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Abstract In this paper, we investigate local ultraconvergence properties of the high-
order finite element method (FEM) for second order elliptic problems with variable
coefficients. Under suitable regularity and mesh conditions, we show that at an interior
vertex, which is away from the boundary with a fixed distance, the gradient of the
post-precessed kth (k > 2) order finite element solution converges to the gradient
of the exact solution with order O(h**2(Inh)3). The proof of this ultraconvergence
property depends on a new interpolating operator, some new estimates for the discrete
Green'’s function, a symmetry theory derived in [26], and the Richardson extrapolation
technique in [20]. Numerical experiments are performed to demonstrate our theoretical
findings.
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1 Introduction

In this paper, we consider the ultraconvergence of FE approximation for the following
elliptic problem

i

u(y) =0 on 9%,

[[:u(y)z—% (a,-j(y)a%) = f(y) in €, (1.1

where Q@ C N (n = 2, 3) is a bounded polygon (n = 2) or polyhedron (n = 3), and
A= (a;) € (C O"(SZ))”2 is a uniformly positive definite matrix in the sense that there
exists § > 0 satisfying

aiji&j > 666, & e W

Note that throughout the paper, the Einstein convention is used: the summation will
be taken over all repeated indices.

The study of optimal convergence and superconverence/ultraconvergence prop-
erties has been an area of active research, see [1,2,4-9,13-15] and [17-37] for
an uncompleted list of references). For instances, Bank and Xu (see [5]) proved
that, for linear finite element, the recovered gradient Qy Vul converges with order
O (h'+min(L.o)| 1og h| %), where Qj, is a global L? projection, the underlying mesh 7;,
is quasi-uniform and satisfies the so-called («, o)- parallelogram property. Huang and
Xu (see [15]) obtained that, for second-degree finite element, the recovered gradient
0, Vu" converges with order O (h2+™in(1.9) | Jog h| %).

Itis known that when the underlying mesh has a certain local symmetry property, the
corresponding finite element solution has some natrual superconvergence properties.
For instances, Schatz, Sloan and Wahlbin discovered in [22,23,27] that at a local
symmetric vertex xo, when k is even, the finite element solution converges to the exact
solution with order (’)(hk”_8 ), where ¢ > 0 can be arbitrary small; when k is odd,
the discrete gradient of the finite element solution converges to the gradient of the
exact solution with order O(h¥t1=¢), where a vertex xq is called local symmetric
if there exists some radius d > 0 such that the underlying mesh is symmetric in
the neighborhood B(xo,d) = {y: |xo — y| < d}. The natural superconvergence
or even ultraconvergence of the finite element solution has been also investigated
by other techniques such as the so-called weak estimate, see [6,14,18,19,36] for an
uncompleted list of references.

To obtain better superconvergence/ultraconvergence result, one natural idea is to
post-process the finite element solution on some local symmetric mesh, see e.g.,
[6,7,13,18-20] and references therein. Along this direction, Lin found in [19] that
the gradient of a special interpolation of some odd order finite element solution
on a uniform rectangular mesh converges with order O(h**2|Inh|) at an interior
vertex. Zhang et al. discovered in [30,33] that the recovered gradient (see e.g. SPR by
[34,37] and PPR by [30]) of some even order finite element solution on some uniform
rectangular meshes converges with order O(h**2|Inh|) as well. M. Asadzadeh, A.
Schatz, and W. Wendland showed that the discrete gradient of some extrapolated
finite element solution superconverges with order O (h**!|1n i) under suitable local
symmetric mesh.
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All aforementioned ultraconvergence results are valid only for elliptic equations
with constant coefficients. Recall that the classical superconvergence analysis for
variable-coefficient problems is done by estimating the difference between the variable
coefficient bilinear form and its corresponding (piecewise) constant coefficient bilinear
form. Since this difference is only a one-order-higher term, we can not obtain ultracon-
vergence results of the corresponding finite element solution for variable-coefficient
problems. In other words, we can not use this approach to prove the ultraconvergence
of the post-processed FE solution for variable-coefficient problems.

In this paper, we propose a novel local interpolation operator to post-process finite
element solutions for variable-coefficient problems. Unlike the classical interpolation
operator defined in [19,20], our local operator interpolates the value of the original
finite element solution at all vertices of the underlying mesh in a patch instead of
interpolating all nodes in a relatively smaller-sized patch.

To prove the ultraconvergence property of our post-processed FE solution, we first
investigate properties of the so-called discrete Green’s function in the whole domain
R". We found the difference between two errors, one is the FE projection error of
the Green’s function with variable coefficients, another is the FE projection error
of the Green’s function with constant coefficients by fixing one point value of the
corresponding variable coefficients, is of order almost O (h%). Combining with some
further nice properties for the FE projection error of the Green’s function (see Theorem
2.1 for the details), we show that for even k and translation invariant mesh, between
two interior vertices y; and y; satisfying |y; — y2| < &, there holds

[ —u"y () = @ — u")(32)| S A I AP ] yass.oo giny (1.2)

where u and u” are the exact and finite element solutions, respectively, of the
following problem

Lu(y) = f(y) in R", wu has a compact support.
The inequality (1.2) plays a critical role in the proof of our main result
IV — IT35,u") (50)| S B2 I h P ull yiss.oogin) (1.3)
where k is even and 1722,1‘,1 is our local operator which interpolates a continuous
function to a polynomial of order 2k in a mesh-patch of size 2kh.

Note that the above estimate is only valid for the case that the degree & is even.
To obtain the same ultra-convergence property for the case that k is odd, we need to
do some special treatment. Towards this end, we first extrapolate the finite element
solution to obtain

| — Puy(y1) — (= Pu"y(y2)| S B I InhPlullyrsoogny, — (14)

where P is the extrapolation operator defined in Section 4. Subsequently, we obtain

IV (u = M35, (Pu")) )| S 2110 kP [l ypices.co gy - (1.5)
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218 W. He et al.

Based on (1.3) and (1.5) for ", we establish similar estimates on the bounded
region 2 for the problem (1.1) with help of interior analysis ( see [26] et al.) and
negative norm estimate (see [21]).

Other than variable coefficients, we also would like to emphasize that our results are
valid for any locally symmetric mesh, particularly for simplical meshes. Comparing
with the best known gradient superconvergence result for variable coefficients by
Schatz-Sloan-Wahlbin [23,26]

du(xg)  da"(xo
3)6,' 3)6,'

r(1
’ﬂ)‘ < M In (E) if k isodd (1.6)
and by Asadzadeh et al. [2]

du(xo) 30" (x0, B)| _ S I 0 T (1.7)
0x; 0x; ~ h) - .

where 0 < 8 < 1, our results raise the superocnvergence order to hk+2| In h|3, an
ultraconvergence result.

The rest of this paper is outlined as follows. In Sect. 2, we discuss the discrete
Green’s functions in the whole domain " over a uniform conforming partitions. In
Sects. 3 and 4, we investigate the ultraconvergence of the finite element solution for
the problems in the whole domain " over a uniform conforming partitions, where
Sect. 3 is for the even order and Sect. 4 is for the odd order finite element solution. In
Sect. 5, we apply our theory to problem (1.1). The numerical experiments supporting
our theory are presented in Sect. 6.

