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Abstract In this paper, we are concerned with the application of the recently intro-
ducedmulti-revolution composition methods, on the one hand, and two-scale methods,
on the other hand, to a class of highly-oscillatory evolution equations with multiple
frequencies. The main idea relies on a well-balanced reformulation of the problem as
an equivalent mono-frequency equation which allows for the use of the two aforemen-
tioned techniques.

Mathematics Subject Classification 34K33 · 37L05 · 35Q55

1 Introduction

This article is devoted to the numerical solution of highly-oscillatory problems (HOPs)
bymultiscale methods.We consider the situationwhere a finite -strictlymore than one-
number d > 1 of constant frequencies ω1 < · · · < ωd = 1, occur in the problem, and
assume that these frequencies are scaled with the inverse of a small parameter ε and
are not all rational, thus introducing simultaneous high-oscillations in the equations.
More specifically, we shall consider evolution equations of the form (with d ≥ 2)
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u̇(t) = 1

ε

(
d∑

i=1

ωi Ai

)
u(t) + g(u(t)), u(0) = u0 ∈ X, t ∈ [0, 1], (1)

where the linear operators Ai , i = 1, . . . , d, commute with each other and generate
2π -periodic propagators τ �→ eτ Ai , and where the function g is either a linear or a
nonlinear map from X to itself. Since we wish to focus on the obstacles induced by
the presence of several frequencies, we shall content ourselves here with ordinary dif-
ferential equations posed in X = R

n , though more general evolution equations could
also be considered1 and will be indeed used as test case in the numerical experiment
Sect. 5. A fundamental assumption throughout the paper is that the scaled vector of
frequencies ω = (ω1, . . . , ωd−1, 1) has not all its components inQ , that is to say that
ω /∈ Q

d+. In the sequel, we shall assume in addition the following

Assumption 1 Equation (1) admits a uniquely defined solution for all 0 < |ε| <

ε0 ≤ 1 and this solution remains in an open bounded set K ⊂ X for all (t, |ε|) ∈
[0, 1]×]0, ε0[.

Problem (1) is notoriously difficult to solve numerically: in order to achieve some
accuracy, usual numerical schemes are forced to follow more and more oscillations
as ε becomes smaller and smaller, whereas the averaged dynamics is often what only
matters in applications. Standard methods such as Lie-Trotter and Strang splittings, or
compositions thereof, suffer from severe step size restrictions, rendering them useless
in practice for very small values of ε. More elaborate schemes of Gautschi type over-
come some of the limitations of splitting techniques, but certainly not all of them (see
[13], Chapter XII) and in particular are subject to resonances. It is thus of paramount
importance to design effective methods.

The mono-frequency problem (i.e. Eq. (1) with only one operator) has drawn much
attention in recent years and one has witnessed the introduction of several multiscale
methods able to produce outputs with equal accuracy and cost [4–7,9], irrespect of
the stiffness parameter 1/ε. For instance, two-scale methods (TSMs) [5], on the one
hand, andmulti-revolution compositionmethods (MRCMs) [6], on the other hand, both
permit to filter out the oscillations in the solution and to capture the behavior of the
underlying smooth equation. These methods have been applied successfully in various
contexts (ODEs but also PDEs such as kinetic equations and Schrödinger equations)
and have demonstrated their ability to deliver uniformly good results in a wide range of
ε-values, a property referred to as uniform accuracy. In this work, our goal is to rewrite
the original equation (1), which is multi-frequency in essence, in such a way that the
two aforementioned methods can be employed. To this aim, we shall approximate
all the frequencies simultaneously by rational numbers with the same denominator.
This strategy has already been successfully used in the context of homogenisation
methods by several authors [1,18] and control of PDEs [12]. In our context, it is
fundamental for the diophantine approximation error to remain small -as compared
to the parameter ε- and simultaneously that this common denominator also remains

1 Let us note however that in the application to infinite-dimensional problems, the technique we introduce
here may raise difficulties that we will not comment on in this paper.

123



Highly-oscillatory evolution equations with multiple... 909

small. The strategywe use to balance these contradictory requirements is rather simple
and will be described in Sect. 2. However, it requires an ad-hoc estimate which falls
within number theory: its proof indeed requires continued fractions approximation
for d = 2 and more elaborate results from [16,17] for d > 2. At this point, let us
emphasize that the error estimates we establish here are obviously not claimed to be
a major breakthrough in the field of best diophantine approximations. Nevertheless,
they appear to be novel as drawn by the specific point of view adopted here. This new
formulation of the problem is then amenable to mono-frequency averaging techniques
and associated numerical methods.

In Sect. 2, we shall present the rationale of our technique and state an averaging
result in Sect. 3, which allows to consider problem (1) as a mono-frequency problem
with a rescaled parameter εβ for some2 0 < β < 1. Strikingly, the estimates obtained in
this non-fully-resonant scenario are qualitatively similar to those obtained by standard
techniques (e.g. by filtering with the flow of the harmonic oscillators, and applying
the averaging estimates of C. Simo [19]). Section 4 will deal with the required error
estimates for the simultaneous approximation of the frequencies ωi . Special attention
will be paid to the dimension d = 2, as larger values of β can be obtained for specific
values ofω1 (namely thosewhich can bewritten as a continued fractionwith a bounded
sequence of coefficients). The general situation with d > 2 frequencies will also be
explored in this section. Finally, Sect. 5 will present numerical experiments for both
MRCMs and TSMs. Their use in the present context will also be explained. Note that
we have added an Appendix which recalls the results of [8,11] used in this paper.

2 Motivations and method rationale

Since efficient numericalmethods formono-frequencyHOPs are close at hand, the idea
at the core of this work consists in reformulating equation (1) as a one-frequency HOP.
Note that approximating simultaneously real numbers by rational ones with a common
denominator in highly-oscillatory problems is reminiscent of previous works in the
literature on homogenisation methods [1,18] and on control of PDEs [12]. Moreover,
simultaneous diophantine approximation is per se a thoroughly studied problem and
one may find in the literature several famous related statements. However and up to
our knowledge, none of them perfectly meets our requirements. In this section, we
expose how this can be done appropriately in our situation and then examine the overall
expected computational gain, before further commenting on existing classical results
from the literature.

2.1 Rewriting the d-frequency system as a one-frequency system

We first notice that by rescaling the time (or equivalently ε), we may suppose that
ωd = 1. Anticipating its proof in next section, we now use the following statement:
for almost all ω ∈]0, 1]d with ωd = 1 and all 0 < α < 1/(d − 1), there exists a

2 The exponent β explicitly depends on the dimension d of the frequency vector and will greatly influence
the efficiency of the numerical methods presented in Sect. 5.
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positive constant Cα
ω such that

∀P ∈ [1,+∞[, ∃p ∈ N
d , s.t. pd ≤ P, p1 ∧ · · · ∧ pd = 1 and

max
i=1,...,d

∣∣∣∣ωi − pi
pd

∣∣∣∣ ≤ Cα
ω

P1+α
(2)

where we have denoted p = (p1, . . . , pd). The main idea of this work now consists
in replacing the frequencies ωi , i = 1, . . . , d by approximations

ωi ≈ pi
pd

, i = 1, . . . , d,

with the same denominator pd as in (2). Equation (1) can then be written in a -strictly-
equivalent form

u̇(t) = 1

εpd

(
d∑

i=1

pi Ai

)
u(t) + 1

ε

d∑
i=1

(
ωi − pi

pd

)
Aiu(t) + g (u(t))

with ∥∥∥∥∥1ε
d∑

i=1

(
ωi − pi

pd

)
Aiu

∥∥∥∥∥
X

≤ Cα
ω

εP1+α

(
d∑

i=1

‖Ai‖L(X)

)
‖u‖X . (3)

In order to get a mono-frequency highly-oscillatory problem of the form considered
in [5,6], namely

u̇(t) = 1

μ
Au(t) + g̃(u(t)), t ∈ [0, 1], (4)

where t �→ et A is 2π -periodic and g̃ is uniformly bounded for all sufficiently small ε,
it thus suffices to consider the rational approximations provided by (2) for P = ε−β

with β := 1
1+α

, so that

A =
d∑

i=1

pi Ai , g̃(u) = g(u) + 1

ε

d∑
i=1

(
ωi − pi

pd

)
Aiu and μ = εpd .

