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Abstract The paper gives an extension of Prony’s method to the multivariate case
which is based on the relationship between polynomial interpolation, normal forms
modulo ideals and H-bases. Though the approach is mainly of algebraic nature, we
also give an algorithm using techniques from Numerical Linear Algebra to solve the
problem in a fast and efficient way.
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1 Introduction

The goal of the original Prony method is to compute a parameter estimation for a finite
univariate exponential sum

f (x) =
M∑

j=1

f j e
ω j x , (1)

from sampled values f (x j ), j = 1, . . . , N , where neither the frequencies ω1, . . . , ωM

nor the coefficients f1, . . . , fM are known. By a simple but ingenious trick [34], due
to Gaspard Richard, Baron de Prony, in 1795, the frequencies can be determined
by computing the kernel of a certain Hankel matrix and then finding the zeros of
a polynomial whose coefficients are formed from the kernel vector whereafter the
coefficients can be easily determined by solving a linear system.
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412 T. Sauer

Recently, Prony’s method has gained new interest in the context of sparsity, where
(1) can be interpreted as a signal f that consists of a moderate number of simple
oscillations and hence permits a sparse representation once the frequencies and the
coefficients are known.

The recent survey [28] connects Prony’s method and its variations to sparsity
problems and also refers to recent developments, for example [29]. Here, we aim
at extending the method to the multivariate case. A first step in this direction has been
made in [31], but it uses projections onto single variables in contrast to which this
paper progresses differently by pointing out and using the strong relationship between
Prony’s method and multivariate polynomial interpolation through constructive ideal
theory. In the end, this leads to an algorithm that, though it solves a nonlinear prob-
lem, relies entirely on procedures from Linear Algebra, in particular on orthogonal
projections which results in a relatively stable method; nonlinearity only enters when
certain eigenvalue problems for a commuting family of matrices have to be solved.
These multiplication tables modulo an ideal for a given normal form spaces are the
natural generalization of the Frobenius companion matrix whose role in the numerical
realization of Prony’s method is well-known, cf. [28].

In one variable, Prony’s method in its simplest version consists of determining the
coefficients of the so-calledProny polynomial as a zero eigenvector of a certainHankel
matrix formed by samples of the function and then finding the zeros of this polynomial
which are eω,ω ∈ �. In themultivariate case the kernel of theHankelmatrix is an ideal
and the eigenvalues have to be determined for the operation of multiplication modulo
this ideal. To compute such multiplication tables requires a well-defined analog of
euclidean division, a problem that actually triggered the invention of Gröbner bases
in [4]. We will study these multivariate algebraic issues that are closely related to
minimal degree interpolation and derive an algorithm that extends the idea of finding
a “Prony ideal” and to determine the frequencies by means of generalized companion
matrices. Even if the algorithm is of algebraic nature, the choice of orthogonal H-bases
makes it possible to implement it in a floating point environment relying on standard
procedures from Numerical Linear Algebra like SVD and QR factorizations.

The paper is organized as follows: in Sect. 2, we recall the necessary tools from
computational numerical ideal theory and show how to apply them to Prony’s problem.
This leads to an algorithm which works entirely on vectors and matrices and can be
implemented in quite a straightforward fashion in Matlab or Octave [10]. To illustrate
the main ideas of the concept we have a more careful look at the simplest possible case
in Sect. 3 and show some of the results obtained by the numerical implementation. A
short remark how this can be applied to reconstruct sparse polynomials from sampling
and a short summary conclude the paper.

2 Basic concepts and first solution

The problem to be solved by Prony’s method in several variables is still easy to state:
for a finite set ∅ �= � ⊂ C

s of frequencies and coefficients fω ∈ C\{0}, the goal is to
reconstruct a function
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Prony’s method in several 413

f =
∑

ω∈�

fω eωT ·, fω �= 0, ω ∈ �, (2)

from measurements of f , i.e., from point evaluations f (z), z ∈ Z , where Z ⊂ C
s has

to be a finite set as well. In the classical version that we consider first, Z will even be
a subset of the grid Z

s .
Since the function f does not change if ω is replaced by ω + 2iπα, α ∈ Z

s , the
frequencies have to be different modulo 2iπZs so that the imaginary parts can be
restricted, for example, to [0, 2π)s . In other words, we have to choose � as a finite
subset of (R + iT)s where T := R/2πZ.

To obtain an extension of Prony’s approach to the multivariate case, we fix some
notation. For notational simplicity, we will restrict ourselves to the real case, i.e.
� ⊂ R

s , but the method can be easily extended in a totally straightforward manner
to the complex field by adding complex conjugation where needed. In fact, the “real”
implementation of the algorithm in Octave works for complex data even without any
changes.

By Π = R[z] = R[z1, . . . , zs] we denote the ring of all polynomials over the field
R of reals, i.e., all polynomials with real coefficients. With the use usual multiindex
notation, where

zα = zα11 · · · zαss , |α| = α1 + · · · + αs,

for a given multiindex α ∈ N
s
0, we denote by

Πn :=
⎧
⎨

⎩p(z) =
∑

|α|≤n

pα zα : pα ∈ R

⎫
⎬

⎭ , n ∈ N0,

the vector space of all polynomials of total degree

deg p := max{|α| : pα �= 0}

at most n. The dimension of this vector space will be abbreviated as dn := (n+s
s

)
.

Moreover, we will write

Π0
n :=

⎧
⎨

⎩p(z) =
∑

|α|=n

pα zα : pα ∈ R

⎫
⎬

⎭ , n ∈ N0,

for the homogeneous polynomials or forms of degree n, a space of dimension d0n :=(n+s−1
s−1

)
, and denote by � : Π → Π0

deg p the mapping that extracts the leading form
of a polynomial:

p(z) =
∑

|α|≤deg p

pα zα ⇒ �(p)(z) =
∑

|α|=deg p

pα zα.
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414 T. Sauer

2.1 Kernels and ideals

The fundamental tool is the (multidimensional) Hankel matrix

Fn :=
[
f (α + β) : |α| ≤ n

|β| ≤ n

]
∈ R

dn×dn , n ∈ N. (3)

For any polynomial p ∈ Πn , p(z) = ∑
pαzα , we write its coefficient vector as

p = [pα : |α| ≤ n] and obtain for |α| ≤ n that

(Fnp)α =
∑

|β|≤n

f (α+β) pβ=
∑

|β|≤n

∑

ω∈�

fω eωT (α+β) pβ=
∑

ω∈�

fωe
ωT α

∑

|β|≤n

pβ z
ωT β

=
∑

ω∈�

fωe
ωT α p(eω).

For abbreviation we set zω := eω = (eω1 , . . . , eωs ) as well as Z� := e� = {zω : ω ∈
�} and then observe that by the above simple computation the zero dimensional ideal

I� := {p ∈ Π : p(zω) = 0, ω ∈ �} = I (Z�)

plays an important role that can be stated as follows.

Lemma 1 If p ∈ I� ∩ Πn then Fnp = 0.

Corollary 1 For n ∈ N we have dim ker Fn ≥ dim(I� ∩ Πn).

