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Abstract We present and analyze a semi-discrete finite element scheme for a system
consisting of a geometric evolution equation for a curve and a parabolic equation on
the evolving curve. More precisely, curve shortening flow with a forcing term that
depends on a field defined on the curve is coupled with a diffusion equation for that
field. The scheme is based on ideas of Dziuk (SIAM J Numer Anal 36(6):1808-1830,
1999) for the curve shortening flow and Dziuk and Elliott (IMA J Numer Anal 27(2),
262-292, 2007) for the parabolic equation on the moving curve. Additional estimates
are required in order to show convergence, most notably with respect to the length
element: While in Dziuk (SIAM J Numer Anal 36(6):1808—-1830, 1999) an estimate
of its error was sufficient we here also need to estimate the time derivative of the error
which arises from the diffusion equation. Numerical simulation results support the
theoretical findings.

Mathematics Subject Classification 65M15 - 65M60 - 35K65 - 35K40

1 Introduction

We aim for approximating the following problem: Given a closed initial curve I'g and
a function ¢ : I'o — R find a moving closed curve {I"(#)};c[0,7] C R2 and a family
of fields c(¢) : I'(t) — R, t € [0, T], such that
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1172 P. Pozzi, B. Stinner

v=kK+ f(c), (1.1)
87c — ckv = Cyy, (1.2)
I'0) =Ty, c(0)=co. (13)

Here, s is an arc-length parameter of the actual curve I'(¢), v is the (scalar) velocity
in the direction of a unit normal field v, « is the (scalar) curvature, f : R — Risa
coupling function, and 9; is the material derivative (3] c = 9;c + vd,c if ¢ is smoothly
extended away from I').

The system consisting of (1.1), (1.2) can fairly be regarded as the simplest system
coupling a geometric evolution equation to an equation for a conserved field on the
evolving manifold. We do not have any specific application in mind for (1.1), (1.2).
But more sophisticated geometric evolution equations and parabolic PDEs on the
moving manifold feature, for instance, in cell biology as an effective approach to cell
motility [18,23]. Problems in soft matter physics such as the relaxation dynamics
of two-phase biomembranes can also be modeled by such type of systems [16,17].
From a mathematical point of view, the evolution of pattern forming PDE systems on
deforming surfaces is of general interest, for instance, see [25].

Working in a parametric setting we assume that the curves can be parametrized by
a family of functions u(f) : S! — RZ, i.e., ['(r) = u(S', t). For the initial curve we
write Tg = ug(Sh). By () we denote the counter-clockwise rotation by 90° in R2.
We write T = u, /|u,| for a unit tangent field and assume that the orientation is such
thatv = u j— /|uy|. For convenience, the field ¢ on the evolving curve will be denoted
by ¢ again after transformation to the parameter space. A strong formulation of the
geometric equation (with no tangential velocity) in the parametric setting then is

1 Uy uj‘ 1
0=u ( ) — FO = u = —1 = f(O (1.4)
X [ | u

x| \ |ux] 172

while for the PDE on the evolving curve we obtain

1
0=c, Ml (C)‘ ) . (1.5)
X

it ] [ux| \ |l

In order to approximate the solution let Y}, denote a finite element space (details
will be provided later on in Sect. 3) and let X;, =Y, }% Then consider the problem of
finding functions uj (-, t) € Xp and ¢ (-, t) € Yy, t € [0, T], such that uy,(-,0) =
uno = In(uo), cn (-, 0) = cpo := I (cp), and such that for all g5, € X, and ¢, € Y, at
almost all times ¢ € [0, T']

u
/1 In upe - o) lupyl dx +/ hx “Qpydx = /1 I (f (en)en) - ui, dx, (1.6)
s s s

1 x|

d
—(/ ch§h|uhx|dx)+/ Chxlhr 4o 0, (1.7)
dt \Jst st lupxl

Here, I;, stands for the interpolation operator for both scalar and vector valued func-
tions.
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Curve shortening flow coupled to lateral diffusion 1173