We thus proceed as follows: given ε > 0, define P = Pε = ε−β and choose an integer
pd = pε

d ≤ P and d − 1 integers pi = pε
i satisfying estimate (2) and such that pd is

minimum. The parameter μ = με = εpε
d is then bounded by εPε = ε1−β which is

small as soon as ε is (given that 0 < β < 1). It is then straightforward that (using that
K̄ ⊂ X is compact, see Assumption 1)

sup
u∈K̄

‖g̃‖ ≤ sup
u∈K̄

‖g‖ + Cα
ω

(
d∑

i=1

‖Ai‖L(X)

)
sup
u∈K̄

‖u‖ = O(ε0).
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Highly-oscillatory evolution equations with multiple... 911

2.2 Expected computational speed-up

The “price to be paid”, in going from Eqs. (1) to (4), stems from the fact that the
averaging parameter ε, intended to be small as it appears in (1), has been multiplied
by pd in (4). In the worst case, pd can be of size P , so that εpd is then of size ε

α
1+α .

So to say, in passing from (1) to (4), the highly-oscillatory character of the problem
has slightly faded away and the potential gain expected from multiscale methods has
been reduced accordingly. However, it appears that the use of MRCMs or TSMs still
allows for a significant overall gain. This can be seen as follows:

(i) on the one hand, if one solves the original equation (1)

u̇(t) = 1

ε

d∑
i=1

ωi Ai u(t) + g(u(t)), t ∈ [0, 1],

by a direct method (say for instance a splitting method), then the smallest period
of intrinsic oscillations (that is to say 2πε, the period of e

t
ε
Ad given that ωd = 1

and ωi < 1, i = 1, . . . , d − 1) needs to be meshed with a fixed number of steps
(independent of ε), saym. Altogether, the integration of (1) over the interval [0, 1]
thus requires m/(2πε) steps.

(ii) on the other hand, if one first reformulates equation (1) as

u̇(t) = 1

μ

d∑
i=1

pi Aiu(t) + g̃(u(t)) = 1

μ
Au(t) + g̃(u(t)), t ∈ [0, 1],

and then solves it byMRCMs or TSMs, then the solution has to be computed over
a fixed number, say M (independent of μ owing to the design of these methods),

of intervals of length 2πμ (the period of e
t
μ
A). The integration over one period

uses pd × m steps for the pd oscillations to be resolved as accurately as in the
first case, so that computing the solution requires M pd m steps.

The computational gain is thus the ratio

m/(2πε)

M pd m
= Const/(εpd)) ≥ Const ε− α

1+α .

Since 0 < α < 1/(d − 1), it clearly depends on the number d of frequencies. The
expected gain is essentially of size Const/

√
ε for two frequencies and deteriorates

with increasing d.

2.3 Further comments on diophantine estimates from the literature

The famous Dirichlet’s theorem on Diophantine approximation states that, given any
vector ω ∈]0, 1]d with ωd = 1, as in Sect. 2.1, and any natural number P ≥ 1, there
exists p ∈ N

d with pd ≤ P such that
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912 P. Chartier et al.

max
i=1,...,d

∣∣∣∣ωi − pi
pd

∣∣∣∣ ≤ 1

pd Pα
(5)

with α = 1/(d − 1). Its proof is a consequence of the pigeonhole principle and may
be found in textbooks on arithmetic [3,15]. However, estimate (5) is not sufficient for
our purpose: as a matter of fact, the upper bound (3) is then weakened to

∥∥∥∥∥1ε
d∑

i=1

(
ωi − pi

pd

)
Aiu

∥∥∥∥∥
X

≤ 1

εpd Pα

(
d∑

i=1

‖Ai‖L(X)

)
‖u‖X ,

and thus requires in essence that (i) εpd Pα ≥ 1 while (ii) keepingμ = εpd small w.r.t.
ε, say of size εβ for some 0 < β < 1. In order to ensure the second condition, one
has no option but to choose εP = εβ , since no information is provided by Dirichlet’s
theorem on the actual size of pd , which may be close to 1 or quite the opposite, close
to P . The inequality εpd Pα ≥ 1 then becomes pd ≥ εαβ−1, a condition impossible
to guarantee given that αβ − 1 < 0.

Another well-known result for the d = 2 case, namely the Borel-Hurwitz theorem
(see for instance [15] or [18]), states that, given the irrationality of ω1, there exists an
sequence of fractions (pn,1/pn,2)n∈N with increasing denominators such that

∣∣∣∣ω1 − pn,1

p2,n

∣∣∣∣ ≤ 1√
5p22,n

.

At first glance, it appears to refine estimate (5) in this case. However, it does not provide
estimates on the growth of p2,n with n. In particular, it may happen that the sequence
(p2,n+1 − p2,n)n∈N be unbounded, a scenario in which conditions (i) εp22,n ≥ 1 and
(ii) μ = ε p2,n small may be impossible to satisfy simultaneously.

The necessity of controlling the difference between consecutive common denomi-
nators was precisely the driving motivation for using and deriving estimate (2), whose
proof follows mostly from standard results in arithmetic (see Sect. 4.2).

3 An averaging result for multi-frequency HOPs

In this subsection, we now establish an averaging result similar to the early paper [19]
or to [11] which uses B-series.

3.1 Statement of the result

According to the discussion of Sect. 2.1, we henceforth explicitly indicate the depen-
dence on ε of pε = (pε

1, . . . , p
ε
d), P

ε and με = ε pε
d , by upper indices and consider

the change of variables from X to itself

u �→ χθ (u) = exp
( d∑

i=1

θi Ai

)
u,
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Highly-oscillatory evolution equations with multiple... 913

parametrized by θ = (θ1, . . . , θd) ∈ T
d ≡ [0, 2π ]d . Introducing

Gθ (v) = χ−θ

(
g (χθ (v))

)
and performing the change of variables u = χ t

με pε (v), the differential equation for v

can be written

v̇(t) = G t
με pε (v(t)) + 1

ε

d∑
i=1

(
ωi − pε

i

pε
d

)
Ai v(t) := f ε

t
με

(v(t)), v(0) = v0, (6)

where we have used the commutation of χθ and the Ai ’s, and denoted

f ε
τ (v) = Gτpε (v) + 1

ε

d∑
i=1

(
ωi − pε

i

pε
d

)
Ai v.

Note that since 1 is the greatest common divisor of pε
1, . . . , p

ε
d , 2π is the smallest

period of the function τ �→ Gτpε .
We wish to study the differential equation (1) in the open bounded K ⊂ R

n , as
defined in Introduction. Since the derivation of exponentially small error estimates in
the averaging procedure requires some analyticity assumptions, we further introduce,
for ρ ≥ 0, the extended set

Kρ = {v + w ∈ C
n : v ∈ K̄, ‖w‖ ≤ ρ}

where ‖·‖ denotes the euclidean norm onCn as well as the induced subordinated norm
for matrices ofMn(C). Finally, we denote by ‖ f ‖ρ = supu∈Kρ

‖ f (u)‖ the maximum
norm on the compact set Kρ . We are now ready to state the main hypothesis on the
map (θ, v) �→ Gθ (v):

Assumption 2 There exist R > 0 and an open set U containing KR such that, for
all θ ∈ T

d the function v �→ Gθ (v) can be extended to a map from U to C
n which

is analytic at each point v ∈ KR . Furthermore, the sum of the norms of the Fourier
coefficients Ĝk, k ∈ Z

d , of G, is bounded, i.e.

M :=
∑

k∈Zd

‖Ĝk‖R < +∞.