In general, the converse of Lemma 1 does not hold true. This is most easily seen for
n = 0, where p = 1 yields p = 1 and

Fnp =
∑

ω∈�

fω.

Hence, if the coefficients of the unknown function happen to sum to zero, then the
ideal structure in Π0 cannot be recovered from information on F0 alone.

2.2 Ideals, bases and interpolation

For a converse of Lemma 1 under some additional restrictions, we have a closer look
at the ideal I� from the point of view of multivariate polynomial interpolation, cf.
[11,38,39]. To that end, we will construct and use H-basis H for the ideal I�. Recall
that an H-basis for an ideal I ⊂ Π is a finite set H ⊂ Π such that

p ∈ I ⇔ p =
∑

h∈H
ph h, deg ph + deg h ≤ deg p, h ∈ H, (4)
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for properly chosen polynomials ph . The important point of an H-basis is the non-
redundant representation of p in (4) by means of

〈H〉 =
{
∑

h∈H
ph h : ph ∈ Π

}
,

the ideal generated by H with respect to the total degree: no summand on the right
hand side of (4) has a larger total degree than p and therefore there is no cancellation
of redundant terms of higher degree in the sum.

H-bases were already introduced by Macaulay in [20] and studied by Gröbner
[14,15] especially in the context of homogenization and dehomogenization, see also
[22]. H-bases without term orders were investigated in [37], but in terms of more
conventional Computer Algebra any Gröbner basis with respect to a graded term
order, i.e., any term order ≺ such that |α| < |β| implies α ≺ β, is also an H-basis, cf.
[7].

Let let (·, ·) : Π × Π → R denote the inner product

(p, q) =
∑

α∈Ns
0

pα qα, (5)

where

p(z) =
∑

|α|≤deg p

pαz
α, q(z) =

∑

|α|≤deg q

qαz
α.

As shown in [37], there exists, for any ideal I ⊂ Π , an H-basis H of I such that any
polynomial p ∈ Π can be written as

p =
∑

h∈H
phh + r, deg r ≤ deg p, (6)

where the remainder r is orthogonal to the ideal in the sense that any homogeneous
component

r0k (z) :=
∑

|α|=k

rαz
α ∈ Π0

k , k = 0, . . . , deg r,

of r is orthogonal to all leading terms in the ideal:

0 =
(
r0k ,�(p)

)
, p ∈ I� ∩ Πk, k = 0, . . . , deg r. (7)

The remainder r can computed in efficient and numerically stable way by the orthog-
onal reduction process introduced in [37], see [23,24] for more algorithmic and
numerical details. We briefly recall this process that will be adapted to our specific
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416 T. Sauer

needs here. For a given finite set H ⊂ Π of polynomials that does not necessarily
have to be an H-basis, and k := deg p one considers the homogeneous subspace

Vk(H) :=
{
∑

h∈H
q0h�(h) : q0h ∈ Π0

k−deg h

}
⊂ Π0

k

and computes an orthogonal projection of �(p) onto this vector space, i.e., chooses
particular polynomials q0k,h = q0k,h(p) ∈ Π0

k−deg h , h ∈ H , depending on p such that

(r0k , Vk(H)) = 0, r0k := r0k (p) := �(p) −
∑

h∈H
q0k,h�(h).

Then one replaces p by

p −
∑

h∈H
q0k,h h − r0k ,

which eliminates �(p) and thus reduces the total degree of p by at least one. After
repeating this process at most deg p times, we end up with a decomposition

p =
∑

h∈H

deg p∑

k=0

q0k,h h +
deg p∑

k=0

r0k (p) =:
∑

h∈H
ph h + r, (8)

where, by construction, each homogeneous component of r is in the orthogonal com-
plement of the respective Vk(H). In general, however, the remainder depends on H
and on the particular way how the orthogonal projections, i.e., the polynomials q0k,h(p)
are chosen in any step, but things simplify significantly once H is an H-basis for 〈H〉.
Theorem 1 ([37]) If H is an H-basis for 〈H〉 then the remainder r computed by
reduction depends only on 〈H〉 and the choice of the inner product and is zero iff
p ∈ 〈H〉.

Consequently, ν(p) := r is a normal form for p modulo the ideal 〈H〉 whenever
H is an H-basis. If we consider ν : Π → Π , p �→ ν(p), as a mapping, its image, the
linear space N := ν(Π) ⊂ Π is a canonical interpolation space. With the specific
canonical choice (5) of the inner product, the normal form space is the Macaulay
inverse system, as it was named in [14,15].

Theorem 2 The normal form space N := ν(Π) has dimension #� and is a degree
reducing interpolation space for Z� = e�, i.e., for any p ∈ Π there exists a unique
r ∈ N such that

r(zω) = p(zω), ω ∈ �, and deg r ≤ deg p. (9)

Moreover, we have the direct sum decompositions

Πn = (N ∩ Πn) ⊕ (I� ∩ Πn). (10)
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Prony’s method in several 417

To make the reader a bit more acquainted with the simple arguments behind this
theorem, we give a short proof.

Proof Since ν(p) = ν(p′) whenever p − p′ ∈ 〈H〉, cf. [37], the mapping ν is indeed
well-defined and the interpolation property

p(zω) =
∑

h∈H
ph(zω) h(zω) + ν(p)(zω) = ν(p)(zω), ω ∈ �,

as well as the degree reduction follow directly from (6). If there were two interpolants
r, r ′ for p in N , then r − r ′ ∈ I� ∩ N = {0}, hence the interpolant is unique and
therefore dim N = codim I� = #�, see also [3]. Finally, (10) follows from the more
general homogeneous formula

Π0
n =

(
�(N ) ∩ Π0

n

)
⊕
(
�(I�) ∩ Π0

n

)
, n ∈ N0, (11)

which has been proved in a wider context in [39, Theorem 5.11]. ��

Since N is a finite dimensional space, it has a finite basis, the most common one
being the Lagrange fundamental polynomials 
ω ∈ N , ω ∈ �, defined by


ω(zω′) = δω,ω′ , ω, ω′ ∈ �. (12)

These polynomials can be given explicitly as


ω = ν

⎛

⎝
∏

ω′∈�\{ω}

(· − zω′)T (zω − zω′)

(zω − zω′)T (zω − zω′)

⎞

⎠ , ω ∈ �, (13)

and obviously form a basis of N . Thus,

deg N := max{deg r : r ∈ N } = max{deg 
ω : ω ∈ �}

is a well defined number.

2.3 Back to kernels

Based on the concepts above, we can now give the converse of Lemma 1 under the
additional requirement that n is sufficiently large.

Theorem 3 If n ≥ deg N then

Fnp = 0 ⇔ p ∈ (I� ∩ Πn). (14)
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418 T. Sauer

Proof The direction “⇐” has already been shown in Lemma 1. For the converse, we
obtain for the coefficient vectors �ω of the polynomials 
ω, ω ∈ � that

(Fn �ω)α =
∑

ω′∈�

fωe
αT ω′


ω(zω′) = fωe
αT ω = fω zαω,

hence

Fn�ω = fωvnω �= 0, vnω := [
zαω : |α| ≤ n

]
.