With regards to the Eq. (1.5) for ¢, the approximation by (1.7) is inspired by [13].
The resulting scheme is intrinsic in the sense that it does not require any knowledge
about the parametrization but only the positions of the vertices that are given in terms
of uj, (see Algorithm 6.1 below). However, for the numerical analysis we cannot resort
to the methods in [13] because the moving curve I'(¢) is not explicitly given but by the
solution u of the geometric equation (1.4). Its approximation by (1.6) is based on [10]
where a scheme for two-dimensional surfaces is presented. The one-dimensional semi-
discrete case but with anisotropic surface energy has been analyzed in [12] (evolution
in a plane) and in [26] (higher co-dimension), see also [11] for the isotropic case. In
addition, there is the forcing term f(c)u i/ |u, | which is of lower order but, because
of the ¢ dependence, requires a coupling of the error estimates for u to those for c.

Regarding the estimate for ¢, the main difficulty arises from the term c|uy|;/|uyx| in
(1.5). The error of the length element |u,| — |up,| already had to be estimated in the
L®([0, T1, L>(S")) norm when proving convergence of the approximation to curve
shortening flow in [12]. However, here we need an estimate for the time derivative of
the length element |u, |, — |upy ;. The key observation is that |u, |, can be estimated in
terms of the squared velocity and the length element, see (2.7) in Lemma 2.4 below.
Mimicking these calculations for the error |uy|; — |upy|; is the content of the novel
Lemma 4.1 which subsequently proves sufficient to obtain suitable estimates for c —cy,.
Our results are summarized by:

Theorem 1.1 Under Assumption 2.2 there exists ho > 0 such that forall0 < h < hy
there exists a unique solution (uy,, cp) of (1.6), (1.7), and the error between the smooth
solution and the discrete solutions can be estimated as follows:

T
/O /S (1 = e + lex = cne ) dxadr = C 2, (1.8)

sup / (17 =@l +1e = el + (il = lun)?) dx < CH2, (19)
t€[0,T1J 8!

with a constant C > 0. The constant depends on the final time T, on the bounds
I fll ooy and || £/l oo () of the coupling function, on the bounds ||u| WLoo([0,TT. H2(S1))
lellwiooqo, 1,11 sty and Il pooqo. 71, H2(s1y) ©f the solution (which includes the
bounds [uo |l g2(s1y and ||coll g1 51y of the initial values), on the bound C**_from below
of the length element, see (2.5) in Assumption 2.2, and on the constant C ruling the
grid regularity [cf. (3.1)].

Our proof follows the lines of [12] on anisotropic curve shortening flow though
we should mention that for the isotropic curve shortening flow other ideas and tech-
niques have also been used, for instance, see [8]. From a practical point of view, mesh
degeneration is an important problem for long-time simulations. We will not address
this issue here but for ideas to move vertices in tangential direction as appropriate we
refer to [2,3,15,22]. In [1] an additional forcing term is accounted for, see also [6] for
analytical results on such a problem. Also with regards to PDEs on evolving surfaces
there are other methods. For instance, in [24] a surface reconstruction is used which is
based on a fixed bulk mesh and in [19] a grid based particle method. Of course, there
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1174 P. Pozzi, B. Stinner

are also other approaches to surfaces PDEs and geometric PDEs which are not based
on any parametrization but on level sets, phase field, or other ideas. We here only refer
to the overviews [9, 14].

We start with specifying the assumptions on the solution to the continuous problem
and showing some properties in Sect. 2. After, we carefully describe the finite element
approach and, proceeding analogously to the continuous case, show some properties
of the semi-discrete solution. Section 4 then contains the technical estimates required
for convergence which is stated in the section after. In the final section we report on
numerical simulation results which support the findings.