Note that we have

Gτpε (v) =
∑
l∈Z

eilτ

⎛
⎝ ∑

k∈Zd , k·pε=l

Ĝk(v)

⎞
⎠ (7)

where the multi-indices k ∈ Z
d in the inner-sum can be expressed under the form

k = x + Sy, x ∈ Z
d , S ∈ Md,d−1(Z), y ∈ Z

d−1,
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914 P. Chartier et al.

x and S being fixed values depending on l and pε, while y takes all values inZd−1. The
series (‖Ĝk‖R)k∈Zd being summable, the inner series in Gτpε (v) are also convergent
so that the Fourier coefficients of Gτpε (v) can be expanded as the inner series in (7).
To sum up, we have

Gτpε (v) =
∑
l∈Z

eilτ Ĝε
l (v) where Ĝε

l (v) =
∑

k∈Zd , k·pε=l

Ĝk(v). (8)

Remark 3.1 For instance, for d = 2, we have

Gτpε (v) =
∑
l∈Z

eilτ
(∑
m∈Z

Ĝ(laε+mpε
2,lb

ε−mpε
1)

(v)

)

where aε and bε are two integers such that aε pε
1 + bε pε

2 = pε
1 ∧ pε

2 = 1. All Fourier
coefficients Ĝk, k ∈ Z

2, of Gθ (v) appear in this sum, but are gathered by blocks to
form the Fourier coefficients of Gτpε (v).

Theorem 3.2 Consider ω ∈]0, 1]d with ωd = 1, ωi < 1 for i = 1, . . . , d − 1 and
0 < α < 1/(d −1) such that (2) holds for some constant Cα

ω . Suppose that G satisfies
Assumption 2 and denote

M̃ := M + Cα
ω

d−1∑
i=1

‖Ai‖R.

Then, for any 0 < ε < ε0 and for any N ∈ N
∗ such that

ε
α

1+α N ≤ c̃ := R

8M̃
,

there exists a near-identity (and periodic) change of variables

v = �
[ε,N ]
t/με (V ) with �[ε,N ] : T × KR/2 → KR, με = ε pε

d ,

transforming equation (6) into the equation

V̇ = F [ε,N ](V ) + R[ε,N ]
t/με (V ), V (0) = v0,

with averaged vector field F [ε,N ] : KR/2 → C
n and remainder R[ε,N ] : T×KR/2 →

C
n satisfying the following bounds

‖F [ε,N ] − f̂ ε
0 ‖R/2 ≤ M̃

2
ε

α
1+α and ∀τ ∈ T, ‖R[ε,N ]

τ ‖R/2 ≤
5

(
ε

α
1+α N
c̃

)N

1 − ε
α

1+α N
c̃

M̃ .

(9)
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Highly-oscillatory evolution equations with multiple... 915

In particular, taking N = N ε as the integer part of c̃/(eε
α

1+α ) ≥ 1, one has

∀θ ∈ T, ‖R[ε,N ε]
θ ‖R/2 ≤ 5e2

e − 1
M̃ exp

(
− c̃

e
ε

−α
1+α

)
. (10)

Proof Let 0 < ε < ε0 and consider pε satisfying (2) for Pε = ε− 1
1+α . We start from

Eq. (6)

v̇(t) = G t
με pε (v(t)) + 1

ε

d∑
i=1

(
ωi − pε

i

pε
d

)
Ai v(t), v(0) = v0,

and consider for the time being μ = με as a small parameter varying independently
of ε, while keeping ε fixed, i.e.

v̇(t) = f ε
t/μ(v(t)), v(0) = v0, t ∈ [0, 1], (11)

where

f ε
τ (v) = Gτpε (v) + 1

ε

d∑
i=1

(
ωi − pε

i

pε
d

)
Ai v

is 2π -periodic owing to the choice of pε. In virtue of Assumption 2, the function f ε
τ

has Fourier coefficients

f̂ ε
l (v) =

∑
k·pε=l

Ĝk(v) for l �= 0 and f̂ ε
0 (v) =

∑
k·pε=0

Ĝk(v)

+1

ε

d∑
i=1

(
ωi − pε

i

pε
d

)
Ai v

where k runs in Zd , so that

∑
l∈Z

‖ f̂ ε
l ‖R ≤ Cα

ω

d−1∑
i=1

‖Ai‖ R +
∑
l∈Z

∑
k·pε=l

‖Ĝk‖R ≤ M̃

where M̃ is independent of ε. Theorem 5.1 thus applies: For any N ∈ N
∗ and any

μ ∈ C such that |μ|N ≤ c̃ := R
8M̃

, there exist a vector fieldV ∈ KR/2 �→ F [ε,μ,N ](V ),

a 2π -periodic-in-time change of variables (τ, V ) ∈ T × KR/2 �→ �
[ε,μ,N ]
τ (V ), and

a 2π -periodic-in-time remainder (τ, V ) ∈ T × KR/2 �→ R[ε,μ,N ]
τ (V ), such that the

solution of (6) reads

v(t) = �
[ε,μ,N ]
t/μ (V (t))

123



916 P. Chartier et al.

where V satisfies a differential equation of the form

V̇ (t) = F [ε,μ,N ](V (t)) + R[ε,μ,N ]
t/μ (V (t)), V (0) = v0,

with the following bounds

‖F [ε,μ,N ] − f̂ ε
0 ‖R/2 ≤ M̃

2
μ, ‖R[ε,μ,N ]

τ ‖R/2 ≤ 5(μN/c̃)N

1 − (μN/c̃)
M̃ .

This result holds for all μ such that |μ|N ≤ c̃, so in particular for μ = με = εpε
d

provided εPεN = ε
α

1+α N ≤ c̃, thus leading to the bounds given in (9). Estimate (10)
is then obtained as in Theorem 5.1. ��

3.2 Conserved quantities in autonomous Hamitonian systems

In this section, we consider the situation of Sect. 3 in [11], that is to say the case of
Hamiltonian systems

u̇ = J−1∇uHε(u) (12)

where J is the canonical matrix

J =
(

0 Id
−Id 0

)
, Id ∈ M(Rm),

and where the Hamiltonian is of the form

Hε(u) = 1

ε

( d∑
j=1

ω j I j (u)
)

+ K (u) (13)

with ω a vector of frequencies as considered in this paper. Furthermore, the following
assumptions are satisfied:

(i) The functions I j are in involution, i.e. for all i, j = 1, . . . , d, one has {Ii , I j } = 0
where the bracket used here is the Poisson bracket (see for instance [11]).

(ii) For all j = 1, . . . , d, the flow χ
[ j]
τ of the differential system

d

dτ
χ [ j]

τ (u) = J−1∇u I j (χ
[ j]
τ (u))

is 2π -periodic.

We then denote, for θ ∈ T
d

χθ = χ
[1]
θ1

◦ χ
[2]
θ2

◦ · · · ◦ χ
[d]
θd
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Highly-oscillatory evolution equations with multiple... 917

where the composition is commutative by virtue of the first assumption (i). In accor-
dance with [11] again, we shall work under the following hypothesis:

Assumption 3 There exist R > 0 and an open set U containing KR such that:

(i) for all j = 1, . . . , d, I j can be extended to an analytic map on U ;
(ii) for each θ ∈ T

d , K ◦ χθ can be extended to a map from U to C which is analytic
at each point in KR .

Furthermore, the Fourier coefficients Ĥk, k ∈ Z
d , of K ◦ χθ satisfy the following

bound

M :=
∑

k∈Zd

‖Ĥk‖R < +∞.

We can now decompose the Hamiltonian just as we did for the vector field in
previous section and write

Hε(u) = 1

εpε
d

( d∑
j=1

pε
j I j (u)

)
+K (u)+

d∑
j=1

1

ε

(
ω j − pε

j

pε
d

)
I j (u)= 1

με
I ε(u) + K ε(u)

with

I ε :=
d∑
j=1

pε
j I j , K ε := K +

d∑
j=1

1

ε

(
ω j − pε

j

pε
d

)
I j ,

and where pε is chosen so as to satisfy (2) with Pε = ε− 1
1+α . Noticing that

K ε ◦ χθ = K ◦ χθ +
d∑
j=1

1

ε

(
ω j − pε

j

pε
d

)
I j

owing to assumption (i), it is clear that the Fourier coefficients Ĥ ε
l of K ε

τ := K ε ◦χτpε

can be written as follows

Ĥ ε
l =

∑
k·pε=l

Ĥk for l �= 0 and Ĥ ε
0 =

∑
k·pε=0

Ĥk +
d∑
j=1

1

ε

(
ω j − pε

j

pε
d

)
I j

where k runs in Zd . Under Assumption 3, we thus have

∑
l∈Z

‖Ĥ ε
l ‖R ≤ Cα

ω

d−1∑
j=1

‖I j‖R + M := M̃

where M̃ is independent of ε. We can thus state the following theorem:
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918 P. Chartier et al.

Theorem 3.3 Consider ω ∈ [0, 1]d with ωd = 1, ωi < 1 for i = 1, . . . , d − 1 and
0 < α < 1/(d − 1) such that (2) holds for some constant Cα

ω . Suppose that K ◦ χθ

satisfies Assumption 3 and let M̃ denote the quantity M̃ := M + Cα
ω

∑d−1
j=1 ‖I j‖R.

Then for any (ε, N ) ∈] − ε0, ε0[×N
∗ such that 0 < ε

α
1+α (N + 1) ≤ 1

L̃
:= R2

8eM̃
, the

vector field F [ε,N ] of Theorem 3.2 is Hamiltonian with Hamiltonian K̃ [ε,N ] and there
exists a modified invariant Ĩ [ε,N ] such

Hε = 1

εpε
d
Ĩ [ε,N ] + K̃ [ε,N ]

where the three terms are “almost in involution” in the sense that

1. For all u ∈ K,

|{Hε(u), Ĩ [ε,N ](u)}| ≤
(
R

8e

)2 (
L̃ ε

α
1+α (N + 1)

)(N+1)
. (14)

2. Assume that L̃ε
α

1+α ≤ 1/(2e) and choose N = N [ε] as the integer part of
L̃−1ε− α

1+α e−1 − 1. Then for all u ∈ K,

|{Hε(u), Ĩ [ε,N [ε]](u)}| ≤ M̃

8L̃
exp

(
− 1

eL̃ε
α

1+α

)
. (15)

3.3 An illustrative example

As illustration, we consider the version of Fermi–Pasta–Ulam problem discussed in
[13] and used as a test problem in [10], which is of the form (12) considered in Sect. 3.2.
It concerns a 10-dimensional Hamiltonian system with Hamiltonian function

Hε(u) = λ

ε
I1(u) + 1

ε
I2(u) + K (u)

where λ = √
2 and with

I1(u) = 1

2

(
u24
λ

+ λ u29

)
,

I2(u) = 1

2
(u21 + u26) + 1

2
(u22 + u27) + 1

2
(u23 + 4u28),

K (u) = 1

2
(u25 + u210) + 1

560
u26u

2
10 + 1

4900

(√
70

20
+ u6 + u7 + 5

2
u8 + u9

)4

.

Note that λ appearing in I1 is considered later on as a fixed value: it will not be
replaced in I1 by its approximation p1/p2. As a result, the resulting Hamiltonian
system is clearly also of the form (1) as can be seen by writing
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Highly-oscillatory evolution equations with multiple... 919

u̇ = λ

ε
A1u + 1

ε
A2u + J−1∇uK , A1 = J−1∇2

u I1, A2 = J−1∇2
u I2

where the maps t �→ et A1 and t �→ et A2 are 2π -periodic. According to previous
section, we then splitHε into two parts

Hε(u) = 1

με

(
pε
1 I1(u) + pε

2 I2(u)
)

+
(
K (u) + (λ − pε

1/p
ε
2)

ε
I1(u)

)
,

= 1

με
I ε(u) + K ε(u),

with με = εpε
2. The change of coordinates u = χ tpε

με
(v) leads to the new Hamiltonian

system

v̇ = (λ − pε
1/p

ε
2)

ε
J−1∇v I1(v) + J−1∇vK tpε

με
(v) where Kθ = K ◦ χθ .

Since the solution of an elementary 2-dimensional Hamiltonian system with Hamil-
tonian 1

2 (
x2
ν

+ νy2) is given by x(t) = cos(t) x0 − ν sin(t) y0 and y(t) =
(sin(t)/ν) x0 + cos(t) y0, the expression of K(θ1,θ2)(v) is obtained by replacing in
K (v), the coordinates as follows

v6 �→ sin(θ1) v1 + cos(θ1) v6 v7 �→ sin(θ1) v2 + cos(θ1) v7

v8 �→ (sin(2θ1)/2) v3 + cos(2θ1) v8 v9 �→ (sin(θ2)/
√
2) v4 + cos(θ2) v9

leading to

Kθ (v) = 1

2
(v25 + v210) + 1

560
(sin(θ1) v1 + cos(θ1) v6)

2v210 + 1

4900

×
(√

70

20
+ sin(θ1) v1 + cos(θ1) v6 + sin(θ1) v2 + cos(θ1) v7

+5

2
(sin(2θ1)/2 v3 + cos(2θ1) v8) +(sin(θ2)/

√
2) v4 + cos(θ2) v9

)4

.

Now, let us note that, according to Proposition 4.1 of Sect. 4 below, estimate (2) holds

with α = 1. Given that ε = 1/70, we can approximate
√
2 by 17/12 = pε

1
pε
2
as inferred

from the sequence of so-called convergents

1,
3

2
,
7

5
,
17

12
,
41

29
,
99

70
,
239

169
, . . .

for
√
2. We have indeed 5 < Pε = 1/

√
ε ≈ 8.366 < 12. Regarding the error∣∣∣∣√2 − 7

5

∣∣∣∣ ≈ 0.0142 < 0.0143 ≈ 1

70
= ε,
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resulting from the rational approximation we picked up, it is clearly less than εC1√
2

(indeed, C1√
2

≤ 5
2 , see below).

4 Some useful error estimates on diophantine approximation

4.1 The case d = 2: rational approximation of a single irrational

We start by showing that, for some irrationals ω, there exists p = (p1, p2) ∈ (N∗)2
with p2 ≤ P , such that an estimate of the following form

∣∣∣∣ω − p1
p2

∣∣∣∣ ≤ C1
ω

P2 (16)

holds true for some positive constant C1
ω depending on ω but not on P . If we consider

the continued fraction representations [a0; a1, a2, . . . , an] of a realω for n = 0, 1, . . .,
two situations occur:

1. if ω ∈ Q, then there exists a finite representation, i.e.

ω = [a0; a1, a2, . . . , a j ]

for some j ∈ N. Note that if j > 0 then for all 1 ≤ i ≤ j , ai ≥ 1. Conversely, it
is clear that any finite continued fraction is rational.

2. if ω ∈ R\Q, then ω is obtained as the limit

ω = lim
n→∞[a0; a1, a2, . . . , an]

and for all i ≥ 1, ai ≥ 1. Conversely, any infinite sequence (an)n∈N with ai ≥ 1
for all i ≥ 1, defines an element of R\Q.

The bound (16) holds true either if ω ∈ Q or if ω ∈ R\Q and (an)n∈N is bounded.

Proposition 4.1 If eitherω ∈ Q+ orω ∈ R+\Q+ and (an)n∈N is bounded, then there
exists a positive constant C1

ω such that

∀P ∈ N
∗, ∃p ∈ N

2, s.t. p2 ≤ P, p1 ∧ p2 = 1 and

∣∣∣∣ω − p1
p2

∣∣∣∣ ≤ C1
ω

P2 .

Proof If ω ∈ Q+ then the estimate is trivially satisfied for a sufficiently large constant
C1

ω. Otherwise, the continued fraction [a0; a1, a2, . . . , ] defines for all n ∈ N two
sequences of positive integers (hn)n∈N and (kn)n∈N such that

∀n ∈ N
∗, [a0; a1, a2, . . . , an] = hn

kn
with hn ∧ kn = 1. (17)
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Highly-oscillatory evolution equations with multiple... 921

It is known that (hn)n∈N and (kn)n∈N satisfy the recurrence relations (see for instance
[15])

hn = anhn−1 + hn−2, h−1 = 1, h−2 = 0,

kn = ankn−1 + kn−2, k−1 = 0, k−2 = 1,

and the error estimates

1

kn(kn + kn+1)
<

∣∣∣∣ω − hn
kn

∣∣∣∣ <
1

knkn+1
. (18)

Since ω ∈ R+\Q+, then (kn)n∈N is strictly increasing (owing to an ≥ 1) and for all
P ∈ N

∗, there exists kn such that kn ≤ P < kn+1. For this value of P , we have on the
one hand

1

knkn+1
≤ 1

P2

kn+1

kn
,

and on the other hand

k1
k0

= a1 ≤ Cmax and
kn+1

kn
≤ an+1 + 1

an
≤ Cmax + 1/Cmin for n ≥ 1,

so that one can take C1
ω = Cmax + 1/Cmin where Cmax and Cmin ≥ 1 are upper and

lower bounds of (an)n∈N∗ . ��
Since for irrational solutions of quadratic polynomials with rational coefficients, the

sequence (an)n∈N∗ is periodic, it is in particular bounded and (16) holds. For instance,
we have C1√

2
≤ 2+1/2 = 5/2 and C1

1+√
5

2

≤ 1+1 = 2. In contrast, e has a continued

fraction with coefficients a2+3n = 2n + 2, so that we cannot establish the existence
of C1

e with this technique. Moreover, the existence of C1
ω can not be assumed for all

reals ω, as the following proposition shows:

Proposition 4.2 For any 0 < α ≤ 1, there exist real numbers ω ∈ R+/Q+ such that

lim sup
P→+∞

⎛
⎜⎜⎜⎜⎝P1+α min

(p1, p2) ∈ (N∗)2
p2 ≤ P

∣∣∣∣ω − p1
p2

∣∣∣∣
⎞
⎟⎟⎟⎟⎠ = +∞

Proof Let (an)n∈N be a sequence of integers satisfying an ≥ 2 for all n ∈ N
∗, define

(hn)n∈N and (kn)n∈N by the recurrence relations

hn = anhn−1 + hn−2, h−1 = 1, h−2 = 0,

kn = ankn−1 + kn−2, k−1 = 0, k−2 = 1,
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and consider the corresponding irrational defined by the continued fraction

ω = lim
n→+∞[a0; a1, a2, a3, . . . , an] = lim

n→+∞
hn
kn

.

Since (kn)n∈N is strictly increasing, for any P ∈ N
∗, there exists n such that kn ≤

P < kn+1. It is known that the best rational approximation of ω with a denominator
less or equal to P is either hn/kn or a rational of the form

hn−1 + ahn
kn−1 + akn

with a satisfying an+1 ≥ a ≥ �an+1/2� and kn−1+akn ≤ P . If rn+1 = �an+1/2� ≥ 1
and P = kn−1 + rn+1kn − 1 ≥ kn , then the best rational approximation p1/p2 with
p2 ≤ P is hn

kn
. For this value of P , we thus have

P1+α

∣∣∣∣ω − hn
kn

∣∣∣∣ >
P1+α

kn(kn + kn+1)
= (kn−1 + rn+1kn − 1)1+α

kn(kn + kn+1)

and

(kn−1 + rn+1kn − 1)1+α

kn(kn + kn+1)
= (kn−1 + rn+1kn − 1)1+α

kn(kn−1 + (an+1 + 1)kn)
≥ caα

n+1k
α−1
n

for some c > 0 and for sufficiently large n. Taking δ + 1 = �1/α� + 1 > 1/α and
an+1 = kδ

n , this gives

aα
n+1k

α−1
n = kα(δ+1)−1

n ,

a sequence that tends to infinity when n tends to infinity. This completes the proof. ��
Now, since inequality (16) is not satisfied for all reals, the question arises whether it

is true for almost all reals. Again, the answer is negative and one can additionally assert
that for almost every real, (16) is not satisfied.3 However, the following proposition
holds true:

Proposition 4.3 Let 0 < α < 1 be given. For almost every real ω ∈ [0, 1], there
exists a positive constant Cα

ω , such that

∀P ∈ [0,+∞[, ∃p ∈ N
2, p2 ≤ P, p1 ∧ p2 = 1 and

∣∣∣∣ω − p1
p2

∣∣∣∣ ≤ Cα
ω

P1+α
. (19)

3 Since this is not the main focus of this paper, we shall not further elaborate on this question.
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Proof Consider (hn(ω)/kn(ω))n∈N the series of convergents associated with ω ∈
(R+\Q+) ∩ [0, 1], i.e. hn(ω)/kn(ω) = [0; a1(ω), . . . , an(ω)] with

ω = lim
n→∞[0; a1(ω), . . . , an(ω)].

Given η = 1−α
α

> 0, define the sets (Sn)n∈N∗ by

Sn = {ω ∈]0, 1[, kn+1(ω) > kn(ω)1+η}.

If ω belongs to Sn , then there exists p1 (= hn(ω)) such that 1 ≤ p1 ≤ kn(ω) and
satisfying

∣∣∣∣ω − p1
kn(ω)

∣∣∣∣ <
1

kn(ω)kn+1(ω)
<

1

kn(ω)2+η
,

so that

μ(Sn) ≤
∑

p2≥δrn

∑
1≤p1≤p2

2

p2+η
2

≤ 2
∑

p2≥δrn

1

p1+η
2

where μ is the Lebesgue measure on R. As a matter of fact, for ω ∈ Sn , the strict
inequality kn+1(ω) > kn(ω) implies that an+1(ω) ≥ 1, so that for all 1 ≤ j ≤ n,

a j (ω) ≥ 1 and kn(ω) ≥ δrn with δ = 1√
5
and r =

√
5+1
2 > 1. Now, since η > 0, we

thus have ∑
n≥1

μ(Sn) < +∞,

and owing to Borel-Cantelli’s theorem

μ(lim sup
n

Sn) = 0.

As a consequence, for almost every ω ∈ [0, 1], ω /∈ lim supn Sn , that is to say, for
almost every ω ∈]0, 1[, there is only a finite number of indices n ∈ N

∗ such that
ω ∈ Sn . In other terms, for almost every ω ∈]0, 1[, there exists j (ω) ∈ N

∗ such that

∀n ≥ j (ω), kn+1(ω) ≤ kn(ω)1+η. (20)

Eventually, given ω satisfying (20), and P ≥ k j (ω), consider n ≥ j (ω) such that
kn(ω) ≤ P < kn+1(ω). Then we have

∣∣∣∣ω − hn(ω)

kn(ω)

∣∣∣∣ <
1

kn(ω)kn+1(ω)
≤ 1

P1+ 1
1+η

= 1

P1+α
.

��
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4.2 Simultaneous approximation of a vector of irrationals

Whenever more than one frequency have to be approximated, the situation is get-
ting more involved. The so-called problem of simultaneous rational approximation is
notoriously more difficult in dimension d ≥ 3 for essentially one key-aspect, namely
the absence of a continued fraction algorithm and of its associated relations. However,
the result obtained in previous proposition can be generalized without too much diffi-
culty if we content ourselves with a non-constructive sequence of best approximations,
defined as follows (in the sequel, we write r = d − 1 > 1 and ω̃ = (ω1, . . . , ωd−1)

for a better readability):

Definition 4.4 Let ω̃ ∈ [0, 1]r . The strictly positive integer q is said to be a best
approximation of ω̃ if and only if

∀0 < k < q, min
p∈Zr

‖q ω̃ − p‖∞ < min
p∈Zr

‖k ω̃ − p‖∞

where p = (p1, . . . , pr ).

The proof of Proposition 4.5 uses three results that we now quote separately in
anticipation:

• The so-called fundamental inequality, obtained by several authors (see for instance
[16,17] for a slightly more general version than the one exposed here), which gen-
eralizes the error estimate (18) for kn , states that, for ω̃ /∈ Q

r+, there exists a strictly
growing sequence of integers (qn)n∈N (the sequence of best approximations) such
that

min
p∈Zr

‖qnω̃ − p‖r∞ ≤ 1

qn+1
.

• For any ω̃ /∈ Q
r+, there exists a constant λ > 1 such that

∀n ≥ 0, qn ≥ λn . (21)

This result is a consequence of the stronger estimate derived in [16]: For any
ω̃ /∈ Q

r+,

lim
n→+∞ inf(qn)

1/n ≥ 1 + 1

2r+1 .

• The Borel-Cantelli’s theorem which states that for any sequence of sets An ⊂ R
d

such that ∑
n≥0

μ(An) < +∞

one has μ(lim supn→+∞ An) = 0 where μ denotes here the Lebesgue measure on
R
d .
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Proposition 4.5 Let 0 < α < 1/r be given. For almost every real ω̃ in ]0, 1]r , there
exists a positive constant Cα

ω̃
, such that

∀Q ∈ [1,+∞[, ∃q ≤ Q, ∃p ∈ N
r s.t. p1 ∧ · · · ∧ pr ∧ q = 1,

max
i=1,...,r

∣∣∣∣ω̃i − pi
q

∣∣∣∣ ≤ Cα
ω̃

Q1+α
.

Proof For ω̃ /∈ Q
r+, consider the sequence (qn(ω̃))n∈N of best approximations and

define for η = 1/r−α
1−1/r+α

> 0, the sets (An)n∈N by

An = {ω̃ ∈ [0, 1]r , ω̃ /∈ Q
r+, qn+1(ω̃) > qn(ω̃)1+η}.

If ω̃ belongs to An , then there exists p = (p1, . . . , pr ) ∈ N
r such that for all i =

1, . . . , r , 0 ≤ pi ≤ qn(ω̃) − 1 and satisfying

min
i=1,...,r

∣∣∣∣ω̃i − pi
qn(ω̃)

∣∣∣∣ ≤ 1

qn(ω̃)q1/rn+1(ω̃)
<

1

qn(ω̃)
r+1+η

r

.

Any such ω̃ belongs to a ball (w.r.t. to the ‖ · ‖∞-norm) B(p/q, ρ) with radius ρ ≤
1/qn(ω̃)

r+1+η
r and center p/q such that p = (p1, . . . , pr ), 1 ≤ pi ≤ q (i = 1, . . . , r ),

and, owing to (21), q ≥ λn . Hence, we have

μ(An)≤
∑
q≥λn

∑
1≤p1≤q

. . .
∑

1≤pr≤q

(
2

q
r+1+η

r

)r

≤
∑
q≥λn

qr
(

2

q
r+1+η

r

)r

!leq2r
∑
q≥λn

1

q1+η

where μ is the Lebesgue measure on Rr . Now, since η > 0 and λ > 1, we have

∑
n≥0

μ(An) < +∞,

and by Borel-Cantelli’s theorem

μ(lim sup
n

An) = 0.

As in Proposition 4.3, for almost every ω̃ ∈]0, 1]r , there exists j (ω̃) ∈ N such that

∀n ≥ j (ω̃), qn+1(ω̃) ≤ qn(ω̃)1+η. (22)
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Eventually, given ω̃ satisfying (22), and Q ≥ q j (ω̃), consider n ≥ j (ω̃) such that
qn(ω̃) ≤ Q < qn+1(ω̃). Then we have

min
p∈Nr

∥∥∥∥ω̃ − p
qn(ω̃)

∥∥∥∥∞
<

1

qn(ω̃)q1/rn+1(ω̃)
≤ 1

Q
1
r + 1

1+η

= 1

Q1+α
.

��
Taking into account the shift r = d − 1 and the fact that ωd is assumed to be 1, this

proposition proves our estimate (2).

5 Numerical experiments

In this section, we present some numerical experiments that show the efficiency of
our strategy. We shall consider two different problems and two different methods. The
problems are, on the one hand, the Fermi–Pasta–Ulam described in [13] and exposed
in Section 5.1, and on the other hand, a multi-component Schrödinger equation. As for
the methods, we shall use, on the one hand, the multi-revolution composition method
(MRCM), introduced in [6], and on the other hand, the two-scale method (TSM)
introduced in [5]. Both methods have been originally designed for mono-frequency
problems and, in order to handle the two aforementioned test-cases, we apply the
strategy exposed in this paper. Let us briefly present the main ideas underlying the two
techniques:

(i) MCRMs: the flow corresponding to the integration over one period of time of
a differential equation of the form u̇ε = ft/ε(uε) (with f periodic in t/ε) is a
near-identity map ϕε : Rm → R

m . Computing the exact solution over N periods
thus amounts to computing the N th iterate ϕN

ε of ϕε. The idea ofMRCMs consists
in approximating ϕN

ε by a composition of the form

ϕN
ε = ϕα1H ◦ ϕ∗

β1H ◦ · · · ◦ ϕαs H ◦ ϕ∗
βs H + O(ε p+1), H = Nε,

where ϕ∗
ε := (ϕ−ε)

−1 and where p is made as high as possible by choosing
appropriate coefficients α’s and β’s (and letting them depend on N ). Whenever
s � N , the computational effort is considerably reduced. In fact, a careful analysis
shows that for ε small enough, the overall cost is independent of ε, whereas it
typically grows like 1/ε for standard integration methods. Here, we shall use the
fourth-order (p = 4) MRCM of [6], where ϕε itself is approximated by a Strang
splitting method.

(ii) TSMs: in two-scale methods for u̇ε = ft/ε(uε), the solution is sought as the diag-
onal τ = t/ε of an approximation of U ε(t, τ ) satisfying the transport equation

∂tU
ε(t, τ ) + 1

ε
∂τU

ε(t, τ ) = fτ (U
ε(t, τ )).

The main idea is then that the initial condition U ε(0, τ ) can be chosen in such a
way that all derivatives ofU ε(t, τ ) remain bounded w.r.t. to ε up to some arbitrary
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order p, thus allowing for the construction of uniformly accurate methods of
order p−1. In this section, we shall consider the uniformly second-order method
obtained in [5].

Both techniques have been designed for mono-frequency highly-oscillatory prob-
lems, the first one (MRCM) in the context of ordinary differential equations and the
second one (TSM) originally for kinetic equations and later on for the Schrödinger
equation. In the aforementioned situations, they are capable of delivering numer-
ical approximations with constant accuracy and constant cost w.r.t. ε in the limit
where ε tends to zero. MRCMs are in addition provably geometric, while TSMs
are not, even though they often behave likewise. The situation is reversed as far as
uniform accuracy is concerned: MRCMs are strictly speaking not uniformly accu-
rate, while TSMs are. It is thus enlightening to study whether MRCMs preserve,
as predicted in this paper, the energy of Hamiltonian systems, and similarly to test
whether TCMs behave correctly. The other part of our tests aims at assessing the
extent to which TCMs remain uniformly accurate. The Strang method with tiny step-
sizes is used here to obtain a very accurate reference solution in all experiments.
In comparison, both MRCMs and TSMs become competitive for ε ≤ 10−4 with
the FPU problem and ε ≤ 10−3 with the system of coupled Schrödinger equa-
tions.

5.1 A Fermi–Pasta–Ulam system with two frequencies

In this subsection,we consider theHamiltonian systemwith a finite degrees of freedom
q ∈ R

5, p ∈ R
5, borrowed from [13] and used in [10]:

H(p, q) = λ1

(
p21
2

+ q21
2

)
+

5∑
j=2

(
p2j
2ε

+ λ2j q
2
j

2ε

)
+U (q),

U (q) = δ2

8
q21q

2
2 + δ4

(√
70

20
+ q2 + q3 + 5

2
q4 + q5

)4

,

with

λ1 = 1, λ2 = λ3 = 1, λ4 = 2, λ5 = √
2

and

δ = 1/70, q(0) = (1, 0.3δ, 0.8δ, 0.7δ,−1.1δ),

p(0) = (−0.2, 0.6δ, 0.7δ, 0.8δ,−0.9δ).
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Fig. 1 (FPU, d = 1) energy exchanges, Strang splitting method

5.1.1 Energy exchanges

We observe the evolution over a long time of the quantities

I1 = λ1

(
p21
2

+ q21
2

)
, I j = p21

2
+ λ2j q

2
1

2
, j = 2, . . . , 5,

computed with three methods:

– the Strang splitting method (Fig. 1) with the time-step �t = 2π
16 ε; such a step

makes the approximation accurate enough to regard the solution as ’exact’. This
is indeed our reference solution.

– the MCRM [6] of order 4, with N = 60 and with the micro time-step �t = 2π
16 q

for the micro-integrator over one period [0, 2π ], which represents a computational
gain of a factor 10 compared to the direct Strang splitting method (Fig. 2);

– the TSM [5] of second-order, implemented with the implicit mid-point scheme
(Fig. 3), with the time-step �t = 2π

16 and 32 discretization points in the variable
τ .

We take ε = 10−3 and, for the two latter methods, p = 41 and q = 29. It is
apparent from Figs. 2 and 3 that the energy exchanges are well reproduced by both
the MRCM and the TSM. In next section, we now investigate the accuracy of both
methods.

5.1.2 Accuracy of the MRCM

On Fig. 4, we plot the error for the MRCMs of order 1, 2 and 4 of [6], as a function
of the macrostep H = qεN for two values of ε (ε = 4 × 10−5 and ε = 10−5). For
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Fig. 2 (FPU, d = 1) energy exchanges, multirevolution composition method
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Fig. 3 (FPU, d = 1) energy exchanges, two-scale method

varying ε, note that qε ≈ √
ε and that by choosing N ≈ 1/

√
ε the error remains

essentially constant while the computational cost grows like 1/
√

ε. This, of course,
compares favorably with the 1/ε increase observed for standard methods such as
Strang.

5.1.3 Uniform accuracy of the two-scale method

The goal is here to observe the uniform second order accuracy of the TSM. The final
time is taken equal to 2π and the number of discretization points for the τ -variable is
max(64, 16p). The values of p and q in the approximation p

q of λ5 = √
2,as well as
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Fig. 4 (FPU, d = 1) error versus macrostep for ε = 4 × 10−5 (left) and ε = 10−5 (right)

the value of the remainder Err := 1
ε
|√2 − p

q |, are given in the following table: they
are obtained by a continued fraction algorithm.

ε 0.64 0.32 0.16 0.08 0.04 0.02 0.01 0.005 0.0025 0.00125 0.000625

p 1 1 3 3 7 7 7 17 17 17 41
q 1 1 2 2 5 5 5 12 12 12 29
Err 0.64 1.29 0.54 1.07 0.36 0.71 1.42 0.49 0.98 1.96 0.67

ε 3.12 ∗ 10−4 1.56 ∗ 10−4 7.81 ∗ 10−5 3.91 ∗ 10−5 1.95 ∗ 10−5 9.77 ∗ 10−6

p 41 99 99 99 239 239
q 29 70 70 70 169 169
Err 1.34 0.46 0.92 1.85 0.63 1.27

On the left picture of Fig. 5, we plot the error as a function of the time-step �t ,
for different values of ε and on right picture of Fig. 5, the error as a function of ε, for
different values of the time-step �t . This is in perfect agreement with the predicted
uniform accuracy of the method. Note that the small peaks correspond to the highest
values of the remainder 1

ε
|√2 − p

q |.

5.2 A Fermi–Pasta–Ulam system with three frequencies

In this subsection, we consider the same FPU system as in the above Sect. 5.1, but
with the frequencies

λ1 = 1, λ2 = λ3 = 1, λ4 = π

2
, λ5 = √

2.
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Fig. 6 (FPU, d = 2) energy exchanges, Strang splitting method

5.2.1 Energy exchanges

We observe the evolution over a long time of the quantities

I1 = λ1

(
p21
2

+ q21
2

)
, I j = p21

2
+ λ2j q

2
1

2
, j = 2, . . . , 5,

computed with again the three methods:

– the Strang splitting method (Fig. 6) with the time-step �t = 2π
16 ε;

– the MCRM [6] of order 4, with N = 60 and with the micro time-step �t =
2π
16q for the micro-integrator over one period [0, 2π ], which represents again a
computational speed-up of 10 compared to the direct Strang splitting method
(Fig. 7);

– the TSM [5], implemented with the implicit second-order mid-point scheme
(Fig. 8), with time-step �t = 2π

16 and 64 discretization points in the
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Fig. 7 (FPU, d = 2) energy exchanges, multirevolution composition method
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Fig. 8 (FPU, d = 2) energy exchanges, two-scale method

variable τ . We observe a computational speed-up of 2.5 compared to the Strang
splitting method.

For these simulations, we have taken ε = 10−3, and the rational approximations
λ4 = π

2 ≈ 110
70 and λ5 = √

2 ≈ 99
70 , which give

1

ε

∣∣∣∣λ4 − p4
q

∣∣∣∣ ≈ 0.63,
1

ε

∣∣∣∣λ5 − p5
q

∣∣∣∣ ≈ 0.07.

5.2.2 Uniform accuracy of the two-scale method

Again, we wish here to observe the uniform accuracy of the two-scale method. The
final time is 2π , the number of discretization points for the τ variable is max(64, 16q).
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Fig. 9 (FPU, d = 1) Left error as a function of �t for ε = 2N × 10−2, with N ∈
{6, . . . , 1, 0,−1, . . . , −10}. Right error as a function of ε for �t = 2π/2N with N ∈ {6, . . . , 16}

The values of p4 p5 and q in the approximations p4
q and p5

q of λ4 = π
2 and λ5 = √

2,

as well as the remainder 1
ε
|λ4 − p4

q | + 1
ε
|λ5 − p5

q | are given in the following table.

These values are those which minimize this remainder under the constraint εq3/2 ≤ 1.

ε 0.64 0.32 0.16 0.08 0.04 0.02 0.01 5 × 10−3 2.5 × 10−3 1.25 × 10−3

p4 2 3 3 8 11 11 11 53 80 110
p5 1 3 3 7 10 10 10 48 72 99
q 1 2 2 5 7 7 7 34 51 70
remainder 1.32 0.49 0.98 0.54 0.37 0.75 1.5 2.88 1.85 0.56

ε 6.25 × 10−4 3.12 × 10−4 1.56 × 10−4 7.81 × 10−5 3.91 × 10−5

p4 201 311 421 732 732
p5 181 280 379 659 659
q 128 198 268 466 466
remainder 1.02 0.52 0.86 0.89 1.78

On the left of Fig. 9, we plot the error as a function of the time-step�t , for different
values of ε and on the right of Fig. 9, the error as a function of ε, for different values
of the time-step �t .

5.3 Three coupled nonlinear Schrödinger equations

In this section, we consider a multi-component non-linear Schrödinger system posed
in infinite dimension, which models multi-component Bose-Einstein condensates.
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Roughly speaking, harmonic oscillators are here replaced by Laplacian operators
with periodic boundary conditions. The interested reader may find more details on
the physical aspects of the model under consideration in references [2] and [14]. The
important point therein is that different components may have different “trapping”
potentials and thus oscillate with different frequencies. In this section, we shall use as
test problem the following coupled system of three non-linear Schrödinger equations,
where the components u1, u2 and u3 are discretized in x by trigonometric polynomials
(accordingly Fast Fourier Transform (FFT) is used in our numerical experiments):

i∂t u1(t, x) = −ω1

ε
�u1(t, x)

+
(
α11(x)|u1(t, x)|2 + α12(x)|u2(t, x)|2 + α13(x)|u3(t, x)|2

)
u1(t, x)

i∂t u2(t, x) = −ω2

ε
�u2(t, x)

+
(
α12(x)|u1(t, x)|2 + α22(x)|u2(t, x)|2 + α23(x)|u3(t, x)|2

)
u2(t, x)

i∂t u3(t, x) = −ω3

ε
�u3(t, x)

+
(
α13(x)|u1(t, x)|2 + α23(x)|u2(t, x)|2 + α33(x)|u3(t, x)|2

)
u3(t, x)

on the interval [0, 2π ], with periodic boundary conditions and the following set of
coefficients:

ω1 = ω2 = 1, ω3 = √
2, α11(x) = 2 cos(2x), α12 = α13 = α22 = α23 ≡ 1,
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Fig. 10 Energy exchanges for ε = 0.0001, computed with the Strang splitting method (plain lines) and
the MRCM (circles) with N = 60
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Fig. 11 Energy exchanges for ε = 0.0001, computed with the two-scale method
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Fig. 12 Left L2 error versus �t for ε = 2N × 10−2, with N ∈ {6, . . . , 1, 0, −1, . . . , −6}. Right L2 error
versus ε for �t = 2π/2N with N ∈ {9, . . . , 16}

and with initial data

u1(0, x) = 1

2
+ 4

10
e−i x , u2(0, x) = 1

4
+ 4

10
eix , u3(0, x) = 1

4
+ 6

10
eix .