Since we can write any r ∈ N\{0} as

r =
∑

ω∈�

r(zω) 
ω, [r(zω) : ω ∈ �] �= 0,

we can conclude that

Fnr =
∑

ω∈�

fω r(zω) vnω �= 0,

since the vectors vnω are the rows of the Vandermonde matrix

Vn(�) :=
[
zαω : ω ∈ �

|α| ≤ n

]
∈ R

#�×dn ,

which has rank #�, yielding that the vectors are vnω are linearly independent. ��
In Π#�−1 polynomial interpolation at the sites zω is always possible for example

by means of Kergin interpolation, cf. [21], or simply by noting that, similar to (13),
the polynomial

∑

ω∈�

p(zω)
∏

ω′∈�\{ω}

(· − zω′)T (zω − zω′)

(zω − zω′)T (zω − zω′)
∈ Π#�−1

interpolates p at Z = e�. Note, however, that usually #� is much larger than deg N
as in the generic case we usually have the relationship that

(
deg N + s

s

)
≤ #� <

(
deg N + s + 1

s

)
.

If we assume like in the classical univariate Prony method that #� is known, we can
reconstruct the ideal from the Hankel matrix.

Corollary 2 A polynomial p ∈ Π#� belongs to I� if and only if p ∈ ker F#�.
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Next, we define the numbers

vk := vk(I�) := dim(I� ∩ Πk), k = 0, . . . , n. (15)

The mapping k �→ vk(I�) is called the (affine) volume function of the ideal I�, [15,
p. 159], while its complement function

k �→ hk(I�) := dk − vk(I�) = dimΠk/I�

is the affine Hilbert function of the ideal, cf. [7, p. 447]. In this terminology, we
can summarize our findings as follows: for zero dimensional ideals the affine Hilbert
function becomes constant once k is large enough.

Lemma 2 For k ∈ N0 we have

hk(I�)

{
< hk+1(I�), k < deg N ,

= hk+1(I�), k ≥ deg N .
(16)

Proof From (10) it follows that

hk(I�) = dimΠk/I� = dim(N ∩ Πk),

which is clearly monotonically increasing in k and constant once k ≥ deg N . Now
suppose that for some k we have hk(I�) = hk+1(I�), then, by (11), it follows that
�(N ) ∩ Πk+1 = {0}, hence �(I�) = Π0

k+1 and since I� is an ideal, the forms

s∑

j=1

(·) j �(I�) =
s∑

j=1

(·) j Π0
k+1 = Π0

k+2

also generateΠ0
k+2, hence�(N )∩Π0

k+2 = {0} and therefore hk(I�) = hk+2(I�). By
iteration we conclude that hk(I�) = hk+1(I�) implies that hk(I�) = hk′(I�), k′ > k.
In particular, this yields that N ∩ Πk is a proper subspace of N ∩ Πk+1 as long as
k < deg N , from which (16) follows. ��

We remark that Lemma 2 can also be interpreted as the statement that minimal
degree interpolation spaces have no “gaps”.

2.4 Graded bases

From now on suppose that n > deg N is chosen properly. The next step will be to
construct a graded basis for ker Fn . To that end, we define the matrices

Fn,k :=
[
f (α + β) : |α| ≤ n

|β| ≤ k

]
∈ R

dn×dk , k = 0, . . . , n,
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420 T. Sauer

and note that for p ∈ Πk

Fnp = Fn,kp, (17)

where, strictly speaking, the two coefficient vectors in (17) are of different size as on
the left hand side we view p as a polynomial of degree n while on the right hand side
it is seen as a polynomial of degree k. Nevertheless, we prefer this ambiguity, which
is typical for polynomials, to introducing further subscripts.

In particular, since n > deg N , it follows that

p ∈ (I� ∩ Πk) ⇒ 0 = Fnp = Fn,kp.

Lemma 3 (Hilbert function) If n > deg N then dn − dim ker Fn,k = hk(I�), k ∈ N0.

Proof Since for p ∈ Πk wehave0 = Fnp = Fn,kp if andonly if p ∈ I� byTheorem3,
it follows that p ∈ ker Fn,k if and only if p ∈ (I� ∩ Πk), i.e., (I� ∩ Πk) � ker Fn,k .
Hence, the dimensions of the two vector spaces have to coincide. ��
We now build a graded ideal basis in an inductive way. To that end, we first note that
ker Fn,0 �= {0} if and only if Fn,0 = 0 which would yield that either 1 ∈ I�, i.e.,
� = ∅ or fω = 0, ω ∈ �. Since both is excluded by assumption, we always have that
Fn,0 �= 0. Thus, we set P0 = [].

Next, we consider k = 1 and let p1
1, . . . , p1

v1−v0
be a basis of ker Fn,1 which we

arrange into a matrix P1 := [p1
1, . . . , p1

v1−v0
] ∈ R

d1×v1−v0 , where vk is defined in
(15). If ker Fn,1 is trivial, i.e., ker Fn,1 = {0}, we have v1 = v0 = 0 and write P1 = [].
Since � is finite, hence I� �= {0}, there exists some index k0 such that ker Fn,k �= {0},
k ≥ k0.

Now suppose that we have constructed matrices P j ∈ R
d j×w j , w j := v j − v j−1,

j = 1, . . . , k, k ≥ k0, such that the columns of P0, . . . , Pk form a basis of ker Fn,k �=
{0}. We arrange these bases into the block upper triangular matrix

Kk := [P1, . . . , Pk] ∈ R
dk×vk (18)

from which we will derive Pk+1 and eventually Kk+1 in an inductive step. Like above,
we use the convention that “empty columns” P j = [] are omitted and that the column

vectors p j

 ∈ R

d j of P j , 
 = 1, . . . , w j , are embedded into R
dk by appending zeros

which is again consistent with the way how polynomials of degree < k are embedded
in Πk .

To advance the construction to k + 1, let P̃k+1 ∈ R
dk+1×vk+1 be a basis of the vk+1

dimensional subspace ker Fn,k+1 of Rdk+1 , determined, for example by means for an
SVD

Fn,k = U�VT , (19)

where the rows of V that correspond to zero or negligible singular values are even an
orthonormal basis of the subspace. Recall that this is also the standard procedure for
numerical rank computation which was also used to determine approximate ideals, cf.
[16,40].
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Then, Kk R
vk = ker Fn,k ⊆ ker Fn,k+1 = P̃k+1 R

vk+1 implies that there exists a
matrix X̃ ∈ R

vk+1×vk such that
[

Kk

0

]
= P̃k+1 X̃

and since rank P̃k+1 = vk+1, the pseudoinverse or Moore–Penrose inverse P̃
+
k+1 of

this matrix is a left inverse of P̃k+1, hence

X̃ = P̃
+
k+1P̃k+1 X̃ = P̃

+
k+1

[
Kk

0

]
. (20)

Nowwe can complete the columns of X̃ orthogonally to a basis ofRdk+1 by computing
a QR-factorization

X̃ = Q
[

R
0

]
, QT Q = I, Q =: [Q1, Q2]

so that the last wk+1 columns Q2 of Q complete X orthogonally to a basis of Rdk+1 :
QT

2 X̃ = 0 and X = [X̃, Q2] ∈ R
vk+1×vk+1 is nonsingular. Setting Pk+1 = P̃k+1Q2

thus yields the graded completion

Kk+1 = [P1, . . . , Pk, Pk+1] = P̃k+1X ∈ R
dk+1×vk+1 . (21)

This bit of Linear Algebra has an interesting ideal theoretic interpretation concerning
the sets Pj of polynomials corresponding to the coefficient matrices P j :

Pj := {p ∈ Π : p ∈ P j }.

Theorem 4 If n ≥ k > deg N then P0, . . . , Pk form an H-basis for I�.

Proof Let p ∈ I�. If deg p ≤ k then

p ∈ I� ∩ Πn = ker Fn,k = spanKk,

hence

p =
deg p∑

j=0

P j c j i.e. p =
deg p∑

j=0

w j∑


=0

c j,
 p
j



for appropriate coefficients c j = (c j,
 : 
 = 0, . . . , w j ) ∈ R
w j , j = 0, . . . , deg p. In

particular,

�(p) =
wdeg p∑


=0

cdeg p,
 �(pdeg p

 ) ∈ span�

(
Pdeg p

) ⊂ �(〈P1, . . . , Pk〉).
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In the case deg p > k, we first note that hk(I�) = hk−1(I�) by Lemma 2 since
k > deg N . Hence, �(Pk) spans Π0

k so that the polynomials

{
(·)α p : |α| = deg p − k, p ∈ Pk

}

span Π0
deg p. Hence,

�(p) =
∑

|α|=deg p−k

wk∑

j=0

cα, j (·)α �(pkj ) =
∑

|α|=deg p−k

wk∑

j=0

cα, j�
(
(·)α pkj

)
,

that is �(p) ∈ �(〈P1, . . . , Pk〉).
Combining the two cases and noting that 〈P1, . . . , Pk〉 ⊂ 〈I�〉 trivially yields

�(I�) ⊃ �(〈P1, . . . , Pk〉) we thus have that

�(I�) = �(〈P1, . . . , Pk〉) , (22)

which is a well-known characterization of H-bases, cf. [15] or, specifically, [37, Propo-
sition 4.2]. ��
Remark 1 The H-basis [P1, . . . , Pk] is by far not minimal, but contains many redun-
dant polynomials. Indeed, if P j �= [] at some level, then the polynomials (·)αPj ,
|α| = k − j , belong to I� as well and could be removed from the Pk without losing
the H-basis property. However, we will see soon that the redundant ideal basis we
generated so far eases the following computations significantly.

The next step is to construct a homogeneous basis for the inverse system N = r(Π).
To that end, we return to the inner product (·, ·) on Π × Π defined in (5). The goal is
to construct homogeneous bases N j ⊆ Π0

j , j = 0, . . . , k, such that
(
N j ,�(Pj )

) = 0

and Π0
j = span N j ⊕ span�(Pj ), j = 0, . . . , deg N . Again, we compute a QR

factorization, namely

�(P j ) = Q
[

R
0

]
=: [Q j,1, Q j,2]

[
R j

0

]
, Q j,1 ∈ R

d0j ×w j , Q j,2 ∈ R
d0j ×d0j −w j ,

(23)

where R is nonsingular since the leading terms in �(Pj ) are linearly independent by
construction. Setting

N j = Q j,2, (24)

we note that

(
N j ,�(Pj )

) = NT
j �(P j ) = NT

j [Q j,1, Q j,2]
[

R j

0

]
= [0, I]

[
R j

0

]
= 0d0j −w j ,w j

,

hence N j is a basis of the orthogonal complement of �(Pj ) in Π0
j .
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2.5 Reduced polynomials

For a more explicit description of the space N = r(Π), we continue with a definition.

Definition 1 A polynomial p ∈ Πdeg N+1 is called reduced if p = ν(p).

Lemma 4 A polynomial p ∈ Π is reduced if and only if p ∈ N = ν(Π).

Proof Let H be an H-basis for I�. If p ∈ N , hence p = ν(q) for some q, we have
that that (p0k , Vk(H)) = 0 for any homogeneous component p0k of p, and it follows
that ν0k (p) = p0k , k = 0, . . . , deg p, hence ν(p) = p and thus any polynomial in N is
reduced. Conversely, p = ν(p) trivially implies that p ∈ ν(Π) = N . ��
Lemma 5 With the matrices N j = Q j,2 from (23) we have

N =
deg N⊕

j=0

span N j . (25)

Proof Let

r =
deg N∑

j=0

r0j , r j ∈ span N j ,

that is, r0j = N j c j , c j ∈ R
d0j −w j . Then

(r0j ,�(Pj )) = cTj NT
j �(P j ) = 0,

hence r j is reproduced in the reduction modulo the H-basis [P1, . . . , Pk] and therefore
r is reduced, which shows that the inclusion ⊇ holds in (25). Conversely, suppose that
r = r00 + · · · + r0deg N is reduced. Then reproduction of the homogeneous component
rdeg N0 in first reduction step yields that

r0deg N ⊥ span Pdeg N i.e. r0deg N ∈ span Ndeg N ,

and an iterative application of this reduction yields that r must be contained in the
space on the right hand side of (25), hence also ⊆ is valid there. ��
With the H-basis P = [P1, . . . , Pm], m := deg N + 1, the reduction of polynomials
from Πm simplifies significantly. Since �(Πk) spans �(I� ∩ Πk) = Vk(P), the
orthogonal projection of �(p) onto Vk(P), k := deg p, can be written as

�(Pk)c :=
wk∑


=0

c
 �(pk
),
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or, in terms of coefficient vectors�(Pk)c, where, as known from standard least squares
approximation, cf. [13],

c = R−1
k (Qk,1)

T�(p), (26)

which can be computed in a stable way by solving Rkc = (Qk,1)
T�(p).

Therefore, we can already compute the reduction modulo I� for given p ∈ Πm in
the following simple manner.

Algorithm 1 (Reduction)

1. While p �= 0
(a) Set k = deg p,
(b) Compute c = R−1

k (Qk,1)
T�(p),

(c) Set

r0k := �(p) − �(Pk) c.

(d) Replace p by

p − Pk c − r0k .

To summarize what we obtained so far: Based on the evaluation matrices Fn,k we
constructed a gradedH-basis for the ideal and, at the same time, a graded homogeneous
basis for the inverse system N .

2.6 Multiplication tables

Now we are ready to compute the points z� = eω, ω ∈ �, and therefore also the
frequencies �. To that end, we make use of the eigenvalue method and multiplication
tables as introduced in [42], see also [25]. This is based on observing thatmultiplication
by coordinate polynomials modulo ideal, i.e., the operation r �→ ν((·) j r), r ∈ N ,
j = 1, . . . , s, is an automorphism on N and thus can be represented by a matrix M j ∈
R
dim N×dim N . Since they represent multiplication, the matrices form a commuting

family and are the multivariate extension of the Frobenius companion matrix. The
following result, attributed to Sticklberger in [6], was brought to wider attention in
[42]. Since the proof is very short, simple and elementary, we repeat it here for the
sake of completeness.

