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Abstract We consider the time discretization based on Lie-Trotter splitting, for the
nonlinear Schrödinger equation, in the semi-classical limit, with initial data under the
form of WKB states. We show that both the exact and the numerical solutions keep
a WKB structure, on a time interval independent of the Planck constant. We prove
error estimates, which show that the quadratic observables can be computed with a
time step independent of the Planck constant. The functional framework is based on
time-dependent analytic spaces, in order to overcome a previously encountered loss
of regularity phenomenon.

1 Introduction

This paper is devoted to the analysis of the numerical approximation of the solution
to

iε∂t u
ε + ε2

2
�uε = λ|uε|2σ uε, (t, x) ∈ [0, T ] × R

d , (1.1)
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in the semi-classical limit ε → 0. The nonlinearity is smooth and real-valued: λ ∈ R

and σ ∈ N. The initial data that we consider are WKB states:

uε(0, x) = a0(x)eiφ0(x)/ε =: uε
0(x), (1.2)

where φ0 : R
d → R is a real-valued phase, and a0 : R

d → C is a possibly complex-
valued amplitude. An important feature of such initial data is that in the context of
the semi-classical limit for (1.1), they yield solutions which are in L∞(Rd) uniformly
in ε, at least on some time interval [0, T ] for some T > 0 independent of ε. Also,
note that even if φ0 = 0 (no rapid oscillation initially), for τ > 0 arbitrarily small and
independent of ε, uε(τ ) takes the form of a WKB state as in (1.2) with amplitude aε

and phase φε �≡ 0 solving (2.2)–(2.3) below (see [8]).
We consider more precisely the time discretization for (1.1) based on Fourier time

splitting. We denote by Xt
ε the map vε(0, ·) �→ vε(t, ·), where

iε∂tv
ε + ε2

2
�vε = 0. (1.3)

We also denote by Y t
ε the map wε(0, ·) �→ wε(t, ·), where

iε∂tw
ε = λ|wε|2σ wε. (1.4)

We consider the Lie-Trotter type splitting operator

Zt
ε = Y t

ε Xt
ε. (1.5)

The Lie-Trotter operator Xt
εY t

ε could be handled in the same fashion. The advantage of
splittingmethods is that they involve sub-equations which are simpler to solve than the
initial equation. In our case, (1.3) is solved explicitly by using the Fourier transform,
defined by

̂ψ(ξ) = 1

(2π)d/2

∫

Rd
e−i x ·ξψ(x)dx,

since it becomes an ordinary differential equation

iε∂t v̂
ε − ε2

2
|ξ |2v̂ε = 0, (1.6)

hence

X̂ t
εv(ξ) = e−iε t

2 |ξ |2 v̂(ξ).

Also, since λ ∈ R, in (1.4) the modulus of wε does not depend on time, hence

Y t
εw(x) = w(x)e−iλ t

ε
|w(x)|2σ . (1.7)
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In the case ε = 1, several results exist to prove that the Lie-Trotter time splitting
is of order one, and the Strang splitting of order two [6,26]. The drawback of these
proofs is that they rely on uniform Sobolev bounds for the exact solution, of the form
u ∈ L∞([0, T ]; Hs(Rd)), for s ≥ 2. However, in the framework of (1.1), these norms
are not uniformly bounded as ε → 0, in the sense thatwe rather have ‖uε(t)‖Hs ≈ ε−s ,
due to the oscillatory nature of uε.

In the case of a linear potential (|uε|2σ is replaced by a known function of x in (1.1)),
error estimates are given in [3]; see also [14,15]. In the nonlinear case, error estimates
are established in [9], but for other nonlinearities than in (1.1)–(1.2). The proof there
requires either to consider a weakly nonlinear regime, that is (1.1) is replaced by

iε∂t u
ε + ε2

2
�uε = ελ|uε|2σ uε, (t, x) ∈ [0, T ] × R

d ,

with the same initial data (1.2), or to replace the nonlinearity in (1.1) with a smoothing
nonlinearity of Poisson type. We recall in Sect. 2 why these assumptions are made
in [9]. The goal of this paper is to prove error estimates which are similar to those
established in [9], but for (1.1)–(1.2). Before stating our main result, we introduce a
few notations. The Fourier transform is normalized as

f̂ (ξ) = 1

(2π)d/2

∫

Rd
e−i x ·ξ f (x)dx .

A tempered distribution f is in Hs(Rd) if ξ �→ 〈ξ 〉s f̂ (ξ) belongs to L2(Rd), where

〈ξ 〉 =
√

1 + |ξ |2.

Theorem 1.1 Suppose that d, σ ∈ N, d, σ ≥ 1, and λ ∈ R. Let φ0, a0 such that

∫

d
e〈ξ〉1+δ

(|φ̂0(ξ)|2 + |â0(ξ)|2)dξ < ∞,

for some δ > 0, and uε
0 given by (1.2). There exist T, ε0, c0 > 0 and (Ck)k∈N such

that for all ε ∈ (0, ε0], the following holds:

1. (1.1)–(1.2) has a unique solution uε = St
εuε

0 ∈ C([0, T ], H∞), where H∞ =
∩s∈RHs. Moreover, there exist φε and aε with, for all k ∈ N,

sup
t∈[0,T ]

(‖aε(t)‖Hk (Rd ) + ‖φε(t)‖Hk(Rd )

) ≤ Ck,

such that uε(t, x) = aε(t, x)eiφε(t,x)/ε for all (t, x) ∈ [0, T ] × R
d .

2. For all �t ∈ (0, c0], for all n ∈ N such that tn = n�t ∈ [0, T ], there exist φε
n and

aε
n with, for all k ∈ N,

‖aε
n‖Hk (Rd ) + ‖φε

n‖Hk (Rd ) ≤ Ck,

such that (Z�t
ε )

n
(a0eiφ0/ε) = aε

neiφn/ε.
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3. For all �t ∈ (0, c0], for all n ∈ N such that n�t ∈ [0, T ], the following error
estimate holds:

∥

∥aε
n − aε(tn)

∥

∥

Hk + ∥

∥φε
n − φε(tn)

∥

∥

Hk ≤ Ck�t .

Example 1.2 The assumptions of Theorem 1.1 are satisfied as soon as φ̂0 and â0 are
compactly supported, or in the case of Gaussian functions, typically.

Note that the first two points of the theorem imply that the functions a and φ are not
rapidly oscillatory: the oscillatory nature of both the exact and the numerical solutions
is encoded in the exponential which relates the functions a and φ to u.

We readily infer error estimates for thewave function and for quadratic observables,

Position density: |uε(t, x)|2.
Current density: J ε(t, x) = ε Im

(

uε(t, x)∇uε(t, x)
)

.

Corollary 1.3 Under the assumptions of Theorem 1.1, there exist T > 0, ε0 > 0 and
C, c0 independent of ε ∈ (0, ε0] such that for all �t ∈ (0, c0], for all n ∈ N such that
n�t ∈ [0, T ], and for all ε ∈ (0, ε0],

∥

∥(Z�t
ε )nuε

0 − uε(tn)
∥

∥

L2(Rd )
≤ C

�t

ε
,

∥

∥

∥

∣

∣(Z�t
ε )nuε

0

∣

∣

2 − |uε(tn)|2
∥

∥

∥

L1(Rd )∩L∞(Rd )
≤ C�t,

∥

∥

∥Im
(

ε(Z�t
ε )nuε

0∇(Z�t
ε )nuε

0

)

− J ε(tn)

∥

∥

∥

L1(Rd )∩L∞(Rd )
≤ C�t .

This result is in agreementwith the numerical experiments presented in [4]: to simulate
the wave function uε, the time step must satisfy �t = o(ε), while to observe the
quadratic observables, �t = o(1) can be chosen independent of ε.

It is very likely that the proof presented in this paper can be adapted to the case
of Strang time-splitting schemes. The main modification to make would concern the
local error estimate (presented in Sect. 6): here, we use a general abstract formula for
the local error associated to Lie-Trotter schemes as established in [15]. Proving the
analog of Theorem 1.1 would essentially require to adapt these computations.

This paper treats only the case of time discretization: the full numerical analysis
would require to take spatial discretization as well. As pointed out in [4], the nature
of the nonlinearity in (1.1), and more precisely the sign of λ (focusing or defocusing
nonlinearity), alters the requirements to bemade concerning themesh size as a function
of ε. We do not address this delicate issue here.

