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Abstract Sufficient conditions are provided for establishing equivalence between best
approximation error and projection/interpolation error in finite-dimensional vector
spaces for general (semi)norms. The results are applied to several standard finite
element spaces, modes of interpolation and (semi)norms, and a numerical study of the
dependence on polynomial degree of constants appearing in our estimates is provided.
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1 Introduction

It is a well established technique in finite element analysis to use interpolation error
to bound the error of finite element approximations to the solutions of partial differ-
ential equations. Such scenarios also arise in other contexts, for example L2 and other
projection schemes. Let W = {w ∈ C(Ω) ∩H : w|T ∈ W (T ) ∀T ∈ T } ⊂ H denote
a finite element space and H an appropriate Sobolev space. Here T is a partition of
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290 R. E. Bank, J. S. Ovall

the domain Ω into simplicial or tensorial cells T , and W (T ) is a polynomial space
defined on T . Let uh ∈ W be a finite element approximation to u ∈ H that satisfies
the a priori error estimate

||u − uh || ≤ C inf
χ∈W ||u − χ || (1)

for an appropriately chosen norm. Let P : H → W denote an interpolation operator,
usually local, typically with error estimates that are relatively easy to compute. In [3],
Bank and Yserentant were able to show for a variety of finite element spaces and a
variety of norms that

||u − Pu|| ≤ C inf
χ∈W ||u − χ ||, (2)

||u − Pu||T ≤ C inf
χ∈W ||u − χ ||T , (3)

where ||·||T denotes the given norm restricted to a single element T in the finite element
space. Using (1)–(3), we see that

C1||u − Pu|| ≤ ||u − uh || ≤ C2||u − Pu||.

One may also deduce from such results that the global best approximation error is
equivalent to a sum of local best approximation errors,

C1 inf
χ∈W ||u − χ ||2 ≤

∑

T∈T
inf

χ∈W (T )
||u − χ ||2T ≤ inf

χ∈W ||u − χ ||2,

as was also done by Veeser [11] in the case of the H1 semi-norm for Lagrange finite
elements by different techniques—see also [10] for a similar analysis in an energy norm
associatedwith singularly-perturbed reaction–diffusionproblems. It is the lower bound
that is noteworthy. In the context of linking local interpolation with local or global
best approximation, we also mention the work of Demkowicz [6], who considered
various types of projection-based local interpolation schemes for several standard
finite element spaces.

In this work we generalize the results (2)–(3) to include a wider class of finite
elements spaces and modes of interpolation, in particular those based on integral
moments as well as simple pointwise interpolation. Additionally, we provide some
numerical calculations of the stability constant θ (defined below) associated with our
lower bound estimates for standard families of simplicial finite elements in one and
two space dimensions. Here we consider the usual nodal interpolation at both uniform
and Chebyshev nodes, and amoment-based interpolation.While these calculations are
restricted to the reference element, they illustrate how the stability constant θ depends
on the polynomial degree m of the finite element space for the important cases || · ||0
and | · |1. We also briefly explore extensions to interpolation in vector fields for the
cases of Raviart–Thomas and Nedelec spaces. Here a technical difficulty prevents the
direct application of our Theorem 1 for the semi-norms | · |div and | · |curl, but the
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Some remarks on interpolation and best approximation 291

overall conclusions of that theorem are proven to hold anyway. A numerical study of
the stability constant θ with respect to || · ||0 for Raviart–Thomas spaces in 2D is also
provided.

2 Main result

Lemma 1 Let V be a finite dimensional vector space, and let | · | j , j = 1, 2, be two
seminorms on it. We define the subspaces N j = {v ∈ V : |v| j = 0}. If N2 ⊂ N1,
then there is a constant θ > 0 such that |v|1 ≤ θ |v|2 for all v ∈ V .

Proof We consider the quotient space V/N1, where [v] = {v+w : w ∈ N1} ∈ V/N1
for v ∈ V . On V/N1 we define the norms

‖[v]‖ j = min
w∈N1

|v − w| j .

