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Abstract We propose and analyze two novel decoupled numerical schemes for solv-
ing the Cahn–Hilliard–Stokes–Darcy (CHSD) model for two-phase flows in karstic
geometry. In the first numerical scheme, we explore a fractional step method (opera-
tor splitting) to decouple the phase-field (Cahn–Hilliard equation) from the velocity
field (Stokes–Darcy fluid equations). To further decouple the Stokes–Darcy system,
we introduce a first order pressure stabilization term in the Darcy solver in the second
numerical scheme so that the Stokes system is decoupled from the Darcy system and
hence the CHSD system can be solved in a fully decoupled manner. We show that
both decoupled numerical schemes are uniquely solvable, energy stable, and mass
conservative. Ample numerical results are presented to demonstrate the accuracy and
efficiency of our schemes.

Mathematics Subject Classification 35K61 · 76T99 · 76S05 · 76D07

Supported in part by an NSF Grant DMS-1312701. Wenbin Chen is supported by the NSFC
(11671098,11331004, 91630309), and a 111 Project (B08018).

B Xiaoming Wang
wxm@math.fsu.edu

Wenbin Chen
wbchen@fudan.edu.cn

Daozhi Han
djhan@iu.edu

1 School of Mathematical Sciences, Fudan University, Shanghai 200433, China

2 Department of Mathematics, Indiana University, Bloomington, IN 47405, USA

3 Department of Mathematics, Florida State University, Tallahassee, FL 32306-4510, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00211-017-0870-1&domain=pdf


230 W. Chen et al.

1 Introduction

Many natural and engineering applications involve multiphase flows in karstic geom-
etry, i.e., geometry with both conduit (or vug) and porous media [25]. Such kind of
problems are intrinsically difficulty due to the multi-scale multi-physics nature. In
[25], the authors utilized Onsager’s extremum principle to derive a diffuse interface
model, the so-called Cahn–Hilliard–Stokes–Darcy system (CHSD), for two-phase
incompressible flows with matched densities in the karstic geometry. Existence and
weak-strong uniqueness of weak solutions for the CHSD system have been proved
recently in [28]. For complex systems like the CHSD model, efficient and accurate
numerical schemes are highly desirable. There are several challenges associated with
the system. First, due to the relative slow motion of fluid in porous media, long time
simulations are needed in order to capture physically important phenomena. In par-
ticular, we would like to have numerical schemes that inherit, with modification if
needed, the energy law of the continuous model. Second, the CHSD model, similar
to all phase field model with a sharp interface limit, is stiff due to the existence of
relatively steep transition regions. This stiffness leads to a severe time-step restric-
tion if one adopts classical explicit time stepping. Third, the CHSD system involves
at least three coupled physical processes: the dynamics of the phase field variable
(governed by the Cahn–Hilliard equation), the fluid flow in the conduit (governed
by the Stokes equation), and the fluid flow in the porous media (governed by the
Darcy system). Efficient and accurate numerical schemes for each of the sub-models
do exist. Therefore, it would be highly desirable to have numerical schemes that
decouple these subsystems while maintaining the long time stability. Such decoupled
schemes would reduce the complexity of the computation and allow the possibil-
ity of the utilization of legacy codes. In this paper, we introduce and analyze two
novel decoupled schemes for the CHSD system. In particular, we show that both
schemes are uniquely solvable and enjoy appropriate discrete energy lawwhich ensure
the long time stability. So far as we know, these are the first set of uniquely solv-
able and energy stable decoupled schemes for computing two-phase flows in karstic
geometry.

To fix the notation, let us assume that the two-phase flows are confined in a bounded
connected domain Ω ⊂ R

d (d = 2, 3) with sufficiently smooth boundary. The unit
outer normal at ∂Ω is denoted by n. The domain Ω is partitioned into two non-
overlapping regions such that Ω = Ωc ∪ Ωm and Ωc ∩ Ωm = ∅, where Ωc and Ωm

represent the underground conduit (or vug) and the porous matrix region, respectively.
We denote ∂Ωc and ∂Ωm the boundaries of the conduit and the matrix part, respec-
tively. Both ∂Ωc and ∂Ωm are assumed to be Lipschitz continuous. The interface
between the two parts (i.e., ∂Ωc ∩ ∂Ωm) is denoted by Γcm , on which ncm denotes the
unit normal to Γcm pointing from the conduit part to the matrix part. Then we denote
Γc = ∂Ωc\Γcm and Γm = ∂Ωm\Γcm with nc, nm being the unit outer normals to Γc

and Γm . On the conduit/matrix interface Γcm , we denote by {τ i } (i = 1, . . . , d − 1) a
local orthonormal basis for the tangent plane to Γcm . A two dimensional geometry is
illustrated in Fig. 1.
In the sequel, the subscript m (or c) emphasizes that the variables are for the matrix
part (or the conduit part). We denote by u the mean velocity of the fluid mixture and
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Uniquely solvable and energy stable decoupled numerical... 231

Fig. 1 Schematic illustration of the domain in 2D

ϕ the phase function related to the concentration of the fluid (volume fraction). The
following convention will be assumed throughout the paper

u|Ωm = um, u|Ωc = uc, ϕ|Ωm = ϕm, ϕ|Ωc = ϕc.

Governing PDE system. We shall consider the following generalized Cahn–Hilliard–
Stokes–Darcy system with time derivatives retained in the Stokes–Darcy system for
generality:

ρ0∂tuc = ∇ · T(uc, Pc) − ϕc∇μc, in Ωc, (1.1)

∇ · uc = 0, in Ωc, (1.2)

∂tϕc + ∇ · (ucϕc) = div(M(ϕc)∇μc), in Ωc, (1.3)
ρ0

χ
∂tum + ν(ϕm)Π−1um = − (∇Pm + ϕm∇μm) , in Ωm, (1.4)

∇ · um = 0, in Ωm, (1.5)

∂tϕm + ∇ · (umϕm) = div(M(ϕm)∇μm), in Ωm, (1.6)

where the chemical potentials μc, μm are given by

μ j = γ

[
1

ε

(
ϕ3
j − ϕ j

)
− εΔϕ j

]
, j ∈ {c,m}. (1.7)

The Cauchy stress tensor T is given by

T(uc, pc) = 2ν(ϕc)D(uc) − PcI

where D(uc) = 1
2 (∇uc + ∇T uc) is the rate of strain tensor and I is the d × d identity

matrix. Here ρ0 represents the fluid density,χ is the porosity, ν is the viscosity,Π is the
permeabilitymatrix, the parameter γ > 0 is related to the surface tension. Themobility
of the CHSD model is denoted by M. Throughout, we assume that the viscosity ν and
mobilityM are suitable functions of the phase function ϕ such that 0 < c ≤ ν, M ≤ C
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232 W. Chen et al.

for positive constants c and C . We remark that the mobility function M should scale
like ε2 to recover the sharp interface model in the limit ε → 0, cf. [37]. In Eq. (1.4),
Π is a d × d matrix standing for permeability of the porous media. It is related to the
hydraulic conductivity tensor of the porous mediumK through the relation Π = νK

ρ0g
.

In this manuscript, K is assumed to be a bounded, symmetric and uniformly positive
definite matrix. We also adopt the convention that Π in the denominator would be the
same as multiplying the numerator by the inverse of Π on the left.

The CHSD System is subject to the following boundary and interface boundary
conditions.

Boundary conditions on Γc and Γm:

uc = 0,
∂ϕc

∂nc
= ∂μc

∂nc
= 0, on Γc, (1.8)

um · nm = 0,
∂ϕm

∂nm
= ∂μm

∂nm
= 0, on Γm, (1.9)

Interface conditions on Γcm:

ϕm = ϕc,
∂ϕm

∂ncm
= ∂ϕc

∂ncm
, on Γcm, (1.10)

μm = μc, M(ϕm)
∂μm

∂ncm
= M(ϕc)

∂μc

∂ncm
, on Γcm, (1.11)

um · ncm = uc · ncm, on Γcm, (1.12)

−ncm · (T(uc, Pc)ncm) = Pm, on Γcm, (1.13)

−τ i · (T(uc, Pc)ncm) = αBJ SJ
ν(ϕm)√
trace(Π)

τ i · uc,

i = 1, .., d − 1, on Γcm . (1.14)

We refer to [25] for the detailed derivation of the CHSDmodel (1.1)–(1.6) together
with the interface boundary conditions (1.10)–(1.14). The last interface condition
(1.14) is the so-called Beavers–Joseph–Saffman–Jones (BJSJ) condition (cf. [32,41]),
where αBJ SJ ≥ 0 is an empirical parameter assumed to be a constant here for sim-
plicity. The BJSJ condition is a simplified variant of the well-known Beavers-Joseph
(BJ) condition (cf. [1]) that addresses the important issue of how the porous media
affects the conduit flow at the interface:

−τ i · (2νD(uc))ncm = αBJ
ν√

trace(Π)
τ i · (uc − um), on Γcm, i = 1, . . . , d − 1.