2 Discrete Green’s functions in R”"

This section is dedicated to a discussion of the finite element approximation properties
of the Green’s function. For any positive definite coefficient matrix B = (b;;)xn, We
define the associated bilinear form

oY (y) 99 (y)
dyi  dyj

ap(y, ¢) = /wz bij(y) dy ¥,¢ e Hy(R"),

where HO1 (M) = {v € H'(M")|v has a compact support}. In particular, we denote
a(-,-) = aa(-, -) for simplicity. Let the Green function Gf be defined by

ag(GE,w) =w(z), Ywe W' (R") N Hj(R"), Vg > n. 2.1

For a given point z € 0", we define the shift of A by A, = (a;;(y + z)) and the
constant matrix A, = (a; j(2)). For simplicity, we denote
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Ultraconvergence of high order FEMs for elliptic problems... 219

Let 7;, be a uniform conforming partitions of )" and \}, be the set of all vertices of 7j,.
We assume that 7;, is symmetric in the sense that each vertex y € Nj, is a symmetric
center of the mesh 7. That is to say, for all z € N}, 2z — y € Nj,. Let

Sp = {vn € CN") = (vp)le € Px, Ve € Ty}

be the associated finite element space of degree k and let S}? =Sy N H(} (M), we
introduce the finite element projector RE : HO1 M) — 52 for all Y € Sg (M) by

ag(w — RPw, ¥) = 0. (2.2)

In particular, we denote Rj, = R,‘:‘, Rfl = R;?Z, ﬁ; = R,:‘Z.

The following approximation property
IGE — REGE |10 ginpe.ayy S h*d'~F " Inh|,vd > 0, (2.3)
is shown in [24]. Usually, the estimate (2.3) can be used to derive the vertex-wise
convergence or superconvergence of |(u — Ryu)(xo)|, xo € Ny, where u € HO1 (™)

is the solution of
a(u,v) = (f,v),Yv € Hj (") (2.4)

and Ryu = u" € Sg is the finite element solution satisfying
au", vw) = (f.vp). Yo € 5. (2.5)

To derive the ultraconvergence of Rju, we need to discuss further approximation
properties of the discrete Green’s functions R;, G . Precisely, in this section, we shall
estimate the following three quantities defined for all y, z € )" by

a(y,2) = G.(y) — RuG-(y) — [G(y) — R, G- ()], (2.6)
@1(y,2) = Go(y) — RuGo(y) — [G.(y +2) — (RiG (Y + )], (27)
w(y,2) = Goy) — RyGo(y) = [G=(y +2) = RyG.(y + )] (2.8)

which depend on the smoothness of variable coefficient A = (a;;).
We have the following Theorem.

Theorem 2.1 Leta;; € C*(W"), 1 <i, j < n. Then
/ Vya(y, D)ldy S B[ nhl. (2.9)
R

Moreover if |z| < h, then we have

/ ylIVyai(y, Dldy < B[ InhP, (2.10)

i

/ YIIVyea(y, D)ldy S B Inhf?, 2.11)
R
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and
/ IV(@(y,0) —a(y + 2z, 2))dy < h3|Inhp. (2.12)
N

Before proceeding the proof of Theorem 2.1, we first introduce some lemmas.

Lemma 2.2 Leta;j € CCMN"), 1 <i,j <nand E(y) = G.(y) —G.(y),y € W
Then

IE |l wiooginpeay Sd° " "'IInd|, ¥d > 0. (2.13)
Consequently,
”E RhE”Wl Loy < ]’l |lnh| (214)

Proof We first show (2.13) for the case [ = 1. We denote x;(s) = BE(S) ,t=1,...,n.
One observes that

d ax,(s) 32 IE(s) 3 (da;j(s) IE(s)
8_s,( ajj(s) ) 95:05; ( 11(5) ) as,- (—Bs, —asj ) (2.15)

The fact that w(z) = a(G., w) = az (G, w), Yw € WhI(W") N HJ (W"), Vg > n

yields that
B] 0G () _ 0 [  9G.(s)
a—Si(cltj(S) 3Sj )—a—Si(at}(Z) 8Sj )
and thus
9? IEGs)\ 92 G (s)
—asl_ast (au(s) BS]' ) = 35195, (alj(z) alj( s)) 5]
RPN ) aZEZ(s) 9 | daij(s) G (s)
= 8_s, |:(al](z)_al](s)) 95,05, i|_3_sz |:—8s, —as,- .
(2.16)
Combining (2.15) and (2.16), we have
r B BZEZ(S)
Xxe(s) = (alj(z) alj(s)) 85705,
_i[aaij(s) 861(5):|_i(aaij(s)8E(s)). .17
as; 058 0s; as; a8y s
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Let y € W'\ B(z,d). Then

_ L 0xk(s) 3Gy (s) _/ L 92G(s) [ 9G ()
Xt(y)_/mnaum as; dsi ds = R |:(a,‘,(z) @i () dsj0st as; ds

_/ da;j(s) 862(5‘) BGy(s)dS _/ da;j(s) 0E(s) 8Gy(s)ds
R Bs; aS] aS[ i Bst 8s] aSi
= J1(y) + L2(3) + J3(). (2.18)

We first estimate Ji(y). For all d > 0, let dy = max{2d, 1} and Q¢ = B(z,dy) U
B(y, dp). Then

nor=([ o+ 4] +f
Bzd) JBG.Y)  Jo~BG.DHUBE L) S

3°G. 9
() Gy(S)ds
0s;0s; 0s;

X [(aij (2) — a;j(s))
=Jii(y) + Ji200) + J1300) + J1,.4(). (2.19)
Moreover, by [11] and [12],
V2G| Sls =2 ™ IVGy)I S 1y — sl
and the fact that a;; € C* yields that
laij () —aij(s)] S ls —z].

When y € " \ B(z,d), s € B(z, %), we have |y — 5| > % and thus

111l s/ Is — 2"y —s|'ds < d‘*”/ s —z|""ds S d*
B(z,d/2) B(z,d/2)

Similarly,
BTy
A straightforward calculation yields that
/13001 £ d*7"|Ind|,
and

892G G,
|Jl,4|§/ EAEON >(S)|ds§/ Is — 2| "ly — s|'""ds
Qe 0508 0s; R~

<dy" < minf{d* " 1), (2.20)
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222 W. He et al.

Then by (2.19), we have

1) S d* " Ind|.

Similarly,

|2 $d*> " Ind|, and |J3(y)| < d* " Ind|.

Then, by (2.18), we get the desired result (2.13) for the case / = 1. We turn now to
the proof of (2.13) for / > 2. From (2.17) it follows that, for any positive integer m,

al ? 32G(s)
v (a_s,- [(aij(z)—aij(s)) 55,08, })‘

Vm(i[aau(s) a@m)D +‘Vm (i(aaij(s)aE(S)))’
0s; asy s ds; 08¢ as;

S s = zIV™3G ()] + V"G ()] + V"2 G, (s)]

IV Lx: (s)] <

+

Sls—z™ " s =z s =T S s — 2T (2.21)

where we have used the estimate (see [11] and [12])
V™" G ()| + V" G.(s)| < |s —z]>~™ ",

where m’ is a positive integer. Assume that the weighted Sobolev space
/caT(B(s, R)) is a normed linear spaces if equipped with the norms ||/¢L||KZ"(B(X’R)) =

1
—a\2 2
ZIoz\fT (fB(s,R) (ID“u(x)|p(x, M)l “) dx) ‘) By Theorem 6.5 (see [3]), (2.21)
and (2.13) for the case [ = 1, we obtain, for all positive integer m > 2,

”Xt”KI’JLZ(B(S,d/D) 5 ”'CE”KI';::%(B(S,d/Z)) + ||Xl||K22(B(s,d/2))

< dm—2d2—m—n+% + d—2d2—n+% |Ind|

<d~?|Ind|.
This implies
Xl am (BGs,ay2)) S d27m||Xt||K;;’_2(B(s,d/2)) < d* "2 Indl. (2.22)
By (2.22), we have