2 The continuous problem

Here and in the following sections, constants which, in general, will vary from line to
line in the various computations will be denoted by capital C. Moreover we occasion-
ally use the abbreviation

1
U Q.1
Ux

r=f() I

The finite element approximation consisting of (1.6) and (1.7) emerges from the
following weak formulation of the system (1.4) and (1.5):

Problem 2.1 (Weak problem) Find functions u : S!x[0,7T] > RZand ¢ : S! x
[0, T] — R such that u(-, 0) = ug, c(-, 0) = co, and such that for all test functions
¢:S' > R?and ¢ : ' — R and almost all times 7 € [0, T']

u
/ ul-¢|ux|dx+/ x| e dx =/ F© - utdx, 2.2)
s! s Uyl sl

4 (/ c§|ux|dx) +/ Cxbx gv 0. 2.3)
dt sl st iy

Note that if ¢ : S! x [0, 7] — R is a time dependent test function then (2.3)
becomes

i (/ c(t)((t)lux(t)ldx) +/ Cxlx dx:/ clluy|dx. 2.4)
dt sl st lux| st

Clearly, we can not expect the flow to be eternal, since the flow might exhibit sin-
gularities in finite time (like the curve shortening flow). We thus make the following
assumptions regarding existence, uniqueness, and regularity of the weak solution:

Assumption 2.2 Both f and its derivative f' are bounded,

IfllLew < C, ||f/||L°°(R) < C with some C > 0.
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Curve shortening flow coupled to lateral diffusion 1175

There is a unique solution (u, c) of (2.2), (2.3) on the time interval [0, T with initial
values u(-, 0) = ug(-) € H*(SY), c(-, 0) = co(-) € H'(SY) which satisfies

u € Whe([0, T, H*(S")),
c e Whee([o, T1, H'(SY) N L™([0, T1, H*(SY)).

Moreover, there is a constant C** > 0 such that
lux| = C** on S' x [0, T]. 2.5)

Remark 2.3 There is a huge literature on the curve shortening flow (and more gen-
erally on the mean curvature flow), see for instance [7,21]. There are also results for
curve shortening flow with a forcing term. For instance, in [5] it is shown that if f
is smooth and the initial curve ug is embedded then the maximal existence time of a
smooth solution is bounded from below by a quantity that depends on the initial data
and || f|| Lo (®)- There do not seem to exist any results on short time well-posedness,
regularity, and long-time behavior for our specific type of problem. However we count
upon the standard methods for proving short-time well-posedness for parabolic sys-
tems to work thanks to the relatively nice elliptic second order structure of the spatial
part of the differential operator. We leave these analytical questions for future studies
and here focus on approximating the solution as it is postulated in the above Assump-
tion 2.2.

From now on (u, c) will always denote the solution as specified above. Note that
direct consequence of Assumption 2.2 is that

lclicqo,rymisty =€ (2.6)
with a constant C > 0. Obviously then also [[c|l 20,77, 1 (s1)) < € and (by embed-
dlng theory) ”C”C([O,T],LOO(SI)) < C hold.

Although the bounds derived in the next lemma are implied by the regularity

assumptions imposed on the continuous solution, the derived equations and meth-
ods of proof will be important to derive discrete analogues later on.

Lemma 2.4 1. For the length element we have that
luale = =g L]+ g - 7 . @7
2. Furthermore,
luy| < C* (2.8)

with a constant C* > 0.
3. Fort € [0, T] we have that

r i
/|ut|2dt§C and /|u,—r|2dt§C onS'. (2.9)
0 0
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1176 P. Pozzi, B. Stinner

Proof We have that
lxle =T () = (T - t)x — Tu -y = — (s —7) - Uy Juy]

by (1.4), (2.1), and the fact that u, is a normal vector. The second claim follows from
the boundedness of f and a Gronwall argument applied to

1 1 1
luxls < —ue) x| + ] 7] Juy| < —§|u,|2|ux| + §|r|2 luy| < 5|f<c)|2 it

(2.10)