Mathematically rigorous justification of this simplification under appropriate assump-
tions can be found in [31].

An important feature of the CHSD system (1.1)–(1.14) is that it obeys a dissipative
energy law. We define the total energy of the coupled system as follows:

E(t) =
∫

Ωc

ρ0

2
|uc|2dx +

∫
Ωm

ρ0

2χ
|um |2dx + γ

∫
Ω

[
ε

2
|∇ϕ|2 + 1

ε
F(ϕ)

]
dx, (1.15)
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Uniquely solvable and energy stable decoupled numerical... 233

with F(ϕ) = 1
4 (ϕ

2 − 1)2. Let (um, uc, ϕ) be a smooth solution to the initial boundary
value problem (1.1)–(1.14). Then (um, uc, ϕ) satisfies the following basic energy law:

d

dt
E(t) = −D(t) ≤ 0, ∀ t ≥ 0, (1.16)

where the rate of energy dissipation D is given by

D(t) =
∫

Ωm

ν(ϕm)Π−1|um |2dx +
∫

Ωc

2ν(ϕc)|D(uc)|2dx

+
∫

Ω

M(ϕ)|∇μ(ϕ)|2dx + αBJ SJ

∫
Γcm

ν(ϕ)√
trace(Π)

d−1∑
i=1

|uc · τ i |2dS

(1.17)

where we have assumed that the Beavers-Joseph-Saffman-Jones interface parameter
αBJ SJ is a constant for simplicity. The case with variable BJSJ interface parameter, a
necessity for curved interface boundary, can be treated similarly.

The CHSD system is a complicated system that couples different dynamics in dif-
ferent domains (Cahn–Hilliard equation, Stokes equation, Darcy equation). Hence it
is of great interest to develop decoupled numerical schemes (for instance, domain
decomposition schemes) so as to employ legacy solvers for each individual equation
and reduce computational cost. On the other hand, the CHSD system is a diffuse inter-
face model that describes physical phenomena with large gradient in a small transition
layer. For such systems, unconditionally stable numerical schemes are desirable so
that the stiffness can be handled with ease. It is thus crucial to design efficient decou-
pled stable numerical algorithms for solving this system, which is the main focus of
this article. Another challenge associated with the CHSD is the necessity for long
time simulation due to the slow flow motion in the porous media vs the fast motion in
the conduit for situations such as pressure gradient driven flow. Unconditional long-
time stability of the schemes becomes handy although it is not equivalent to long
time accuracy. (Long-time stability of the schemes is a key ingredient in ensuring the
convergence of long time statistical properties for dissipative systems [52]).

Efficient solvers for each individual equation/system are building blocks for con-
structing an efficient numerical algorithm of the CHSD system. Among the abundant
literature, we only survey those closely related to our schemes. For the Cahn–Hilliard
type equation that describes physical phenomena with large gradient in a small
transition layer, a popular strategy in the temporal discretization is based on a convex-
splitting of the associated energy functional, see [19] for a first order scheme and
[30,44] for second order schemes. The convex-splitting schemes are desirable because
they are unconditionally energy-stable and uniquely solvable. Thus numerical stiffness
can be handled with ease. There are also unconditionally stable linear schemes in the
literature [23,45]where additional stabilization terms are introduced to ensure stability.
These ideas (convex-splitting and stabilization) have been successfully utilized in the
computation of Cahn–Hilliard fluid models, cf. [15,21,24,26,33,34,46,47] for Cahn–
Hilliard–Navier–Stokesmodels and [14,53] for Cahn–Hilliard–Hele–Shaw/Brinkman
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models. For the single-phase Stokes–Darcy system, there are many efficient numerical
solvers, see for instance [2–6,8–10,12,16–18,36].

On one hand, decoupled scheme is highly desirable for solving such a large system
on a moderate computer. In addition to the apparent efficiency advantage, decou-
pling the computation of the system would allow the application of numerous legacy
algorithms/codes surveyed above which are not directly applicable otherwise. Fur-
thermore, the rich scales encompassed in the CHSD system naturally call for different
meshes and even different time step-size for the computation of different dynamics.
For instance, it is advantageous to employ adaptive mesh refinement for the compu-
tation of Cahn–Hilliard equation so as to resolve the diffuse interface of small width,
especially when low order finite element is used. In contrast, the computation of fluid
equation can be done on fixed coarser grids as groundwater flow is typically slow. A
decoupled scheme is much easier to implement these ideas compared to coupled ones.
Finally, the scheme needs to be stable for long time simulations which are typically
the objective in the context of groundwater study.

We note that a fully decoupled numerical schemes can be constructed easily, for
instance, by treating the coupling terms in the equations and in the interface boundary
conditions explicitly.However, such amethod is not known to have the highly desirable
unconditional stability for solving the CHSD system. The design of an unconditionally
stable, decoupled numerical scheme requires delicate consideration and application
of the classical operator-splitting/fractional-step methodology [13,38,48–50,54]. The
work of Temam [49,50] is particularly relevant where the unconditional stability of
the fractional-step schemes applied to the Navier–Stokes system was first discussed.
See also [22,35,42,51] for other work related to the Chorin-Temam fractional-step
method for solving fluid equations.

Another phase field model for two-phase flow in karstic geometry was proposed in
[7]. In their model, the Cahn–Hilliard–Navier–Stokes equation with moving contact
line type boundary conditions (generalized Navier slip boundary condition for veloc-
ity and dynamic boundary condition for order parameter) is adopted for two-phase
flow in conduit. In porous medium, however, a two-phase Darcy’s law is utilized. The
authors propose a Robin-Robin domain decomposition method to solve the coupled
system. However, the stability of the proposed scheme was not discussed. An energy
stable but fully coupled scheme for the Cahn–Hilliard–Stokes–Darcy system can be
found in [25].

Finally,we comment on the stability of our proposednumerical scheme.The explicit
treatment of the velocity in Cahn–Hilliard equation is analyzed in [33] for the Cahn–
Hilliard–Navier–Stokes system. It is shown that the scheme is conditionally stable
with a mild CFL condition. Extrapolation in time of the interface boundary conditions
have also been used in the computation of the non-stationary Stokes–Darcy system
where long-time stability and error estimates were established under a time step-
size constraint dependent on the problem parameters, see for instance [10,11,40].
Both decoupled schemes that we propose here are unconditionally energy stable. Our
numerical experiments verify our theoretical results on the long-time stability of the
novel schemes.

The paper is structured in the following way. We introduce the function spaces and
the concept of weak formulation in Sect. 2. Two novel decoupled numerical schemes
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for solving the CHSD system are proposed and analyzed in Sect. 3. In Sect. 4, we
first verify numerically that our schemes are first-order accurate in time and long-time
stable. Then we present two numerical experiments, boundary driven and buoyancy
driven flows, to illustrate the effectiveness of our schemes. Both numerical simu-
lations are of physical interest for transport processes of two-phase flow in karst
geometry.

2 The weak formulation

For our CHSD problem with domain decomposition, we introduce the following
spaces

H(div;Ω j ) := {w ∈ L2(Ω j ) | ∇ · w ∈ L2(Ω j )}, j ∈ {c,m},
Hc,0 := {w ∈ H1(Ωc) | w = 0 on Γc},

Hc,div := {w ∈ Hc,0 | ∇ · w = 0},
Hm,0 := {w ∈ H(div;Ωm) | w · nm = 0 on Γm},

Hm,div := {w ∈ Hm,0 | ∇ · w = 0},
Xm := H1(Ωm) ∩ L2

0(Ωm).

Here L2
0(Ωm) is a subspace of L2 whose elements are of mean zero. We denote (·, ·)c,

(·, ·)m the inner products on the spaces L2(Ωc), L2(Ωm), respectively (also for the
corresponding vector spaces). The inner product on L2(Ω) is simply denoted by (·, ·).
Then it is clear that

(u, v) = (um, vm)m + (uc, vc)c, ‖u‖2L2(Ω)
= ‖um‖2L2(Ωm )

+ ‖uc‖2L2(Ωc)
,

where um := u|Ωm and uc := u|Ωc . We will suppress the dependence on the domain
in the L2 norm if there is no ambiguity. We also denote H ′ the dual space of H with
the duality induced by the L2 inner product.

Below we give the definition of the weak formulation of the CHSD system in 2D.
The weak formulation in 3D can be defined similarly with slight changes in time
integrability of the functions.