It is clear that ‖[v]‖ j ≤ |v| j , but in fact ‖[v]‖1 = |v|1 because |v − w|1 ≥ ||v|1 −
|w|1| = |v|1 for w ∈ N1. Finally, using the equivalence of norms on V/N1,

|v|1 = ‖[v]‖1 ≤ θ‖[v]‖2 ≤ θ |v|2,

which completes the proof. 
�
Theorem 1 Let H be a vector space with seminorm | · |H, and let W ⊂ V ⊂ H be
finite dimensional subspaces, with

N
.= {v ∈ H : |v|H = 0} ⊂ W.

Let P : H → W and Q : H → V be linear operators such that

1. Pv = v for all v ∈ W, and
2. PQv = Pv for all v ∈ H.

There is a constant θ ≥ 1 such that, for any u ∈ H we have

|u − Pu|H ≤ θ |u − Qu|H + (1 + θ) inf
χ∈W |u − χ |H. (4)

Furthermore, if θ |u − Qu|H ≤ β|u − Pu|H for some β = β(u) ∈ [0, 1), then

|u − Pu|H ≤ 1 + θ

1 − β
inf

χ∈W |u − χ |H. (5)

Proof Because P = I on W and W ⊃ N , we have N ⊂ {v ∈ H : |Pv|H = 0}. So
the seminorms v 
→ |v|H and v 
→ |Pv|H satisfy the conditions of Lemma 1 on V ,
and we have the (restricted) stability result,

|Pv|H ≤ θ |v|H for all v ∈ V, (6)
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for some constant θ > 0. For u ∈ H and χ ∈ W , we combine (6) and the fact that
Qu − χ ∈ V to obtain

|Pu − χ |H = |P(Qu − χ)|H ≤ θ |Qu − χ |H.

Therefore, it follows that

|u − Pu|H ≤ |u − χ |H + |Pu − χ |H ≤ |u − χ |H + θ |Qu − χ |H
≤ (1 + θ)|u − χ |H + θ |u − Qu|H,

and (5) is a direct consequence of the additional assumption. 
�

Remark 1 The restricted stability result (6) and the “saturation assumption”,

θ |u − Qu|H ≤ β|u − Pu|H for some β = β(u) ∈ [0, 1), (7)

are the essential ingredients of the bound (5); the containment N ⊂ W is merely a
convenient, and typical, condition that guarantees (6). We note that, if the stability
result (6) were unrestricted in the sense that it held for all v ∈ H, instead of just all
v ∈ V , we would have the bound

|u − Pu|H ≤ (1 + θ) inf
χ∈W |u − χ |H

immediately, without any need to make a saturation assumption. Theorem 1 replaces
this much stronger stability requirement, which does not hold for many operators of
interest (certainly not those considered in Sect. 3), with a milder stability requirement,
at the cost of a saturation assumption that depends on the function u under consid-
eration. Some justification of saturation assumptions in the context of finite element
computations can be found in [5,7], for example.

We decompose V as a direct sum in two ways,

V = R ⊕ N , V = W ⊕ Z where Z = {v ∈ V : Pv = 0}. (8)

We note that R is not uniquely determined in the first decomposition (unless N = {0}),
but that does not affect the discussion below.We see that the optimal stability constant
θ in (6) may be expressed as

θ = max
v1∈W, v2∈Z

|v1|H
|v1 + v2|H = max

v1∈W∩R, v2∈Z
|v1|H

|v1 + v2|H (9)

One often considers the case where the seminorm | · |H is induced by a semi-inner-
product (·, ·)H, |v|2H = (v, v)H. In this case, the optimal stability constant θ in (6)
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may be determined from the largest eigenvalue of a generalized eigenvalue problem.
Given bases W ∩ R = span{ψ1, . . . , ψm} and Z = span{φ1, . . . , φM }, we have

θ2 = max
x∈Rm+M

xT M1x
xT M2x

, M1 =
(
A 0
0 0

)
, M2 =

(
A C
CT B

)
, (10)

where the matrices A, B and C are given by

ai j = (ψ j , ψi )H, bi j = (φ j , φi )H, ci j = (φ j , ψi )H. (11)

The generalized eigenvalue problem (10) may be reduced in size by using the Schur
complement S = A − CB−1CT ,

θ2 = max
x∈Rm

xT Ax
xT Sx

. (12)

Remark 2 In all examples provided in Sect. 3, the matrices A and S are computed
exactly (typically as matrices with rational entries) using Mathematica [12]; and the
eigenvalue problems are solved, approximately but with high accuracy, in that envi-
ronment.

Remark 3 In the context of the discussion above, suppose that a strong Cauchy
inequality holds between W and Z for (·, ·)H, i.e. there is a constant γ ∈ [0, 1)
for which

(v1, v2)H ≤ γ |v1|H|v2|H for all v1 ∈ W and v2 ∈ Z . (13)

It follows that, for any v1 ∈ W and v2 ∈ Z , −2(v1, v2)H ≤ γ 2|v1|2H + |v2|2H, so
we see that (1 − γ 2)|v1|2H ≤ |v1 + v2|2H. In other words, a strong Cauchy inequality
implies the stability result (6),

|v1|H ≤ θ |v1 + v2|H for θ−2 = 1 − γ 2.

We note that (·, ·)H is an inner-product on R, and Z ⊂ R. Now assume that there is
a θ ≥ 1 for which |v1|H ≤ θ |v1 + v2|H for all v1 ∈ W and v2 ∈ Z . Given v1 ∈ W
and non-zero v2 ∈ Z ∩ R, let vz = −(v1, v2)H v2/|v2|2H, so −vz is the orthogonal
projection of v1 onto v2. It follows that

|v1|2H ≤ θ2|v1 + vz |2 = θ2

(
|v1|2H − (v1, v2)

2
H

|v2|2H

)
.

From this, it is clear that

(v1, v2)H ≤ γ |v1|H|v2|H for γ 2 = 1 − θ−2.
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We see, then, that (6) and (13) are essentially the same notion in this context. A
saturation assumption related to (7) and a strong Cauchy inequality are the key ingre-
dients in the traditional analysis of hierarchical basis error estimates for finite element
discretizations (cf. [2]).

3 Several examples

We indicate below how Theorem 1 might be applied in terms of schemes for inter-
polating sufficiently regular scalar or vector fields for a few families of finite element
spaces. In this context, V and W ⊂ V will be members of the same finite element
family, and Q and P will denote interpolation into V andW , respectively, by a scheme
that is fixed for the finite element family.

We use the following notation in most of the examples below. Let T ⊂ R
d be

a closed simplex with vertices {z1, . . . , zd+1}, and let S	(T ) denote the set of its
subsimplices of dimension 	, 0 ≤ 	 ≤ d. So Sd(T ) = {T }, Sd−1(T ) is the set of
“faces” of dimension d − 1, S1(T ) is the set of “edges” of dimension 1, and S0(T ) =
{z1, . . . , zd+1} is the set of vertices, for example. For faces F ∈ Sd−1(T ), we use nF to
denote the outward unit normal to that face. For edges e ∈ S1(T )we use te to denote a
unit tangent parallel to that edge. By Pm(S)we denote the polynomials of degree≤ m
on S ∈ S	(T ), and by P̃m(S)we denote the corresponding homogeneous polynomials
of degree m. In R3 we will also use the spaces Sm(T ) = {v ∈ [P̃m(T )]3 : x · v = 0}.
In the examples below, we consider the (semi-)norms

‖v‖0 =
(∫

T
|v|2 dx

)1/2

, |v|1 =
(∫

T
|∇v|2 dx

)1/2

,

|v|div =
(∫

T
(∇ · v)2 dx

)1/2

, |v|curl =
(∫

T
|∇ × v|2 dx

)1/2

.

Here | · | denotes the Euclidean norm of a vector field or the absolute value of a scalar
field.

3.1 Nodal interpolation of scalar fields in polynomial spaces

LetIm = {α = (α1, . . . , αd+1) ∈ N
d+1
0 :α1+· · ·+αd+1 = m}. Thenodal interpolation

Pm : C(T ) → Pm(T ) is uniquely defined by

(Pmv)(xα) = v(xα) for all xα = 1

m

d+1∑

k=1

αk zk, α ∈ Im .

This is the interpolation scheme considered in [3], for which we have Pm = I on
Pm(T ), and Pm P2m = Pm on C(T ) because {xα : α ∈ Im} ⊂ {xα : α ∈ I2m}.
For the L2-norm we have N = {0} ⊂ Pm(T ), and for the H1-seminorm we have
N = span{1} ⊂ Pm(T ), so the assumptions of Theorem 1 are satisfied in both cases.
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To gain some intuition about how the stability constant θ in (6) may depend on
m, we first numerically approximate θ2 for ‖ · ‖0 and | · |1, and 1 ≤ m ≤ 12, in the
one-dimensional case. We lose no generality by taking T = [−1, 1]. In addition to the
uniformly-spaced nodes, x (m)

k = −1+ 2k/m, we also consider the Chebyshev nodes,

x (m)
k = cos(kπ/m), although the Chebyshev nodes do not have a natural analogue in
higher dimensions in this context. It is convenient in this case to use Lagrange bases
Pm(T ) = span{	(m)

k : 0 ≤ k ≤ m},

	
(m)
k (x) =

m∏

j=0, j �=k

x − x (m)
j

x (m)
k − x (m)

j

, 0 ≤ k ≤ m.

A basis for Z is {	(2m)
k : 0 ≤ k ≤ 2m, k �= 2 j}. The computed values of θ2

are given in Table 1 for both uniform and Chebyshev nodes. We recall that the L∞
Lebesgue constant (cf. [4,9]) grows essentially exponentially for uniform nodes, and
logarithmically for Chebyshev nodes, and the observed growth in θ2 is consistent with
these rates for both of our norms.

We also consider the optimal stability constant under nodal interpolation in R
2,

using the reference triangle T having vertices (0, 0), (1, 0) and (0, 1), and the
unformly-spaced nodes xα described above. A convenient basis, in terms of nodal
interpolation, for Pm(T ) is the standard Lagrange nodal basis {Lα : α ∈ Im}, where
Lα(xα′) = δαα′ . Letting λ1 = 1 − x − y, λ2 = x , λ3 = y denote the barycentric
coordinates of T , we have

Table 1 Stability constants θ2 in L2 and H1 for 1D nodal (uniform, Chebyshev) andmoment interpolation
from P2m (T ) to Pm (T ), T = [−1, 1]

‖Pmv‖20 ≤ θ2‖v‖20 |Pmv|21 ≤ θ2|v|21
m Uniform Chebyshev Moment m Uniform Chebyshev Moment

1 6.000 6.000 6.000 1 1.000 1.000 1.000

2 4.375 4.375 3.333 2 1.146 1.146 1.000

3 5.477 4.671 5.400 3 1.556 1.176 1.000

4 5.776 4.283 4.714 4 2.728 1.202 1.000

5 7.114 5.026 6.667 5 4.702 1.223 1.000

6 11.64 4.912 6.182 6 9.523 1.267 1.000

7 20.15 5.443 8.077 7 20.58 1.312 1.000

8 40.79 5.394 7.667 8 50.26 1.347 1.000

9 93.97 5.813 9.529 9 130.2 1.380 1.000

10 249.0 5.787 9.158 10 366.8 1.408 1.000

11 682.2 6.137 11.00 11 1062 1.434 1.000

12 1972 6.120 10.65 12 3237 1.457 1.000
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Table 2 Stability constants θ2

in L2 and H1 for 2D nodal
(uniform) and moment
interpolation from P2m (T ) to
Pm (T ), for reference triangle T

‖Pmv‖20 ≤ θ2‖v‖20 |Pmv|21 ≤ θ2|v|21
m Uniform Moment m Uniform Moment

1 16.000 16.000 1 3.0000 3.0000

2 13.195 18.521 2 3.3333 3.4500

3 14.882 33.424 3 3.7910 4.2162

4 22.521 55.275 4 6.0782 5.0188

5 53.278 79.933 5 11.300 5.8320

6 143.08 124.44 6 23.644 6.6510

7 235.67 162.45 7 54.719 7.4737

8 609.57 236.06 8 136.12 8.2988

9 1391.9 292.58 9 365.85 9.1259

10 5126.2 401.72 10 1055.6 9.9541

Lα =
3∏

j=1

α j−1∏

i=0

|α|λ j − i

α j − i
.

A basis for Z = {v ∈ P2m(T ) : Pmv = 0} is given by {Lβ : β ∈ I2m\(2Im)}.
Using these bases, we compute the stability constants θ2 via the generalized eigenvalue
problem (10) for both ‖ · ‖0 and | · |1 in Table 2, for 1 ≤ m ≤ 10. As in the 1D case,
the computed values of θ indicate exponential growth with respect to m.

3.2 Interpolation of scalar fields in polynomial spaces by integral moments

For interpolation by moments, we define Pm : C(T ) → Pm(T ) by

∫

S
(Pmv)κ =

∫

S
vκ for all κ ∈ Pm−	−1(S) and all S ∈ S	(T ), 0 ≤ 	 ≤ d, (14)

where
∫
S vκ with S ∈ S0(T ) is understood to be evaluation of v at the vertex S. It

is shown in [1], for example, that this interpolation is well-defined, with Pm = I on
Pm(T ). We also see that, for any M > m, Pm PM = Pm on C(T ); because, for each
S ∈ S	(T ), 0 ≤ 	 ≤ d,

∫

S
(Pm(PMv))κ =

∫

S
(PMv)κ =

∫

S
vκ =

∫

S
(Pmv)κ for all κ ∈ Pm−	−1(S).

Therefore, as in the case of nodal interpolation, conditions (1)–(2) of Theorem 1 are
satisfied, and N ⊂ Pm(T ) form ≥ 0 for standard (semi-)norms such as ‖ ·‖0 and | · |1.

This type of interpolation is more natural than nodal interpolation in the sense that
Pm PM = Pm for any M > m; we do not need M to be a multiple of m, as we did
in then case of nodal interpolation. Also, it has natural analogues for interpolation of
vector fields in Raviart–Thomas and Nedelec spaces, as discussed below.

123



Some remarks on interpolation and best approximation 297

Aswith the case of nodal interpolation,wefirst consider the stability of interpolation
by moments from PM (T ) to Pm(T ) for M > m in 1D, and explicitly determine how
the stability constant θ depends on m and M for the (semi-)norms ‖ · ‖0 and | · |1.
Again, we lose no generality by taking the interval T = [−1, 1]. Convenient basis for
Pm(T ) and Z are

Pm(T ) = span{pk : 0 ≤ k ≤ m}, Z = span{pk − pk−2 : m + 1 ≤ k ≤ M},

where pk is the Legendre polynomial of degree k with normalization pk(1) = 1. We
note that the basis for Z is given in terms of (scaled) integrated Legendre polynomials.

For ‖ · ‖0 in 1D, the eigenvalue problem (10) can be solved explicitly,

θ2 = (M + 1)(M + 1 − (−1)M−m) − (m − 1)(m − 2)

2(2m − 1)
. (15)

We note that, for any fixed m, θ grows linearly in M . A pair of functions for which
‖v1‖0 = ‖P(v1 + v2)‖0 = θ‖v1 + v2‖0 is v1 = pm−1 and v2 = ∑M−1

j=m b j (p j+1 −
p j−1), where

b j = (M + 1)(M + 1 − (−1)M−m) − j ( j + 1)

(M + 1)(M + 1 − (−1)M−m) − (m − 1)(m − 2)

1 + (−1)m− j

2
.

For |·|1 in 1D,we determine that θ = 1 as follows. For arbitrary u ∈ C1(T ), we have∫ 1
−1(u−Pmu)κ dx = 0 for all κ ∈ Pm−2(T ), and (u−Pmu)(−1) = (u−Pmu)(1) = 0.
Therefore,

∫ 1

−1
(u − Pmu)′(Pmu)′ dx = (u − Pmu)(Pmu)′

∣∣1−1

−
∫ 1

−1
(u − Pmu)(Pmu)′′ dx = 0.