Finally observe that from (2.7) we know that |u,|> < —% + |ug| ] < —% +

%|r|2 + %|u,|2 , whence

1 2 1 2
Pl + el = S|l

Integration, (2.5), and (2.8) gives the third claim. |

3 Spatial discretization

Let S = Uj\’: 1 S be a decomposition of § !into segments given by the nodes x e
We think of §; as the interval [x; 1, x;] C [0, 2] for j =1,..., N. Here and in the
following, indices related to the grid have to be considered modulo N. For instance,
weidentify xo = xy.Leth; = |S;| and h = maxj—1 . n h; be the maximal diameter
of a grid element. We assume that for some constant C > 0 we have

hj>Ch, |hjy1—hj| <Ch*. (3.1

hjzt

Clearly the first inequality yields Ch j+1 < h; < - For a discretization of (2.2)

we introduce the discrete finite dimensional spaces
Ypi={veC'(S"R) : vls, € PI(S)), j=1....N}, Xp=Y;

of continuous periodic piecewise affine functions on the grid. The scalar nodal basis
functions of Y}, are denoted by ¢;, j = 1,..., N, and defined by ¢; (x;) = §;;.

For a continuous function v € CO(S L R) let Ipv € Y}, be the linear interpolant
uniquely defined by I,v(x;) = v(x;) foralli = 1,..., N. For convenience we
also denote the interpolation onto X, by I;,. We shall use the standard interpolation
estimates (both for scalar and vector valued functions):

lv—Tnvllz2(s1y §Chk||v||Hk(Sl) fork=1,2, 3.2)
(v — IhU)x”LZ(Sl) = Ch”U”HZ(sl) ) (3.3)
||(Ihv)x||L2(S1) = C||Ux||L2(sl) . (3.4)
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Curve shortening flow coupled to lateral diffusion 1177

Recall also the inverse estimates for any wy € Yy and j =1,..., N:
C (3.1) C
lwaxllLaes;) = ;HwhHLZ(sj) = llwixllL2¢s1) < Z”wh”Lz(Sl)’ (3.5)
J
C (3.1) C
lwillzes;) = ——=lwnllii2s,) = lwallposty = —=llwall 21y (3.6)
(5 I L2(S)) Loo(S1) NG L2(S1)

Problem 3.1 (Semi-discrete scheme) Find functions uy (-, t) € Xj and ¢, (-, t) € Yp,
t € [0, T, of the form

N N
wp(x, 1) = D uj(j(x), calx.t) =D c;j(t)p;(x)

j=1 j=1

withu (1) € R2 and cj(t) € R, suchthatuy (-, 0) = upo := Iy (ug), cp (-, 0) = cpo =
11, (cp), and such that for all ¢, € X}, and ¢, € Y}, at almost all times ¢ € [0, T] (1.6)
and (1.7) are satisfied.

Note that we may want to use a time dependent test function in the equation for ¢,
of the form

N
ox, 1) = D (D).

j=1

In analogy to (2.4) Eq. (1.7) then becomes

d X X
d—( / ch(r>ch(r)|uhx(z>|dx)+ / Cnlx g / Chinluneldx.  (3.7)
t \Jst st lupxl sl

Recalling that indices referring to the grid always are understood modulo N, let

_ _uj—uj-1 _ L
gj =luj—ujl, 1j=———""—, Vvj=7j.
4j
If we insert ¢, j =1, ..., N, separately for each component of ¢, in (1.6) then we

get the following 2 x N ordinary differential equations:

qj +qj+1 . 1
S T = T = S — ) (3.8)
and the initial values are given by u;(0) = uo(x;), j =1,..., N. With
(uj+1 —ujfl)J‘ (ijf'+q.j+lff+1) 1 ( " )
Vj = = = qjVj +4j+1Vj+1
' i+ 4j+1 qj +4j+1 gj+aqjer T

(3.9)
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1178 P. Pozzi, B. Stinner

and
rji= f(cj)v; (3.10)
we can rewrite the system (3.8) with the initial condition as

ij + (tj — Tj+1) =15,

uj(0) = uo(x;),

_2
qj+4qj+1 forj=1,..., N. (3.11)

Define the piecewise constant function
hg:S' = R, ha(x)=h;forx €S;.

A short calculation shows that another equivalent formulation to (1.6) is
1 up
/ Upe [ty lon dx + —/ Wt [Upx | onx dx +/ ——py dx

s! 6 /s st [upxl

— 1 1 142

=/ In(f (en))n - uj, dx + 5 ](Ih(f(Ch)))xwhx “uphy dx.