Theorem 5 Let N be a normal form space modulo I� and let M j , j = 1, . . . , s, be
the multiplication tables with respect to a basis of N . Then the eigenvalues of M j

are (zω) j = eω j , ω ∈ �, and the associated common eigenvectors are the coefficient
vectors of 
ω with respect to this basis.

Proof Since N is an interpolation space,we canwrite the normal forms as interpolants,

ν(p) =
∑

ω∈�

p(zω) 
ω, p ∈ Π,
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where, as in (12), 
ω ∈ N is the unique solution of 
ω(zω′) = δω,ω′ ,ω,ω′ ∈ �. Hence,
for ω ∈ � and j ∈ {1, . . . , s},

ν
(
(·) j
ω

) =
∑

ω′∈�

(zω′) j
ω(zω′) 
ω = (zω) j 
ω,

because 
ω(zω′) = δω,ω′ . ��
The matrices M j have a block structure

M j =

⎡

⎢⎢⎢⎢⎢⎢⎣

M j
0,0 M j

0,1 . . . M j
0,m−1 M j

0,m

M j
1,0 M j

1,1 . . . M j
1,m−1 M j

1,m

M j
2,1 . . . M j

2,m−1 M j
2,m

. . .
...

...

M j
m,m−1 M j

m,m

⎤

⎥⎥⎥⎥⎥⎥⎦
, M j

k,
 ∈ R
d0k ×d0
 , (27)

and can be conveniently computed by means of the matrices N j , j = 0, . . . ,m :=
deg N , of homogeneous basis polynomials that were constructed in the preceding
sections. The matrices

Lk, j =
∑

|α|=k

eα+ε j e
T
α ∈ R

d0k+1×d0k , k ∈ N0, j = 1, . . . , s,

that represent multiplication of a homogeneous polynomial of degree k by the mono-
mial (·) j on coefficient level, are a well-known tool in the study of multivariate
orthogonal polynomials, as well cf. [44]. For k = 0, . . . ,m, one has to reduce the
polynomials corresponding to the columns of Lk, jNk . The first reduction step gives

R0
k+1 =

(
I − �(Pk+1)R

−1
k+1QT

k+1,1

)
Lk, jNk

which yields the matrix block

(M j )k+1,k = NT
k+1R0

k+1 = NT
k+1

(
I − �(Pk+1)R

−1
k+1QT

k+1,1

)
Lk, jNk . (28)

After this first reduction, we have to continue with a standard nonhomogeneous reduc-
tion starting with the matrix

Tk+1 =
([

�(Pk+1)

0

]
− Pk+1

)
R−1
k+1QT

k+1,1Lk, jNk .

Denoting for T = [t1, . . . , tr ] the 
-homogeneous part of this matrix by

(T)0
 =
[
(t1)0
, . . . , (t1)

0



]
∈ R

d0
 ×r ,
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we get, for 
 = k, k − 1, . . . , 0 the recurrence

R0

 =

(
I − �(P
)R

−1

 QT


,1

)
(T
+1)

0

 (29)

and

T
 = T
+1 − P
+1R−1

 QT


,1(T
+1)
0

 − R0




= T
+1 −
[

(T
+1)
0



0

]
−
(

P
 −
[

�(P
)

0

])
R−1


 QT

,1(T
+1)

0

. (30)

In particular,

(M j )
,k = NT

 R0


 = NT



(
I − �(P
)R

−1

 QT


,1

)
(T
+1)

0

, (31)

builds the kth block column of thematrixM j .With thematricesM j at hand, the points
zω, ω ∈ �, and therefore also � can be determined by means of standard eigenvalue
methods, cf. [13, pp. 308–390].

2.7 The coefficients

Once the set Z� is known the remaining problem of determining the coefficients is a
linear one. To solve it, we simply set up the Vandermonde matrix

V :=
[
zαω : ω ∈ �

|α| ≤ deg N

]
∈ R

#�×dm , m := deg N .

Since N ⊆ Πdeg N is an interpolation space for z�, the matrix V has rank #� and
therefore the overdetermined system

VT [ fω : ω ∈ �] = [ f (α) : |α| ≤ n] ,

obtained by substituting α into (2), |α| ≤ n, has a unique solution which gives the
coefficients fω, ω ∈ �.

2.8 The algorithm

We can collect the building block from the preceding sections into the algorithm to
solve Prony’s problem in several variables which we formalize as follows. We start
with an unknown finite set � ⊂ (R + iT)s , and coefficients fω ∈ R, ω ∈ �.

Algorithm 2 (Prony’s method in several variables)

1. Guess a number n > deg N , for example n = #�.
2. For k = 0, 1, . . . , n,

(a) Determine Fn,k .
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(b) Extend the H-basis to Kk+1 = [P0, . . . , Pk+1] according to (21).
(c) Extend the graded normal form basis to [N0, . . . , Nk] according to (24). until

rank Fn,k = rank Fn,k+1.
3. Compute the multiplication tables M1, . . . , Ms by means of (31).
4. Compute and match the eigenvalues to determine zω, ω ∈ �.
5. Solve the Vandermonde system to obtain the coefficients fω, ω ∈ �.

Now we can summarize the preceding results as follows.

Theorem 6 For any finite set � ⊂ (R + iT)s , Algorithm 2 reconstructs � and the
coefficients fω of the function

f (x) =
∑

ω∈�

fω eωT x

from a subset of the values f (α), |α| ≤ 2n.

Remark 2 The number n depends not only on the number #� of different frequencies
but also on the geometry of the points Z� = e�. If points are in general position
or generic, then n is the smallest number such that #� < dn = (n+s

s

)
, a “safe”

choice, on the other hand is always n = #�. This, however, leads to huge matrices
when the number of variables increases and stops being tractable quite early. Note
that those generic configurations of the points zω are open and dense among all point
distributions, cf. [11], hence a separation distance between the points only affects the
number deg N in a very marginal way, quite in contrast to the univariate case.

Remark 3 It is worthwhile to emphasize that the validity of the following steps of the
algorithm rely on the proper choice ofn.Only then the sequence of ranks coincideswith
the Hilbert function. Building matrices Fk until their rank stabilizes is not sufficient.
A simple example is to choose � in such a way that

Z� =
{α

2
: |α| ≤ 2

}

is the triangular grid of order 2 and

f := [ fω : ω ∈ �] = V−T
2

⎡

⎢⎣
1
...

1

⎤

⎥⎦ , V2 =
[
zαω : ω ∈ �

|α| ≤ 2

]
.

Then,

f (α) =
∑

ω∈�

fωz
α
ω =

(
V T
2 f
)

α
= 1, |α| ≤ 2,
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and therefore

F0 = [1], F1 =
⎡

⎣
f (0, 0) f (1, 0) f (0, 1)
f (1, 0) f (2, 0) f (1, 1)
f (0, 1) f (1, 1) f (0, 2)

⎤

⎦ =
⎡

⎣
1 1 1
1 1 1
1 1 1

⎤

⎦

hence rank F0 = rank F1 = 1 while still deg N = 2.

This observation has an interesting interpretation in terms of moment problems:
F1 is a flat extension, see [19], of the moment sequence defined by evaluation at the
origin and therefore the measurements would give only the representation f = 1.
This shows that also for this approach a good guess for n is necessary to obtain correct
reconstructions.

Remark 4 To relate the eigenvalues of the different multiplication tables and to com-
bine them into the points z�, one can make use of the eig function in Matlab/Octave
which gives the respective eigenvalues and matrices V j , j = 1, . . . , s, containing the
normalized eigenvectors. If these eigenvalues are sufficiently well separated, filtering

the matrix
∣∣∣VT

j Vk

∣∣∣ for a value 1 gives a permutation that relates the eigenvalues appro-

priately. This simple trick fails in the case of multiple eigenvalues when intersections
of the eigenspaces have to be computed. How to do this, however, has already been
pointed out by Möller and Tenberg [26].

The procedure described in Algorithm 2 has been implemented prototypically in
Octave [10]. The code can be downloaded for checking and verification from

www.fim.uni-passau.de/digitale-bildverarbeitung/forschung/downloads

All tests in the following section refer to this software.

2.9 Comparison to existing methods

Asmentioned in the introduction, the algorithm is the canonical multivariate extension
of the well-known procedure “compute the coefficients of the Prony polynomial as
kernel of a matrix and determine the zeros of the polynomial by means of a companion
matrix”. In this respect it can be considered an extension of the well-known MUSIC
[41] and ESPRIT [35] methods, where zero eigenvectors of a symmetric and positive
semidefinite measurement covariance matrix are determined and set an eigenvalue
problem. A more sophisticated variant of ESPRIT can be found in [33]. As pointed
out in [32], the Frobenius companion matrix of the Prony polynomial interacts nicely
with the Hankel matrix of the samples which can be used to define a generalized
eigenvalue problem for matrix pencils, see [17].

Attempts to the multivariate situation are more recent. One approach, established in
[19], is to interpret Prony’s problemas a truncatedmoment problem and to buildHankel
matrices of increasing size which are then checked for the flat extension criterion. The
normal form space and the ideal can be defined by means of border bases which
can be checked by the commutativity of candidates for the multiplication tables. For
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details see [19]. Unfortunately, the flat extension approach can run into the problem
pointed out in Remark 3, which means that an extension can be flat in intermediate
steps as well which cannot be detected. Of course, once the critical degree n is known,
the extension becomes flat beyond that degree. The moment problem formulation is
also used in [18]. There, however, a “maximal degree” is used which has the severe
disadvantage that it does not turn the polynomials into a graded ring which, in turn, is
very useful for defining good graded ideal bases like Gröbner bases and H-bases. As a
consequence, Theorem 3 in terms of the total degree is stronger than [18, Theorem 3.1]
in terms of maximal “degree” and the matrices Tn there are even significantly larger
the related Fn ; in addition, [18, Algorithm 1] only computes the kernel of the Hankel
matrix but does not indicate how to obtain the common zeros of the ideal defined by
this kernel.

Another approach are projection methods [9,30,31] used mostly in two variables,
where the function is sampled along a straight line and the solutions of the resulting
univariate Prony problems are recombined into a solution of the multivariate problem.
In this situation, separation of the points becomes useful here as it can be carried over
to the univariate projections.

Finally, the solvability of the multivariate Prony problem has already been consid-
ered in [5] in the context of identification of parameters in sums of shifts of a given
function, however without giving a concrete algorithm for its solution.

Algorithm2 differs from all the above approaches,mostly due to itsmultivariate and
algebraic nature. It is an algebraic method that recovers frequencies and coefficients
exactly provided that the measurements are noiseless and that all computations could
be done exactly. On the other hand, appropriate techniques from Linear Algebra allow
for a fast and still relatively stable implementation even in a floating point environment;
as long as the affine Hilbert function does not change, the H-basis approach based on
orthogonal projections ensures that basis and normal form space and therefore also the
multiplication tables change continuously, see [24]. The construction of the Hankel
matrix by adding block columns, enforced by the “curse of dimension”, seems to be
new even in the univariate case. Themain idea of the algorithm, namely to successively
build an H-basis of the ideal and a graded basis of the normal form space from the
kernels of the Fn,k is the core point of the multivariate algorithm. The computation of
themultiplication tables is then straightforward as long as a reduction can be computed
which can be donewith good bases for arbitrary polynomial gradings, see [38]. Closest
to this is the implicit use of border bases in the flat extension approach from [19].

2.10 Short remarks on noisy measurements

Prony’s method has a reputation for being numerically unstable with respect to per-
turbed measurements

f̂ (α + β) = f (α + β) + εα+β, |α| ≤ n, |β| ≤ k,

yielding a perturbed matrix
F̂n,k := Fn,k + En,k . (32)
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The critical spot in the algorithm is the place where the distinction is made whether
a certain polynomial belongs to the ideal or to the normal form space. As mentioned
before, this happens by considering the SVD Fn,k = U�VH from (19) and by thresh-
olding the singular values. In the case of F̂n,k we recall the standard perturbation
result for singular values from [13, Corollary 8.6.2] that the singular values satisfy the
estimate

∣∣σk (̂Fn,k) − σk(Fn,k)
∣∣ ≤ σ1(En,k) = ‖En,k‖2,

where σ j denotes the singular values in descending order. Hence, as long as the per-
turbation is small relative to the conditioning of the problem, i.e.,

‖En,k‖2 ≤ min{σ j (Fn,k) : σ j (Fn,k) �= 0},

the ideal structure is recoveredwith an appropriately adapted threshold value, provided
an estimate for the perturbation matrix En,k is available. If the threshold level were set
too high, the situation would be falsely interpreted to be more generic than it really is.

To get an idea which quantities influence the SVD of Fn,k , we recall the straight-
forward observation that

Fn,k =
∑

ω∈�

fω VT
n eω eTωVk = VT

n

(
∑

ω∈�

fωeω eTω

)
Vk = VT

n F� Vk,

where F� := diag [ fω : ω ∈ �] is the matrix with fω on the diagonal. Let x be a
singular vector of Vk for the singular value σ , that is ‖x‖ = 1 and Vkx = σy for some
y with ‖y‖ = 1, then

‖Fn,kx‖2 = σ‖VT
n F�y‖2 ≤ σ‖VT

n F�‖2 ≤ σ‖VT
n ‖2 max

ω∈�
|fω|

which shows that if σ is small relative to ‖VT
n ‖2 or if all entries in fω are small, then

the smallest singular value

σmin(Fn,k) = min‖x‖=1,Fn,kx �=0
‖Fn,kx‖2

of Fn,k is small as well. The first case means that the interpolation problem is ill-
conditioned, the second case means that the coefficients are too close to zero to be
relevant numerically. Also, if we can find some x such thatF�Vkx becomes small, then
this can also lead to a small singular value. This latter situation can even be reached
when only a single coefficient is close to zero.

This is, of course, only a first, rough reasoning that shows that Prony’s method can
perform quite well numerically if the perturbation is small relative to the stability of
the interpolation problem. This can be verified by numerical experiments, see Table 4
in the following section.
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3 Examples

The first example is to illustrate the basic idea of the procedure in the simplest possible
case. To that end, we set � = {0, ω}, ω �= 0, so that

f (α) = f0 + fωe
ωT α,

and

Fn,0 = [ f (α) : |α| ≤ n] .

The first component of this matrix is nonzero if f0 �= − fω, otherwise there exists
some j such that ω j �= 0 and then at the unit multiindices ε j the function evaluates
to f (ε j ) = f0(1− eω) �= 0, so that, as mentioned before, the rank of this matrix is 1.
Hence, rank Fn,0 = 1 and N0 = {1}, the constant function is member of the normal
form space. In the next step, we already consider the matrix

Fn,1 = [ f (α), f (α + ε1), . . . , f (α + εs) : |α| ≤ n]

and since

f (α + ε j ) = f0 + fω eω j eωT α,

we have Fn,1p = 0 for p = [pα : |α| ≤ 1] if and only if, with the abbreviations
p j = pε j and ω0 = 0,

0 =
(
f0 + fωe

ωT α
)
p0 +

s∑

j=1

(
f0 + fωe

ω j eωT α
)
p j

= f0

s∑

j=0

p j + fωe
ωT α

s∑

j=0

eω j p j

holds for all |α| ≤ n. This can be rephrased as

0 =
[
1 1 . . . 1
1 eω1 . . . eωs

]
p

which shows that the kernel has dimension s − 2 as the above matrix consists of the
first two rows of the Fourier matrix for the frequencies 0, ω1, . . . , ωs and at least one
of the ω j is nonzero. On the other hand, we have, for any p with only pε j �= 0 that

Fn,1p =
[
f0 + (

fωe
ω j
)
eωT α : |α| ≤ n

]
= Fn,0 + fω(eω j − 1)

[
eωT α : |α| ≤ n

]
,
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which is linearly independent of Fn,0 iff ω j �= 0. This reflects the fact that we can
choose various subspaces of Π1 that allow for unique degree reducing interpolation
at Z� = {1, eω}.

Next, we report and interpret some numerical results of the test implementation.
There,we simply picked a number of random frequencies� and coefficients fω chosen
by Octave’s rand function as well as an estimate for n. Then the algorithm was
and maximal and average (Frobenius norms of the frequency matrix and coefficient
vectors) errors in the frequencies and coefficients were determined. This process was
repeated 100 times. Though this procedure is far from statistically meaningful, it
clearly gives a reasonable first idea on how the algorithm behaves.

Table 1 records what happens if all parameters are chosen as real numbers in
[0, 1]. Already for 20 frequencies in two variables the problem becomes numerically
unsolvable due to the ill conditioning of the associated matrices. A closer inspection
of Fn,k explains why: some entries in the matrix already become very large which is
also reflected in the distribution of the “meaningful” singular values of that matrix.
The largest one gets huge, even around 1030, while the smallest one is around 10−10

and becomes almost indistinguishable from the the largest one corresponding to the
kernel of the matrix. In some cases even the number of frequencies is not determined
correctly due to that effect.

As the table shows, things become better if the number of variables is increased.
This is a typical effect in the numerical stability of multivariate polynomials, from
evaluation [2,8,27] to interpolation [36]: the stability of polynomial algorithms often
depends on the total degree of the polynomials and not so much on the number of
coefficients involved. In fact, the experiments show, that in 5 variables one still obtains
quite reasonable results with even 150 frequencies.

One potential application and a main motivation for Prony’s method is the recon-
struction of frequencies of functions with a sparse Fourier transform which means
that � ⊂ iRs is a set of purely imaginary frequencies. Table 2 shows that in this

Table 1 Numerical tests with real frequencies

Parameters # Samples Average error Max error

s # Freq. n Coeff Freq Coeff Freq

2 5 3 21 1.36e−11 1.83e−09 3.51e−09 2.42e−07

2 10 5 45 4.94e−08 2.69e−06 7.30e−05 5.33e−04

2 15 8 105 7.06e−07 2.97e−04 1.47e−04 4.45e−02

2 20 9 136 Inf Inf NaN NaN

3 20 6 286 1.59e−08 1.42e−06 4.73e−05 8.94e−04

4 20 5 495 8.47e−12 4.66e−11 9.03e−09 3.75e−09

5 20 5 1287 1.69e−12 5.94e−11 1.95e−09 1.32e−08

5 50 5 2002 1.11e−10 6.61e−10 3.17e−07 6.69e−08

5 100 6 3003 2.93e−09 1.94e−08 1.00e−05 1.39e−06

5 150 8 11628 1.31e−08 8.42e−08 5.73e−06 4.40e−06

The number of samples is the generic value dimΠn+d(X)+1 and definitely not minimal
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Table 2 Numerical tests with purely imaginary frequencies

Parameters Average error Max error

s # Freq. n Coeff Freq Coeff Freq

2 10 5 1.3476e−14 3.4744e−13 6.0290e−12 1.3724e−10

2 20 7 2.5148e−14 1.2420e−12 3.2103e−11 7.8847e−10

2 50 11 5.9357e−14 3.9721e−12 1.1845e−10 5.5214e−09

2 100 15 9.0480e−13 5.7684e−11 8.8308e−09 2.0468e−07

5 100 6 2.3796e−15 4.3794e−15 3.1431e−11 3.2918e−14

5 150 8 2.3954e−15 4.7773e−15 1.1702e−11 6.9726e−14

Table 3 Numerical tests with points on a line through origin

Parameters Average error Max error

s # Freq. Fail Coeff Freq Coeff Freq

2 3 0 5.1668e−06 1.6241e−04 0.0023195 0.0243550

2 4 0 2.8912e−06 2.9318e−03 9.9505e−04 5.8547e−01

2 5 5 3.1901e−05 2.1641e−02 0.0058405 1.8753920

2 10 100 ∅ ∅ ∅ ∅
3 5 5 1.4484e−05 2.8744e−02 0.0016677 1.5547492

3 4 14 2.1197e−05 1.2439e−01 4.2678e−03 1.8590e+01

3 5 24 3.8699e−04 3.9617e−02 0.057250 1.326782

2 5 0 2.1330e−12 3.6481e−11 3.9225e−10 4.5345e−09

2 10 0 3.1867e−06 5.9222e−03 0.0018326 1.7269961

2 20 11 8.0145e−06 4.2270e−03 0.0071972 1.0316399

3 10 1 0.0025437 0.0206981 1.0404 4.3874

Top part: real frequencies, bottom part: purely imaginary ones

situation the method behaves significantly better and provides a remarkable amount
of numerical stability now. The reason is that the matrices Fn,k now only contain com-
plex numbers of modulus 1 and the spectral values are much better distributed. Here
the numerical stability of orthogonal projections, which are the core ingredient for the
Linear Algebra within the algorithm can seemingly be exploited.

Things change dramatically when the points in Z� are not in general position.
The extremal case is that all points are on a line, which results in deg R assuming its
maximal value #� − 1. This situation is considered in Table 3, where frequencies of
the form

ω = ω̃ + iλω

⎡

⎢⎣
1
...