Definition 1 Suppose that d = 2 and T > 0 is arbitrary. We consider the initial data
ϕ0 ∈ H1(Ω), uc(0) ∈ Hc,div, um(0) ∈ Hm,div . The functions (uc, Pc, um, Pm, ϕ, μ)

with the following properties

uc ∈ L∞ (
0, T ; L2(Ωc)

)
∩ L2(0, T ; Hc,0),

∂uc

∂t
∈ L

4
3
(
0, T ; (Hc,0)

′) , (2.1)

um ∈ L∞ (
0, T ; L2(Ωm)

)
∩ L2(0, T ; Hm,0),

∂um

∂t
∈ L

4
3
(
0, T ; (Hm,0)

′) , (2.2)

Pc ∈ L
4
3

(
0, T ; L2(Ωc)

)
, Pm ∈ L

4
3 (0, T ; Xm), (2.3)
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ϕ ∈ L∞ (
0, T ; H1(Ω)

)
∩ L2

(
0, T ; H3(Ω)

)
, ϕt ∈ L2

(
0; T ; (H1(Ω))′

)
,

(2.4)

μ ∈ L2
(
0, T ; H1(Ω)

)
, (2.5)

is called afinite energyweak solutionof theCHSDsystem (1.1)–(1.14), if the following
conditions are satisfied:

(1) For any vc ∈ Hc,0 and qc ∈ L2(Ωc),

〈∂tuc, vc〉c + 2(ν(ϕc)D(uc),D(vc))c − (Pc,∇ · vc)c

+
d−1∑
i=1

αBJ SJ

∫
Γcm

ν(ϕm)√
trace(Π)

(uc · τ i )(vc · τ i )dS +
∫

Γcm

Pm(vc · ncm)dS

+(∇ · uc, qc)c + (ϕc∇μ(ϕc), vc)c = 0. (2.6)

(2) For any vm ∈ Hm,0 and qm ∈ H1(Ωm),

ρ0

χ
〈∂tum, vm〉m +

(
ν(ϕm)Π−1um, vm

)
m

+ (∇Pm, vm)m − (um,∇qm)m

+(ϕm∇μ(ϕm), vm)m −
∫

Γcm

uc · ncmqm ds = 0. (2.7)

(3) For any v, φ ∈ H1(Ω),

〈∂tϕ, v) + (M(ϕ)∇μ(ϕ),∇v) − (uϕ,∇v) = 0, (2.8)

γ

[
1

ε
( f (ϕ), v) + ε(∇ϕ,∇v)

]
− (μ(ϕ), φ) = 0. (2.9)

(3) ϕ|t=0 = ϕ0(x), uc|t=0 = uc(0), um |t=0 = um(0).
(4) The finite energy solution satisfies the energy inequality

E(t) +
∫ t

s
D(τ )dτ ≤ E(s), (2.10)

for all t ∈ [s, T ) and almost all s ∈ [0, T ) (including s = 0), where the total
energy E is given by (1.15).

Wenote that theDarcy pressure Pm and the Stokes pressure Pc are uniquely determined
only up to a common constant in the CHSD system (1.1)–(1.14). In the Definition 1,
we require Pm ∈ Xm so that it is of mean zero and uniquely determined. Then the
Stokes pressure is uniquely determined in view of the interface boundary condition
(1.13). Hence in the weak formulation we only impose Pc ∈ L2(Ωc). We refer to [28]
for the study of the existence of such a weak solution for a similar problem.

123



Uniquely solvable and energy stable decoupled numerical... 237

3 The numerical schemes

Let τ > 0 be a time step size and set tk = kτ for 0 ≤ k ≤ K = [T/τ ]. Let T h
c (T h

m ) be
a quasi-uniform triangulation of the domainΩc (Ωm resp.) of mesh size h. In addition,
we assume that the triangulations T h

c and T h
m coincide on the interfaceΓcm in the sense

that triangles in Ωm and Ωc share the same edges along Γcm . Then T h := T h
c ∪ T h

m
forms a triangulation of the domain Ω . Let Yh denote a finite element approximation
of H1(Ω) based on the triangulation Th . Typical examples of Yh include

Yh = {vh ∈ C(Ω̄)
∣∣vh |K ∈ Pr (K ),∀K ∈ Th},

where Pr (K ) is the space of polynomials of degree less than or equal to r on the
triangle K . Denote by Xh

c the finite element approximation of Hc,0, and by Mh
c the

finite element approximation of L2(Ωc). Note that we did not impose the condition
of mean zero on the space Mh

c . This is consistent with the Definition 1. We assume
that Xh

c and Mh
c are stable approximation spaces for Stokes velocity and pressure in

the sense that

sup
vh∈Xh

c

(∇ · vh, qh)c
||vh ||H1

≥ c||qh ||L2 , ∀qh ∈ Mh
c . (3.1)

The validity of such an inf-sup condition for some standard finite element spaces can
be found in [36]. The classical P2-P0, Taylor–Hood finite element spaces and theMini
finite element spaces are commonly adopted in practice for Xh

c and Mh
c , cf. [20,36].

Similarly, one can define the finite element spaces Xh
m (finite element subspace of

Hm,0) and Mh
m (finite element subsapce of Xm) for the Darcy velocity and pressure.

We also assume Xh
m and Mh

m are stable satisfying

sup
vh∈Xh

m

(vh,∇qh)m
||vh ||L2

≥ c||qh ||L2 , ∀qh ∈ Mh
m . (3.2)

We remark that the Taylor–Hood finite element spaces satisfy the above condition.

Remark 1 The inf-sup condition (3.2) for Darcy equation is not the standard one.
We remark that it holds for some common finite element spaces. For example, if
∇(Mh

m) ⊂ Vh
m , then we can can take vh = ∇qh . Therefore,

(vh,∇qh)m
||vh ||L2

= ‖∇qh‖L2 ≥ c‖qh‖L2 ,

here we have used Poincaré inequality in the last inequality since we require qh ∈
L2
0(Ωm). Another case is to use mixed finite element for the Stokes equation with

continuous pressure approximation, such as Taylor-Hood element, and we can choose
vh · n = 0 with n the unit outer normal of ∂Ωm , then (vh,∇qh)m = −(∇ · vh, qh)m ,
and the inf-sup condition (3.2) can be obtained by using the standard inf-sup condition
for the Stokes equation.
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Before we describe our unconditionally stable and decoupled numerical schemes,
we point out that a fully decoupled numerical scheme for solving the CHSD model
can be constructed easily, for instance, by treating the velocity in the Cahn–Hilliard
equation (2.8) and the interface boundary conditions in Eqs. (2.6) and (2.7) explicitly.
The explicit treatment of velocity in the phase field fluid models have been analyzed
carefully, in [33] for the case of Cahn–Hilliard–Navier–Stokes equations, and in [27]
for the case of Cahn–Hilliard–Darcy model. And decoupled schemes using extrap-
olation in time for interface boundary conditions have been proposed and analyzed
for single phase Stokes–Darcy system, see [10,11] and references therein. However,
in the setting of CHSD model, it seems that this type of decoupling strategy does
not lead to unconditional stability. It is our aim here to design unconditionally stable,
energy stable in particular, and decoupled numerical schemes for solving the CHSD
model.

3.1 An energy stable scheme (PD) decoupling the order parameter and the
velocity

Here we present an unconditionally stable numerical scheme that decouples the com-
putation of the Cahn–Hilliard equation from that of the fluid equations (Stokes–Darcy
system). We employ a fractional-step method for realizing the decoupling. An inter-
mediate velocity driven solely by the capillary force is used in the time-discretization
of the Cahn–Hilliard equation, see Eqs. (3.6) and (3.7) below. Hence, upon substitu-
tion, the velocity equations are completely decoupled from the equations for the order
parameter. In the context of phase field models, this idea of fractional step method is
first applied in solving the Cahn–Hilliard–Navier–Stokes equations, cf. [39,47]. We
point out that the Stokes equations are still coupled with the Darcy equations in the
scheme (PD).

We present the scheme (PD) for solving the CHSD model (1.1)–(1.14) as follows:
Step 1: Cahn–Hilliard equation: find ϕk+1

h ∈ Yh and μk+1
h ∈ Yh such that for any

vh, φh ∈ Yh ,

(
δtϕ

k+1
h , vh

)
+

(
M(ϕk

h)∇μk+1
h ,∇vh

)
−

(
uk+1
h ϕk

h,∇vh

)
= 0, (3.3)

γ

[
1

ε

(
f
(
ϕk+1
h , ϕk

h

)
, φh

)
+ ε

(
∇ϕk+1

h ,∇φh

)]
−

(
μk+1
h , φh

)
= 0, (3.4)

with f (ϕk+1
h , ϕk

h) = (ϕk+1
h )3 − ϕk

h , and δt denoting the backward difference quotient

operator δtϕ
k+1
h := ϕk+1

h −ϕk
h

τ
. Here the intermediate velocityuk+1

h inEq. (3.3) is defined
as

uk+1 =
{

uk+1
m,h , x ∈ Ωm,

uk+1
c,h , x ∈ Ωc,

(3.5)

123



Uniquely solvable and energy stable decoupled numerical... 239

where uk+1
m,h and uk+1

c,h are defined through the following equations

ρ0

χ

uk+1
m,h − uk

m,h

τ
+ ϕk

m,h∇μk+1
m,h = 0, (3.6)