As emphasized in [9], the fact that our analysis requires the analytical solution to
have the form of a WKB state forces us to consider only finite time intervals: the
good news is that the length of the time interval is independent of ε, but on the other
hand, the solution uε must be expected to keep the form of a monokinetic WKB state
only for short time. This is related to the formation of singularities in compressible
Euler equations, and we refer to [7,9] for more precise discussions on that topic.
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However, the analytical framework presented in this paper might be useful for the
long time analysis of numerical schemes, since the time dependent analytic norms
that we consider were initially introduced by Ginibre and Velo to study the large time
behavior of solutions to theHartree equation (scattering theory). From this perspective,
some other time discretization techniques could be tackled thanks to these tools, since
several geometric numerical integrators have been proposed to overcome the lack of
stability of time splitting over large time; see e.g. [5,10,16,17,21–23] and references
therein.

2 Overview of the proof

We present the general strategy for the proof of Theorem 1.1 in the case of a more
general nonlinearity,

iε∂t u
ε + ε2

2
�uε = f

(

|uε|2
)

uε, (2.1)

with f real-valued. For initial data of the form (1.2), it has been noticed in [9] that
the numerical discretization preserves such a structure, in the sense that the numer-
ical solution satisfies the point 2. in Theorem 1.1. Indeed, the exact solution can be
represented as uε = aεeiφε/ε, where aε and φε are given by

{

∂tφ
ε + 1

2 |∇φε|2 + f
(|aε|2) = 0,

∂t aε + ∇φε · ∇aε + 1
2aε�φε = iε

2 �aε,
(2.2)

with initial data

φε|t=0 = φ0, aε|t=0 = a0. (2.3)

The main feature of this representation is that even though they must be expected to
depend on ε, aε and φε are bounded in Sobolev spaces uniformly in ε ∈ (0, 1] on
some time interval [0, T ] for some T independent of ε.

The idea of representing the solution uε under this form goes back to Grenier [20].
Themain features of (2.2) is that the left hand side defines a symmetrizable hyperbolic
system under the assumption f ′ > 0, and the right hand side is skew adjoint (hence
plays no role at the level of energy estimates). Note that in the case of (1.1), this
forces λ > 0 and σ = 1 (cubic defocusing nonlinearity). For a nonlocal nonlinearity,
f (|u|2) = K ∗ |u|2, the approach of Grenier can easily be adapted if K̂ decays at
least like |ξ |−2 for large |ξ | (see e.g. [9]). The approach of Grenier has also been
generalized to more general nonlinearities: see [1,13] for the defocusing case, and
[28] for the focusing case. However, we do not use these results, as we now discuss.

Indeed, the splitting scheme for (2.1) amounts to some splitting technique on (2.2).
Suppose that one solves the linear equation (1.3) with initial data vε(0) = a0eiφ0/ε.
Then the solution vε can be written as vε(t) = aε(t)eiφ(t)/ε, with aε and φ given by
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{

∂tφ + 1
2 |∇φ|2 = 0, φ|t=0 = φ0,

∂t aε + ∇φ · ∇aε + 1
2aε�φ = i ε

2�aε, aε|t=0 = a0.
(2.4)

Similarly, the solution to (1.4) with initial data wε(0) = a0eiφ0/ε can be written as
wε(t) = a(t)eiφ(t)/ε, with a and φ given by

{

∂tφ + f (|a|2) = 0, φ|t=0 = φ0,

∂t a = 0, a|t=0 = a0.
(2.5)

So computing the numerical solution amounts to solving successively (2.4) and (2.5),
which turns out to be a splitting scheme on (2.2). We denote by X t

ε : (φ0, a0) �→
(φ(t, ·), aε(t, ·)) the flow for (2.4) and by Y t

ε : (φ0, a0) �→ (φ(t, ·), a(t, ·)) the flow
for (2.5). The Lie-Trotter splitting operator we consider for (2.2) is then

Z t
ε = Y t

εX t
ε (2.6)

Now in the case of a cubic defocusing nonlinearity (which enters the framework
of [20]), we face a loss of regularity issue. Indeed, the reason why (2.2) is convenient
lies first in the structure of the left hand side, which enjoys symmetry properties: the
splitting leading to (2.4)–(2.5) ruins this property. Suppose for instance that at time
t = 0, φ0 ∈ Hs(Rd) and a0 ∈ Hk(Rd), for large s and k. In (2.4), the first equation
propagates the Hs regularity on a small time interval, provided s is large. The second
equation shows that aε cannot be more regular than Hs−2, due to the last term of
the left hand side. Now if we start with φ0 ∈ Hs and a0 ∈ Hs−2 in (2.5) (with
f (|a|2) = |a|2 for a cubic defocusing nonlinearity), we see that φ ∈ Hs−2 (provided
s − 2 > d/2), and that no better regularity must be expected. So after one iteration
of the operator Zt

ε, φ has lost two levels of regularity. When iterating Z with a small
time step �t , this loss becomes fatal. This is why in [9], it is assumed that either f
is smoothing (to regain at least two levels of regularity) or that a factor ε is present in
front of f , so that (2.5) is altered to

{

∂tφ = 0, φ|t=0 = φ0,

∂t a = −i f (|a|2)a, a|t=0 = a0.

The main technical originality of this paper is based on the remark that if instead
of working in Sobolev spaces, one works in time dependent analytic spaces, it is
possible to control the loss of regularity. Such an idea goes back to [18], to solve (2.2).
The fact that we consider decreasing time dependent weight to measure the analytic
regularity is strongly inspired by the analysis of Ginibre andVelo in the context of long
range scattering for Hartree equations [19], and is also reminiscent of the functional
framework used by Chemin for the Navier–Stokes equation [12] and developed by
Mouhot and Villani to prove Landau damping [27].

Themain technical tools needed here are presented in Sect. 3. Thanks to these tools,
we can prove that both the theoretical and the numerical solutions remain analytic in
a suitable sense on some time interval [0, T ] with T > 0 independent of ε (Sects. 4
and 5).
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The next key estimate is the local error estimate, presented in Sect. 6. It is based on
the general formula established in [15]. As noticed in [9], we must apply this formula
to the system (2.4)–(2.5) and not only to (1.3)–(1.4).

With these propagating estimates and the local error estimate, the proof of Theo-
rem 1.1 follows from the trick known as Lady Windermere’s fan (see e.g. [24]). Note
however that because of the nonlinear context, where global bounds for the numerical
solutions are not known a priori, the argument requires some extra care. We rely on
the induction technique introduced in [25], which is sufficiently robust to be readily
adapted to our case, as in [9].

3 Technical background

We recall here some of the technical tools introduced in [19]. We state the main
properties established there concerning time dependent Gevrey spaces, and simplify
as much as possible the framework, in view of the present context.

For 0 < ν ≤ 1 and ρ > 0, we introduce the exponential weight

w(ξ) = exp
(

ρ max(1, |ξ |)ν) ,

which is equivalent to exp(ρ 〈ξ 〉ν). Define u> and u< by:

û<(ξ) = û(ξ)1|ξ |≤1, û>(ξ) = û(ξ)1|ξ |>1.

For k, � ∈ R and 0 ≤ �< < d/2, the following families of norms are defined in [19]:

a �→
(

‖|ξ |kw(ξ)â>(ξ)‖2L2 + ‖w(ξ)â<(ξ)‖2L2

)1/2
,

φ �→
(

‖|ξ |�+2w(ξ)φ̂>(ξ)‖2L2 + ‖|ξ |�<w(ξ)φ̂<(ξ)‖2L2

)1/2
.

Thefirst norm iswell suited to estimate amplitudes, and the second is adapted to phases.
As suggested by the above notations, the indices will be different for amplitudes and
phases. This can be related to the fact that in the hydrodynamical setting with λ > 0,
(2.2) with ε = 0 is a hyperbolic system in the unknown (∇φ, a), and not in (φ, a).
Indeed, eventually there will be a shift of one index between the norm in φ and the
norm in a (see Lemma 3.3 and Proposition 4.1 below).

In the properties related to these norms which will be used in this paper, the value
of �< is irrelevant. Therefore, we set �< = 0, and consider only one family of norms:
for � ≥ 0, we set

H�
ρ = {ψ ∈ L2(Rd), ‖ψ‖H�

ρ
< ∞},

where ‖ψ‖2H�
ρ

:= ‖|ξ |�w(ξ)ψ̂>(ξ)‖2
L2 + ‖w(ξ)ψ̂<(ξ)‖2

L2 ∼ ∫

Rd 〈ξ〉2� e2ρ〈ξ 〉ν |ψ̂(ξ)|2dξ.