S S
(3.12)

Next we aim at giving the discrete equivalents of the results in Lemma 2.4.

Lemma 3.2 Let t € (0, T] and assume that (uy,, cy) is a solution of (1.6), (1.7) for
t €[0,t] suchthat q;j(t) > Oforall j =1,...,N and allt € [0, t].

1. For j =1, ..., N we have that

ltjrt =Gl lgim =gl
(gj +qj+1)  (gj +qj-1)

(3.13)

(gj +qj+1) . (gj +qj-1),.
=7t (rj—rj-1)— %Wj —rjl*— %Iuj—l —rjal.
(3.14)
2. Furthermore with a constant C > 0
maxi<j<y q;(t) < Cmaxi<j<y q;(0), (3.15)

lunx (- Ol oo(sty = Cllunox ()l poo(sty-
3. Moreover, there is a C > 0 such that

r . 2
e =%l —cn Gae)

r
(qj +qj+D)lij —rj|>dt < Ch,
/0 ! ! s o (qj +qgj+1)

Proof From the definition of g; we obtain by differentiating in time
qj =7t (j —uj-1).
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Curve shortening flow coupled to lateral diffusion 1179

From the system (3.11) together with 7; - (tj11 — 1) = —%|‘L'j+1 —T; |2 we infer that

2 ltj+1 — 7
T (T =T AT =

Tj u] =
qj +4qj+1 qj +4qj+1

+Ti-rj.
Arguing similarly for the term 7; - &1; | one obtains Eq. (3.13). Using (3.11) we can

write 741 —17; = M (tj —r;) and (3.14) follows which proves the first assertion.
For the second assertlon we set f; := f(c;) for simplicity. Note that by (3.9)

qj+1 qj

G = i) = fi— 2 (1 i) = fje— (1 1)
o\ /Qj+4j+lj J j— PIE T JVi-
. qj+1
Since pp— < 1 we get that
qj+1 qj+1 Vitl — Vj
A firy v = | g g £ e
4 +dn Jti Vi 4+ J JHLTjTj 7 T
2
1 T D ey €|Vj+l_Vj|2
T 2eqi+qi T2 qitain
1 6 |‘L'j+1 —‘L'j|2
1 P —
= 2 i "2 qj +qj+1

and, similarly,

2
€ |‘[j_1 —‘L'j|
f] 1T - Vj—1 .
2 gj+qj-1

< | fi—11?
= —4qj-11Jj-1
qj +‘Ij 1 e’ !

Therefore

€t — gl

1
77y =il = 5= (gl + a1 fm ) +
J J J— J J J J 2 q/+qJ+l

2¢
eltjimi — 1l

_ (3.17)
2 gj+qj

Equations (3.13) and (3.17) with € = 1 yield that

|Tj41 — 712 T = 7
(gj+qj+1)  (qj+qj-1)

C}j < |‘L’j . (rj —rj—1)| -
) 1
< IIfIILoo(R>§ (@j-1+gj+1).-

Integrating with respect to ¢ we infer that
1
(1) < max ¢;(f) < max ¢;(0) +C max gq;(t')dt’.
00 < max i) = max g0+ C [ max g,0)
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1180 P. Pozzi, B. Stinner

Applying a Gronwall argument we obtain the first estimate of (3.15). The second one
is a direct consequence of the first one thanks to (3.1).
From (3.14) and (3.17) we infer that

(gj +9gj+1)

4
<ltj-rj—rj-Dl—4q;

2 2

it — T Tt — s

<€| j+1 ]| El j—1 ]|

(qj +qj+1) (gj +qj-1)

ze(qj+qj+1) 6(qJ"HIj—l)
4 4
+ Cell f 1 oy @it + j+1) — Gj»

(gj +qj-1)
4

2 - 2
lij —rjl” + lij—1 —rj-l

+ Cell f oy @it +aj+1) — 4

- 2 - 2
lij —rjl” + litj—1 —rjl

where we have used (3.11) in the last equality. Choosing € appropriately, integrating
with respect to time, and using that g; (1) = hj|“hx|\s, < Ch thanks to (3.15), we
obtain the estimates (3.16). ' ]

4 Error estimates

In this section we prove some estimates that will enable us to show convergence of the
semi-discrete solutions (uy, c;,) of (1.6), (1.7) to the solution (u, ¢) of the continuous
problem as specified in Assumption 2.2. For this purpose let us assume that for 2 > 0
there is a unique solution (uy, c) for ¢ € [0, f] with some 7 € (0, T] (this question
will be addressed at the beginning of the proof of Theorem 1.1 in Sect. 5).