ρ0
uk+1
c,h − uk

c,h

τ
+ ϕk

c,h∇μk+1
c,h = 0. (3.7)

Step 2: Stokes equation: find uk+1
c,h ∈ Xh

c and Pk+1
c,h ∈ Mh

c such that for any vc,h ∈ Xh
c

and qc,h ∈ Mh
c ,

ρ0

(
δtu

k+1
c,h , vc,h

)
c
+ ac

(
uk+1
c,h , vc,h

)
+ bc

(
vc,h, P

k+1
c,h

)
+

∫
Γcm

Pk+1
m,h (vc,h · ncm)dS

− bc
(

uk+1
c,h , qc,h

)
+

(
ϕk
c,h∇μk+1

c,h , vc,h
)
c

= 0, (3.8)

where

ac
(

uk+1
c,h , vc,h

)
= 2

(
ν

(
ϕk
c,h

)
D

(
uk+1
c,h

)
,D(vc,h)

)
c

+
d−1∑
i=1

αBJ SJ

∫
Γcm

ν
(
ϕk
c,h

)
√
trace(Π)

(
uk+1
c,h · τ i

)
(vc,h · τ i )dS, (3.9)

bc(vc,h, qc,h) = −(∇ · vc,h, qc,h)c. (3.10)

And Darcy equation: find uk+1
m,h ∈ Xh

m and Pk+1
m,h ∈ Mh

m such that for any vm,h ∈ Xh
m

and qm,h ∈ Mh
m ,

ρ0

χ

(
δtu

k+1
m,h , vm,h

)
m

+am
(

uk+1
m,h , vm,h

)
+bm

(
vm,h, P

k+1
m,h

)
+

(
ϕk
m,h∇μk+1

m,h , vm,h

)
m

−
∫

Γcm

uk+1
c,h · ncmqm,h ds − bm

(
uk+1
m,h , qm,h

)
= 0, (3.11)

where

am(uk+1
m,h , vm,h) = (

ν(ϕk
m,h)Π

−1uk+1
m,h , vm,h

)
m, (3.12)

bm(vm,h, qm,h) = (vm,h,∇qm,h)m . (3.13)

The decoupling of the Cahn–Hilliard equation and Stokes–Darcy system is real-
ized through a fractional step method. For instance, Eqs. (3.6) and (3.11) amount to
solving the Darcy system (1.4)–(1.5) via the following temporal splitting algorithm,
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suppressing the spatial discretization,

ρ0

χ

uk+1
m − uk

m

τ
+ ϕk

m∇μk+1
m = 0, (3.14)

ρ0

χ

uk+1
m − uk+1

m

τ
+ ν(ϕk

m)Π−1uk+1
m + ∇Pk+1

m = 0, (3.15)

∇ · uk+1
m = 0. (3.16)

It is clear that the scheme is consistent as uk+1
m is a first order in-time approximation of

uk
m . Furthermore, the intermediate velocity never appears in the practical computation

as one can substitute the definition of uk+1
m back into the Cahn–Hilliard equation and

solve for uk+1
m via Eq. (3.11).

To state the energy stability of the scheme (PD), we define a discrete free energy
functional

E(ϕk
h) = γ

∫
Ω

(
1

ε
F(ϕk

h) + ε

2
|∇ϕk

h |2
)
dx,

and also a discrete total energy functional

Ek =
∫

Ωc

ρ0

2
|uk

c,h |2dx +
∫

Ωm

ρ0

2χ
|uk

m,h |2dx + γ

∫
Ω

(
1

ε
F(ϕk

h) + ε

2
|∇ϕk

h |2
)
dx .

(3.17)

One can show that the scheme (3.3)–(3.11) is unconditionally uniquely solvable and
energy-stable, in the sense of the following theorem.

Theorem 1 The scheme (PD) (Eqs. 3.3–3.11) is unconditionally uniquely solvable
and mass conservative at each time step. Moreover, the scheme (PD) satisfies a mod-
ified energy law

Ek+1 − Ek + τac
(

uk+1
c,h , uk+1

c,h

)
+ τ

∣∣∣
∣∣∣√ν/Πuk+1

m,h

∣∣∣
∣∣∣2
L2

≤ −γ ε

2

∣∣∣∣∣∣∇ (
ϕk+1
h − ϕk

h

)∣∣∣∣∣∣2
L2

− ρ0

4

∣∣∣∣∣∣uk+1
c,h − uk

c,h

∣∣∣∣∣∣2
L2

− ρ0

4χ

∣∣∣∣∣∣uk+1
m,h − uk

m,h

∣∣∣∣∣∣2
L2

,

(3.18)

Thus it is unconditionally energy-stable.

Proof Note that upon substitution of the intermediate velocities (3.6) and (3.7) into
the Cahn–Hilliard equation (3.3), the nonlinear Cahn–Hilliard equations (3.3)–(3.4)
are completely decoupled from the linear Stokes–Darcy equations (3.8)–(3.11). Given
ϕk
h , uk

h , Eqs. (3.3)–(3.4) can be viewed as a first-order convex-splitting discretization
of the Cahn–Hilliard equation with known source terms. Thus the unique solvability
of the Cahn–Hilliard part can be established by following a gradient flow argument, cf.
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[33,43,53]. See also [26,28] for an alternative proof exploiting the property of mono-
tonicity in convex-splitting schemes. Once μk+1

h is known, Eqs. (3.8)–(3.11) become
linear equations for velocity and pressure. Its unique solvability can be established the
same way as in the classical mixed formulation for Stokes equation, cf. [20] using the
inf-sup conditions. For completeness,wegive the details of an alternative argument that
does not rely on the inf-sup condition for the coupled Stokes–Darcy system explicitly
here. As Eqs. (3.8)–(3.11) define a finite linear system for uk+1

c,h , Pk+1
c,h , uk+1

m,h , Pk+1
m,h ,

we only need to show that solutions are unique.1 Suppose there are two solutions, and
define their differences by Eu

c , E
p
c , Eu

m, E p
m respectively. Then the differences satsify

∀vc,h ∈ Xh
c , qc,h ∈ Mh

c and vm,h ∈ Xh
m, qm,h ∈ Mh

m ,

ρ0

τ

(
Eu
c , vc,h

)
c + ac

(
Eu
c , vc,h

) + bc
(
vc,h, E

p
c
) − bc

(
Eu
c , qc,h

)

+
∫

Γcm

E p
m(vc,h · ncm)dS = 0, (3.19)

ρ0

χτ

(
Eu
m, vm,h

)
m + am

(
Eu
m, vm,h

) + bm
(
vm,h, E

p
m
) − bm

(
Eu
m, qm,h

)

−
∫

Γcm

Eu
c · ncmqm,h ds = 0. (3.20)

Taking vc,h = Eu
c , qc,h = E p

c in Eq. (3.19) and vm,h = Eu
m, qm,h = E p

m in Eq. (3.20),
and adding the equations together, one obtains

ρ0

τ

(
Eu
c , Eu

c

)
c + ac

(
Eu
c , Eu

c

) + ρ0

χτ

(
Eu
m, Eu

m

)
m + am

(
Eu
m, Eu

m

) = 0.

Hence Eu
c = Eu

m = 0 and Eqs. (3.19), (3.20) reduce to

bc(vc,h, E
p
c ) +

∫
Γcm

E p
m(vc,h · ncm)dS = 0, (3.21)

bm(vm,h, E
p
m) = 0. (3.22)

It then follows from the inf-sup conditions (3.2) that E p
m = 0. Eq. (3.21) can be written

as

bc(vc,h, E
p
c − C) + C

∫
Γcm

vc,h · ncmdS = 0, (3.23)

with the constant C = 1
|Ωc|

∫
Ωc

E p
c dx . Now if vc,h = 0 on Γcm , then the classical

inf-sup condition for Stokes equations (satisfied, for instance, by Taylor–Hood finite
element spaces) implies that E p

c = C . Combining this with Eq. (3.23) further yields
E p
c = C = 0. Therefore the two solutions must be the same. Thus the scheme (PD)

is unconditionally uniquely solvable at each time step.

1 Invertibility is equivalent to a trivial kernel for a square matrix.
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Now we show that the modified energy law (3.18) holds. Owing to the convexity,
one can establish the elementary inequality

F
(
ϕk+1
h

)
− F

(
ϕk
h

)
≤ f

(
ϕk+1
h , ϕk

h

) (
ϕk+1
h − ϕk

h

)
, (3.24)

where one may recall F(ϕ) = 1
4 (ϕ

2 − 1)2 and f (φ, ϕ) = φ3 − ϕ. Taking the test
function vh = τμk+1

h in Eq. (3.3) and φh = ϕk+1
h − ϕk

h in Eq. (3.4), and adding the
results together, one obtains by virtue of the inequality (3.24)

E
(
ϕk+1
h

)
− E(ϕk

h) + τ

∣∣∣∣∣∣√M∇μk+1
h

∣∣∣∣∣∣2
L2

− τ
(

uk+1
h ϕk

h ,∇μk+1
h

)

≤ −γ ε

2

∣∣∣
∣∣∣∇ (

ϕk+1
h − ϕk

h

)∣∣∣
∣∣∣2
L2

. (3.25)

Next, it follows from Eqs. (3.6) and (3.7) that

ρ0

2χ

{
||uk+1

m,h ||2L2 − ||uk
m,h ||2L2 + ||uk+1

m,h − uk
m,h ||2L2

}

+ ρ0

2

{
||uk+1

c,h ||2L2 − ||uk
c,h ||2L2 + ||uk+1

c,h − uk
c,h ||2L2

}

+ τ
(
uk+1
h ϕk

h ,∇μk+1
h

) = 0. (3.26)

Take the test function vc,h = τuk+1
c,h and qc,h = Pk+1

c,h in Eq. (3.8), and use Eq. (3.7)

ρ0

2

{∣∣∣∣∣∣uk+1
c,h

∣∣∣∣∣∣2
L2

−
∣∣∣∣∣∣uk+1

c,h

∣∣∣∣∣∣2
L2

+
∣∣∣∣∣∣uk+1

c,h − uk+1
c,h

∣∣∣∣∣∣2
L2

}
+ τac

(
uk+1
c,h , uk+1

c,h

)

+ τ

∫
Γcm

Pk+1
m,h

(
uk+1
c,h · ncm

)
dS = 0. (3.27)

Similarly, by using the intermediate velocity in Eq. (3.6), taking the test functions
vm,h = τuk+1

m,h and qm,h = τ Pk+1
m,h in Eq. (3.11), one obtains that

ρ0

2χ

{∣∣∣
∣∣∣uk+1

m,h

∣∣∣
∣∣∣2
L2

−
∣∣∣
∣∣∣uk+1

m,h

∣∣∣
∣∣∣2
L2

+
∣∣∣
∣∣∣uk+1

m,h − uk+1
m,h

∣∣∣
∣∣∣2
L2

}
+ τ

∣∣∣
∣∣∣√ν/Πuk+1

m,h

∣∣∣
∣∣∣2
L2

− τ

∫
Γcm

uk+1
c,h · ncm Pk+1

m,h dS = 0. (3.28)

Finally summing up Eqs. (3.25), (3.26), (3.27) and (3.28), we obtain the modified
energy law

Ek+1 − Ek + τ

∣∣∣∣∣∣√M∇μk+1
h

∣∣∣∣∣∣2
L2

+ τac
(

uk+1
c,h , uk+1

c,h

)
+ τ

∣∣∣∣∣∣√ν/Πuk+1
m,h

∣∣∣∣∣∣2
L2

≤ −γ ε

2

∣∣∣
∣∣∣∇ (

ϕk+1
h − ϕk

h

)∣∣∣
∣∣∣2
L2

− ρ0

4

∣∣∣
∣∣∣uk+1

c,h − uk
c,h

∣∣∣
∣∣∣2
L2

− ρ0

4χ

∣∣∣
∣∣∣uk+1

m,h − uk
m,h

∣∣∣
∣∣∣2
L2

,
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where the elementary inequality 2(a2 + b2) ≥ (a + b)2 has been used.
We also observe that our scheme is mass conservative by simply taking the test

function in the phase-field equation to be 1.
This completes the proof. ��
In the scheme (PD), the Darcy equations are solved in the primitive velocity-

pressure formalism Eq. (3.11). It is natural to solve the Darcy equations using the
pressure alone as the primary variable, since the Darcy pressure (more precisely, the
hydraulic head) is of practical importance in applications of flow in porous media.
Moreover, there are efficient fast solvers for Poisson equation. By solving for uk+1

m
from Eq. (3.15) and substituting the resulting expression into Eq. (3.16), one can solve
the Darcy equation (3.11) (coupled with the Stokes equation (3.8)) via
find Pk+1

m,h ∈ Mh
m such that for any qm,h ∈ Mh

m ,

( τΠχ

ρ0Π + τνχ
∇Pk+1

m,h − ρ0Π

ρ0Π + τνχ
uk+1
m,h ,∇qm,h

)
m

−
∫

Γcm

uk+1
c,h · ncmqm,h dS = 0.

(3.29)

Then the Darcy velocity at time level k + 1 is recovered via the projection of the
algebraic equation

ρ0

χ

uk+1
m,h − uk

m,h

τ
+ ν(ϕk

m,h)

Π
uk+1
m,h + ∇Pk+1

m,h + ϕk
m,h∇μk+1

m,h = 0. (3.30)

3.2 A fully decoupled numerical scheme (FD)

In the scheme (3.3)–(3.11), theDarcy equation is still coupledwith the Stokes equation.
We present here a fully decoupled scheme such that the order parameter, the Darcy
pressure and the Stokes velocity can be calculated independently while maintaining
the desired energy stability. In the scheme (FD) below, we consider using the domain
decomposition method to decouple the Darcy–Stokes system, which has been studied
intensively for single phase flow, for instance, in [2–6,8–10,12,16–18,36]. In the
following scheme (FD), the solution to Darcy system is firstly computed, and then the
solution of Stokes system is computed after Pk+1

m,h is obtained.
The fully decoupled scheme (FD) reads as follows:

Step 1: Cahn–Hilliard equation: find ϕk+1
h ∈ Yh and μk+1

h ∈ Yh such that for any
vh, φh ∈ Yh ,

(
δtϕ

k+1
h , vh

)
+

(
M

(
ϕk
h

)
∇μk+1

h ,∇vh

)
−

(
uk+1
h ϕk

h ,∇vh

)
= 0, (3.31)

γ

[
1

ε

(
f
(
ϕk+1
h , ϕk

h

)
, φh

)
+ ε

(
∇ϕk+1

h ,∇φh

)]
−

(
μk+1
h , φh

)
= 0, (3.32)

where f (ϕk+1
h , ϕk

h) = (ϕk+1
h )3 − ϕk

h , and the intermediate velocity uk+1
h in Eq. (3.31)

is defined as
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uk+1
h =

{
uk+1
m,h , x ∈ Ωm,

uk+1
c,h , x ∈ Ωc.

(3.33)

Here uk+1
m,h and uk+1

c,h are defined through the following equations

ρ0

χ

uk+1
m,h − uk

m,h

τ
+ ϕk

m,h∇μk+1
m,h = 0, (3.34)

ρ0
uk+1
c,h − uk

c,h

τ
+ ϕk

c,h∇μk+1
c,h = 0. (3.35)

Step 2: Darcy equation: find uk+1
m,h ∈ Xh

m and Pk+1
m,h ∈ Mh

m such that for any vm,h ∈ Xh
m

and qm,h ∈ Mh
m ,

⎛
⎝ρ0

χ

uk+1
m,h − uk

m,h

τ
+

ν
(
ϕk
m,h

)
Π

uk+1
m,h + ∇Pk+1

m,h + ϕk
m,h∇μk+1

m,h , vm,h

⎞
⎠

m

= 0.

(3.36)

βτ
(
∇Pk+1

m,h ,∇qm,h

)
m

−
(

uk+1
m,h ,∇qm,h

)
m

−
∫

Γcm

uk
c,h · ncmqm,h dS = 0.

(3.37)

Step 3: Stokes equation: find uk+1
c,h ∈ Xh

c and Pk+1
c,h ∈ Mh

c such that for any vc,h ∈ Xh
c

and qc,h ∈ Mh
c ,

ρ0

(
δtu

k+1
c,h , vc,h

)
c
+ ac

(
uk+1
c,h , vc,h

)
+ bc

(
vc,h, P

k+1
c,h

)
+

∫
Γcm

Pk+1
m,h (vc,h · ncm)dS

−bc
(

uk+1
c,h , qc,h

)
c
+

(
ϕk
c,h∇μk+1

c,h , vc,h
)
c

= 0, (3.38)

where we one may recall the definition of ac and bc from (3.9) and (3.10).
Note that a first order stabilization term has been added to the Eq. (3.37). The

parameter β > 0 will be a suitable constant that only depends on the geometry of
Ωm and Ωc. By using the domain decomposition, the Darcy–Stokes system can be
solved in a decoupled manner and legacy codes can be used in each of those steps.
The scheme can also be regarded as one of implicit-explicit(IMEX) schemes. Let us
define the interface term:

EΓ = −
∫

Γcm

(
uk+1
c,h − uk

c,h

)
· ncm Pk+1

m,h dS, (3.39)

and we need the following lemma to bound this term.

123



Uniquely solvable and energy stable decoupled numerical... 245

Lemma 1 Suppose vc,h ∈ Xh
c satisfies

(∇ · vc,h, qc,h)c = 0, ∀qc,h ∈ Mh
c , (3.40)

then

∣∣∣∣
∫

Γcm

vc,h · ncmw dS

∣∣∣∣ ≤ C‖∇w‖L2(Ωm)‖vc,h‖L2(Ωc)
,∀w ∈ Xm . (3.41)

Proof Since w ∈ Xm := H1(Ωm) ∩ L2
0(Ωm), there exists an extension W ∈ H1(Ω)

such that: W |Ωm = w, W |Γcm = w|Γcm and

‖W‖H1(Ω) ≤ C‖∇w‖L2(Ωm) (3.42)

where C is a constant independent of Then by Green’s formula,

∫
Γcm

vc,h · ncmw dS = (∇ · vc,h,W )c + (∇W, vc,h)c. (3.43)

Let Wh be the L2 projection of W on the space Mh
c ∩ L2

0(Ωc). We have

‖W − Wh‖L2 ≤ Ch‖W‖H1 . (3.44)

Consequently, thanks to the inverse estimate,

|(∇ · vc,h,W )c| = |(∇ · vc,h,W − Wh)c| ≤ Ch‖∇ · vc,h‖L2‖W‖H1

≤ C‖vc,h‖L2‖W‖H1 . (3.45)

Now by using the extension theorem,

∫
Γcm

vc,h · ncmw dS ≤ C‖vc,h‖L2‖W‖H1 ≤ C‖vc,h‖L2(Ωc)
‖∇w‖L2(Ωm). (3.46)

This proves the lemma. ��

Following the same argument as in the proof of Theorem 1, we have the following
solvability and stability result:

Theorem 2 The scheme (FD) (3.31)-(3.38) is unconditionally uniquely solvable and
mass conservative. There exists a constant β depending only on the geometry and ρ0
such that the following modified energy law holds
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Ek+1 + τ ||√M∇μk+1
h ||2L2 + τac

(
uk+1
c,h , uk+1

c,h

)

+ τ ||√ν/Πuk+1
m,h ||2L2 + βτ 2

2
||∇Pk+1

m,h ||2L2

+ τ 2

4ρ0

(
χ‖ϕk

m,h∇μk+1
m,h ‖2L2 + ‖ϕk

c,h∇μk+1
c,h ‖2L2

)

≤ Ek − ρ0

6χ
||uk+1

m,h − uk
m,h ||2L2 − ρ0

12
||uk+1

c,h − uk
c,h ||2L2 − γ ε

2

∣∣∣∣∣∣∇ (
ϕk+1
h − ϕk

h

)∣∣∣∣∣∣2
L2

.

(3.47)

Proof Note that the discretization of the Cahn–Hilliard equations is the same in the
fully decoupled scheme (FD) and in the scheme (PD). Hence the inequality (3.25)
holds for the Eqs. (3.31) and (3.32), which we copy here for completeness

E(ϕk+1
h ) − E(ϕk

h) + τ ||√M∇μk+1
h ||2L2 − τ

(
uk+1
h ϕk

h ,∇μk+1
h

)

≤ −γ ε

2

∣∣∣∣∣∣∇(
ϕk+1
h − ϕk

h

)∣∣∣∣∣∣2
L2

. (3.48)

By using the definition of uk+1
h in Eqs. (3.33), (3.34) and (3.35), one can rewrite Eq.

(3.48) as follows

E(ϕk+1
h ) − E(ϕk

h) + τ ||√M∇μk+1
h ||2L2 − τ

(
uk
hϕ

k
h ,∇μk+1

h

)
+ W1

≤ −γ ε

2

∣∣∣
∣∣∣∇(

ϕk+1
h − ϕk

h

)∣∣∣
∣∣∣2
L2

, (3.49)

where

W1 = τ 2

ρ0

(
χ‖ϕk

m,h∇μk+1
m,h ‖2 + ‖ϕk

c,h∇μk+1
c,h ‖2

)
. (3.50)

Take the test function vc,h = τuk+1
c,h and qc,h = Pk+1

c,h in Eq. (3.38),

ρ0

2

{
||uk+1

c,h ||2L2 − ||uk
c,h ||2L2 + ||uk+1

c,h − uk
c,h ||2L2

}
+ τac

(
uk+1
c,h , uk+1

c,h

)

+ τ

∫
Γcm

Pk+1
m,h

(
uk+1
c,h · ncm

)
dS + τ

(
uk+1
c,h ϕk

c,h,∇μk+1
c,h

)
c

= 0. (3.51)

Testing Eq. (3.36) with τuk+1
m,h , taking qm,h = τ Pk+1

m,h in Eq. (3.37), and summing
up the results gives us

ρ0

2χ

{
||uk+1

m,h ||2L2 − ||uk
m,h ||2L2 + ||uk+1

m,h − uk
m,h ||2L2

}

+ τ ||√ν/Πuk+1
m,h ||2L2 + βτ 2||∇Pk+1

m,h ||2L2

+ τ
(

uk+1
m,h ϕk

m,h,∇μk+1
m,h

)
m

− τ

∫
Γcm

uk
c,h · ncm Pk+1

m,h dS = 0. (3.52)
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Now summing up the three estimates (3.49), (3.51) and (3.52), we have

Ek+1 − Ek + τ ||√M∇μk+1
h ||2L2 + τac

(
uk+1
c,h , uk+1

c,h

)
+ τ ||√ν/Πuk+1

m,h ||2L2 + W2

+ βτ 2||∇Pk+1
m,h ||2L2 + γ ε

2

∣∣∣∣∣∣∇(
ϕk+1
h − ϕk

h

)∣∣∣∣∣∣2
L2

≤ −τ

∫
Γcm

(
uk+1
c,h − uk

c,h

)
· ncm Pk+1

m,h dS, (3.53)

where

W2 = ρ0

2
||uk+1

c,h − uk
c,h ||2L2 + ρ0

2χ
||uk+1

m,h − uk
m,h ||2L2

+ W1 + τ
(

uk+1
h − uk

h, ϕ
k
h∇μk+1

h

)
,

with W1 defined in Eq. (3.50).
ApplyingYoung’s inequality (a, b) ≤ a2

3 + 3b2
4 to the term τ(uk+1

h −uk
h, ϕ

k
h∇μk+1

h ),
one obtains

W2 ≥ ρ0

6
||uk+1

c,h − uk
c,h ||2L2 + ρ0

6χ
||uk+1

m,h − uk
m,h ||2L2 + 1

4
W1. (3.54)

By Lemma 1, the right-hand side of inequality (3.53) can be bounded as follows

τ |EΓ | ≤ Cτ‖∇Pk+1
m,h ‖L2‖uk+1

c,h −uk
c,h‖L2 ≤ ρ0

12
‖uk+1

c,h −uk
c,h‖2L2 +C1τ

2‖∇Pk+1
m,h ‖L2 .

(3.55)
If we impose β ≥ 2C1 which only depends on the geometry of Ωm , Ωc and ρ0, then
one has,

Ek+1 − Ek + τ ||√M∇μk+1
h ||2L2 + τac

(
uk+1
c,h , uk+1

c,h

)

+ τ ||√ν/Πuk+1
m,h ||2L2 + βτ 2

2
||∇Pk+1

m,h ||2L2

+ γ ε

2

∣∣∣∣∣∣∇(
ϕk+1
h − ϕk

h

)∣∣∣∣∣∣2
L2

+ ρ0

12
||uk+1

c,h − uk
c,h ||2L2

+ ρ0

6χ
||uk+1

m,h − uk
m,h ||2L2 + 1

4
W1

≤ 0.

Hence we have established the energy inequality (3.47).
Finally we comment on the unique solvability of the fully decoupled scheme (FD).

The unique solvability of the Cahn–Hilliard equation is the same as in the scheme
(PD). The Darcy equations (3.36)–(3.37) are unconditionally uniquely solvable by
the standard energy estimate, which does not rely on the inf-sup condition. Then the
solvability of the Stokes equation (3.38) is the same as in the proof of Theorem 1. The
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conservation of mass follows from setting the test function in the phase-filed equation
to be 1. This concludes the proof of Theorem 2. ��

It is also possible to formulate this fully decoupled scheme utilizing the Darcy pres-
sure as the primary variable in the porousmedia instead of the velocity and the pressure
following the same argument as the one used to derive the Darcy pressure formulation
for the partially decoupled scheme presented at the end of the previous subsection.

4 Numerical experiments

In this section, we present some numerical examples to show that our numerical
schemes can accurately capture the dynamics of two-phase flow in a karst geometry.
In the first numerical example, we demonstrate numerically that our schemes are of
first order accuracy in time and are long-time stable. The second example illustrates
that a droplet passes through the karst system driven by boundary-injection. In the
last numerical example, we show that a lighter bubble rises and penetrates the domain
interface due to buoyancy.All the numerical tests are performed using the free software
FreeFem++ [29].