Remark 3.1 The above definition is slightly different from the standard definition for
Gevrey spaces, since low frequencies are smoothed out in the definition of the weight
w: max(1, |ξ |) (or 〈ξ 〉) in w is usually replaced with |ξ |.
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Note that the following estimate is a straightforward consequence of this definition:
for any α ∈ N

d , � ≥ 0,

‖∂αψ‖H�
ρ

≤ ‖ψ‖H�+|α|
ρ

, ∀ψ ∈ H�+|α|
ρ . (3.1)

Also, in view of the standard Sobolev embedding,

‖ψ‖L∞(Rd ) ≤ C‖ψ‖Hs (Rd ),

valid for s > d/2, we have

‖ψ‖L∞(Rd ) ≤ C‖ψ‖Hs
ρ
, (3.2)

with the same constant C independent of ρ ≥ 0.
The above notation may seem rather heavy: it is chosen so because the weight ρ

will depend on time, as we now discuss. For a time-dependent ρ, we have:

d

dt
‖ψ‖2H�

ρ
= 2ρ̇‖ψ‖2H�+ν/2

ρ

+ 2Re 〈ψ, ∂tψ〉H�
ρ
. (3.3)

Even though ρ depends on time, we will consider below “continuous” H�
ρ valued

functions. We mean functions that belong to

C(I,H�
ρ) :=

{

ψ ∈ C(I, L2) such that F−1(wψ̂) ∈ C(I,H�
0) = C(I, H �)

}

for some interval I .
To fix the technical framework once and for all, we recall another important result

from [19]. Consider the system

{

∂tφ + 1
2 |∇φ|2 + λRe

(|∇|μ−daa
) = 0,

∂t a + ∇φ · ∇a + 1
2a�φ = 0,

(3.4)

for some time interval I , 0 < μ ≤ d, and where |∇|α denotes the Fourier multiplier
defined by F(|∇|αg)(ξ) = |ξ |α ĝ(ξ). Lemma 3.5 from [19], which uses (3.3) as well
as rather involved estimates, implies that under the assumptions

� > d/2 + 1 − ν, k ≥ ν/2, � ≥ k + 1 − ν,

k ≥ � + μ − d + 1 − ν, 2k > � + μ − d + 1 − ν + d/2,

any solution of (3.4) on I , such that (φ, a) ∈ C(I,H�+1
ρ ×Hk

ρ)∩ L2
loc(I,H�+1+ν/2

ρ ×
Hk+ν/2

ρ ), satisfies
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∣

∣

∣

∣

∂t‖φ‖2H�+1
ρ

− 2ρ̇‖φ‖2H�+1+ν/2
ρ

∣

∣

∣

∣

≤ C

(

‖φ‖2H�+1+ν/2
ρ

‖φ‖H�+1
ρ

+ ‖a‖Hk+ν/2
ρ

‖φ‖H�+1+ν/2
ρ

‖a‖Hk
ρ

)

,

∣

∣

∣

∣

∂t‖a‖2Hk
ρ

− 2ρ̇‖a‖2Hk+ν/2
ρ

∣

∣

∣

∣

≤ C

(

‖a‖2Hk+ν/2
ρ

‖φ‖H�+1
ρ

+ ‖a‖Hk+ν/2
ρ

‖φ‖H�+1+ν/2
ρ

‖a‖Hk
ρ

)

.

In the case of a cubic nonlinearity, we want to set μ = d in order to get a local
nonlinearity. Therefore, the above algebraic conditions

� ≥ k + 1 − ν and k ≥ � + 1 − ν

imply ν ≥ 1, hence ν = 1 and k = �. In view of this remark, we suppose from now
on ν = 1, that is, we consider analytic functions (see [19]).

Sincewe consider only analytic functions,weborrow from [19] the only inequalities
that we will really use, which appear in [19, Lemma 3.4]:

Lemma 3.2 Let m ≥ 0. Then,

1. For k + s > m + d/2 + 2, and k, s ≥ m + 1,

‖∇φ · ∇a‖Hm
ρ

≤ C‖φ‖Hs
ρ
‖a‖Hk

ρ
.

2. For k + s > m + 2 + d/2, k ≥ m and s ≥ m + 2,

‖a�φ‖Hm
ρ

≤ C‖φ‖Hs
ρ
‖a‖Hk

ρ
.

3. For s > d/2,

‖ψ1ψ2‖Hm
ρ

≤ C
(

‖ψ1‖Hm
ρ
‖ψ2‖Hs

ρ
+ ‖ψ1‖Hs

ρ
‖ψ2‖Hm

ρ

)

. (3.5)

The various constants C are independent of ρ.

We infer the important lemma:

Lemma 3.3 Set ν = 1, and let σ ∈ N, λ ∈ R, � > d/2, and I be some time
interval. Let (ϕ, b) ∈ C(I,H�+1

ρ ×H�
ρ)∩L2

loc(I,H�+3/2
ρ ×H�+1/2

ρ ). Then any solution

(φ, aε) ∈ C(I,H�+1
ρ × H�

ρ) ∩ L2
loc(I,H�+3/2

ρ × H�+1/2
ρ ) to

{

∂tφ + 1
2∇ϕ · ∇φ + λ|b|2σ = 0,

∂t aε + ∇ϕ · ∇aε + 1
2aε�ϕ = iε

2 �aε,
(3.6)
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satisfies

∣

∣

∣

∣

∂t‖φ‖2H�+1
ρ

− 2ρ̇‖φ‖2H�+3/2
ρ

∣

∣

∣

∣

≤ C
(

‖φ‖2H�+3/2
ρ

‖ϕ‖H�+1
ρ

+‖φ‖H�+3/2
ρ

‖ϕ‖H�+3/2
ρ

‖φ‖H�+1
ρ

+‖b‖H�+1/2
ρ

‖φ‖H�+3/2
ρ

‖b‖2σ−1
H�

ρ

)

,

∣

∣

∣

∣

∂t‖aε‖2H�
ρ

− 2ρ̇‖aε‖2H�+1/2
ρ

∣

∣

∣

∣

≤ C
(

‖aε‖2H�+1/2
ρ

‖ϕ‖H�+1
ρ

+‖aε‖H�+1/2
ρ

‖ϕ‖H�+3/2
ρ

‖aε‖H�
ρ

)

,

where C is independent of ε and ρ.

Proof In view of (3.3) and (3.6), we have

∂t‖φ‖2H�+1
ρ

− 2ρ̇‖φ‖2H�+3/2
ρ

= −Re 〈φ,∇ϕ · ∇φ〉H�+1
ρ

− 2λRe
〈

φ, |b|2σ
〉

H�+1
ρ

.

Cauchy–Schwarz inequality yields

∣

∣

∣〈φ,∇ϕ · ∇φ〉H�+1
ρ

∣

∣

∣ ≤ ‖φ‖H�+3/2
ρ

‖∇ϕ · ∇φ‖H�+1/2
ρ

.

Inequality (3.5) with m = � + 1/2 and s = � yields

‖∇ϕ · ∇φ‖H�+1/2
ρ

≤ C
(

‖∇ϕ‖H�+1/2
ρ

‖∇φ‖H�
ρ

+ ‖∇ϕ‖H�
ρ
‖∇φ‖H�+1/2

ρ

)

≤ C
(

‖ϕ‖H�+3/2
ρ

‖φ‖H�+1
ρ

+ ‖ϕ‖H�+1
ρ

‖φ‖H�+3/2
ρ

)

,
(3.7)

where we have used (3.1). The term involving b can be treated similarly. Indeed, using
(3.5) on the one hand with m = � + 1/2 and s = � and on the other hand with
m = � = s, we can prove by induction on σ that

‖|b|2σ ‖H�+1/2
ρ

≤ C‖b‖2σ−1
H�

ρ
‖b‖H�+1/2

ρ
, (3.8)

hence the first inequality for Lemma 3.3.
For the second inequality,

∂t‖aε‖2H�
ρ

− 2ρ̇‖aε‖2H�+1/2
ρ

= −2Re
〈

aε,∇ϕ · ∇aε
〉

H�
ρ

− Re
〈

aε, aε�ϕ
〉

H�
ρ

+ εRe
〈

aε, i�aε
〉

H�
ρ
.

Remark that

Re
〈

aε, i�aε
〉

H�
ρ

= 0,
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so the Laplacian term is not present in energy estimates, which are therefore indepen-
dent of ε. Like before, Cauchy–Schwarz inequality yields

| 〈aε,∇ϕ · ∇aε
〉

H�
ρ
| ≤ ‖aε‖H�+1/2

ρ
‖∇ϕ · ∇aε‖H�−1/2

ρ
.

The last term is estimated thanks to the first point in Lemma 3.2, with

m = � − 1

2
, k = � + 1

2
, s = � + 1.

Similarly,

| 〈aε, aε�ϕ
〉

H�
ρ
| ≤ ‖aε‖H�+1/2

ρ
‖aε�ϕ‖H�−1/2

ρ
,

and the last term is estimated thanks to the second point in Lemma 3.2, with

m = � − 1

2
, k = �, s = � + 3

2
.