We commence with some calculations for the error of the length element |u | —|up, |
and show some preliminary estimates in Lemma 4.1. These are used to obtain an
estimate of ¢ — ¢j, in suitable norms, see Lemma 4.2. An estimate of u — uj, in suitable
norms (see Lemma 4.3) follows the lines of [12] and involves an integral term of the
error of the length element which we estimate last in Lemma 4.4.

For the convenience of the reader we recall the abbreviations

1 1
u u u
g=lugl, t=-—", v=rt=-"2, r=f(c)v=f(c>7x,

for the solution to the continuous problem while for the semi-discrete case we recall

Uj—uj—q
J J 1
qn = lunxl, qj =hjqn, =luj—uj-1l, tj,=——"—"—, V=15,
J qj
\)jz—qj J qj+ St s rj=f(Cj)1)j.
qgj +4qj+1

By (2.7) and (3.14) we can write for each grid element §; = [x;_1, x ;] the following
equation:
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Curve shortening flow coupled to lateral diffusion 1181

(hjq — 4 =~ 5hia e = r = (s + 40l — i1}
~{5hig b =P = gy + a0l — i)
(/q(ut—r) r+t-(rj—rj- 1))
- —B. 4.1)
Using (3.9) we can write
B=thigu—r v+ flep—3Hz; v
= _ L —7)- —EL oy
2/ Tqi+qin
1 Q'_l A ~
+ 5hiq (= 1) - vf (@) = flej-1) ———7j - vj-1 = Bi + By,
q j—1
Observe that
2 2(tjp1 — )T 2(tj41 — 1) .
—T/'Vj+l:l'j4:_‘)/'¥:VJ(V/_”1)
qj +qj+1 qj +qj+1 qj +4qj+1

by (3.11), so we can write
N 1 1
By = Ehj‘I(f(C) = flep))(ur—r)-v+ Ef(cj)(hjq —qj+1) (g —r)-v

1 1
+ Ef(cj)QjH(ut —r)-(v—vj)+ Ef(cj)CIj-HVj Ay —r)— @ —rjl.

4.2)

Similarly one can show that q+

Ti-V
jtaj-1/

j—1=—Vj-(rj—1 —uj_1) whence

L1 |

By = Shjq(f(e) = £(ej-0) (s =r) v + 2 f (ej-0)(hjq = gj-1)(us =) - v
1

+ /e 1 —r) - (v —vj)
1

+ Ef(Cj—l)CIj—lvj Ay —r)—@j—1 —rj-DI 4.3)

Let us also set
+ 2 1 2

BT = Jlus —rl"(qhj — q;) + Jlus — 11" (qhj — qj+1)
1 .

+ Z(C]j +qj+) (lu; — it — iy — lez)

1
= 7l —rl*(gh; —q;) + 2l —r*(qhj — qj+1)
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1182 P. Pozzi, B. Stinner

1
+ Z(‘]j +qj+0); —rj) [ur —r) — (i; —rj)]
1
+ 1@+ g0l —r) = @ —rp] - —r) = B + By + B + B .

4.4)

Lemma 4.1 Assume thatt € (0, T] is such that

kek

< lupx| <2C* on|0,1].

Then there exists a constant C such that for any time t € (0, t] we have:

1. Oneach S we can write

il = lanlel < € (Jug = it + luy = ij1 1) + CLy,

where
Lji=lc—cjl+lc—cjm|+lt =1l + It =11+t — 1j41]
+'q—ﬂ +‘q—@ +lg = TNy — ) e — |+
hj hjt hj—1

2. Moreover
N
Z/ |ut—uj|2+|uz—uj_1|2dxsCh2+c/ s — i Pdx (4.5
. S s!
j=17

and

N
Z/ IL;|Pdx < c/ |c—ch|2dx+C/ It — m|%dx
sy s! s!