4.1 Convergence and stability

In the first numerical test, we verify that our schemes are first-order accurate in time.
The computational domain is [0, 1] × [−1, 1] with the lower half being the conduit
and the upper half being the matrix. The approach that we take for the accuracy test
is as follows. We calculate a solution using our numerical schemes with sufficiently
small h = 0.01 and τ = 0.0001, and view this solution as an accurate one. We then
compare the numerical solutionswith larger time step-size to this accurate solution and
calculate the error measured in L2 norm. Throughout, the celebrated Taylor-Hood P2–
P1 finite elements are employed for the approximation of velocity and pressure, and
the P1–P1 pair is used for the discretization of order parameter and chemical potential.
Hence the temporal error is the dominating factor in the overall error. As an example,
we show the results for the fully decoupled scheme (FD), i.e., Eqs. (3.31)–(3.38). The
error behavior for the other scheme is similar, as far as the accuracy is concerned.

For simplicity, all the parameters appearing in the system (1.1)–(1.6) are
set to be unity. The initial conditions are ϕ0 = 0.24 cos(2πx) cos(2πy) +
0.4 cos(πx) cos(3πy)+1.0,u0 = (−2 sin2(πx) sin(2πy), 2 sin(2πx) sin2(πy)). The
convergence result is shown in Fig. 2. The first order convergence rate in time is
observed for the variables uc, um , pm , and φ.

Next, we demonstrate numerically that our schemes satisfy discrete energy laws,
i.e., the discrete energy Ek defined in (3.17) is nonincreasing in time. We perform
the classical numerical experiment of spinodal decomposition and coarsening. The
initial velocities are the same as in the convergence test. For the initial condition of
the order parameter, we take a random field of values ϕ0 = φ̄ + r(x, y) with an
average composition φ̄ = −0.05 and random r ∈ [−0.05, 0.05]. The parameters in
this experiment are taken to be: ρ0

χ
= 0.01, ε = 0.01, νc = νm = 0.1,Π = 1, γ =

123



Uniquely solvable and energy stable decoupled numerical... 249

10
−3

10
−2

10
−1

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

time step dt

L2  e
rr

or

Error of φ
Error of u

c

Error of u
m

Error of p
m

ref e=0.008*dt

Fig. 2 Log–Log plot of the error measured in L2 norm as a function of time step τ for uc , um , pm , and
φ. The solid green line is the reference line e = 0.008τ . The final time is T = 1.0. h = 0.01. The other
parameters are set to be unity

10
−1

10
0

10
1

10
2

10
3

10
4

0

1

2

3

4

5

6

Time

E
ne

rg
y

Fig. 3 Time evolution of the discrete energy Ek in the simulation of spinodal decomposition; τ = 0.1

0.1, M = 0.1. The evolution of the discrete energy Ek is shown in Fig. 3 where
h = 0.01, τ = 0.1.

4.2 Boundary-driven flow

In this example, we consider a horizontal channelΩ = [0, 2]×[0, 1]with the domain
interface boundary {1} × [0, 1] separating the conduit Ωc = [0, 1] × [0, 1] and the
porous media Ωm = [1, 2] × [0, 1].
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Fig. 4 Filled contour plots of a the initial order parameter φ0, and b the initial horizontal velocity u10.
The domain interface is at {1} × [0, 1] separating the conduit (left) and the porous media (right)

The set-up of the experiment is as follows. We impose an inflow boundary con-
dition of parabolic profile on part of the left boundary Γin := {0} × [0.4, 0.6],
i.e., u1c = −100a(y − 0.4)(y − 0.6) on Γin . On the right boundary Γout :=
{2} × [0, 1], ambient pressure is prescribed for the Darcy pressure, i.e., Pm = 0
on Γout . The rest of the boundary conditions are the same as given in (1.8)–(1.9).
The initial condition uc|t=0 is given as the solution of the steady-state Stokes equa-
tion with the same injection boundary condition in the whole domain. An initial
Darcy velocity is then determined by using the explicit interface boundary con-
ditions derived from Stokes fluid fields. The initial order parameter is set to be
φ0 = − tanh

(
(0.15−√

(x − 0.4)2 + (y − 0.5)2)/
√
2.0ε

)
. The initial order parameter

and initial horizontal velocity are shown in Fig. 4.
The parameters in this simulation are listed as ε = 0.01, γ = 0.001, Π = 0.001,

ν(ϕc) = ν(ϕm) = 0.1, αBJ SJ = 0.1, a = 1.0, M(ϕ) = ε
√

(1 − ϕ2)2 + ε2. We
remark that the modified degenerate mobility function M(ϕ) limits the chemical dif-
fusion in the diffuse interface region. In the bulk of each fluid region, the mobility is
essentially ε2. We employ three meshes for the computation of Cahn–Hilliard equa-
tion, Darcy equation and Stokes equation, respectively, thanks in part to the complete
decoupling of the three equations. The temporal time step-size is τ = 0.001 for accu-
racy.

Figure 5 shows some snapshots of the droplet passing through the domain interface
under the influence of boundary-drivenflow.Wenote that the surface tension parameter
is relatively small (γ = 0.001) compared to the maximum velocity on the inflow
boundary u1(0, 0.5) = 1. The round droplet quickly deforms into a cap shape with
the flat side facing the injection boundary (a). A dimple is formed in (b), as the
fluid velocity takes the maximum value at the center line. As it moves through the
domain interface at {1} × [0, 1], the front of the droplet (with respect to fluid flow)
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Fig. 5 Evolution of a droplet driven by boundary injection in a karstic domain. From top to bottom, first
column, a t = 0.4, b t = 2, c t = 3; second column, d t = 3.5, e t = 4, f t = 7. Blue color φ ≈ −1 and
red color φ ≈ 1 (color figure online)

becomes flatter, and elongates in the vertical direction, cf. (c) and (d). This is due to
conservation of mass and the fact that the magnitude of the velocity in porous media
is significantly smaller than that in conduit. Once the droplet enters the porous media,
the shape remains comparatively steady. One can see that the upper and lower “tip” of
the droplet becomes soft [compare (e) to (f)] as a result of the surface tension effect.

4.3 Buoyancy-driven flow

Here, the karst geometry is modelled by a long tube Ω = [0, 1] × [−1, 1] with the
conduit Ωc = [0, 1] × [−1, 0] and porous media Ωm = [0, 1] × [0, 1]. The interface
boundary is at [0, 1] × {0}.

In this experiment, we consider a binary systemwhere the densities of the two fluids
are different. But the density difference is small so that a Boussinesq approximation
is applicable. Specifically, a buoyancy term G(ρ(φ) − ρ̄)ŷ := B(φ − φ̄)ŷ is added to
Stokes equation (1.1) and Darcy equation (1.4), respectively. Here ρ(φ) = 1+φ

2 ρ1 +
1−φ
2 ρ2, ρ̄ and φ̄ are the spatial averages of ρ and φ, B = G ρ1−ρ2

2 , ŷ = (0, 1)T .
We consider a lighter round bubble released in an initially quiescent heavier fluids.
The boundary conditions are given in (1.8)-(1.9). Most of the parameters used in this
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Fig. 6 Snapshots of bubble rising due to buoyancy in a karstic domain. From left to right, first row, a
t = 0.0, b t = 0.75, c t = 1.7; second row, d t = 1.97, e t = 3.2, f t = 4.5. White color φ ≈ −1 and
black color φ ≈ 1. The domain interface is at [0, 1] × {0} (color figure online)

simulation are the same as those in boundary driven flow case, except B = 2.0 and
Π = 0.01.

The filled contour plots in gray scale of the rising bubble are shown in Fig. 6. As
the bubble rises in the conduit domain, it deforms into an ellipsoid. When it passes
through the domain interface, one can clearly see an interface separating the bubble in
conduit and in porous medium. Two corners of the bubble in some sense are formed
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along the domain interface with the part in the conduit being wider than that in porous
medium. A tail of the bubble is seen later as it leaves the domain interface. The tail is
eventually smoothed out by the surface tension effect.

5 Conclusions

We have proposed, analyzed and implemented two novel uniquely solvable, energy
stable decoupled algorithms for the Cahn–Hilliard–Stokes–Darcy system which mod-
els two-phase flows in karstic geometry. The decoupling of the phase-field and the
velocity field is realized via an intermediate velocity that takes into account the capil-
lary force term only. Therefore, we are required to solve a strictly convex variational
problem for the phase field part at each time step. The phase-field update is independent
of the velocity update for both schemes (and hence decoupled). For the first scheme,
the velocity field is governed by the linear Stokes–Darcy system once the phase-field is
updated. For the second scheme, we further decouple the linear Stokes–Darcy system
into a linear Darcy type equation and a Stokes type system. Therefore, appropriate
legacy code for the Cahn–Hilliard equations, the Stokes–Darcy system, the Darcy
equation and the Stokes system can be utilized. We have also established the unique
solvability and energy stability of both algorithms rigorously. So far as we know, these
two schemes are the first set of decoupled uniquely solvable and energy stable algo-
rithms for simulating two phase flows in karstic geometry. Two physically interesting
numerical experiments are conducted, one buoyancy driven and one boundary driven.
The numerics illustrate the efficiency and the stability of the schemes.