”Xt”W’*l»OO(B(s,d/Z)) S ||Xt||Wl+n71~l(B(S,d/2)) S d7||Xt||Hl+nfl(B(s,d/2))

< A3 a3 Ind) < a3 Ind). (2.23)
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Consequently,
”E”Wl 0O (R B(z,d)) ~ <d 3-l= n| lnd|

This gives the desired result (2.13).
Next we show (2.14). For any y € ",

(E — RyE)(y) = a(E — RyE, Gy) = a(E — RyE, Gy — RyG,)
= a(E — IfE, Gy — RyG)),

where [ }’f is the standard interpolating operator from H(} (M™) to 52- Letting

A(E — IFE)(s) (G, — R,G

B :/ aij(s) ( h )(s) a( y h y)(S)dS,

B(z.d) Bsi 3Sj

A(E — IFE)(s) 3(Gy — Ry G,

B :/ ai;(s) ( R E)(s) 0(Gy h y)(S)d&

NB(z.d) as; as

we have
(E — RLE)(y) = By + B». (2.24)

We next estimate B and B, for y € 0" \ B(z, 2d) for some d > c¢1h > h. Since
y e R\ B(z,2d), we have s € W' \ B(y,d) if s € B(z, d). Note that

0 8G
LE= — [(ai,(z) aij (s)) (S)}
Si S

Therefore, by (2.3), we have

|By] SIE - I;]fE||W1»1(B(z,d))||Gy — RuGyllwrooin B(y.d))
S hkdl_k_n | 111 hl [”E — I}]:E”WLI(B(Z,/’!)) + hk”E” Wk+1‘1(B(z,d)\B(z,h))]
< W52 Inh|d' k7, (2.25)

where we have used (2.3), (2.13) for the case I = k 4 1 and the fact thatd > & in
the last inequality.
Similarly,

|Ba| < Al k||| E |l st pe.ay S T Inhld> " (2.26)
Substituting (2.25) and (2.26) into (2.24) and noticing & < d, we obtain

IE — RyE|l Lo inBe2ay) S BT In k>, (2.27)
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224 W. He et al.

Thus
IE — RyEllwi.@in < B(z.24))
k k
<NE = I Elwicognpi2d)y T 1 E — RuEllwi0oginp(z.24))
S HMNE koo g poay + 1 IIE = RiEll L@ B, 24)
< W) Inhja> .
This implies
IE = RhElwii g pizoemy < B IIn AR [ In k| < | In k). (2.28)

We turn now to the estimation of || E — Ry E|ly1.1(p(; 2¢,1))- One observes that, for
all y € B(z,2c1h),

1 1
IRWG yll g1 giny S a(RpGy. RpGy)2 S IRRGyll oo gy -
Using the inverse estimate, we have, if n = 2,

-1
[ RhG yllLooiny = sup [[RNGgllL=e) S sup [[RN Gl pimni) In k|2

eeTy eeTy

=1 =1
S ||RNGxo||L\1nh\(W)|1nh| 7 S |Inh|z2 ||RNGx0||H1(mn),

and if n = 3,

;]
[ RhG yllLooiny = sup [[RNGxgllL=e) S sup 1Ry G ll ooy 2
ecT) ecT)
=1 =1
S IRNG o llps@imyh > S hZIIRNGxll g1 (q)-
Combining the above three estimates, we have
IRAG yll Loy < h* 7" [Inh| ™", (2.29)
Furthermore, by (2.29) and the inverse estimate, we have, forn = 2, 3,
- - -1
IRLG y lwrc gy S B HIRAG Il ooy S A" |Inh|

This implies

(I E — RyEYY)| = la(If E — E, RyGy)| S IIFE — Ellwigim | RuGy ll oo i)
< ¥ 1nh|. (2.30)
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Consequently,

k k
||E — RhE”Wl-l(B(z,chh)) S ||E—Ih E||WI~I(B(1,201h))+”IhE - RhE”Wl'l(B(z,chh))
<K Inh|+h"h YW IFE =Ry E | Lo B2y < B2 Inhl.

(2.31)
The estimate (2.14) is a direct result of (2.28) and (2.31). O
Lemma 2.3 Ifall a;jj € C*°(N"), 1 <1i, j <n, then
IRy — R G:llwii gy S B2 Inhf. (2.32)
Proof By the definition of R;, and Ei’l, we have that for any v € Sg (M),
d(RyG, — G d
/ Cli/'(S) (RrG, () U(S)ds -0,
R aSi st
AR, G, —G)(s)d
/ 50 20z =BG 30)
i Bs,- as]
Then,
d((Ry, —R;)G,)(s) 8
/ e ((Rp — R,)G)(s) U(S)ds
Rnn Bsi BS]
(R, G, — G,)(s) du(s)
=/ [aij(s) — a;j(2)] h Za z ds. (2.33)
o Si as;
Consequently,

IRy — R,DG) ()

(G, — R,G)(s) dRpgi(s) "
ayr

3S,’ 3Sj

’

d
= /W (a;j(s) — a;ij(2))
' (2.34)

where for 1 <1 < n, Rj g is the discrete derivative of Green’s function defined by

Yw € Hy (W) N W24(R"), g > n.

ow(y)
a(Rpg, w) = a—ly

There exists the following estimates (see [35,36])

IRngi w1ty S Ikl IRRg I wroo iy S A" 1AL, | RRg1llw .o i< B(y.ay)
<d"|Inh|, (2.35)
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where d > coh. In the following, we use (2.3), (2.34), (2.35) to prove (2.32). Let
do = coh. Note that

/w |(aij(s) — aij(2))V(G. — R, G2)(s)lds
= / +/ |(@ij(s) — aij(2))V(G, — R,G-)(s)|ds
B(z,do) R"B(z,dpy)
ShIG: = R, Gl +/ |s — z| x B¥|s — 2" 7" In h|ds
R~ B(z.do)
< h?|Inh>. (2.36)
Combining this estimate and (2.35), we have

I(Rh — R Gllwroouny S h*h 7" Inh* S ¥ " Inh|?, (2.37)

We next turn to an improved estimate of ||(R, — F;)EZHWLOO(W\ B(z.4y) for all
d > do = coh. By (2.34), we have that for any y € 0" \ B(z, d),

I(Rn — R,DG)(Y)

=L +Db, (2.38)
ay
with
(G, — R; G.)(s) 0Rngi(s)
I =/ (a1 (5) g 2)) 1T 818) 4,
B(z,d/2) Si ds;
(G, — R; G.)(s) dRngi(s)
163 =/ (aij(s) — a;j(2))—— hs 8% ds.
N B(z,d/2) asi a5
By (2.35) and (2.36), we have
1] S R In k| R oo g p(v.ag2y) < B2 InRPd ™" (2.39)

On the other hand, by the fact of a;; € C*° and (2.3),

(G. — R,G)(5)

< W a* %" Inh).
aS,‘

Lo°(Rn~B(z,d/2))

0
(aij(s) — aij(2))

This estimate, together with (2.35), gives
|| < hKa>~ " 1n k% (2.40)
Inserting (2.39) and (2.40) into (2.38),

I(Rh — R G llw1.oo i peayy S h2d "1 In k).,
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Ultraconvergence of high order FEMs for elliptic problems... 227

Consequently,
I(Rh = R)G w1 g~ Be.doy S h21IndollInh* < h?|Inhf. (2.41)
As an immediate consequence of (2.37) and (2.41), we obtain

| (Ry — E;)EZ“W“(W”)
= || (R — E;)Eznwl,l(g(z)do)) + [[(Rp — ﬁ;)az||W1v1(ﬂt"\B(z,do))
< HRE PR 4+ B2k S h2 In kP

from which the proof is completed. O

Based on Lemmas 2.2 and 2.3, we are now ready to prove Theorem 2.1.