5.3.1 Energy exchanges

We observe on Figs. 10 and 11 the evolution of the total energy and of

I j = ω j

∫ 2π

0
|∇u j |2dx,

computed by three methods, for ε = 10−4:

– the Strang splitting method with the time-step �t = 2π
32 ε;
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– theMCRM [6] of order 4, with N = 60 and with the micro time-step�t = 2π
32q for

the micro-integrator over one period [0, 2π/q], which represents a computational
gain of a factor 10 compared to the direct Strang splitting method;

– the TSM [5], with micro time step T/128 and 2048 discretization points in τ .
We observe a computational gain of a factor 5 compared to the Strang splitting
method.

For the three methods, we take 32 discretization points for the x variable.

5.3.2 Uniform accuracy the two-scale method

Finally, we check here the uniform accuracy of the two-scale method. The final time is
0.2, the number of discretization points is 32 in x and 4096 in τ . The values of p and
q in the approximation p

q of
√
2 are the same as given in table of Sect. 5.1 (Fig. 12).

Acknowledgements The authors have been supported by projects Lodiquas and Moonrise from the ANR
(The French National Research Agency). Besides, they wish to thank Y. Bugeaud, X. Caruso, G. Hanrot
and G. Wanner for very enlightening discussions on the arithmetic parts of this paper.

Appendix

In order to keep the paper as self-contained as possible, we recall in this section the
main results of [8,11] as used in the proof of the averaging results of Sect. 3. For
the sake of simplicity, we assume here that the norm on C

n is the Euclidean norm in
accordance with [11] and with Sect. 3.1.

Averaging of periodically forced problems

Consider a periodic highly-oscillatory differential equation of the form

v̇[ε,μ](t) = f ε
t/μ

(
v[ε,μ](t)

)
, v[ε,μ](0) = v0 ∈ R

n, t ∈ [0, T ], (23)

where the function (τ, v) �→ f ε
τ (v) is assumed to be 2π -periodic in τ and where ε

is a small parameter with values in the interval J :=] − ε0, ε0[. We emphasize right
away that no regularity of the function f ε in terms of ε is required, though all later
boundedness assumptions need to be uniform with respect to ε. The main assumption
of the averaging result derived in [8] requires the definition of the following C

n-
extension of the domainK ⊂ R

n in which we wish to study the differential equation4

(23): for all ρ ≥ 0,

Kρ = {v + w ∈ C
n; v ∈ K̄, ‖w‖ ≤ ρ}.

4 The domain K is usually defined as an open subset of Rn containing all solutions of (23) for all values
of t ∈ [0, T ], all sufficiently small values of μ and all values of ε.
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Assumption 4 There exist R > 0 and an open set U containingKR , such that for any
ε ∈ J and any τ ∈ T, f ε

τ (·) can be extended to a map from U to C
n that is analytic

on KR . In addition, the Fourier coefficients f̂ ε
k , k ∈ Z, of f ε, satisfy the uniform (in

ε) bound

∀ε ∈ J ,
∑
k∈Z

‖ f̂ ε
k ‖R ≤ M

for some M < +∞ independent of ε.

As already noticed in [8], this assumption does not imply that f is differentiable
with respect to τ , only that f ε is jointly continuous inT×KR (and again not necessarily
continuous w.r.t. ε), and that

∀ε ∈ J , ∀τ ∈ T, ‖ f ε
τ ‖R ≤ M.

We are now in position to formulate Theorem 3.4 of [8].

Theorem 5.1 Suppose that f ε satisfies Assumption 4. Then for any ε ∈ J and for
any (μ, N ) ∈ C×N

∗ such that |μ|N ≤ c := R
8M , there exists a near-identity change

of variables v = �
[ε,μ,N ]
t/μ (V )with�[ε,μ,N ] : T×KR/2 → KR transforming equation

(23) into the equation

V̇ = F [ε,μ,N ](V ) + R[ε,μ,N ]
t/μ (V ), V (0) = v0,

with averaged vector field F [ε,μ,N ] : KR/2 → C
n and remainder R[ε,μ,N ] : T ×

KR/2 → C
n satisfying the following bounds

‖F [ε,μ,N ] − f̂ ε
0 ‖R/2 ≤ M

2
|μ| and ∀τ ∈ T, ‖R[ε,μ,N ]

τ ‖R/2 ≤
5
( |μ|N

c

)N

1 − |μ|N
c

M.

Besides, if |μ| ≤ c/e and N = N [μ] is chosen as the integer part of c/(e|μ|) ≥ 1,
then

∀τ ∈ T, ‖R[ε,μ,N [μ]]
τ ‖R/2 ≤ 5e2

e − 1
M exp

(
− c

e|μ|
)
.

Conserved quantities in autonomous Hamiltonian problems

We consider here the more specific situation of an autonomous Hamiltonian problem

u̇[ε,μ] = J−1∇uH[ε,μ](u[ε,μ]), uε(0) = u0 ∈ X, (24)
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where n = 2m is now assumed to be even, J is the matrix

J =
(

0 Id
−Id 0

)
, Id ∈ M(Rm),

and

H[ε,μ](u) = 1

μ
I ε(u) + K ε(u)

where the flow χ
[ε]
t of the Hamiltonian system

u̇ = J−1∇u I
ε(u)

is assumed to be 2π -periodic, independently of ε. Problem (24) can be reformulated
by performing the change of variables u = χε

t/μ(v) so that v satisfies the differential
equation

v̇[ε,μ] = f ε
t/μ(v[ε,μ]) = J−1∇vK

ε
t/μ(v[ε,μ])

where K ε
τ = K ε ◦ χε

τ for all τ ∈ T and all ε ∈ J .

Assumption 5 There exist R > 0 and an open set U containingKR , such that for any
ε ∈ J and any τ ∈ T, K ε

τ (·) can be extended to a map from U to C
n that is analytic

on KR . In addition, the Fourier coefficients Ĥ ε
k , k ∈ Z, of K ε

τ , satisfy the following
uniform (in ε) bound

∀ε ∈ J ,
∑
k∈Z

‖Ĥ ε
k ‖R ≤ M

for some M < +∞ independent of ε.

Theorem 5.2 Suppose that K ε satisfies Assumption 5. Then for any ε ∈ J and for

any (μ, N ) ∈ C × N
∗ such that |μ|(N + 1) ≤ 1

L := R2

8eM , the vector field F [ε,μ,N ]

of Theorem 5.1 is Hamiltonian with Hamiltonian K̃ [ε,μ,N ] and there exists a modified
invariant Ĩ [ε,μ,N ] such

H[ε,μ] = 1

μ
Ĩ [ε,μ,N ] + K̃ [ε,μ,N ]

where the three terms are “almost in involution” in the sense that

1. For all ε ∈ J and all u ∈ K,

|{H[ε,μ](u), Ĩ [ε,μ,N ](u)}| ≤
(
R

8e

)2 (
L|μ|(N + 1)

)(N+1)
. (25)
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2. Assume that L|μ| ≤ 1/(2e) and choose N = N [μ] as the integer part of
L−1|μ|−1e−1 − 1. Then for all ε ∈ J and all u ∈ K,

|{H[ε,μ](u), Ĩ [ε,μ,N [μ])(u)}| ≤ M

8L
exp

(
− 1

eL|μ|
)

. (26)
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