The lemma follows easily. ��

4 A fundamental estimate

In the framework of Theorem 1.1, the initial datum uε|t=0 = a0eiφ0/ε belongs to
H∞, so the existence of T ε > 0 (depending a priori on ε), and of a unique solution
uε ∈ C([0, T ε], H∞) to (1.1)–(1.2), stems from standard theory (see e.g. [11]). The
fact that the existence time may be chosen independent of ε, along with the rest of the
first point of Theorem 1.1, stems from Proposition 4.1 below.

For a decreasing function ρ, we introduce the norm defined by

|||ψ |||2�,t = max

(

sup
0≤s≤t

‖ψ(s)‖2H�
ρ(s)

, 2
∫ t

0
|ρ̇(s)|‖ψ(s)‖2H�+1/2

ρ(s)

ds

)

. (4.1)

Proposition 4.1 Let λ ∈ R, � > d/2 + 1, M0 > 0 and (φ0, a0) ∈ H�+1
M0

× H�
M0

.

1. There exists M � 1 such that if T < M0/M and ρ(t) = M0 − Mt, (2.2)–(2.3)
has a unique solution

(φε, aε) ∈ C([0, T ],H�+1
ρ × H�

ρ) ∩ L2([0, T ],H�+3/2
ρ × H�+1/2

ρ ),

with

|||φε|||2�+1,T ≤ 2‖φ0‖2H�+1
M0

+ ‖a0‖4σH�
M0

, |||aε|||2�,T ≤ 2‖a0‖2H�
M0

. (4.2)

123



326 R. Carles, C. Gallo

2. If R > 0 and (φ0, a0), (ϕ0, b0) ∈ H�+1
M0

× H�
M0

, with

‖φ0‖H�+1
M0

+ ‖a0‖H�
M0

≤ R, ‖ϕ0‖H�+1
M0

+ ‖b0‖H�
M0

≤ R,

there exists K = K (R) such that if M is chosen sufficiently large such that
according to the first part of the proposition, (2.2)–(2.3) has solutions (φε, aε)

and (ϕε, bε) on [0, T ] corresponding respectively to the initial data (φ0, a0) and
(ϕ0, b0) (with the same choice of ρ and the same assumption T < M0/M), then

|||φε − ϕε|||�+1,T +|||aε − bε|||�,T ≤ K

(

‖φ0 − ϕ0‖H�+1
M0

+ ‖a0 − b0‖H�
M0

)

.

Remark 4.2 The proof yields a rather implicit dependence of M upon M0 and (φ0, a0).
As a consequence, it is not clear how to choose the best possible T , even for initial
data whose Fourier transform is compactly supported. For our present concern, the
important information is that we get some positive T independent of ε.

Proof To construct the solution, we use the standard scheme from hyperbolic sym-
metric systems (see e.g. [2]), that is, we consider the iterative scheme defined by

{

∂tφ
ε
j+1 + 1

2∇φε
j · ∇φε

j+1 + f (|aε
j |2) = 0, φε

j+1|t=0 = φ0,

∂t aε
j+1 + ∇φε

j · ∇aε
j+1 + 1

2aε
j+1�φε

j = iε
2 �aε

j+1, aε
j+1|t=0 = a0,

(4.3)

with f (|a|2) = λ|a|2σ , initialized with (φε
0, aε

0)(t) = (φ0, a0). For functions at the
level of regularity of the norm (4.1) with � > d/2, the above scheme is well defined:
if |||φε

j |||�+1,T +|||aε
j |||�,T is finite, then φε

j+1 and aε
j+1 are well-defined. Indeed, in the

first equation, φε
j+1 solves a linear transport equation with smooth coefficients, and

the second equation is equivalent to the linear Schrödinger equation

iε∂tv
ε
j+1 + ε2

2
�vε

j+1 = −
(

∂tφ
ε
j + 1

2
|∇φε

j |2
)

vε
j+1, vε

j+1|t=0 = a0eiφε
j (0)/ε,

through the relation vε
j+1 = aε

j+1eiφε
j /ε. This is a linear Schrödinger equation with a

smooth and bounded external time-dependent potential, for which the existence of an
L2-solution is granted.

The proof of the first part of the proposition goes in two steps: first, we prove that the
sequence (|||φε

j |||�+1,T +|||aε
j |||�,T ) j≥0 is bounded for some T > 0 sufficiently small,

but independent of ε. Then we show that up to decreasing T , the series

∑

j≥0

(

|||φε
j+1 − φε

j |||�+1,T +|||aε
j+1 − aε

j |||�,T
)

is converging. Note that unlike in the case of hyperbolic symmetric systems in Sobolev
spaces, the regularity is the same at the two steps of the proof (in Sobolev spaces, the
standard proof involves first a bound in the large norm, then convergence in the small
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norm). This can be seen as an illustration of the fact that these time-dependent norms,
through the decay of the weight ρ, “neutralize” some nonlinear effects.

First step: the sequence is boundedBy integration, Lemma 3.3 yields, for a decreas-
ing ρ(t) and T > 0 to be chosen later,

|||φε
j+1|||2�+1,T ≤ ‖φ0‖2H�+1

ρ(0)
+ C

∫ T

0

1

|ρ̇(t)| |ρ̇(t)|‖φε
j+1(t)‖2H�+3/2

ρ(t)

‖φε
j (t)‖H�+1

ρ(t)
dt

+ C
∫ T

0

1

|ρ̇(t)| |ρ̇(t)|‖φε
j+1(t)‖H�+3/2

ρ(t)
‖φε

j (t)‖H�+3/2
ρ(t)

‖φε
j+1(t)‖H�+1

ρ(t)
dt

+ C
∫ T

0

1

|ρ̇(t)| |ρ̇(t)|‖aε
j (t)‖H�+1/2

ρ(t)
‖φε

j+1(t)‖H�+3/2
ρ(t)

‖aε
j (t)‖2σ−1

H�
ρ(t)

dt,

|||aε
j+1|||2�,T ≤ ‖a0‖2H�

ρ(0)
+ C

∫ T

0

1

|ρ̇(t)| |ρ̇(t)|‖aε
j+1(t)‖2H�+1/2

ρ(t)

‖φε
j (t)‖H�+1

ρ(t)
dt

+ C
∫ T

0

1

|ρ̇(t)| |ρ̇(t)|‖aε
j+1(t)‖H�+1/2

ρ(t)
‖φε

j (t)‖H�+3/2
ρ(t)

‖aε
j+1(t)‖H�

ρ(t)
dt.

Hölder and Cauchy–Schwarz inequalities yield

|||φε
j+1|||2�+1,T ≤ ‖φ0‖2H�+1

ρ(0)
+ C

(

sup
0≤t≤T

1

|ρ̇(t)|

)

|||φε
j+1|||2�+1,T |||φε

j |||�+1,T

+ C

(

sup
0≤t≤T

1

|ρ̇(t)|

)

|||φε
j+1|||�+1,T |||aε

j |||2σ�,T ,

|||aε
j+1|||2�,T ≤ ‖a0‖2H�

ρ(0)
+ C

(

sup
0≤t≤T

1

|ρ̇(t)|

)

|||aε
j+1|||2�,T |||φε

j |||�+1,T .

Recall that M0 > 0 is given. Take φ0 ∈ H�+1
M0

, a0 ∈ H�
M0

and set ρ(t) = M0 − Mt .
Under the condition

C

M
|||φε

j |||�+1,T ≤ 1

4
, (4.4)

the previous inequalities imply

1

2
|||φε

j+1|||2�+1,T ≤ ‖φ0‖2H�+1
M0

+ C2

M2 |||aε
j |||4σ�,T ,

3

4
|||aε

j+1|||2�,T ≤ ‖a0‖2H�
M0

.
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Let us now choose M = |ρ̇(t)| sufficiently large such that (4.4) holds for j = 0 and
such that

2‖φ0‖2H�+1
M0

+ 2C2

M2

(

4

3
|||aε

0|||2�,T
)2σ

≤ M2

16C2 ,

2C2

M2

(

4

3

)2σ

≤ 1.

Note that in view of (4.1), for all T < M0/M (so that ρ remains positive on [0, T ]),

|||aε
0|||2�,T = max

(

‖a0‖2H�
M0

,

∫

〈ξ 〉2� e2M0〈ξ〉|â0(ξ)|2
∫ T

0
2M 〈ξ 〉−2Mt〈ξ〉 dtdξ

)

= ‖a0‖2H�
M0

,

and similarly

|||φε
0|||2�+1,T = ‖φ0‖2H�+1

M0

,

so that our constraint on M only depends on ‖φ0‖H�+1
M0

and ‖a0‖H�
M0
. Then, for T <

M0/M , the above inequalities yield, by induction, for all j ≥ 1,

|||φε
j |||2�+1,T ≤ 2‖φ0‖2H�+1

M0

+ 2C2

M2

(

4

3
‖a0‖2H�

M0

)2σ

≤ 2‖φ0‖2H�+1
M0

+ ‖a0‖4σH�
M0

,

|||aε
j |||2�,T ≤ 4

3
‖a0‖2H�

M0

.