Proof of Theorem 2.1 First, noticing the definition of «, the estimate (2.9) is a direct
consequence of the Lemmas 2.3 and 2.4.

Next we show (2.10). Let Eo(y) = G,(y + 2), E1(y) = Go(y) — Eo(y), y € R".
Noticing the fact that Iéz Eo(y) = (RpG;)(y + 2), one observes that

a1(y, 2) = (Ex = RyED)(y) — (Ry — Rj) Eo(y). (2.42)

By the same arguments in the proof of (2.13), we have that, for all |z| < & and all
d >0,

IE1 | L@~ Bay < hd> " Ind|.
Then by the same reasoning to show (2.14), we can prove

/“ V(EL = ReEDO)IIyldy < B In . (2.43)

Moreover, similarly to the proof of (2.32), we can show that

/9 i IVIIV((Ry — RS)Eo(»)ldy < k¥ Inh. (2.44)

Plugging the estimates (2.43) and (2.44) into the equality (2.42), we get the desired
result (2.10).
By the same reasoning, we obtain the estimate (2.11) .
Next we show (2.12). Note that
p— _O_
a(y,0) =[(Go — RnGo) — (Go — R, Go)1(y)

=[(Go — Go)(y) — Rh(Go — Go)(»)] — (RyGo — ﬁzgo)()’),
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and

a(y +2,2) = [(G; — RyG,) — (G, — R,G)I(y +2)
= [(G,~G)(y+2)—Ry(G.—G)(y + 2)] — (RG, — R, G)(y + 2).

Then by letting

Bi(») = (G: — Gy +1), B.(y) = Po(y) — (),
w(y) = (Ry — RDGo(y) — (R — G + 2).

and noticing the fact that R} B:(y) = Rp(G; — Ez)(y + z), we have

a(y,0) —a(y +2z,2)
= (B-— RuB) () — (Ri— R3) B-(3) —[(Ry Go— Ry G0) () — (Ry G- — Ry G2) (y+2)]
= (B — RuB)(y) + o(y) — (R — R3)B-(y). (2.45)

We next estimate the three terms of the right-hand of the above equality. First, note
that

0 ) 0 G
a—(,,uﬂ(’(y)) - [(a,»,-w) ai; () g(”]

ay; J

: o+ o[ 4G, +2)
8y,~ ((ll]( + )8—)71) = i |:(alj(Z) azj(y+Z)) 8y, i|9

we have

d aﬂZ(y) B, (y +2)
ayi ( aij(y) v, ) o —(aij (y) —a,J(y—l-Z))Tj)
a G
8 |:((alj ) - dij (y)) - (al] (z) — ajj (y+ 2)) ij):|
_8 3(Go(y) — G(y +2)
3 [(al](z)_au(y"‘ )= dyj — }
(2.46)
Note that

[(a;j (0) —a;; (¥) — (a;j(2) —aij(y + )| S hlyl, aij(@) —aij(y + 2 Syl
(2.47)
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Similarly to (2.13), it follows from (2.47) that, for all d > 0,

2—
||,3z||W1»0<>(§nn\B(z,d)) § d“"|Ind|,

and

”léz”leOO(mn\B(z ) N < hd*~ "1Ind)|.

Furthermore, by the same arguments in the proof of (2.14), we have from the above
estimate that

: IV(B, — RuB)MIdy < 3| Inh|?. (2.48)

We now estimate the second term of the right-hand side of (2.45). Note that, for
any v € S)(N"),

(R, Go(y) — R)Go)(y) du(y)
a;ij(y) d
N ayi a))j

— —0—
3(Go — R,Go)(y) 8v(y)d
dyi ay;

s

= _/w (aij (0) — a;ij (y))

and

A(RyG, — R, G,)(y +2) duv(y)

/ aij(y+z) G Gy ydy

o dyi 3)’j

3G, — R,G)(y +2) av(y)
8)’1 ayj

= —/w (aij(z) —aij(y +2))

The above two equalities yields

0 0
/ 4 () o(y) v(y)dy
oin dy;  0yj

J— _0_
3(Go — R,Go)(y) 3v(y)d
y
dyi dy;

—/ [(aij(0) — ai; (¥)) — (aij (z) — aij (y + 2))]

0 0
/ (a1 (2) — aij(y + 2) “g(y 2 g(y ) dy. (2.49)
Vi Vi

Similarly to (2.32), by (2.3), (2.10), (2.47) and (2.49), we have

/ Vo (y)|dy < B3| Inh|>. (2.50)
Rr
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Similarly, we have

| 19— Bppldy < w1 @51)
Then (2.12) follows by combining (2.45), (2.48), (2.50) and (2.51). O

3 Ultraconvergence in the case k is even
In this section, we discuss the ultraconvergence of the finite element solution of (1.1). It

is known that the weak solution u € HO1 (M) of (1.1) satisfies the following variational
form

a(u, w) = (f,w),Y w € Hy(R") (3.1
and the finite element solution u” € S?l satisfies
a", why = (f, wh), v w" e 8. (3.2)

Note that by the definition (2.2), we actually have u = Ryu.

Let 7¢ be a parallelogram or parallelepiped constituting of the elements in the 7,
such that each edge of 7¢ contains 2k + 1 vertices of 7},. We denote by yo the center
of 19. Note that the fact 7, yields yp € N},. We introduce a 2k—degree interpolation
operator szlfh over 1o by letting H%,fhv € (Pyy)" satisfying

m3fv() =v(y) VyetwnN,. (3.3)

Next we present the main result of this section.

Theorem 3.1 Let k > 2 be even. If a;j € C*MN"),1 < i,j < nandu €
WKE3.9 (W) with a compact support, then

IV (u — IT3u™y (50)| S B2 Ik ]y, gy (3.4)

The rest of this section is dedicated to the proof of Theorem 3.1. Without loss of
generality, we assume yo = 0. Assume that Ay € 79 N Nj,. In the process of proving
(3.4), we mainly apply the following estimate

|(u = Rpu)(0) — (u — Ryu) (Ay)| S B I ]| s o0 -
Letd > 0 be a constant such that Suppu C B(0, 2d). Let u € Cg°(0W") satisfy

w=1 1in B(0, d).
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Moreover, let u” € Py 1 satisfy
Viw -0 =0, 0<ll|<k+1
We split u(y) as
u=uy+u
with u; = pu’. It is easy to check that both u1, uy have a compact support and
Viui(0) = 0,¥y € B(0,d),|l| > k+ 2 and u;(y) = 0 and that V¥+14,(0) = 0.
Next, we estimate |V (u — IT55, (Ryu1))(0)| and |V (uz — T35, (Rpu2)) (0)| separately.

In the following, we estimate |(u1 — Rpu1)(0) — (u1 — Rpu1)(Ay)|. For all Ay €
70 NN,

(w1 = Ryu)(©) = (ur = Ruaen) (Ay) = [(r = Rpuen)©) = = Ry un) (Ay)]

+ [ Ry = Ry (©) = Ry = Ryu)(An)].
(3.5)

The following Lemmas 3.2 and 3.3 estimate the two terms of the right-hand side
of the above equality, respectively.

Lemma 3.2 Under the assumptions of Theorem 3.1, we have that for all Ay € 1o N
N,

—0 —A
[y = Ryu)0) — (ur — Ry, un)(Ay)| S B kP ur lyrsoogny. (3.6)

Proof We first present (1] — Fgu 1)(0) in its integral form. Let the linear operators ¢
and ¢; be defined for all v € CO(R") by

1 1
t)) = sl +v=pl aw)y) =5y +Ay) + vy —y)l.y € N
3.7

Apparently,
£ ©0) = u1(0), Ryt (u)©) = ¢ (Ryu)(0) = Ryuy (0). (3.8)

Moreover, the fact u is a polynomial of order k + 1 in B(0, d) and that k is even
yield

V(1) (0) =0, (3.9)
we conclude that ¢ (1) is a polynomial of order k in B(0, d). That is

c@uy) = Ifz@uy) in B, d).
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This equality, together with (3.8), implies

(u1 — Ryur)(0)

A ()~ I 1)) 3(Go— RV Go)(y) iy

—0
= (C(u1) =R, ¢ (u1))(0) = /mn a;j(0) P 9y,
Y G, —R'C
:/ a,'j(o)a({(ul) 1;¢(u1))(y) 3(Go RhGO)(Y)dy. (3.10)
R~ B(0.d/2) dyi dyj

Next we present (147 — ?ﬁyul)(Ay). We also have

—A —Avy
01@1)(0) =ui(Ay), R, 011)(0) =R, u1(Ay). 3.11)
Since |Ay| < h, we have that y + Ay € B(0,d) for all y € B(0, d/2). That is,

for all given Ay € t9 N Np, {1(u) is also a polynomial of degree k + 1. On the other
hand, the fact that & is even yields

VE () (Ay) = 0. (3.12)
Then we have
c1(uy) — Ifgi(uy) =0, in B(0,d/2).
This equality, together with (3.11), shows

(uy — Ry up)(Ay) = (21 ) — Ry €1 (up))(0)

i — Ik Gay —RYG
:/ a1y (AY) (€1 (uy) ahil(ul))(y)B(GA) R, GAy)(y)dy
9in Vi ayj

3 — Ik AY) 3G av — RV G Ay

:/ ai; (Ay) (¢1(uy) hfll(ul))(y"‘ y) 0(Gay — Ry, G-Ay)(y+Ay)dy
hi ay; a)’j

D1 () = 1K ) (y+AY) (G ay— Ry Cay)(y+Ay) "

a;jj(Ay)
Y ay; ay;

- /mn\B(o,d/z)
(3.13)

Set ¢(y) = %(ul(y) —u1(y + 2Ay)). One observes that

Cu)(y) = si(u)(y + Ay)

1 1
= 5(“1()’) +ur(=y)) — z@i1((y + Ay) + Ay) + ui(Ay — (y + Ay)))

2
1 1
= z(ul(y) +ui(=y)) — E(ul(y +2Ay) +ui(—y))
1
= z(”l()’)—ul(}’—FZA)’)) =s(). (3.14)
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Using (3.10), (3.13) and (3.14), one observes that (u; — ﬁzul)(O) — (u; —
E,?yul)(Ay) can be split into

(ur — Ryun)(0) — (1 — Ry ur)(Ay)
9 .y 3(Go— R\G
_ / (a1 (0) — ai; (Ay)) (C(u1) = 1, w)(y) 9(Go — R, Go)(y) dy
R B(0,d/2) dyi ay;

— —0—
(s — If)(») 8(Go — R, Go) ()
+/ a;jj(Ay) 3 A h 4 dy
M~ B(0,d/2) Vi dyj
A1) — I ) (y + Ay) daa(y, Ay)
+/ ajj(Ay) ¢ > 20 gy
N~ B(0,d/2) dyi ayj
— W+ Ws + Ws, (3.15)

where as(y, z) is defined as (2.8). We next estimate W;,i = 1, 2, 3 separately. To
estimate W1, using (2.3) and the following estimate

laij(Ay) — a;ij(0)] < b, (3.16)
we have
(Wil < R I AP (e, g - (3.17)
We turn now to the estimation of W,. Note that
IV sl oo qoiny S Rl [l icsz.ooum)- (3.18)

Inserting (2.3), (3.14) and (3.18) into (3.15), we obtain

— —0—
A2~ I¥ o) (y) 3(Go — R,Go)()

ajj(Ay) 3 3y y
R~ B(0,d/2) Vi Yj

5 hk+1 |

[Wa| =

J— _O_
101 ||Wk+2,OC(mn) 1Go — RhGO||W111(§)t"\B(O,d/2))
SR AP | | yesz.co gy - (3.19)

Similarly, by (2.11), we obtain
(W3l S B IR [l oo giny - (3.20)

Summing up (3.15), (3.17), (3.19) and (3.20), we have the desired result (3.6). O

Lemma 3.3 Assume that u € W*+3:2°(%"). Then

—0 —Ay
|(Ryut — Rau1)(0) — (R, uy — Ryur)(Ay)| < B3 In kP uy | yisa.oo -
(3.21)
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Proof Note that

— —0—
s — IFu) () 3(Go — RyGOM)
y
ay; ay;

]

(1 — R)(0) = /W a;;(0)

and

dur — Ij 3(Go — RyG
(Ml—Rhul)(O)z/ ai; () 2 84“0(” (Go= BiGY) ;.
R Vi dy;

We observe that (ﬁ?lu] — Rpu1)(0) can be split into

(Ryur — Ryu)(0) = (uy — Ryuu) (0) — (uy — Ryup)(0)

d(ur — Iy 3(Go — RyG
=/ L (3) — ai; 0] 224 aé”l)@) (Go f’ DICINY
ne Yi 3yj

Ay — IFur)(y) da(y,0)
+ / i} (0) h B2y
o dyi dy;

=1L+ D, (3.22)

where a(y, z) is defined as (2.6). Moreover, since

(u1 — Rpui)(Ay)
Ay — IfFu)(y + AY) 3(Gay — RiGay)(y + Ay) dy
i dyj

’

=/ ajj(y + Ay)
o

and

1 — Ry u)(Ay)

— _A —
Ay — Ifu)(y + Ay) 3(Gay — R, Gay)(y + Ay)
= [ aj(Ay) dy.
J v; 9V
i Vi Yj

We obtain

_A 5
(R, u1 — Ryup)(Ay)
i —Ifu)(y+AY) 3(Gay—RiGay)(y+AY)
= [ laij(y+Ay)—a;j(Ay)] k > > dy
o i dy;j
Ay — Ifu)(y + Ay) da(y + Ay, Ay)
+/ ajj(Ay) h d
o ay; ayj

y=Ji+J. (3.23)

Then by (3.22) and (3.23),

(ﬁzul — Ryup)(0) — (Eﬁym — Rpu)(Ay) =1 — J) + U2 — J2).  (3.24)
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We first estimate /1 — Ji. Let o (y, z) be defined by (2.7). We have that

I —J;
Ay — IF 3(Go — RyG
=/ [aiy(5) — ai (0)) — (@i (y + Ay) — gy (Ayp) oL~ D0 0G0 = RaGo))
o dy; dy;
Al —1IF D) — (g —IF A —R
+/ (a5 v+ Ay)—ai; (AY)) [(uy =1 u)(y) a(ul pu)(y+Ay)] d(Go hGO)(y)dy
ot Vi ay;
Au — I* + Ay) da;(y, A
+/ (aij(y + Ay) — aij(Ay)) L h;u)(y 2y y)dy
9 Vi ay;
=ZI+ 721+ 73 (3.25)

We first estimate Z 11 Note that

[(aij (y) — aij(0)) — (aij(y + Ay) — a;j(Ay)| S hlyl,
laij(y + Ay) —a;j(Ay)| S |yl (3.26)

Combining (2.3) and (3.26) gives

1Z{1 S R g k.00 gimy / IVIV(Go — RGo)(y)|dy
9"

SR IR g e ,o0 gy - (3.27)

We turn now to the estimation of 212- Set ¢1(¥) = u1(y) —ui(y + Ay). One
observes that

g1 = I s1llwroouny S A e llypsoo iy - (3.28)
By (2.3), (3.26) and (3.28), we arrive at
1Z31 S R un e g -
Note that the combination of (2.10) and (3.26) implies
1Z31 < B I ([l yres.oo g -
Inserting the above two estimates and (3.27) into (3.25) yields

(I = J1| S R APl yees.oo gy - (3.29)
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Next we estimate />, — J>. One observes that I, — J> can be decomposed into

(1 — IFur)(y) da(y, O)dy

a
h=n= [ @O -am

0yi dy;j
Ay — IFu) () — (uy — Ifu)(y + Ay)] da(y, 0)
+/ aij(Ay) h h gy
o 0y dy;
Ay — LFu)(y + Ay) 3(a(y, 0) — a(y + Ay, Ay))
+/ aij(Ay) ha > YT 2P 2 dy
9in Vi ay;
=2+ 723+ 75. (3.30)

We need estimate the three items of the right-hand side. Summing up (2.9), (2.12),
(3.26) and (3.28), we also get, forl = 1, 2, 3,

1Z5 S B APl ypkes.oo ) -
Substituting the above estimate into (3.30), we obtain
I — Jal S B3I h Py [l yees.oo gy - (3.31)

The desired result (3.21) follows from (3.24), (3.29) and (3.31). O
We are now in a perfect position to give an estimate for V(u; — 1722,1‘,1 (Rpu1))(0).

Theorem 3.4 Under the assumptions of Theorem 3.1, we have
IV (1 — T35, (Rpun)) O)] S B2 In Py .o gy - (332)

Proof The estimate of |V (1 — szlfh (Rput1))(0)] can be reduced to the boundedness
of |(u1 — Rpu1)(0) — (uy — Ruup)(Ay)| for all Ay € 19 N Nj,. In fact,

|V (u1 — M55, (Ryun)(0)| < |V (uy — I35, (Ihu1))(0)]
+ |VIT35, (Ryuy — (Iur))(0)]

where I,u; € Sy, is the interpolation of u. We first estimate V(11 — szlfh (Inu1))(0).
One has

IV @y — I35, () 0)] S W2 llyaes oo gy S B2 lunllyzesiooginy. (3.33)
Next we estimate VT35, (Ryu1 — Inu1)(0). Combining (3.6) and (3.21) gives

[y = Ryuy)(0) — (uy — Ry (AY)| S B0 P [y | yrcssoo gy -
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Set ¥ (y) = (Rpuy — Inu1)(y) — (Rpuy — Iyup)(0) for all y € 7o. Then, by the inverse
estimate,

VI3, (Rpuy — Tnuy)(0)| = VT35, /(O0) S Wl oo ey

< h7! max [y (Ay)]
AyeT

h=Y max [(uy — Ryu1)(0) — (uy — Ryup)(Ay)|
Ayery

A

< PP IR ey [l yiss.oo i (3.34)

Then (3.32) can be obtained by combining the estimates (3.33) and (3.34). O
Next, we turn to the estimation of |V (uy — 1722,]:,, (Rpu2))(0)].

Theorem 3.5 Under the same assumptions of Theorem 3.1,
IV (uz — T3 (Rpu2))O)| < 1521 In kPl | yyeess.oo giny - (3.35)

Proof By the same arguments in the proof of Theorem 3.4, the estimate of |V (uy —
I15f, (Ryu2))(0)| can be reduced to the boundedness of |(u2 — Ryu2)(0) — (uz —
Rpuz)(Ay)| for all Ay € 19 N Nj,. We decompose

(u2 — Rpuz)(0) — (u2 — Rpu2)(Ay)
= [(uz — Ryu2)(0) — (2 — Ry uz)(Ay)]
+ [(RVuz — Ryun)(©) — Ry uz — Ryuz)(AY)], (3.36)

. . -0
and we will estimate the above two terms separately. We first present (12 — Rj,u2)(0) —

(uy — E?yuz)(Ay) in its integral form. Similarly to Theorem 3.1, we have

’

— Ik Go— R°
(12 — Ryuz)(0) = / (0212 = i) 0G0 = RiGo))
g dyi dy;

and

(2 — Ry un)(Ay)

— _A J—
AUz — Ifuz)(y + Ay) 3(Gay — R, Gay)(y + Ay)
= [ aj(Ay) dy.
J v; v
g Yi Yj
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Then

(2 — Ryua)(0) — (uz — Ry u2)(Ay)
(2 — I un)(y) 3(Go — RyGo)(y) "

0
= /W [ai; (0) — a;j (Ay)]

dyi dy;
k k = _pl=
O (ua—Iuz)(y) — (ua— I uz2)(y+Ay)19(Go — R, Go)(y)
+ [ aij(Ay) dy
i dy; ayj
I(uz — Ifun)(y + Ay) daa(y, Ay)
+ / aij (Ay) 2 22 gy
i Vi ay;
=K+ Ky + K3, (3.37)

Noticing the facts that VK, (0) = 0, Suppus C B(0, 2d), (2.3) and (3.26), we
have

— —0—
K1l < hk+l|luzllwk+2,oo(mn)/ IYIIV(Go — R, Go)(y)ldy
B(0,2d)
S B I Al || yis2.00 gy - (3.38)
By Vk“uz(O) = 0 and (2.10), we have
K3 S hk||M2||Wk+2-00(mn)/ [Y[IVyaa(y, Ay)ldy
B(0,2d)
S E I AP |l yz.oo gy - (3.39)
We next estimate K. For any y € ",
— — —0— —0—
Go(y) = Go(—=y),  R,Go(y) = R,Go(—y).
This equality implies

3(Go = RyGo)(=y) _ _3(Go = RyGo)(y)
dy; dy;j

Then, we have

— 407
Ky A T Ifun)(=y) = (uz — Ifuz)(=y + A1 9(Go — RiGo)(-»)

ayi ayj
_ gk PN _ gk _ - 0=
Ol(ua — Iuz)(—y) — (u2 — Ljuz)(—=y + Ay)1 9(Go — R;,Go)(»)
= | azan dy.
n dy; ay]
(3.40)
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Let u(y) = (ua(y) —u2(y + Ay)) — (u2(=y) —u2(—y + Ay)). Combining (3.37)
and (3.40) gives

A — I 3(Go— R.G
2K2:/ a1 (AY) (n = I; () 3(Go h o)(y)dy. (3.41)
o 0yi dy;
Again by V¥*1y,(0) = 0, we have
IV )1 S Rlylluallyess.oo gy - (3.42)

Plugging (2.3) and (3.42) into (3.41) and noticing that Suppur C B(0, 2d), we
have

Kol S B Il lype.co giny - (3.43)
Combining (3.38), (3.39) and (3.43), we have that
(2 — Ruuz)(Ay) — (uz — Ryu2)O)] < B30 AP [u | yez.oo gpny -

Similarly to (3.21), we have

|(Ryuz — Ryu2)(0) — Ry w2 — Rpun)(Ay)| S B3 0P ez s oo -
Therefore,

|2 = Ryu2)(0) — (uz — Ryua) (AY)| S B3 I uallyrszoogny. (3.44)
By the same arguments in the proof of (3.32), using (3.44), we get the desired result

(3.35).
Finally, we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. By the definition of u1 and u>, we have that

”M] ||Wk+3,oo(})'tn), ||lelwk+3,oo(mn) § ||M||Wk+3.m(§y{n).

Then (3.4) is an immediate consequence of Theorems 3.4 and 3.5.

4 Ultraconvergence in the case k is odd

When £ is odd, the equality (3.9) is not necessary valid. Therefore, the reasoning in the
previous section can not be generalized to an arbitrary integer k. In other words, the
inequality (3.4) is not necessary valid. To obtain the similar result for the case & is odd,
we first need to extrapolate the finite element solution. Precisely, let 7}, /> be obtained
by decomposing each element of 7}, into 2" equal-sized elements. We assume that
Ty /2 is symmetric in the sense that each vertex y € N /2 is a symmetric center of the
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mesh 7, /2. We denote by uy,/» the finite element solution corresponding to the mesh
Ty2. We define the Richardson extrapolating function P u" € Sy, by letting

2k+luh/2(y) _ Mh(y)
2k+1 _q ’

Pu"(y) = y e Np. 4.1)

Theorem 4.1 Assume that k > 3 is odd. Let a;j € C®°(N"),1 < i,j < n and
u € WKE3:0(R"), Then

IV (u — 1135, Pu™) (yo) | < W2 In kP [ yyes.oo gy - 4.2)

As in the previous section, we also decompose u = u1 + uy and estimate the errors
for u; and u, separately.

Lemma 4.2 Under the assumptions of Theorem 4.1,

—0 —A
[y — P(Ryu1))(0) — (uy — P(R, u))(Ay)| < B30 AP ul yyrcss.oo i
“4.3)

Proof We first present (u; — P(Egul))(O) in its integral form. One observes that

7 Go—R°G
0= R0 = [ ayyo) AU MO BEOD (g4
9 i ay;
Set
x(y) = 2"“u1(%), x1(y) = ui(y) — x (). 4.5)
Similarly to (4.4), by (4.5), we have
2 (uy — Ry ) (0) = (x — Ry x)(0)
_ Ik = _ &
:/ aij(o)a(x thX)(y) 9(Go RhGO)(y)dy, 4.6)
oin Vi dyj

Since uj is a polynomial of order k + 1 in B(0, d). One observes that xj is a
polynomial of order k in B(0, d). By (4.4) and (4.6), we have

(1 — P(Ru1))(0)

1
= S 2 1 = Rypun) ©) = (@) = Ryun) (O)]
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1 /),1 ajj(o)a(Xl Iy x1) () 9(Go RhGO)(y)dy

Tk Jy 3yi dy;
k = _pi=
_ -l / a~-(0)8(X1 = Iy x)(y) 0(Go — RhGO)()’)dy
261 — 1 Jyn g,y dyi dyj

Similarly, we have

—A
(1 — PR, up)(Ay)

— 7A ) —
-l / a1 (ay) 202 — i x3) (0 + Ay) 3(Gay —Rh’GAy><y+Ay)dy
2K — 1 Jyn Bo.as) i dy; '

where x> (y) = 21(_;.1“1(%@)’ x3(3) = u1(y) — x2(y). Combining the above two
estimates, we obtain

(1 = 25y — P(RYu1))0) — (uy — PR} u1))(Ay)]

— —0—
A1 — IEx) ) 3(Go — R, Go)(»)
- / (aij (0) — aij (Ay)) h B0 4y
R~ B(0,d/2) ay; ay;
A(xa — I xa) () 3(Go — R)Go)(y)
+/ ajj(Ay) h § dy
R~ B(0,d/2) ay; 0y
A — I x3) (v + Ay) daa(y, A
+ ais (&) i AN
R B(0,d/2) dyi ay;
=81+ 85+ 83, S

where x4(y) = x1(y) — x3(y + Ay) and a2 (y, z) is defined as (2.8).
Next we estimate S;, i = 1, 2, 3. First, noticing (2.3) and (3.16), we obtain

1511 S AP I Al yyen.o0 ) - (4.8)

Secondly, the estimate (2.3) and the fact that

IV xa O] S Bl icsz.oo iy
yield
152] S AP lullyyrer2.o0 gny - 4.9)
Finally, by (2.11),
153 < Al o0 gny / IVyaa(y. A)ldy S B In AP [lulpas.oc gpny.-
R"B(0,d/2)

(4.10)
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Then (4.3) follows by substituting (4.7), (4.8), (4.9) into (4.10). O

Based on Lemmas 3.3, 4.2 and Theorem 3.4, we are now in a position to show
Theorem 4.1.

Proof of Theorem 4.1. A straightforward calculation yields that

(u — P(Rpu))(0) — (u — P(Rpu))(Ay) = Y1 + Y2 + V3, 4.11)
with
Y1 =[(u — P(Fgul))(o) — (u — P(F}?yul))(A)’)],
Y, = [(P(Eg,ul) — P(Ryu1))(0) — (P(E?yul) — P(Rpu1))(Ay)],
Y3 = [(u2 — P(Ryu2))(0) — (u2 — P(Rpuz))(Ay)].
First by (4.3),

Y11 S R0 R fullypies.coguny -
Secondly, by Lemma 3.3,
—0 —A
Yol = | Ry = Ryu)(0) = (R} ur = Ruun)(A)|

—0 —Ay
+ ’(Rh/zul — Ry 2u1)(0) — (Rh/)zul - Rh/ZMl)(AY)‘

S HEF3 Ikl gy, gy
Finally, it follows from (3.35) that

[Y3] < |(u2 — Ruuz)(Ay) — (uz2 — Rpuz)(0)]
+ [(u2 — Rpppuz)(Ay) — (uz — Rpjouz)(0)]
S A I | o0 gy

Inserting the above three estimates into the equality (4.11), we have
| — P(Rpu)(Ay) — (u — P(Rpu)) (0)] < 1 3 10 k) luel|yyies.oo gy -

Combining this estimate and the inverse inequality, we get the desired result (4.2)
by the same arguments in the proof of (3.32). O

5 Ultraconvergence in a bounded domain
In this section, we apply the previous theory to the problem (1.1). Let ’ThQ be a quasi-

uniform conforming partition of €2 satisfying the following property: there exists a
parallelogram or parallelepipe T C €2 such that : 1) 7 is the union of some elements in
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7;19, 2)thasasizeh; >~ 1,3)7, N1 = T, Nt. Here 7, is a mesh in the whole domain
S)i"deﬁnedinSect.LTQﬂr = {7 ETQ. ' Crland TNt ={t' €Ty: v/ C1}.
Let

Sh(Q2) = (v € C(Q) : vyly € P, VT’ € T

be the associated standard finite element space of degree k and let S,?(Q) = Sp(2)N
HO1 (£2), we introduce the finite element projector Rflz: HO1 () —> S}?(Q) for all €
S)(2) by

a®(w — Rw, ¥) =0, (5.1

where the associated bilinear form is defined by

0 0
a“(qs,w):/a,,() 20 Ia”y(”d 6ovc H'(Q).
J

Based on Theorem 3.1, we have the following result.

Theorem 5.1 Let a;; € C®(Q),1 <i,j <nand I'Izzlfh be defined as in Section

3, and N} be the set of all vertices of?iz N t. Let k > 2 be an even. Assume that

Yo € ./\/'hQ is away from the boundary of T with a fixed distance and u € W*+3(1),
then

IV (u — 1135, (R} (o) | S W P2 Inh P [ullyresoo oy + lu — Riullyi-c2qy-
(5.2)

Proof Assume that d >~ 1 satisfies B(yg, 2d) C 7. Let ¢ € C°(N") satisfy 0 < ¢ <
I,and ¢ = 1 in B(yp,d), ¢ = 0 in RN" ~ B(y0,2d) and [|@|lyk+3.00gny S 1. Let

v(y) = ¢(y)u(y). One observes that V (u — kh (RQu)) (y0) can be decomposed into

V(u 2kh(Rh 1)) (yo)
=V - szh(RhU))(yO) + V( 2kh(RhU) 2kh(Rh 1)) (yo). (5.3)

Using (3.4), we have

V(v — 3, (Ryv) )| S B2 In kP ol yrssco gy S B2 00 [l yicsso gy -
(5.4)

We turn now to the estimation of Vszlfh(th — R,?u)(yo). We denote that
SY(B(yo,d)) = " € C(Q): v, € P, Ve € ?ff} N H}(B(yo, d)). Note that
Tf Nt =T, Nt,we have, for any w € S)(B(yo, d)),

a(Rpv — R;?u, w) =a(Rpv—v,w)+alv—u,w)+alu — R,S?u, w)
=0+04+0=0. 5.5
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Then by the arguments of Schatz et al. in [22,23], we have

Q Q
||RhU — Rh u”Wl’OO(B(yo,%)) g ” Rh u”Wl k2(B(y0 d)) ~ < ||u Rh M”Wlfk,Z(Q).
Furthermore, we get

|V (I35, (Ryv) — M, (R (yo)| S llu — Riullyi-x2gy- (5.6)

Inserting the estimates (5.4) and (5.6) into the equality (5.3), we get the desired
result (5.2). O

Next we consider the case that k is odd. Let 7, , be a quasi-uniform partition
obtained by decomposing each element of 7, into 2" elements. Furthermore, we
assume that Th/z Nt =Ty Nt where T, is defined as in Section 4. We denote

by R,?/zu the finite element solution corresponding to the mesh ?;2/2. We define the
Richardson extrapolating function P (R;, /2”) € Sy(R2) by letting

2R u(y) = Riju(y)
2k+1 _q

P (R u)(y) = Ly €NT. (5.7)

Similarly to Theorem 5.1, we have the following result.

Theorem 5.2 Under the assumptions of Theorem 5.1, if k > 3 is odd, then

IV (u — I35, (P (R )| S HEF2 I AP [ullyrssoe ) + lu — Rullyi-r2(qy -

(5.8)
Based on Theorems 5.1 and 5.2, we have the following corollary.
Corollary 5.3 Under the assumptions of Theorem 5.1, if k is even, then
IV (u — I35, (R o)l < W2 In AP Jullyrss.oo g - (5.9)
and, if k > 3 is odd, then
IV (u — I3, (P(RE) yo) | S B2 In P |ulyissco - (5.10)

Proof Recall a classical result [21]

Q k+1
||l/l — Rh M”Wlfk,Z(Q) S h + ||M||Wk+l,2(§2),

when u € W*H-2(Q) forany 2 < [ < k. Then (5.9) and (5.10) follows from (5.2) and
(5.8), respectively.
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6 Numerical examples

We consider (1.1) with § = [0, 1]? and the coefficients

arr(xy, x2) =1+x1, axn(xy,x)=1+x,
a2(xy, x2) = az1(x1, x2) = 0.25(x1 + x2).

The problem admits the exact solution

u(x) = 16x1(1 — x)x2(1 — xZ)ex1+x2.

We will validate (5.9) and (5.10) with numerical experiments. For simplicity, the
underlying mesh is chosen as a uniform one which consists of equal-sized isosceles
right-angled triangles.

Since the estimates (5.9) and (5.10) are only valid for an interior vertex yg, without
loss of generality, we test our results in the following vertices set

1 1
M =NEn 3 %] x7, %].
Correspondingly, we define the discrete norm  ||v|l0o.n = max, ..\ [v(x;)].

We will test our estimates for different orders k = 2, 3, 4. Note that once k£ and
the mesh size h are given, the corresponding finite element solution R}?u can be
computed with the standard finite element method. Let yg € /\/'hO , Ay; = (h,0) and
Ay> = (0, h). One observes that 1722,@[ R}?u(y) is a polynomial of degree 2k along
each direction y;,i = 1, 2.

In the following, we explain how to compute HZZI]:h Rgzu (o) and 1722,](‘}’ (P R,?)u (o).

When k = 2, we have

dyi
_ BIRFuGo + Ayi) = Ritu(o — Ayl = [Rfu(yo +24Ay1) — Ritu(yo — 24511
: 12h )
©.1)
When k = 4, we use
dyi
~ 0.8[ RS u(yo + Ayi) — RS*u(yo — Ay)] — 0.2[R2u(yo + 2Ay;) — Ritu(yo — 2Ay:)]
. h
0038095238095 Rf?u(ro -+ 3A30) — Rffutyo = 383
h
0.003571428571 (R} (30 + 44) = Rfu(yo = 4470)] 6.2)
h . '
2k pQ )
to compute %y}:”w
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Tablel k=2
h=1/20 h=1/24 h=1/28 h=1/32
”V(u - R}f}mH . 3.09¢—002 2.16e—002 1.59¢—002 1.22¢—002
00,
V(u—R$u)
"h% 12.4 12.5 12.5 12,5
Vi — 113, (Ru)) 2.25¢—004 1.08¢—004 0.583¢—004 0.34¢ — 004
0,
V(u—1125, (R$u))
| - | 36.0 35.9 35.8 358
Table2 k=4
h=1/16 h=1/20 h=1/24 h=1/28
[v—rSw| 0.56¢—004 0.22¢—004 0.98¢—005 0.51-005
o0,
V(u—R$u)
"h%f‘uw 3.67 345 3.8 3.15
| v — 2, g 0.26e—006 0.64¢—007 0.22¢—007 0.860—008
o0,
V(u—I12K, (R$u))
| 2 . 43 4.1 4.1 41
h
Table3 k=3
h=1/16 h=1/20 h=1/24
[V - rSw| 2.02¢-003 1.01e—003 5.8¢—004
00,
Ve,
1 A ook 8.28 8.00 7.98
h\
Y — P(R%u)) 1.5¢—005 5.8¢—006 2.6e—006
h 00,h
”V(ufP(R;?u))H .
— 0.98 0.93 0.89
”V(u - nzth(P(Ryu)))Hoo . 7.97¢—008 2.28¢—008 0.78¢—008
V(u—112%k, (P(RSu)))
| hraio], 0.084 0.073 0.062

nd

When k = 3, we first use (5.7) to compute P(R;?u)(yo) and we obtain

AIT5%, P RS u(yo)
dyi

_A5[R{u(yo 4+ Ayi) — R2u(yo — Ayl — IR u(yo 4+ 2Ayi) — R2u(yo — 2Ayi)]

+R§?u(yo +3Ay:) — Ru(yo — 3Ay;)
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Depicted in Tables 1, 2, 3 are our numerical ultraconvergence results corresponding
to the finite element degree k = 2, 4, 3 respectively.

From Tables 1, 2, 3, we observe that the gradients of the post-processed FE solutions
approximate the gradient of u with orders O(h*), O(h%) and O(h?), respectively,
which validate the estimates (5.9) and (5.10). Moreover, it is interesting to find that
the hidden constant is independent of the mesh size # which indicates that maybe the
‘Inh’ appeared in the right-hand side of the estimates (5.9) and (5.10) can be removed.
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