The error estimates of the schemes proposed here will be the subject of a future
work.
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31. Jäger, W., Mikelić, A.: On the interface boundary condition of Beavers, Joseph, and Saffman. SIAM
J. Appl. Math. 60(4), 1111–1127 (2000). doi:10.1137/S003613999833678X. (electronic)

32. Jones, I.P.: Low Reynolds number flow past a porous spherical shell. Math. Proc. Camb. Philos. Soc.
73, 231–238 (1973). doi:10.1017/S0305004100047642

33. Kay, D., Styles, V., Welford, R.: Finite element approximation of a Cahn–Hilliard–Navier–Stokes
system. Interfaces Free Bound 10(1), 15–43 (2008). doi:10.4171/IFB/178

123

http://dx.doi.org/10.1137/120897705
http://dx.doi.org/10.1007/s00211-015-0789-3
http://dx.doi.org/10.1016/j.cma.2009.08.012
http://dx.doi.org/10.4208/cicp.171211.130412a
http://dx.doi.org/10.1137/130950628
http://dx.doi.org/10.1016/S0168-9274(02)00125-3
http://dx.doi.org/10.1016/S0168-9274(02)00125-3
http://dx.doi.org/10.5209/rev_REMA.2009.v22.n2.16263
http://dx.doi.org/10.5209/rev_REMA.2009.v22.n2.16263
http://dx.doi.org/10.1557/PROC-529-39
http://dx.doi.org/10.1007/978-3-642-61623-5
http://dx.doi.org/10.1007/978-3-642-61623-5
http://dx.doi.org/10.1137/130908208
http://dx.doi.org/10.1137/130908208
http://dx.doi.org/10.1137/S0036142901395400
http://dx.doi.org/10.1016/j.jcp.2012.09.020
http://dx.doi.org/10.1016/j.jcp.2014.07.038
http://dx.doi.org/10.1002/mma.3043
http://dx.doi.org/10.1016/j.jcp.2015.02.046
http://dx.doi.org/10.1016/j.jcp.2015.02.046
http://dx.doi.org/10.1002/num.22036
http://dx.doi.org/10.1016/j.jde.2014.07.013
http://dx.doi.org/10.1016/j.jcp.2009.04.020
http://dx.doi.org/10.1137/S003613999833678X
http://dx.doi.org/10.1017/S0305004100047642
http://dx.doi.org/10.4171/IFB/178


Uniquely solvable and energy stable decoupled numerical... 255

34. Kim, J., Kang, K., Lowengrub, J.: Conservativemultigridmethods for Cahn–Hilliard fluids. J. Comput.
Phys. 193(2), 511–543 (2004). doi:10.1016/j.jcp.2003.07.035

35. Kim, J., Moin, P.: Application of a fractional-step method to incompressible Navier–Stokes equations.
J. Comput. Phys. 59(2), 308–323 (1985). doi:10.1016/0021-9991(85)90148-2

36. Layton, W.J., Schieweck, F., Yotov, I.: Coupling fluid flow with porous media flow. SIAM J. Numer.
Anal. 40(6), 2195–2218 (2002). doi:10.1137/S0036142901392766

37. Magaletti, F., Picano, F., Chinappi, M., Marino, L., Casciola, C.M.: The sharp-interface limit of the
Cahn–Hilliard/Navier–Stokes model for binary fluids. J. Fluid Mech. 714, 95–126 (2013). doi:10.
1017/jfm.2012.461

38. Marchuk, G.: 3-The splitting-up method. In: Marchuk, G. (ed.) Numerical Methods in Weather Pre-
diction, pp. 84–115. Academic Press, Cambridge (1974). doi:10.1016/B978-0-12-470650-7.50008-6

39. Minjeaud, S.: An unconditionally stable uncoupled scheme for a triphasic Cahn–Hilliard/Navier–
Stokes model. Numer. Methods Partial Differ. Equ. 29(2), 584–618 (2013). doi:10.1002/num.21721

40. Mu,M., Zhu, X.: Decoupled schemes for a non-stationary mixed Stokes–Darcy model. Math. Comput.
79(270), 707–731 (2010). doi:10.1090/S0025-5718-09-02302-3

41. Saffman, P.G.: On the boundary condition at the interface of a porous medium. Stud. Appl. Math. 1,
93–101 (1971)

42. Shen, J.: On error estimates of the projection methods for the Navier–Stokes equations: second-order
schemes. Math. Comput. 65(215), 1039–1065 (1996). doi:10.1090/S0025-5718-96-00750-8

43. Shen, J.: Modeling and numerical approximation of two-phase incompressible flows by a phase-field
approach. In: Multiscale Modeling and Analysis for Materials Simulation, Lect. Notes Ser. Inst. Math.
Sci. Natl. Univ. Singap., vol. 22, pp. 147–195. World Sci. Publ., Hackensack(2012). doi:10.1142/
9789814360906_0003

44. Shen, J., Wang, C., Wang, X., Wise, S.M.: Second-order convex splitting schemes for gradient flows
with Ehrlich–Schwoebel type energy: application to thin film epitaxy. SIAM J. Numer. Anal. 50(1),
105–125 (2012). doi:10.1137/110822839

45. Shen, J., Yang, X.: Numerical approximations of Allen–Cahn and Cahn–Hilliard equations. Discrete
Contin. Dyn. Syst. 28(4), 1669–1691 (2010). doi:10.3934/dcds.2010.28.1669

46. Shen, J., Yang, X.: A phase-field model and its numerical approximation for two-phase incompressible
flows with different densities and viscosities. SIAM J. Sci. Comput. 32(3), 1159–1179 (2010). doi:10.
1137/09075860X

47. Shen, J., Yang, X.: Decoupled, energy stable schemes for phase-field models of two-phase incompress-
ible flows. SIAM J. Numer. Anal. 53(1), 279–296 (2015). doi:10.1137/140971154

48. Strang, G.: On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5,
506–517 (1968)

49. Temam, R.: Une méthode d’approximation de la solution des équations de Navier–Stokes. Bull. Soc.
Math. France 96, 115–152 (1968)

50. Témam, R.: Sur l’approximation de la solution des équations de Navier–Stokes par la méthode des pas
fractionnaires II. Arch. Ration. Mech. Anal. 33, 377–385 (1969)

51. van Kan, J.: A second-order accurate pressure-correction scheme for viscous incompressible flow.
SIAM J. Sci. Stat. Comput. 7(3), 870–891 (1986). doi:10.1137/0907059

52. Wang, X.: Numerical algorithms for stationary statistical properties of dissipative dynamical systems.
Discrete Contin. Dyn. Syst. 36(8), 4599–4618 (2016). doi:10.3934/dcds.2016.36.4599

53. Wise, S.M.: Unconditionally stable finite difference, nonlinearmultigrid simulation of the Cahn–
Hilliard–Hele–Shaw systemof equations. J. Sci. Comput. 44(1), 38–68 (2010). doi:10.1007/
s10915-010-9363-4

54. Yanenko, N.N.: The method of fractional steps. The solution of problems of mathematical physics
in several variables. Springer, New York (1971). (Translated from the Russian by T. Cheron. English
translation edited by M. Holt)

123

http://dx.doi.org/10.1016/j.jcp.2003.07.035
http://dx.doi.org/10.1016/0021-9991(85)90148-2
http://dx.doi.org/10.1137/S0036142901392766
http://dx.doi.org/10.1017/jfm.2012.461
http://dx.doi.org/10.1017/jfm.2012.461
http://dx.doi.org/10.1016/B978-0-12-470650-7.50008-6
http://dx.doi.org/10.1002/num.21721
http://dx.doi.org/10.1090/S0025-5718-09-02302-3
http://dx.doi.org/10.1090/S0025-5718-96-00750-8
http://dx.doi.org/10.1142/9789814360906_0003
http://dx.doi.org/10.1142/9789814360906_0003
http://dx.doi.org/10.1137/110822839
http://dx.doi.org/10.3934/dcds.2010.28.1669
http://dx.doi.org/10.1137/09075860X
http://dx.doi.org/10.1137/09075860X
http://dx.doi.org/10.1137/140971154
http://dx.doi.org/10.1137/0907059
http://dx.doi.org/10.3934/dcds.2016.36.4599
http://dx.doi.org/10.1007/s10915-010-9363-4
http://dx.doi.org/10.1007/s10915-010-9363-4

	Uniquely solvable and energy stable decoupled numerical schemes for the Cahn–Hilliard–Stokes–Darcy system for two-phase flows in karstic geometry
	Abstract
	1 Introduction
	2 The weak formulation
	3 The numerical schemes
	3.1 An energy stable scheme (PD) decoupling the order parameter and the velocity
	3.2 A fully decoupled numerical scheme (FD)

	4 Numerical experiments
	4.1 Convergence and stability
	4.2 Boundary-driven flow
	4.3 Buoyancy-driven flow

	5 Conclusions
	References