Second step: the sequence converges For j ≥ 1, consider the difference of two
successive iterates: in the case of the phase, we have

∂t (φ
ε
j+1 − φε

j ) + 1

2

(

∇φε
j · ∇φε

j+1 − ∇φε
j−1 · ∇φε

j

)

+ f (|aε
j |2) − f (|aε

j−1|2) = 0,

along with zero initial data. Inserting the term |∇φε
j |2, and denoting by δφε

j+1 =
φε

j+1 − φε
j , we can rewrite the above equation as

∂tδφ
ε
j+1 + 1

2

(

∇φε
j · ∇δφε

j+1 + ∇δφε
j · ∇φε

j

)

+ f (|aε
j |2) − f (|aε

j−1|2) = 0.
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(3.3) yields, along with Cauchy–Schwarz inequality as in the first step of the proof of
Proposition 4.1:

|||δφε
j+1|||2�+1,T ≤

∫ T

0
‖δφε

j+1(t)‖H�+3/2
ρ(t)

‖∇φε
j · ∇δφε

j+1‖H�+1/2
ρ(t)

dt

+
∫ T

0
‖δφε

j+1(t)‖H�+3/2
ρ(t)

‖∇δφε
j · ∇φε

j ‖H�+1/2
ρ(t)

dt

+ 2
∫ T

0
‖δφε

j+1(t)‖H�+3/2
ρ(t)

‖ f (|aε
j |2) − f (|aε

j−1|2)‖H�+1/2
ρ(t)

dt.

The first two terms are estimated thanks to the last point in Lemma 3.2, as in (3.7).
Since f (|z|2) is a polynomial in (z, z̄), the last point of Lemma 3.2 yields

‖ f (|aε
j |2) − f (|aε

j−1|2)‖H�+1/2
ρ

≤ C

(

‖aε
j‖2σ−2

H�
ρ

+ ‖aε
j−1‖2σ−2

H�
ρ

)

×
((

‖aε
j‖H�

ρ
+ ‖aε

j−1‖H�
ρ

)

‖δaε
j‖H�+1/2

ρ

+
(

‖aε
j‖H�+1/2

ρ
+ ‖aε

j−1‖H�+1/2
ρ

)

‖δaε
j‖H�

ρ

)

,

where we have also denoted δaε
j = aε

j − aε
j−1. We conclude:

|||δφε
j+1|||2�+1,T ≤ K

M

(

|||δφε
j+1|||2�+1,T +|||δφε

j |||2�+1,T +|||δaε
j |||2�,T

)

,

where K stems from the first step. For M sufficiently large,

|||δφε
j+1|||2�+1,T ≤ 2K

M

(

|||δφε
j |||2�+1,T +|||δaε

j |||2�,t
)

.

Similarly, δaε
j+1 solves

∂tδaε
j+1 + ∇φε

j · ∇δaε
j+1 + ∇δφε

j · ∇aε
j + 1

2
δaε

j+1�φε
j + 1

2
aε

j�δφε
j = i

ε

2
�δaε

j+1.

The last term is skew-symmetric, and thus does not appear in energy estimates. Resum-
ing the same estimates as in the proof of Lemma 3.3, we come up with:

|||δaε
j+1|||2�,T ≤ K

M

(

|||δaε
j+1|||2�,T +|||δφε

j |||2�+1,T +|||δaε
j |||2�,T

)

,

hence

|||δaε
j+1|||2�,T ≤ 2K

M

(

|||δφε
j |||2�+1,T +|||δaε

j |||2�,T
)

,
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up to increasing M (hence decreasing T ). For M possibly even larger, we infer that
the series

∑

j≥0

(

|||φε
j+1 − φε

j |||�+1,T +|||aε
j+1 − aε

j |||�,T
)

converges geometrically. Uniqueness is a direct consequence of the estimates used in
this second step. (4.2) is obtained by letting j go to infinity in the estimates at the end
of the first step.

The Lipschitzean property of the flow follows from calculations similar to those of
the second step of the proof. ��

5 Bounds on the numerical solution

Proposition 5.1 Let λ ∈ R, σ ∈ N, and let (φε, aε) be the solution of either of the
systems (2.2), (2.4), or (2.5), with the notation f (|z|2) = λ|z|2σ . Let s > d/2 + 1,
μ > 0, and � ≥ s. Suppose that (φε, aε) satisfies

(φε, aε) ∈ C([0, T ],Hs+1
ρ × Hs

ρ),

where ρ(t) = M0 − Mt and 0 < T < M0/M, with

sup
t∈[0,T ]

‖φε(t)‖Hs+1
ρ(t)

+ sup
t∈[0,T ]

‖aε(t)‖Hs
ρ(t)

≤ μ.

Then, up to increasing M (and decreasing T ),

‖φε(t)‖H�+1
ρ(t)

+ ‖aε(t)‖H�
ρ(t)

≤ ‖φε(0)‖H�+1
M0

+ ‖aε(0)‖H�
M0

, ∀t ∈ [0, T ].

Note that the assumption carries over a regularity at level s > d/2 + 1, while
the conclusion addresses the regularity at level � ≥ s: the above proposition may be
viewed as a tame estimate result.

Proof First, remark that |||φε(T )|||s+1+|||aε(T )|||s is a non-increasing function of M ,
provided that the constraint T < M0/M remains fulfilled.

Second, note that it suffices to establish the result in the case of (2.2), since the
other systems contain fewer terms, and we will estimate each term present in (2.2).

The idea of the result is then to view (3.3) as a parabolic estimate, with diffusive
coefficient −ρ̇ = M . Indeed, like in the proof of Lemma 3.3, we have

∂t‖φε‖2H�+1
ρ

+2M‖φε‖2H�+3/2
ρ

≤C‖φε‖H�+3/2
ρ

(

‖∇φε · ∇φε‖H�+1/2
ρ

+‖|aε|2σ ‖H�+1/2
ρ

)

,

∂t‖aε‖2H�
ρ
+2M‖aε‖2H�+1/2

ρ

≤C‖aε‖H�+1/2
ρ

(

‖∇φε ·∇aε‖H�−1/2
ρ

+‖aε�φε‖H�−1/2
ρ

)

.

123



On Fourier time-splitting methods for nonlinear... 331

We then invoke Lemma 3.2 oncemore. Since the first two points in Lemma 3.2 involve
the constraint k, s ≥ m, we can rely only on (3.5). We have

‖∇φε · ∇φε‖H�+1/2
ρ

≤ C‖∇φε‖H�+1/2
ρ

‖∇φε‖Hs−1
ρ

≤ C‖φε‖H�+3/2
ρ

‖φε‖Hs
ρ
,

since s > d/2 + 1. We have already used the estimate

‖|aε|2σ ‖H�+1/2
ρ

≤ C‖aε‖2σ−1
Hs

ρ
‖aε‖H�+1/2

ρ
,

so that Young inequality yields

∂t‖φε‖2H�+1
ρ

+ 2M‖φε‖2H�+3/2
ρ

≤ C
(

μ + μ2σ−1
)

(

‖φε‖2H�+3/2
ρ

+ ‖aε‖2H�+1/2
ρ

)

.

Again, (3.5) yields

‖∇φε · ∇aε‖H�−1/2
ρ

≤ C
(

‖∇φε‖H�−1/2
ρ

‖∇aε‖Hs−1
ρ

+ ‖∇φε‖Hs−1
ρ

‖∇aε‖H�−1/2
ρ

)

≤ C
(

‖φε‖H�+1/2
ρ

‖aε‖Hs
ρ

+ ‖φε‖Hs
ρ
‖aε‖H�+1/2

ρ

)

,

and

‖aε�φε‖H�−1/2
ρ

≤ C
(

‖�φε‖H�−1/2
ρ

‖aε‖Hs−1
ρ

+ ‖�φε‖Hs−1
ρ

‖aε‖H�−1/2
ρ

)

≤ C
(

‖φε‖H�+3/2
ρ

‖aε‖Hs
ρ

+ ‖φε‖Hs+1
ρ

‖aε‖H�+1/2
ρ

)

.

We end up with

∂t

(

‖φε‖2H�+1
ρ

+ ‖aε‖2H�
ρ

)

+2M

(

‖φε‖2H�+3/2
ρ

+ ‖aε‖2H�+1/2
ρ

)

≤ C
(

μ + μ2σ−1
)

(

‖φε‖2H�+3/2
ρ

+ ‖aε‖2H�+1/2
ρ

)

.