+C/l(|uhx| - |ux|)2dx + C/l luy — Mh;|2dx + Chz.
S S
4.6)

Proof As we have assumed that 2C* > ¢, > C**/2, the discrete length elements are
comparable, in other words

C7'qj+1<qj < Cqjt. (4.7)

Note that | f(c) — f(cj)| < [l f'llLe@)lc — c;] and

qj+1 1 1
o -3)

‘q 4
hj+i hjvi hj

hj
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Curve shortening flow coupled to lateral diffusion 1183

=<

+Ch (4.8)

‘ _4jt
Jjtl

hj+1

qj+1 1hj = hjl _ ‘ _ gjt1
hjyr hy T

(which follows by (3.1)). Thus, using (2.8), (4.7), and the bound |uj| < 2C* we
obtain from (4.2), (4.3) for some C > 0 that

|B|
— < Cllur — rllgoo(sny
J
qj+1

X (h+|C—Cj|+|C—Cj_1|+|T—Tj|+‘q_
hj1

o+ C(1r = rjetl I = gl T =i+ g = itj-11)-

Note that thanks to Assumption 2.2 and (2.1) |lus — 7| zoo (0,77, Lo (s1y) < C. Observe
that on §;

Ir =il S1F© = flepvl+ 1 e = ))l

q
< 1 le@le = ¢l + 1 f o) ——-—v = v]
9t 4

qj+1
qj+1
I fllLe®———"—Iv —vjt1l
( )Clj +qj+1 !
<Clc—cj|l+C(r — 1| + |t — Tj+1), 4.9)

and similarly for |r — r;_1|. Hence we get

|B|
— <C(le—cjl+lc—cjuil+lt =7l + It —tjmil + 1t — Tjs1l)

j
+C (‘q — 4
hjt1

_4j-1
hj_]

+‘q

)+C(|u,—itj|+|ut—12j1|)+Ch.

Note that B;r defined in (4.4) can be written as

g . .
B; — W(u] —uy) - [(uy — uj) —(r— rj)]
. _l’_ . .
+ 4j T 9i+1 q]+l(ut—rj)'[(ut—Mj)—(r—rj)]'

4

Using the L°°-bounds for u;, » and r; [recall (2.1), (3.10), and |v;| < 1], (4.7), the
bound |upy| < 2C*, embedding theory, and arguments similar to those employed in
(4.8), and (4.9), we infer that
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1184 P. Pozzi, B. Stinner

|B|

2
—— <Ch+Clu; —
h] |us u]l
qj+1 q .
+C(‘q—h]% +‘q—hf]' +|u,—ujl+|c—Cj|+|1:—tj|—|—|r—rj+1|).
j+l i

Arguing similarly for B, and putting all estimates together we finally obtain from

(4.1) that
.4 |B] |BY| |B|)
G-tz —+—+—
’ h; (hj hj hj

.2 .2
SC(Iut—MjI +lur — | )

+C(IC—CJ'I+|C—Cj—1|+If—fj|+lf—fj—1|+|f—fj+1|

q qdj+1 qdj—1
+‘q——'+‘q—i ‘ A g =g+ g — i 1|+h>
hj hj+1 hj—1
which shows the first claim.

G IE 1 , we have that u, (x;) = i ;. On the other
/

Asuhtls. =blj_1+(L't] M] 1)
J
hand I,u,(x;) = u,(x;). Therefore for x € S; we can write

up(x) —utj = ur(x) —up(xj) + fpue(xj) — upe(x;)

=/ rx (6) dE + Tpur(x)) — upy (x))
Xj

< Vhllurll g sy + Inue (o) = upe(x)) -
For wy, (x) := Inu;(x) — up(x) we can use the inverse estimate (3.6). Therefore
) = P = il g+ 5 [ e = un (6 e
7= HS) b S;
C
< