22. Then

∥∥ f ε
λ − f

∥∥
L2

≤ 2c′
s

[
hsX

(
1

2
+ ∥∥ f

∥∥
φ

)
+ hd/2

X ‖ε‖2
(
1 + 1√

2

∥∥ f
∥∥

φ

)]
.

(ii) A priori parameter choice: Let λ = ‖ε‖22
‖ f ‖2φ

. Then

∥∥ f ε
λ − f

∥∥
L2

≤ c′
s

[
(1 + √

2) hsX
∥∥ f

∥∥
φ

+ √
6 hd/2

X ‖ε‖2
]
.

(iii) A priori parameter choice: Let λ = 1√
2
hs−d/2
X

‖ε‖2
‖ f ‖φ

. Then

∥∥ f ε
λ − f

∥∥
L2

≤ 2c′
s

(
hsX‖ f ‖φ + 21/4hs/2+d/4

X ‖ f ‖1/2φ ‖ε‖1/22 + hd/2
X ‖ε‖2

)

≤ (1 + 2−3/4)2c′
s

(
hsX‖ f ‖φ + hd/2

X ‖ε‖2
)

. (4.2)

(iv) Morozov’s discrepancy principle: Assume that

0 < ‖ε‖2 <
∥∥f + ε

∥∥
2. (4.3)
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Then there exists a unique λ > 0 such that

N∑
i=1

[
f ε
λ (xi ) − (

f (xi ) + εi
)]2 = ‖ε‖22. (4.4)

For this choice of λ, the following L2 error estimate holds:

∥∥ f ε
λ − f

∥∥
L2

≤ 2c′
s

[
hsX

∥∥ f
∥∥

φ
+ hd/2

X ‖ε‖2
]
.

Since by assumption in Theorem 4.1 we have a� � (� + 1)−2s , the native space
Nφ can be identified with the Sobolev space Hs . Thus the results hold also for all
f ∈ Hs , and the norm ‖ f ‖φ in the upper bounds can be replaced by c‖ f ‖Hs .
The theorem is proved in Sect. 6.
The four choices of λ considered in the theorem give similar bounds, with Moro-

zov’s discrepancy principle giving marginally the best bound. Section 7 gives a
numerical experiment illustrating these parameter choices and discusses their practical
calculation.

Remark 4.1 The given L2 error estimates for the parameter choices (ii) to (iv) are
order-optimal in the following sense:

– The first term in the L2 error estimates hsX‖ f ‖Hs has the correct order of the mesh
norm hX for an estimate of the L2 norm against the Hs norm.

– In the second term, we have

hd/2
X ‖ε‖2 ≤ hd/2

X

√
N max

j=1,2,...,N
|ε j |.

Now we consider a ‘well distributed’ point set X = {x1, x2, . . . , xN }, such as for
example the subsets of given point sets constructed in [18, Proposition 3.2]. For
such a point set we have (see [18, Proposition 3.2]) N � h−d

X , and hence for such
a ‘well distributed’ point set

hd/2
X ‖ε‖2 ≤ hd/2

X

√
N max

j=1,2,...,N
|ε j | � max

j=1,2,...,N
|ε j |.

As the error of the approximation can never be smaller than the error in the data, this
estimate shows that the second term in the L2 error estimates is also order-optimal.

5 The L2 sampling inequality for the sphere

The proof of Theorem 4.1 uses the following L2 sampling inequality for the sphere.

Theorem 5.1 Let d ≥ 2 and let s > d/2. There exist positive constants ĉs and c̃s
(dependent on d and s) such that for any finite point set X = {x1, x2, . . . , xN } of N
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distinct points on Sd with hX ≤ ĉs and for any function g ∈ Hs

‖g‖L2 ≤ c̃s

⎡
⎢⎣hsX ‖g‖Hs + hd/2

X

⎛
⎝

N∑
j=1

[
g(x j )

]2
⎞
⎠

1/2
⎤
⎥⎦ . (5.1)

Remark 5.1 The result in [15, Theorem 3.3] is at first sight similar to Theorem 5.1
above, except that in the second term on the right-hand side of (5.1) the �2 norm of
g is replaced by the �∞ norm of g. However, there is a critical difference, in that the
factor hd/2

X in the second term is missing in [15, Theorem 3.3]. For certain classes of
kernels discussed in [11], the paper [10, Proposition 3.6] provides error estimates that
at first glance are similar to those in Theorem 5.1 above. However, these estimates do
not hold (as Theorem 5.1 does) for all functions in the native space, but instead hold
for functions from a finite dimensional space (from a sequence of such approximation
spaces). More importantly, the estimates in [10, Proposition 3.6] lack the factor hd/2

X .
For these two reasons [10, Proposition 3.6] cannot be used instead of Theorem 5.1 in
the proof of Theorem 4.1.

Theorem 5.1 follows from [3, Theorem 4.1] which contains the analogous result
for bounded connected open domains in R

d with a Lipschitz-continuous boundary
as a special case. Using the ideas from [15] we can lift this result to the sphere and
obtain the theorem above. However, as pointed out in Remark 5.1 above the sampling
inequality in [15] is not the one that we need and will not be adequate for the proof of
Theorem 4.1.

Since we did not find a direct reference for Theorem 5.1 we sketch a proof for the
reader’s convenience.

First we state without proof a special case of the rather general sampling inequality
in [3, Theorem 4.1]. The bounded open domain Ω ⊂ R

d with Lipschitz continuous
boundary in Theorem 5.2 below automatically satisfies the required cone property for
some radius ρ and angle θ (see [3, page 185] for details). We denote the mesh norm
of a finite point set V = {v1, v2, . . . , vN } in Ω by

hV,Ω = sup
u∈Ω

min
v j∈V

‖u − v j‖2.

Theorem 5.2 (Arcangéli et al. [3]) Let d ≥ 2, let Ω ⊂ R
d be a bounded connected

open domain with Lipschitz-continuous boundary, and let s ∈ R satisfy s > d/2.
Then there exist positive constants ˆ̂cs (dependent on θ, ρ, d and s) and ˜̃cs (dependent
on on Ω, d and s) such that for any finite point set V = {v1, v2, . . . , vN } in Ω with
hV,Ω ≤ ˆ̂cs and any function g ∈ Ws

2 (Ω)

‖g‖L2(Ω) ≤ ˜̃cs

⎡
⎢⎣hsV,Ω

‖g‖Ws
2 (Ω) + hd/2

V,Ω

⎛
⎝

N∑
j=1

[
g(v j )

]2
⎞
⎠

1/2
⎤
⎥⎦ . (5.2)
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In (5.2) ‖ · ‖L2(Ω) is the usual L2-norm on Ω and, for integer order s,Ws
2 (Ω) is

the Sobolev space of those functions in L2(Ω) whose distributional derivatives up
to (and including) order s are in L2(Ω). For the precise definition of the norm and
for the definition of Ws

2 (Ω) with fractional order s we refer to [3, Section 2.2]. Note
that in [3, Theorem 4.1] the first term on the right-hand side contains a semi-norm for
Ws

2 (Ω) which we have estimated above by the corresponding norm. These Sobolev
spaces are the same as the ones considered in [15] and in and [17]. It is important that
for g ∈ Ws

2 (Rd) we have g|Ω ∈ Ws
2 (Ω), and the norm ‖g‖Ws

2 (Ω) satisfies

‖g‖Ws
2 (Ω) ≤ cs‖g‖Ws

2 (Rd ), (5.3)

for some cs > 0 (independent of g).

Proof of Theorem 5.1 In order to use Theorem 5.2 we make use of the fact that the
Sobolev spaces Hs = Hs(Sd) can also be defined with the help of charts, giving the
same space with an equivalent norm (see [16, Chapter 7.3]). For a better distinction
we will write here Ws

2 (Sd) (instead of Hs(Sd)), a space equipped with the equivalent
norm ‖·‖Ws

2 (Sd ). We will only sketch the proof of Theorem 5.1; for any missing details
we refer to [15, Section 3].

The sphereSd is a compactd-dimensional differentiablemanifoldwithout boundary
equipped with the atlas

{
C
(
pi ; 3π

5

)
, ψi }i=1,2, where the chart ψi : C

(
pi ; 3π

5

) →
B(0; 1) is defined as in [15, p.129] with the stereographic projection which maps the
open spherical cap

C
(
pi ; 3π

5

) := {
x ∈ S

d
∣∣ x · pi > cos

( 3π
5

)} = {
x ∈ S

d
∣∣ dist(x,pi ) < 3π

5

}

onto the open ball B(0; 1) ⊂ R
d with radius 1 and center in the origin 0. The centers p1

andp2 are the north polep1 = (0, . . . , 0, 1)T and the south polep2 = (0, . . . , 0,−1)T,
respectively. We define for functions g : Sd → R the projections πi (g) : Rd → R by

πi (g)(x) :=
{

(g ◦ ψ−1
i )(x) for x ∈ B(0; 1),

0 otherwise.

Using a partition of unity {χi : S
d → R}i=1,2 subordinate to the atlas{

C
(
pi ; 3π

5

)
, ψi }i=1,2, we define the Sobolev spaces Ws

2 (Sd) for s ≥ 0 by

Ws
2 (Sd) =

{
g ∈ L2(S

d)

∣∣∣ πi (χi g) ∈ Ws
2 (Rd) for i = 1, 2

}
,

equipped with the norm

‖g‖Ws
2 (Sd ) =

(
‖π1(χ1g)‖2Ws

2 (Rd )
+ ‖π2(χ2g)‖2Ws

2 (Rd )

)1/2
.
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As mentioned before Ws
2 (Sd) = Hs(Sd) = Hs , and the norms ‖ · ‖Hs and ‖ · ‖Ws

2 (Sd )

are equivalent. For s = 2 we obtain W 0
2 (Sd) = L2(S

d), equipped with the norm

‖g‖W 0
2 (Sd ) =

(
‖π1(χ1g)‖2L2(Rd )

+ ‖π2(χ2g)‖2L2(Rd )

)1/2
. (5.4)

From [15, Lemma 3.1] we have for i = 1, 2

‖ψi (x) − ψi (y)‖2 ≤ c dist(x, y) for all x, y ∈ C
(
pi ; 3π

5

)
,

which implies for a finite point set X = {x1, x2, . . . , xN } on S
d that (see [15, Propo-

sition 3.2])
hψi (X∩C(pi ; 3π5 )),B(0;1) ≤ chX , i = 1, 2. (5.5)

From (5.4) it follows that

‖g‖W 0
2 (Sd ) ≤ ‖π1(χ1g)‖L2(Rd ) + ‖π2(χ2g)‖L2(Rd )

= ‖π1(χ1g)‖L2(B(0;1)) + ‖π2(χ2g)‖L2(B(0;1)), (5.6)

as the functions π1(χ1g) and π2(χ2g) have compact support in B(0; 1).
Now let g ∈ Ws

2 (Sd) with s > d/2. Then πi (χi g) ∈ Ws
2 (Rn) and hence

πi (χi g)|B(0;1) ∈ Ws
2 (B(0; 1)), i = 1, 2. We now consider a term on the right-

hand side of (5.6) and apply Theorem 5.2 with Ω = B(0; 1) = ψi
(
C(pi ; 3π

5 )
)
and

V = Vi := ψi (X ∩ C(pi ; 3π
5 )):

‖πi (χi g)‖L2(B(0;1))

≤ ˜̃cs

⎡
⎢⎣hsVi ,B(0;1)‖πi (χi g)‖Ws

2 (B(0;1)) + hd/2
Vi ,B(0;1)

⎛
⎝

Ni∑
j=1

[(
πi (χi g)

)
(vi, j )

]2
⎞
⎠

1/2
⎤
⎥⎦ ,

where Vi = {
vi,1, vi,2, . . . , vi,Ni

}
and where the point set X ⊂ S

d is such that

hVi ,B(0;1) ≤ ˆ̂cs .
Using (5.5) and the relationship between the Vi and X ∩ C

(
pi ; 3π

5

) ⊂ X yields

‖πi (χi g)‖L2(B(0;1)) ≤ c′ ˜̃cs

⎡
⎢⎣hsX‖πi (χi g)‖Ws

2 (B(0;1)) + hd/2
X

⎛
⎝

N∑
j=1

[
(χi g)(x j )

]2
⎞
⎠

1/2
⎤
⎥⎦

(5.7)
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with c′ := max{cs, cd/2}. Applying (5.7) in (5.6) yields for g ∈ Ws
2 (Sd)

‖g‖W 0
2 (Sd ) ≤ c′ ˜̃cs

⎛
⎜⎝hsX

[‖π1(χ1g)‖Ws
2 (B(0;1)) + ‖π2(χ2g)‖Ws

2 (B(0;1))
]

+ hd/2
X

⎡
⎢⎣
⎛
⎝

N∑
j=1

[
(χ1g)(x j )

]2
⎞
⎠

1/2

+
⎛
⎝

N∑
j=1

[
(χ2g)(x j )

]2
⎞
⎠

1/2
⎤
⎥⎦

⎞
⎟⎠ .

Now we make use of |(χi g)(x)| ≤ |g(x)| for all x ∈ S
d for i = 1, 2, and (a + b)2 ≤

2 (a2 + b2) for all a, b ≥ 0. Using (5.3), we find

‖g‖W 0
2 (Sd )

≤ c′ ˜̃cs

⎡
⎢⎣

√
2csh

s
X

(
‖π1(χ1g)‖2Ws

2 (Rd )
+ ‖π2(χ2g)‖2Ws

2 (Rd )

)1/2 + 2hd/2
X

⎛
⎝

N∑
j=1

(
g(x j )

)2
⎞
⎠

1/2
⎤
⎥⎦

≤ 2c′ ˜̃cs max{cs , 1}
⎡
⎢⎣hsX‖g‖Ws

2 (S2) + hd/2
X

⎛
⎝

N∑
j=1

(
g(x j )

)2
⎞
⎠

1/2
⎤
⎥⎦ .

SinceW 0
2 (Sd) and L2 = L2(S

d), andWs
2 (Sd) and Hs = Hs(Sd), respectively, are the

same space, equipped with equivalent norms, we obtain the estimate in Theorem 5.1.
The conditions hVi ,B(0;1) ≤ ˆ̂cs for i = 1, 2 translates due to (5.5) to hX ≤ ĉs for some
(usually small) constant ĉs > 0. ��

6 Proof of Theorem 4.1

Proof of Theorem 4.1 As an initial step we establish the first result in part (iv) of the
theorem. From Lemma 3.1, the inequality (4.3) guarantees that ‖ε‖22 is in the range
of J , where

J (λ) :=
N∑
i=1

[
f ε
λ (xi ) − (

f (xi ) + εi
)]2

.

Since, by Lemma 3.1, J is continuous and strictly monotonically increasing, there
exists exactly one λ > 0 with J (λ) = ‖ε‖22, that is, there is exactly one λ satisfying
(4.4).

Returning now to general λ, we assume that the point set X satisfies hX ≤ ĉs ,
where ĉs is as in Theorem 5.1. From the assumptions on φ, the native space Nφ can
be identified with Hs , and the norms ‖ · ‖φ and ‖ · ‖Hs are equivalent. Thus from
applying Theorem 5.1 with the function g = f ε

λ − f in Nφ and the point set X and
using the equivalence of ‖ · ‖φ and ‖ · ‖Hs , we obtain
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∥∥ f ε
λ − f

∥∥
L2

≤ c′
s

⎡
⎣hsX‖ f ε

λ − f ‖φ + hd/2
X

(
N∑
i=1

[
f ε
λ (xi ) − f (xi )

]2
)1/2⎤

⎦ . (6.1)

We estimate the two terms in (6.1) separately. In the second termwe add and subtract
εi to obtain

N∑
i=1

[
f ε
λ (xi ) − f (xi )

]2 =
N∑
i=1

[
f ε
λ (xi ) − (

f (xi ) + εi
) + εi

]2

≤ 2

(
N∑
i=1

[
f ε
λ (xi ) − (

f (xi ) + εi
)]2 +

N∑
i=1

|εi |2
)

.

(6.2)

For estimating the right-hand side of (6.2) we proceed differently for the four
parameter choices, beginning with the three a priori choices. In these three cases, the
right-hand side in (6.2) is estimated by making use of the optimal nature of f ε

λ : from
(4.1)

N∑
i=1

[
f ε
λ (xi ) − (

f (xi ) + εi
)]2 +

N∑
i=1

|εi |2 ≤ μλ( f
ε
λ ) +

N∑
i=1

|εi |2

≤ μλ( f ) +
N∑
i=1

|εi |2 =
N∑
i=1

|εi |2 + λ
∥∥ f

∥∥2
φ

+
N∑
i=1

|εi |2 = 2‖ε‖22 + λ
∥∥ f

∥∥2
φ
.

(6.3)

For λ = ‖ε‖22 we obtain from (6.3)

N∑
i=1

[
f ε
λ (xi ) − (

f (xi ) + εi
)]2 +

N∑
i=1

|εi |2 ≤ ‖ε‖22
(
2 + ∥∥ f

∥∥2
φ

)
. (6.4)

Hence, from (6.2) and (6.4), for λ = ‖ε‖22,

N∑
i=1

[
f ε
λ (xi ) − f (xi )

]2 ≤ 2‖ε‖22
(
2 + ∥∥ f

∥∥2
φ

)
≤ 4‖ε‖22

(
1 + 1√

2

∥∥ f
∥∥

φ

)2
. (6.5)

For the second a priori choice λ = ‖ε‖22
‖ f ‖2φ

, (6.3) gives

N∑
i=1

[
f ε
λ (xi ) − (

f (xi ) + εi
)]2 +

N∑
i=1

|εi |2 ≤ 3‖ε‖22. (6.6)
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Hence, from (6.2) and (6.6), for λ = ‖ε‖22
‖ f ‖2φ

,

N∑
i=1

[
f ε
λ (xi ) − f (xi )

]2 ≤ 6‖ε‖22. (6.7)

For the third a priori choice we do not yet insert the value for λ but obtain from
(6.2) and (6.3) that

N∑
i=1

[
f ε
λ (xi ) − f (xi )

]2 ≤ 4

(
‖ε‖22 + λ

2

∥∥ f
∥∥2

φ

)
≤ 4

(
‖ε‖2 +

√
λ

2

∥∥ f
∥∥

φ

)2

. (6.8)

If instead we choose λ by Morozov’s discrepancy principle, then

N∑
i=1

[
f ε
λ (xi ) − (

f (xi ) + εi
)]2 +

N∑
i=1

|εi |2 = ‖ε‖22 +
N∑
i=1

|εi |2 = 2‖ε‖22. (6.9)

Then using (6.9) to estimate the right-hand side in (6.2) we obtain

N∑
i=1

[
f ε
λ (xi ) − f (xi )

]2 ≤ 4‖ε‖22. (6.10)

For all four parameter choice strategies we now estimate the first term in (6.1).
From the triangle inequality, we have,

∥∥ f ε
λ − f

∥∥
φ

≤ ∥∥ f ε
λ

∥∥
φ

+ ∥∥ f
∥∥

φ
, (6.11)

in which the first term can be estimated using the optimality of f ε
λ as follows:

∥∥ f ε
λ

∥∥2
φ

= 1

λ

(
λ
∥∥ f ε

λ

∥∥2
φ

)
= 1

λ

(
μλ( f

ε
λ ) −

N∑
i=1

[
f ε
λ (xi ) − (

f (xi ) + εi
)]2

)

≤ 1

λ

(
μλ( f ) −

N∑
i=1

[
f ε
λ (xi ) − (

f (xi ) + εi
)]2

)

= 1

λ

(
‖ε‖22 −

N∑
i=1

[
f ε
λ (xi ) − (

f (xi ) + εi
)]2

)
+ ∥∥ f

∥∥2
φ
. (6.12)

For the three a priori parameter choices the negative term in the last inequality in (6.12)
can be omitted. For the a priori parameter choice λ = ‖ε‖22 this gives

∥∥ f ε
λ

∥∥
φ

≤
(
1 + ∥∥ f

∥∥2
φ

)1/2 ≤ 1 + ∥∥ f
∥∥

φ
. (6.13)
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The result for the first a priori choice then follows from (6.1), (6.5), (6.11), and (6.13).

For the a priori parameter choice λ = ‖ε‖22
‖ f ‖2φ

, omitting the negative term in (6.12)

gives ∥∥ f ε
λ

∥∥
φ

≤ √
2‖ f ‖φ. (6.14)

The result for the second a priori choice then follows from (6.1), (6.7), (6.11), and
(6.14).

For the third a priori choice, as we do not yet insert the value for λ, the inequality
(6.12) in this case yields

∥∥ f ε
λ

∥∥
φ

≤
(
1

λ
‖ε‖22 + ‖ f ‖2φ

)1/2

≤ 1√
λ

‖ε‖2 + ‖ f ‖φ. (6.15)

We then find from (6.1), (6.8), (6.11), and (6.15)

‖ f ε
λ − f ‖L2 ≤ 2c′

s

[
hsX

(
1

2
√

λ
‖ε‖2 + ‖ f ‖φ

)
+ hd/2

x

(
‖ε‖2 +

√
λ

2

∥∥ f
∥∥

φ

)]
.

(6.16)
It is easy to see that the parameter choice in part (iii) of the theorem minimizes the
right-hand side of (6.16), and that the resulting minimum value is

‖ f ε
λ − f ‖L2 ≤ 2c′

s

(
hsX‖ f ‖φ + 21/4hs/2+d/4

X ‖ f ‖1/2φ ‖ε‖1/22 + hd/2
X ‖ε‖2

)

≤ (1 + 2−3/4)2c′
s

(
hsX‖ f ‖φ + hd/2

X ‖ε‖2
)

,

where the last inequality follows from the basic inequality 2ab ≤ a2 + b2.
For Morozov’s discrepancy principle, the negative term in (6.12) cancels ‖ε‖22,

giving ∥∥ f ε
λ

∥∥
φ

≤ ∥∥ f
∥∥

φ
. (6.17)

The result for Morozov’s discrepancy principle follows now from (6.1), (6.10), (6.11),
and (6.17). ��

7 Numerical results

In this section we present a numerical test for S2 that illustrates the performance of
the method and discuss the practical evaluation and performance of the four parameter
choices in Theorem 4.1 as well as the L-curve heuristic [12].

The function to be approximated is in Cartesian coordinates given by

f (x, y, z) = ex+y+z + 50
(
y − cos(π/3)

)3
+, (x, y, z)T ∈ R

3, (7.1)

where r+ is defined to be r if r ≥ 0 and to be zero otherwise. It can be shown that this
function is in Hs for any s < 3.5. The function is plotted on the polar coordinate grid
in Fig. 1.
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f(x, y, x) = ex + y + z + 50(y − cos(π/3))+
3

Polar angle

Fig. 1 The approximated function (7.1)

The point set X = {x1, x2, . . . , xN } was a set of N = 6084 points chosen to
have a polynomial basis matrix with large determinant (see [22]). This provides a
uniformly distributed point set on S

2 with mesh norm hX = 0.0372 and separation
distance mini �= j dist(xi , x j ) = 0.0413. Noise was added to the data by generating
independent samples from the standard normal distribution, and multiplying these
numbers by the factor 0.1 before they were added to the (exact) function data on X .
For our particular samples we find ‖ε‖22 = 61.8275.

In the implementation, we used the compactly supported Wendland radial basis
function (see [28,30]) φ(x, y) = ψ(‖x − y‖2), where

ψ(r) = (4r + 1)(1 − r)4+, r ≥ 0.

The asymptotic behavior of the Fourier coefficients of this RBF is a� � (� + 1)−5

(see [19]), and hence the native space can be identified with H2.5. Since f belongs
to a still smoother space, our theory applies with s = 2.5. Note that on the unit
sphere the support of each unscaled radial basis function covers one quarter of the
area of the sphere, affecting the sparsity of A. For the chosen set of N = 6084 well
distributed points and this Wendland function the sparsity of A is 24.99% while the
2-norm condition number is κ2(A) = 5.9 × 105.
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Table 1 RBF smoothing approximation for a range of smoothing parameters λ

λ Discrepancy ‖ f ε
λ ‖2φ L2 error L∞ error

0 7.7740 × 10−11 6.2983 × 104 3.1079 × 10−1 3.9720 × 10−1

3.052 × 10−5 9.2339 × 10−2 5.6743 × 104 3.0404 × 10−1 3.8758 × 10−1

6.104 × 10−5 3.3002 × 10−1 5.1502 × 104 2.9800 × 10−1 3.7879 × 10−1

1.221 × 10−4 1.0756 × 100 4.3219 × 104 2.8759 × 10−1 3.6323 × 10−1

2.441 × 10−4 3.0389 × 100 3.2184 × 104 2.7144 × 10−1 3.3810 × 10−1

4.883 × 10−4 7.1094 × 100 2.0570 × 104 2.4963 × 10−1 3.0853 × 10−1

9.766 × 10−4 1.3543 × 101 1.1245 × 104 2.2420 × 10−1 2.8145 × 10−1

1.953 × 10−3 2.1444 × 101 5.4417 × 103 1.9802 × 10−1 2.5011 × 10−1

3.906 × 10−3 2.9437 × 101 2.4791 × 103 1.7318 × 10−1 2.1644 × 10−1

7.813 × 10−3 3.6552 × 101 1.1531 × 103 1.5065 × 10−1 1.8215 × 10−1

1.563 × 10−2 4.2429 × 101 6.0371 × 102 1.3070 × 10−1 1.4920 × 10−1

3.125 × 10−2 4.7088 × 101 3.8557 × 102 1.1328 × 10−1 1.2222 × 10−1

6.250 × 10−2 5.0700 × 101 3.0095 × 102 9.8313 × 10−2 1.0326 × 10−1

1.250 × 10−1 5.3468 × 101 2.6851 × 102 8.5714 × 10−2 9.0829 × 10−2

2.500 × 10−1 5.5605 × 101 2.5601 × 102 7.5685 × 10−2 8.1991 × 10−2

5.000 × 10−1 5.7404 × 101 2.5080 × 102 6.9974 × 10−2 7.3962 × 10−2

1.000 × 100 5.9560 × 101 2.4777 × 102 7.6271 × 10−2 7.8826 × 10−2

2.000 × 100 6.4371 × 101 2.4450 × 102 1.1320 × 10−1 1.3068 × 10−1

4.000 × 100 8.0267 × 101 2.3917 × 102 2.0712 × 10−1 2.3671 × 10−1

8.000 × 100 1.3818 × 101 2.2947 × 102 3.9937 × 10−1 4.4935 × 10−1

1.600 × 101 3.4545 × 102 2.1207 × 102 7.6396 × 10−1 8.5439 × 10−1

3.200 × 101 1.0326 × 103 1.8306 × 102 1.4132 × 100 1.5596 × 100

6.400 × 101 3.0140 × 103 1.4084 × 102 2.4659 × 100 2.6446 × 100

1.280 × 102 7.6123 × 103 9.1117 × 101 3.9453 × 100 4.0654 × 100

The RBF smoothing approximant was computed for a sequence of increasing
smoothing parameters, given by λ = 0 and λ = 2ζ , for ζ = −15,−14.9, . . . , 6.9, 7.
Table 1 lists a subset corresponding to λ = 0, λ = 2 j for j = −15,−14, . . . , 6, 7,
while Fig. 2 plots the full results. For each value of the smoothing parameter λ, we
calculate the discrepancy

J (λ) =
N∑
j=1

[
f ε
λ (x j ) − (

f (x j ) + ε j
)]2

,

‖ f ε
λ ‖2φ = αTAα where (A + λI)α = f + ε, and estimates of the L2 and the L∞

norms of the error f ε
λ − f . The L2 error was estimated using a 16474 point spherical

181-design (equal weight quadrature rule exact for all spherical polynomials of degree
at most 181), while the L∞ norm was estimated by using a local maximization routine
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Fig. 2 Variation of J (λ), ‖ f ε
λ − f ‖L2 and ‖ f ε

λ − f ‖C

starting from the circumcenter of each of the triangles in a Delaunay triangulation of
the RBF centers, and checked against the pointwise maximum of the error at the points
in the spherical design.

The smallest L2 error of 6.9841 × 10−2 is obtained for λ = 0.574, while the
smallest L∞ error of 6.8190×10−2 is obtained for λ = 0.758, as illustrated in Fig. 2.
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The a priori parameter choiceλ = ‖ε‖22 = 61.8275 gives an over-smoothed approx-
imation with L2 error and L∞ error over 2. A disadvantage of this choice for λ is that
it depends on the scaling (units) used for the data.

The second and third a priori choices λ = ‖ε‖22
‖ f ‖2φ

and λ = 1√
2
hs−d/2
X

‖ε‖2‖ f ‖φ
in The-

orem 4.1 have a major disadvantage in practice, in that they require a knowledge of
the true norm ‖ f ‖φ , which of course is generally not available. In this test example,
where in fact we know f , we can estimate the value of the φ norm with reasonable
accuracy by the φ norm of the minimal-norm interpolant of the exact function values
at the data points. (In the language of Section 3 we set λ = 0 and ε = 0, and use ‖ f0‖φ

to approximate ‖ f ‖φ .) Using the value ‖ f0‖φ = 15.79, the second a priori choice

gives λ ≈ ‖ε‖22
‖ f0‖2φ

= 0.248, with L2 error of 7.58× 10−2, just less than the minimal L2

error (see the second plot in Fig. 2).
The third a priori choice gives λ = 2.5×10−3 and an L2 error of 1.81×10−1. This

value for λ is lower than those giving the minimal L2 norm of the errors, resulting
in an undersmoothed approximation and again a relatively large error. Moreover, as
‖ f0‖φ ≤ ‖ f ‖φ , using the true norm ‖ f ‖φ will give a still smaller value of λ, making
the undersmoothing worse (see Fig. 2). And so far the calculation of the second and
third a priori choices is not at all practical, since it assumes a knowledge of exact
function values at the data points. In practice perhaps the best a user could do is to
approximate ‖ f ‖φ by the φ norm of a smoothed approximant f ε

λ for some reasonable
choice of λ.

Morozov’s discrepancy principle requires in practice that we compute f ε
λ for a

selection of parameters λ until we have found a value of λ for which (4.4) is satisfied

10-1 100 101 102 103 104

102

103

104

105 L-curve

Fig. 3 L-curve method: log-log plot of ‖ f ε
λ ‖2φ against J (λ)
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accurately enough. More specifically the discrepancy principle requires J (λ) = ‖ε‖22,
which for this example is satisfied when J (λ) = ‖ε‖22 = 61.8275, at the value
λ = 1.516 as illustrated in the first plot of Fig. 2. This value of λ gives an L2 error of
9.32 × 10−2, around 35% larger than the minimal L2 error of 6.98 × 10−2. Thus the
λ predicted by the discrepancy principle is a good choice, even though it is slightly
too large and slightly over-smooths.

A heuristic strategy to determine the smoothing parameter is the L-curve method
(see [12]): for a range of values of λ, the two parts ‖ f ε

λ ‖2φ and J (λ) in the minimized
functional (4.1) are plotted against eachother in a log-log plot (seeFig. 3). The resulting
curve x(λ) = log J (λ), y(λ) = log ‖ f ε

λ ‖2φ should then be L-shaped, which is clearly

Fig. 4 Plots of test function, noisy data, RBF smoothing approximation and error for λ = 1.516
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the case in Fig. 3. The smoothing parameter is chosen as the value of λ corresponding
to the corner of the L, defined as the point withmaximal curvature |x ′y′′−y′x ′′|/(x ′2+
y′2) 3

2 . We used the full range of values of λ = 2ζ , ζ = −15,−14.9, . . . , 6.9, 7, for
the L-curve and then finite differences to estimate the derivatives x ′, x ′′, y′, y′′ and
hence the curvature, giving the parameter λ = 0.287 and an L2 error of 7.41× 10−2.
From Table 1 it is clear that this is a fairly good prediction, but one which, unlike the
methods considered in this paper, lacks theoretical support.

Finally Fig. 4 gives plots of the test function (7.1), the noisy data, theRBFsmoothing
approximation and the error for λ = 1.516, the value predicted by the discrepancy
principle.

To summarise, for approximation from noisy scattered data on the sphere, regular-
ized by the square of a native space norm, we have found L2 error bounds for four
different choices of the smoothing parameter. Of the four choices the best result (by a
small margin theoretically), and the most practical, is the parameter choice from the
discrepancy principle. The actual numerical cost of the discrepancy principle depends
on the number of values for the parameter λ for which the approximation has to be
computed in order to get a sufficiently good estimate for the smoothing parameter λ

of the discrepancy principle.

Acknowledgements The authors are particularly grateful to one of the anonymous referees who pointed
out that Theorem 4.1 and its proof could be simplified and improved. We also owe this referee the a priori
parameter choice (iii) in Theorem 4.1.
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