Choosing 2M ≥ C
(

μ + μ2σ−1
)

thus yields the result. ��
We readily infer:

Corollary 5.2 Let � ≥ s > d/2+ 1, and τ > 0. Suppose that the numerical solution

Z t
ε

(

φε
0

aε
0

)

=
(

φε
t

aε
t

)

satisfies

sup
t∈[0,τ ]

‖φε
t ‖Hs+1

ρ(t)
+ sup

t∈[0,τ ]
‖aε

t ‖Hs
ρ(t)

≤ μ,
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where ρ(t) = M0 − Mt. Then, up to increasing M (and possibly decreasing τ ),

‖φε
t ‖H�+1

ρ(t)
+ ‖aε

t ‖H�
ρ(t)

≤ ‖φε
0‖H�+1

M0
+ ‖aε

0‖H�
M0

, ∀t ∈ [0, τ ].

Proof Proposition 5.1 yields possibly three values for M , according to which flow
is considered. Note that this value depends only on μ, and recall that if M̃ ≥ M ,
ρ̃(t) = M0 − M̃t , we have

‖ f ‖Hs
ρ̃(t)

≤ ‖ f ‖Hs
ρ(t)

, 0 ≤ t < M0/M̃ = min
(

M0/M, M0/M̃
)

.

Therefore, considering the maximum of the two values of M given by Proposition 5.1
(for the flows associated to (2.4) and (2.5)) yields the corollary. ��

6 Local error estimate

We resume the computations from [9], based on the general formula established in
[15]. For a possibly nonlinear operator A, we denote by EA the associated flow:

∂tEA(t, v) = A (EA(t, v)) ; EA(0, v) = v.

Theorem 6.1 (Theorem 1 from [15]) Suppose that F(u) = A(u)+ B(u), and denote
by

S t (u) = EF (t, u) and Z t (u) = EB (t, EA(t, u))

the exact flow and the Lie-Trotter flow, respectively. Let L(t, u) = Z t (u) −S t (u). We
have the exact formula

L(t, u) =
∫ t

0

∫ τ1

0
∂2EF

(

t − τ1,Zτ1(u)
)

∂2EB (τ1 − τ2, EA(τ1, u))

× [B, A] (EB (τ2, EA (τ1, u))) dτ2dτ1,

where [B, A](v) = B ′(v)A(v) − A′(v)B(v).

In the case of the Lie-Trotter splitting (1.5) for Eq. (1.1), we would have

A = i
ε

2
�; B(v) = − i

ε
f (|v|2)v, f (|v|2) = λ|v|2σ ; F(v) = A(v) + B(v),

where we have omitted the dependence upon ε in the notations for the sake of brevity.
However, as pointed out in [9], using the above result directly in terms of the

wave function uε does not seem convenient. In the context of WKB regime, we rather
consider the operators A and B defined by

A

(

φ

a

)

=
( − 1

2 |∇φ|2
−∇φ · ∇a − 1

2a�φ + i ε
2�a

)

, B

(

φ

a

)

=
(− f (|a|2)

0

)

. (6.1)
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We note that with this approach, neither A nor B is a linear operator.

Lemma 6.2 Let A and B defined by (6.1). Their commutator is given by

[A, B]
(

φ

a

)

=
(∇φ · ∇ f

(|a|2) − div
(|a|2∇φ + ε Im(a∇a)

)

f ′(|a|2)
∇a · ∇ f

(|a|2) + 1
2a� f

(|a|2)
)

.

As a consequence, if � > d/2 + 3, ρ > 0, ‖φ‖H�+1
ρ

≤ μ, ‖a‖H�
ρ

≤ μ, then there

exists C = C(μ) independent of ε ∈ [0, 1] such that

(

ϕ

b

)

= [A, B]
(

φ

a

)

satisfies

{

‖ϕ‖H�−2
ρ

≤ C
(

‖φ‖H�+1
ρ

+ ‖a‖H�
ρ

)

,

‖b‖H�−3
ρ

≤ C‖a‖H�
ρ
.

Proof Like in [9], we have

A′
(

φ

a

)(

ϕ

b

)

=
( −∇φ · ∇ϕ

−∇φ · ∇b − ∇ϕ · ∇a − 1
2b�φ − 1

2a�ϕ + i ε
2�b

)

,

whereas unlike in [9], we consider a function f which is not necessarily linear, so that
the linearized operator of B is given by

B ′
(

φ

a

) (

ϕ

b

)

=
(−2Re(ab) f ′(|a|2)

0

)

and thus

B ′
(

φ

a

)(

A

(

φ

a

))

=
((

2Re(a∇a · ∇φ) + |a|2�φ + ε Im(a�a)
)

f ′(|a|2)
0

)

.

The explicit formula for [A, B] follows as in [9]. The estimates then follow directly
from (3.5) and (3.1). ��

We have the explicit formula

Y t
ε

(

φ

a

)

= EB

(

t,

(

φ

a

))

=
(

φ − t f (|a|2)
a

)

, (6.2)

and we readily infer

∂2EB

(

t,

(

φ

a

))(

ϕ

b

)

=
(

ϕ − 2σλt |a|2σ−2 Re(ab)

b

)

. (6.3)

Finally, we compute that

(

ϕ(t)
b(t)

)

= ∂2EF

(

t,

(

φ0
a0

))(

ϕ0
b0

)
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solves the system

{

∂tϕ + ∇φ · ∇ϕ + 2σλ|a|2σ−2 Re(ab) = 0; ϕ|t=0 = ϕ0,

∂t b + ∇φ · ∇b + ∇ϕ · ∇a + 1
2 (b�φ + a�ϕ) = i ε

2�b; b|t=0 = b0,
(6.4)

where

(

φ(t)
a(t)

)

= EF

(

t,

(

φ0
a0

))

.

Lemma 6.3 Let � > d/2 + 1, s ≥ � and (ϕ0, b0) ∈ H�+1
M0

× H�
M0

. Assume that

(φ, a) ∈ C([0, T ],Hs+1
ρ ×Hs

ρ)∩L2([0, T ],Hs+3/2
ρ ×Hs+1/2

ρ ). Then for M sufficiently
large and T < M0/M, the solution to (6.4) satisfies

|||ϕ|||2�+1,T +|||b|||2�,T ≤ 4‖ϕ0‖2H�+1
M0

+ 4‖b0‖2H�
M0

.

Proof The proof is quite similar to the one of Lemma 3.3 and Proposition 4.1. We
take the H�+1

ρ scalar product of the first equation in (6.4) with ϕ, and the H�
ρ scalar

product of the second one with b. We get

∂t‖ϕ‖2H�+1
ρ

+ 2M‖ϕ‖2H�+3/2
ρ

≤ C‖ϕ‖H�+3/2
ρ

(

‖∇φ · ∇ϕ‖H�+1/2
ρ

+‖|a|2σ−2 Re(ab)‖H�+1/2
ρ

)

,

∂t‖b‖2H�
ρ

+ 2M‖b‖2H�+1/2
ρ

≤ C‖b‖H�+1/2
ρ

(

‖∇φ · ∇b‖H�−1/2
ρ

+ ‖∇ϕ · ∇a‖H�−1/2
ρ

+‖b�φ‖H�−1/2
ρ

+ ‖a�ϕ‖H�−1/2
ρ

)

.

Then, the use of (3.5) with m > d/2 and integration in time yield, with estimates
similar to those presented in the proof of Proposition 4.1,

‖ϕ(t)‖2H�+1
ρ(t)

+ 2M
∫ t

0
‖ϕ(τ)‖2H�+3/2

ρ(τ)

dτ ≤ ‖ϕ0‖2H�+1
M0

+ C
∫ t

0
‖ϕ(τ)‖H�+3/2

ρ(τ)

‖φ(τ)‖H�+3/2
ρ(τ)

‖ϕ(τ)‖Hm+1
ρ(τ)

dτ

+ C
∫ t

0
‖ϕ(τ)‖2H�+3/2

ρ(τ)

‖φ(τ)‖Hm+1
ρ(τ)

dτ

+ C
∫ t

0
‖ϕ(τ)‖H�+3/2

ρ(τ)

‖a(τ )‖H�+1/2
ρ(τ)

‖a(τ )‖2σ−2
Hm

ρ(τ)
‖b(τ )‖Hm

ρ(τ)
dτ

+ C
∫ t

0
‖ϕ(τ)‖H�+3/2

ρ(τ)

‖b(τ )‖H�+1/2
ρ(τ)

‖a(τ )‖2σ−1
Hm

ρ(τ)
dτ,
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‖b(t)‖2H�
ρ(t)