1

⎤

⎥⎦ , λω ∈ R, (33)
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Table 4 Numerical tests with 100 random imaginary frequencies and random absolute perturbation

Parameters Average error Max error

s # Freq. ε Fail Coeff Freq Coeff Freq

5 100 10−5 0 3.7885e−08 1.1462e−06 2.0235e−06 1.3860e−05

5 100 10−7 0 3.7916e−10 1.1133e−08 2.1059e−08 7.8396e−08

5 100 10−10 0 3.7221e−13 1.1200e−11 1.5896e−11 1.6209e−10

3 100 10−4 27 0.0023822 0.0791873 5.3002 148.6645

4 100 10−4 1 1.2563e−04 5.9020e + 01 1.1638e + 00 2.9213e + 05

5 100 10−4 2 3.7969e−07 1.1228e−05 6.8484e−06 7.1493e−05

10 100 10−4 0 1.2672e−07 3.7955e−06 7.7848e−07 1.4004e−05

The coefficients are chosen randomly in ±[1, 2], therefore no fails occur due to small coefficients. Accid-
dential fails are listed

were chosen as then

zω = eω = eω̃ eisλω

are all points on the line through the origin and eω̃. Since in this case the guess for n has
to be the maximal value n = #�, we use the third column to count the number of fails
where the number of reconstructed frequencies was not correct. The table shows that
again the degree is relevant and that, in contrast to points in general position, things
do not get better but worse with increasing number of variables. In two variables the
method is again surprisingly stable for purely imaginary frequencies but in more than
three variables the eigenvalue routines crash as several matrices in the process become
severely ill-conditioned. This is to be expected as a one-dimensional subspace has to be
found in spaces of dimension

(k+s
k

)
. Things become even worse when the frequencies

from (33) are slightly perturbed as then the are generic but the systems are almost
arbitrarily ill-conditioned.

The last example,whose results are shown inTable 4, considers the case of randomly
perturbed input data. The coefficients were chosen randomly in [−2,−1] ∪ [1, 2] to
avoid instability due to zero coefficients. A fail in this table means that the structure
of the problem was not recognized properly, i.e., #� was not detected correctly, or
that the Vandermonde matrix used to determine the coefficients became singular;
sometimes the results were even Inf or NaN. The threshold on the singular values
was adapted to the perturbation level ε as dndkε. The results are in accordance with the
earlier observations that the algorithm performs surprising well and that the numerical
stability improves with the number of variables. However, it should be mentioned that
ε = 10−3 consistently provided fails as then the noise level exceeded the smallest
singular value of the unperturbed problem. If, on the other hand, coefficients were
chosen randomly in [−1, 1], small coefficients lead to a larger number of fails and a
much worse overall reconstruction quality.

These tests are only snapshots and therefore only of restricted practical relevance
and do not give really reliable information. Nevertheless, they show that the method
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works quite well in principle. Crucial points that need to be studied and adapted further
are the numerical computation of the rank of the Fn,k which at the moment only uses
Octave’s standard rank procedure based on an SVD and thresholding. Better adapted
methods that take into account the construction of the Fn,k and also consider other
rank revealing factorizations are currently under investigation.

In addition, the algorithms are quite fast due to their numerical nature. For exam-
ple, when reconstructing 100 frequencies in 10 variables (second to last example in
Table 4), the procedure determines 901 polynomials of degree 4 in 10 variables and
computes their 100 common zeros together with the associated coefficients (which
only means solving an additional 100 × 100 system) in about 47 s on a standard PC.

4 Sparse polynomials

An immediate byproduct of Prony’s method is to determine sparse polynomials,
oligonomials or fewnomials, cf. [43], from sampling. Here we look for a polynomial

f (z) =
∑

α∈A

fα zα, A ⊂ N
d
0 , (34)

where A is assumed to be of small cardinality but not necessarily to consist only of
small multiindices. Again, the task is to determine A and fα from measurements of
f . Let X ∈ C

s×s be an arbitrary nonsingular matrix, then we consider the matrices

Fn =
[
f
(
eX (β+γ )

)
: |β|, |γ | ≤ n

]
, n ∈ N0.

Since

f (eXβ) =
∑

α∈A

fαe
βT Xα =

∑

α∈A

fα
(
eX

T α
)β

we are in the Prony situation with ω = ω(α) = XTα and fω = fα . Hence, after
reconstructing �, the exponent set A can be obtained as A = X−T�, rounded to
the next integer. Of course, rounding can even compensate small numerical errors
occurring in the approximation process. The choice of X can be used to improve the
conditioning of the problem. With the experiences from the previous section, a purely
imaginary choice of X could be helpful. Note, however, that this of course changes
the sampling grid.

Reconstruction of sparse polynomials has been considered a lot since the algo-
rithm by Ben-Or and Tiwari [1] which uses a univariate Prony method on data
f (k) = f

(
ωk
1, . . . , ω

k
s

)
where ω1, . . . , ωs are coprime and reconstructs the expo-

nents by divisibility. Closest to the approach here is the generalization in [12] which
use some unit roots of the form ω2π/p, but use, in the spirit of [1], a univariate Prony
and a reconstruction by means of the Chinese remainder theorem.

The obvious difference to these methods is that here a multivariate approach is used
an that the total degree of the polynomials used in the method is usually much smaller
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than #A as in the univariate case. The examples of Sect. 3 indicate that these will lead
to better numerical behavior so that fast numerical methods can be used instead of
symbolic ones and the final result is obtained by rounding X−T� to the next integer.
A detailed study of these question, the choice of an optimal matrix X and quantitative
estimates are not in the scope of this paper, however.

5 Summary

We have shown that frequencies and coefficients of (2) can be reconstructed from
sampling the function on the integer lattice

Γn := {α + β : |α|, |β| ≤ n}, (35)

where n is such that n ≥ degΠ/I�, where I� is the ideal of all polynomials vanishing
on Z� = e�. In contrast to the univariate case, this is a structural quantity that depends
on the geometry of Z�. In particular, it is not to be expected that these sampling sets
are minimal unless #� = (n+s

s

)
and the points in Z� are in general position as then

and only then the number of parameters and measurement points coincide. On the
other hand, for s = 1 these conditions are always fulfilled. And even if there were
smaller sampling sets, these would depend on the unknown geometry of Z�.

In addition, we showed that the extended method can be implemented by using
standard procedures of Numerical Linear Algebra and runs with reasonable numerical
stability. There is still room to adapt some of the tools and probably make use of higher
precision arithmetic if needed. Such additions should be designed in the context of a
particular application, however.

All the methods shown here are based on the numerical realization of a purely
algebraic algorithm that in principle solves Prony’s problem in an arbitrary number
of variables and for an arbitrary number of frequencies. It goes without saying that
a careful and quantitative analysis of the algorithm with respect to minimality, com-
plexity and numerical accuracy is a reasonable next step once the underlying theory
is understood. It would also be extremely interesting to compare this algorithm with
other multivariate approaches like the projection method. Some of these issues are
currently under investigation.
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