From this, we clearly see that

|u − Pmu|1 = min
χ∈Pm (T )

|u − χ |1, |Pmu|1 ≤ |u|1 for any u ∈ C1[−1, 1]. (16)

From this it is clear that |Pmv|1 ≤ |v|1 for all v ∈ PM (T ).
The stability constants θ2 for both ‖ · ‖0 and | · |1 are given for Pm : P2m → Pm in

Table 1, for comparison with their counterparts under nodal interpolation.
For themoment-based counterparts of the 2D stability results for nodal interpolation

we consider the same reference triangle T , but begin with bases {λα = λ
α1
1 λ

α2
2 λ

α3
3 :

α ∈ Im} for Pm(T ), and {λβ : β ∈ I2m} for P2m(T ). It is well-known that

∫

T
λα dx = α!2!

(|α| + 2)! |T |,
∫

e j
λα ds = α!1!

(|α| + 1)! |e j |
{
1, α j = 0

0, α j �= 0
, (17)
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where |T | = 1/2 is the area of T and |e j | is the length of edge e j (opposite vertex
z j ), and α ∈ Ir for any r ≥ 0. We also have

∫

T
∇λα · ∇λβ dx = 2! |T |

|α + β|!
3∑

i, j=1

(∇λi · ∇λ j )αiβ j (α + β − ei − e j ), (18)

where ei is the multi-index with 1 in its i th position and 0 elsewhere, and σ ! = 0
whenever any component of σ is negative.

Using (17) for ease in computation, we construct a basis for Z by applying the
vertex, edge and volumetric moment conditions

λβ(z j ),
∫

e j
λβλσ ds for σ ∈ Im−2 with σ j = 0,

∫

T
λβλσ dx for σ ∈ Im−3.

to the basis of P2m(T ) to form amatrix Ẑ , whose nullspace indicates how to transform
the given basis ofP2m(T ) into a basis for Z , and how to transform themass and stiffness
matrices for the Pm(T )–P2m(T ) and P2m(T )–P2m(T ) interactions to their Pm(T )–Z
and Z–Z counterparts. In the case of | · |1 a basis of Pm(T )∩ R is obtained by omitting
(any) one of the given basis functions for Pm(T ). The optimal stability parameters
for ‖ · ‖0 and | · |1 are given alongside their counterparts for nodal interpolation in
Table 2. For both norms, the computed values are consistent with linear growth of θ

with respect to m.

3.3 Interpolation of vector fields in Raviart–Thomas spaces

Let RTm(T ) = [Pm−1(T )]d ⊕ xP̃m−1(T ) be the Raviart–Thomas space of order m
on the simplex T ⊂ R

d , having degrees of freedom

∫

F
v · nF q for all q ∈ Pm−1(F) and all faces F ∈ Sd−1(T ), (19)

∫

T
v · q for all q ∈ [Pm−2(T )]d . (20)

Given v ∈ [C(T )]d , we define Pmv ∈ RTm(T ) in terms of the moments (19)–(20). It
is clear again that Pm = I on RTm(T ) and Pm PM = Pm on [C(T )]d for M > m.

We begin with the semi-norm |·|div, and note from the outset that N , which contains
gradients of all harmonic functions on T , is not contained in RTm(T ) (for any m),
so Theorem 1 can not be applied to guarantee the existence of a stability constant
θ . However, we may use the natural extension of the argument given in the case
of 1D scalar interpolation by moments to show that θ = 1 in this case. Assuming
v ∈ [C1(T )]d , for any q ∈ Pm−1(T ),
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0 =
∫

∂T
(v − Pmv) · n q =

∫

T
∇ · ((v − Pmv)q)

=
∫

T
(v − Pmv) · ∇q +

∫

T
∇ · (v − Pmv) q =

∫

T
∇ · (v − Pmv) q.

Recalling that∇ · RTm(T ) = Pm−1(T ), we deduce that
∫
T ∇ · (v− Pmv)∇ · Pmv = 0,

so

|Pmv|div ≤ |v|div for all v ∈ [C1(T )]3 ⊃ RTM (T ). (21)

Therefore, we have θ = 1 for (6) for this choice of interpolation and semi-norm. In
fact, since Pmv is already the best approximation of v in the Hdiv seminorm, there is
no need to establish (5) in this case.

We now turn to stability with respect to ‖ · ‖0. In this case, N = {0} ⊂ RTm(T ),
so we are guaranteed a finite stability constant,

‖v‖0 ≤ θ
div,0
mM ‖Pmv‖0. (22)

A convenient basis of RTm(T ) for our computations is

{(λα, 0) : α ∈ Im−1}
⋃

{(0, λα) : α ∈ Im−1}
⋃

{(λα+e2 , λα+e3) : α ∈ Îm−1},
(23)

where Îm = {α ∈ Im : α1 = 0}. In Table 3 we see the optimal stability constant for
m ≤ 10 when M = m + 1 and M = 2m. In the latter case, there is modest linear
growth in m throughout; but in the former case, θmM decreases up to m = 5 before
exhibiting very modest linear growth.

Table 3 Stability constants
(θ

div,0
mM )2 in L2 for 2D

Raviart–Thomas interpolation
from PM (T ) to Pm (T ), for
M = m + 1 and M = 2m on
reference triangle T

m M = m + 1 M = 2m

1 5.6129 5.6129

2 4.6222 6.6839

3 4.1060 9.4377

4 4.0581 11.166

5 4.0249 14.841

6 4.0309 18.596

7 4.0509 21.998

8 4.0727 25.950

9 4.0940 29.074

10 4.1139 33.423
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3.4 Interpolation of vector fields in Nedelec spaces

Let Rm(T ) = [Pm−1(T )]3 ⊕ Sm be the (first-kind) Nedelec space of order m on the
tetrahedron T ⊂ R

3. A function v ∈ Rm(T ) is uniquely determined by the values

∫

e
v · teq for all q ∈ Pm−1(e) and all edges e, (24)

∫

F
(v × nF ) · q for all q ∈ [Pm−2(F)]3 and all faces F, (25)

∫

T
v · q for all q ∈ [Pm−3(T )]3. (26)

Given v ∈ [C(T )]3, we define Pmv ∈ Rm(T ) in terms of the moments (24)–(26). It
is clear again that Pm = I onRm(T ) and Pm PM = Pm on [C(T )]3 for M > m.

We only consider the seminorm | · |curl in this case. Again we see that N �⊂ Rm(T )

(for anym), so we are not guaranteed a stability constant θ by the considerations given
in the proof of Theorem 1. However, we establish (6) by other means, and this gives us
the results (4) and (5). More specifically, it immediately follows from a well-known
result (cf. [8, Lemma 5.40]) that

|Pmv|curl ≤ θ
div,0
mM |v|curl for all v ∈ RM (T ), (27)

and this inequality is sharp.

3.5 Interpolation of scalar fields in tensor product spaces

For a final set of experiments, we revisit nodal and moment-based interpolation
schemes for tensor product polynomial spaces on the unit square K = [−1, 1]2.
We denote the polynomials of degree at most m in each variable on K by Qm(K ).
As before, we provide a comparison between the stability constants for the different
modes of interpolation fromQ2m(K ) toQm(K ). The three modes of interpolation are:

1. Nodal interpolation on the uniform lattice {(2i/m−1, 2 j/m−1) : 0 ≤ i, j ≤ m}.
2. Nodal interpolation on the Chebyshev lattice {cos(iπ/m), cos( jπ/m)) : 0 ≤

i, j ≤ m}.
3. Moment-based interpolation v 
→ w = Pmv defined by

w(±1,±1) = v(±1,±1),
∫

K
wκ dx =

∫

K
vκ dx for all κ ∈ Qm−2(K ).

Each of these modes of interpolation satisfy Pm P2m = Pm . The stability constants
are given with respect to the (semi-)norms ‖ · ‖0 and | · |1, as well as the “energy”
norm ||| · |||ε = ‖ · ‖0 + ε| · |1 typically associated with singularly-perturbed reaction–
diffusion problems. Letting hK = [−h, h]2 and ṽ(x) = v(hx) for x ∈ [−1, 1]2 and
v ∈ H1(hK ), we note that
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Table 4 Stability constants θ2 in L2 and H1 for nodal andmoment interpolation fromQ2m (K ) toQm (K ),
for unit square K

‖Qmv‖20 ≤ θ2‖v‖20 |Qmv|21 ≤ θ2|v|21
m Uniform Chebyshev Moment m Uniform Chebyshev Moment

1 36.000 36.000 36.000 1 1.8333 1.8333 1.8333

2 19.140 19.140 11.111 2 1.7861 1.7861 1.9047

3 29.993 21.820 29.160 3 2.9163 2.6031 2.2183

4 33.367 18.346 22.224 4 8.7585 3.0168 2.6004

5 50.608 25.265 44.444 5 23.411 3.4931 3.1032

6 135.40 24.132 38.215 6 83.593 3.6965 3.3990

7 406.01 29.630 65.237 7 349.23 4.0049 3.9638

8 1663.7 29.091 58.778 8 1866.1 4.1406 4.2275

9 8830.8 33.796 90.810 9 11,580 4.3785 4.8121

10 61,996 33.485 83.867 10 86,657 4.4838 5.0615

Table 5 Stability constants θ2 in energy norm, |||Qmv|||2ε ≤ θ2|||v|||2ε , with ε = 1, 10−2, 10−4 for nodal
and moment interpolation from Q2m (K ) to Qm (K ), for unit square K

ε = 1 ε = 10−2 ε = 10−4

m Uniform Moment m Uniform Moment m Uniform Moment

1 2.4314 2.4314 1 28.926 28.926 1 35.910 35.910

2 1.7917 1.9620 2 8.4409 7.1232 2 18.864 11.041

3 2.9315 2.2557 3 7.4385 6.5525 3 28.485 27.727

4 8.7927 2.6149 4 12.027 4.3714 4 31.105 20.491

5 23.441 3.1171 5 26.501 4.4560 5 47.633 34.524

6 83.580 3.4051 6 84.372 4.0549 6 121.80 27.390

7 349.03 3.9699 7 337.35 4.5693 7 377.99 34.022

8 1864.6 4.2303 8 1763.3 4.5526 8 1601.0 27.381

9 11,571 4.8155 9 10,898 5.1464 9 8809.5 28.839

10 86,596 5.0634 10 81,693 5.2518 10 61,632 23.825

‖v‖2L2(hK )
+ ε‖v‖2H1(hK )

= h2‖ṽ‖2L2(K )
+ ε‖ṽ‖2H1(K )

.

So if we choose h = √
ε, the stability constant for the energy norm on hK is the same

as if we measured it on K with ε = 1. As such, we use only the domain K for the
energy norm results, and use ε = 1, 10−2, 10−4.

In the case of the L2-norm, the tensorial nature of the spaces imparts a simple
Kronecker product structure to the associated generalized eigenvalue problem (10). A
consequence of this is that the L2 stability constant for a givenm is precisely the square
of its counterpart in the 1D case. This simple squaring of the 1D stability constant
does not carry over to the H1-seminorm, or the energy norm. In Table 4 we have the
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squares of the optimal stability constants with respect to L2 and H1 for each of the
three modes of interpolation, and in Table 5 we consider the energy norm but use
only uniform nodal interpolation and moment interpolation. n the lowest-order case,
m = 1, the three modes of interpolation are equivalent, and we have

θ2 = max

{
3(2 + 11ε)

1 + 18ε
,
18(2 + 40ε + 25ε2)

1 + 45ε + 450ε2

}

for the energy norm. For ε < 1.47563, the first term in the maximum is dominant.
One observes that the limiting values ε = 0 and ε → ∞ agree with the L2 and H1

values, respectively.
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