+ 2M
∫ t

0
‖b(τ )‖2H�+1/2

ρ(τ)

dτ ≤ ‖b0‖2H�
M0

+ C
∫ t

0
‖b(τ )‖H�+1/2

ρ(τ)

‖φ(τ)‖H�+1/2
ρ(τ)

‖b(τ )‖Hm+1
ρ(τ)

dτ

+ C
∫ t

0
‖b(τ )‖2H�+1/2

ρ(τ)

‖φ(τ)‖Hm+1
ρ(τ)

dτ

+ C
∫ t

0
‖b(τ )‖H�+1/2

ρ(τ)

‖ϕ(τ)‖H�+1/2
ρ(τ)

‖a(τ )‖Hm+1
ρ(τ)

dτ

+ C
∫ t

0
‖b(τ )‖H�+1/2

ρ(τ)

‖a(τ )‖H�+1/2
ρ(τ)

‖ϕ(τ)‖Hm+1
ρ(τ)

dτ

+ C
∫ t

0
‖b(τ )‖H�+1/2

ρ(τ)

‖b(τ )‖H�−1/2
ρ(τ)

‖φ(τ)‖Hm+2
ρ(τ)

dτ

+ C
∫ t

0
‖b(τ )‖H�+1/2

ρ(τ)

‖φ(τ)‖H�+3/2
ρ(τ)

‖b(τ )‖Hm
ρ(τ)

dτ

+ C
∫ t

0
‖b(τ )‖H�+1/2

ρ(τ)

‖a(τ )‖H�−1/2
ρ(τ)

‖ϕ(τ)‖Hm+2
ρ(τ)

dτ

+ C
∫ t

0
‖b(τ )‖H�+1/2

ρ(τ)

‖ϕ(τ)‖H�+3/2
ρ(τ)

‖a(τ )‖Hm
ρ(τ)

dτ

We choose m = � > d/2 + 1 in the estimate for ϕ and m = � − 1 > d/2 in the
estimate for b. Denoting

μ =|||φ|||�+1,T +|||a|||�,T ,

and

‖ψ‖2
L2

t Hk
ρ

=
∫ t

0
‖ψ(τ)‖2Hk

ρ(τ)

dτ,

since the Hk
ρ norms are increasing with k, Cauchy–Schwarz in time yields

‖ϕ(t)‖2H�+1
ρ(t)

+ 2M‖ϕ‖2
L2

t H�+3/2
ρ

≤ ‖ϕ0‖2H�+1
M0

+ C‖ϕ‖
L2

t H�+3/2
ρ

×
(

μ√
M

sup
0≤τ≤t

‖ϕ(τ)‖H�+1
ρ(τ)

+ μ‖ϕ‖
L2

t H�+3/2
ρ

+ μ2σ−1

√
M

sup
0≤τ≤t

‖b(τ )‖H�
ρ(τ)

+ μ2σ−1‖b‖
L2

t H�+1/2
ρ

)

,

‖b(t)‖2H�
ρ(t)

+ 2M‖b‖2
L2

t H�+1/2
ρ

≤ ‖b0‖2H�
M0

+ Cμ‖b‖
L2

t H�+1/2
ρ

×
(

1√
M

sup
0≤τ≤t

‖b(τ )‖H�
ρ(τ)

+ ‖b‖
L2

t H�+1/2
ρ

+ ‖ϕ‖
L2

t H�+3/2
ρ

+ 1√
M

sup
0≤τ≤t

‖ϕ(τ)‖H�+1
ρ(τ)

)

.
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Adding the last two inequalities, we deduce, for μ ≤ C ,

‖ϕ(t)‖2H�+1
ρ(t)

+ ‖b(t)‖2H�
ρ(t)

+ 2M‖ϕ‖2
L2

t H�+3/2
ρ

+ 2M‖b‖2
L2

t H�+1/2
ρ

≤ ‖ϕ0‖2H�+1
M0

+ ‖b0‖2H�
M0

+ C
μ

M

(

sup
0≤τ≤t

‖ϕ(τ)‖2H�+1
ρ(τ)

+ sup
0≤τ≤t

‖b(τ )‖2H�
ρ(τ)

+M‖ϕ‖2
L2

t H�+3/2
ρ

+ M‖b‖2
L2

t H�+1/2
ρ

)

,

fromwhich the inequality of the lemma easily follows provided M is sufficiently large.
��

We infer the WKB local error estimate:

Theorem 6.4 (Local error estimate for WKB states) Let � > d/2 + 5, M0 > 0,
M � 1, ρ(t) = M0 − Mt and μ > 0. Let (φ0, a0) ∈ H�+1

M0
× H�

M0
such that

‖φ0‖H�+1
M0

≤ μ, ‖a0‖H�
M0

≤ μ.

There exist C, c0 > 0 (depending on μ) independent of ε ∈ (0, 1] such that

L
(

t,

(

φ0
a0

))

:= Z t
ε

(

φ0
a0

)

− S t
ε

(

φ0
a0

)

=
(

�ε(t)
Aε(t)

)

,

satisfies

‖�ε(t)‖H�−3
ρ(t)

+ ‖Aε(t)‖H�−4
ρ(t)

≤ Ct2, 0 ≤ t ≤ c0.

The above result obviously involves a loss of regularity, between the initial assump-
tions and the conclusion. It is important to note that the local error estimate is used
only once in the final Lady Windermere’s fan argument presented in the next section,
so this loss is not a serious problem.

Proof Let t ∈ [0, c0], and fix τ1, τ2 such that 0 ≤ τ2 ≤ τ1 ≤ t . Introduce the following
intermediary notations:

(

φ1
aε
1

)

= EA

(

τ1,

(

φ0
a0

))

,

(

φε
2

aε
2

)

= EB

(

τ2,

(

φ1
aε
1

))

,

(

φ̃ε
2

ãε
2

)

= EB

(

τ1,

(

φ1
aε
1

))

(

φε
3

aε
3

)

= [B, A]
(

φε
2

aε
2

)

,

(

φε
4

aε
4

)

= ∂2EB

(

τ1 − τ2,

(

φ1
aε
1

)) (

φε
3

aε
3

)

.
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Then in view of Theorem 6.1, we have

(

�ε(t)
Aε(t)

)

=
∫ t

0

∫ τ1

0
∂2EF

(

t − τ1,

(

φ̃ε
2

ãε
2

))(

φε
4

aε
4

)

dτ2dτ1.

Since � > d/2+ 1, Proposition 4.1 for λ = 0 ensures that (φ1, aε
1) ∈ H�+1

ρ(τ1)
×H�

ρ(τ1)

is well defined provided τ1 ≤ c0 < M0/M , with (according to (4.2) where we can
remove the ‖a0‖4σH�

M0

term because λ = 0)

‖φ1‖H�+1
ρ(τ1)

≤ 2μ, ‖aε
1‖H�

ρ(τ1)
≤ 2μ.

(6.2) writes (φε
2, aε

2) = (φε
1 − λτ2|aε

1|2σ , aε
1) and thus (3.5) yields (in the calculations

below, the constant C may depend on μ and may change from line to line)

‖φε
2‖H�

ρ(τ1)
≤ 2μ + Cμ2σ ≤ Cμ, ‖aε

2‖H�
ρ(τ1)

≤ 2μ,

because � > d/2. Similarly,

‖φ̃ε
2‖H�

ρ(τ1)
≤ Cμ, ‖ãε

2‖H�
ρ(τ1)

≤ 2μ. (6.5)

Next, since � − 1 > d/2 + 3, Lemma 6.2 implies

‖φε
3‖H�−3

ρ(τ1)
≤ Cμ, ‖aε

3‖H�−4
ρ(τ1)

≤ Cμ.

In view of (6.3), we have

φε
4 = φε

3 − 2σλ(τ1 − τ2)|aε
1|2σ−2 Re

(

aε
1aε

3

)

, aε
4 = aε

3,

and therefore

‖φε
4‖H�−3

ρ(τ1)
≤ Cμ, ‖aε

4‖H�−4
ρ(τ1)

≤ Cμ, (6.6)

since � − 3 > d/2 and thanks to (3.5).
Finally, we prove that if � > d/2 + 5, the H�−3

ρ(t) × H�−4
ρ(t) norm of

(

φε
5

aε
5

)

= ∂2EF

(

t − τ1,

(

φ̃ε
2

ãε
2

)) (

φε
4

aε
4

)

is uniformly bounded in t, τ1, τ2 as long as 0 ≤ τ2 ≤ τ1 ≤ t ≤ T < M0/M . For this
purpose, first note that since �−1 > d/2+1, it follows from (6.5) and Proposition 4.1
that we can choose M = M(μ) sufficiently large such that if 0 < T − τ1 < ρ(τ1)/M ,
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(

φ

a

)

(τ ) = EF

(

τ − τ1,

(

φ̃ε
2

ãε
2

))

is such that

(

φ

a

)

∈ C
(

[τ1, T ],H�
ρ × H�−1

ρ

)

∩ L2
(

[τ1, T ],H�+1/2
ρ × H�−1/2

ρ

)

,

with

max

(

sup
τ1≤τ≤T

‖φ(τ)‖2H�
ρ(τ)

, sup
τ1≤τ≤T

‖a(τ )‖2H�−1
ρ(τ)

,

2M
∫ T

τ1

‖φ(τ)‖2H�+1/2
ρ(τ)

dτ, 2M
∫ T

τ1

‖a(τ )‖2H�−1/2
ρ(τ)

dτ

)

≤ C(μ + μ2σ ).

(Note that ρ(τ) = ρ(τ1) − M(τ − τ1)). Then, thanks to (6.6) and Lemma 6.3, since
� − 4 > d/2 + 1 and s = � − 1 ≥ � − 4, choosing possibly M = M(μ) even larger,

max

(

‖φε
5‖H�−3

ρ(t)
, ‖aε

5‖H�−4
ρ(t)

)

≤ Cμ.

The theorem follows. ��
Back to the wave functions, we obtain an estimate similar to the one presented in

[15, Section 4.2.2]:

Corollary 6.5 Under the assumptions of Theorem 6.4, denoting

(

φε
t

aε
t

)

= Z t
ε

(

φ0
a0

)

,

(

φε(t)
aε(t)

)

= S t
ε

(

φ0
a0

)

,

there exist C, c0 > 0 (depending on μ) independent of ε ∈ (0, 1] such that

∥

∥

∥aε
t eiφε

t /ε − aε(t)eiφε(t)/ε
∥

∥

∥

L2
≤ C

t2

ε
, 0 ≤ t ≤ c0.

Proof With the same notations as in Theorem 6.4, the Sobolev embedding of H�−4
ρ(t)

into L∞ (� > d/2 + 5) ensures

∥

∥

∥aε
t eiφε

t /ε − aε(t)eiφε(t)/ε
∥

∥

∥

L2
≤ ∥

∥aε
t − aε(t)

∥

∥

L2 +
∥

∥

∥aε(t)
(

eiφε
t /ε − eiφε(t)/ε

)∥

∥

∥

L2

≤ ∥

∥Aε(t)
∥

∥

L2 + 1

ε

∥

∥aε(t)
∥

∥

L∞
∥

∥�ε(t)
∥

∥

L2 ≤ Ct2

ε

��
This result will not be used in the sequel, but shows how a 1/ε factor appears when

going back to the wave function, in agreement with the observations in [4]. The above
computation also shows how to infer the first point in Corollary 1.3 from Theorem 1.1.
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7 Lady Windermere’s fan

Let M0 > 0, � > d/2 + 5, and v0 = (φ0, a0) ∈ H�+1
M0

× H�
M0

. For the sake of
conciseness, we use the following notations: for t > 0, n ∈ N and �t > 0,

vε(t) = (φε(t), aε(t)) = S t
εv0, vε

n = (φε
n, aε

n) = (Z�t
ε

)n
v0.

For ρ > 0 and v = (φ, a) ∈ H�+1
ρ × H�

ρ , we also denote

‖v‖ρ,� = ‖φ‖H�+1
ρ

+ ‖a‖H�
ρ
.

According to Proposition 4.1, if M > 0 is sufficiently large, T < M0/M and ρ(t) =
M0 − Mt , (2.2)–(2.3) has a unique solution vε ∈ C([0, T ],H�+1

ρ × H�
ρ), with

sup
0≤t≤T

‖vε(t)‖ρ(t),� ≤ R,

where R = 2‖v0‖M0,�.
We recall the notation tn = n�t , and we set ρn = ρ(tn). We now prove by

induction on n that there exists c0 > 0 such that if �t ∈ (0, c0], for every n ≥ 0 such
that n�t ≤ T , we have

‖vε
n‖ρn ,�−4 ≤ R + δ, (7.1)

‖vε
n − vε(tn)‖ρn ,�−4 ≤ γ�t, (7.2)

‖vε
n‖ρn ,� ≤ R/2, (7.3)

for some δ, γ > 0 that will be given later. (7.1)n–(7.2)n–(7.3)n obviously hold for
n = 0. Let n > 0 such that n�t ≤ T and assume that (7.1) j–(7.2) j–(7.3) j hold for
all j ∈ {0, . . . , n − 1}. Then, for all j ∈ {0, . . . , n − 2}, (7.1) j+1 yields

∥

∥

∥Z�t
ε vε

j

∥

∥

∥

ρ j+1,�−4
=

∥

∥

∥vε
j+1

∥

∥

∥

ρ j+1,�−4
≤ R + δ. (7.4)

On the other hand, for j ∈ {0, . . . , n − 2}, we also have

∥

∥

∥S�t
ε vε

j

∥

∥

∥

ρ j+1,�−4
≤

∥

∥

∥S�t
ε vε

j − S�t
ε vε(t j )

∥

∥

∥

ρ j+1,�−4
+ ∥

∥vε(t j+1)
∥

∥

ρ j+1,�−4

≤
∥

∥

∥S�t
ε vε

j − S�t
ε vε(t j )

∥

∥

∥

ρ j+1,�−4
+ R.

From (7.3) j , ‖vε
j‖ρ j ,�−4 ≤ R/2, whereas ‖vε(t j )‖ρ j ,�−4 ≤ R by choice of R. Thus,

since � − 4 > d/2 + 1, Proposition 4.1 and (7.2) j imply (up to increasing M)

∥

∥

∥S�t
ε vε

j − S�t
ε vε(t j )

∥

∥

∥

ρ j+1,�−4
≤ K (R)γ�t.
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Therefore, if c0 > 0 is chosen sufficiently small such that K (R)γ c0 ≤ δ, we have

∥

∥

∥S�t
ε vε

j

∥

∥

∥

ρ j+1,�−4
≤ R + δ, (7.5)

and (7.4), (7.5) and Proposition 4.1 ensure that for all j ∈ {0, . . . , n − 2},
∥

∥

∥

(S�t
ε

)n−1− j Z�t
ε vε

j − (S�t
ε

)n−1− j S�t
ε vε

j

∥

∥

∥

ρn ,�−4

≤ K (R + δ)

∥

∥

∥Z�t
ε vε

j − S�t
ε vε

j

∥

∥

∥

ρ j+1,�−4
.

Moreover, the last estimate also holds for j = n − 1 if K is replaced by 1. According
to (7.3) j and Theorem 6.4, we deduce that for all j ∈ {0, . . . , n − 1},

∥

∥

∥

(S�t
ε

)n−1− j Z�t
ε vε

j − (S�t
ε

)n−1− j S�t
ε vε

j

∥

∥

∥

ρn ,�−4

≤ max(1, K (R + δ))C(R/2)�t2. (7.6)

Piling up the last inequality for j ∈ {0, . . . , n − 1}, we conclude

‖vε
n − vε(tn)‖ρn ,�−4 ≤

n−1
∑

j=0

∥

∥

∥

(S�t
ε

)n−1− j Z�t
ε vε

j − (S�t
ε

)n−1− j S�t
ε vε

j

∥

∥

∥

ρn ,�−4

≤ n max(1, K (R + δ))C(R/2)�t2

≤ max(1, K (R + δ))C(R/2)T �t,

which proves 7.2n with γ = max(1, K (R + δ))C(R/2)T . Then, (7.2)n yields

‖vε
n‖ρn ,�−4 ≤ ‖vε

n − vε(tn)‖ρn ,�−4 + ‖vε(tn)‖ρn ,�−4 ≤ γ�t + R. (7.7)

Note that it does not prove (7.1)n yet, because the choice of δ = γ c0 may be incom-
patible with the previous constraint K (R)γ c0 ≤ δ. However, (7.3)n follows from
(7.7) and Corollary 5.2, once we have noticed that the proof of (7.7) also works if
vε

n = Z�t
ε vε

n−1 is replaced by Z t
εv

ε
n−1 (and tn by tn−1 + t), for any 0 ≤ t ≤ �t , so

that

Z t
ε

(Z�t
ε

)n−1
v0 − S t+(n−1)�t

ε v0

= Z t
εv

ε
n−1 − S t

εv
ε
n−1 +

n−2
∑

j=0

[

S t
ε

(S�t
ε

)n−2− j Z�t
ε vε

j − S t
ε

(S�t
ε

)n−2− j S�t
ε vε

j

]

.

Then, (7.1)n follows from (7.3)n , and any positive value for δ is admissible.
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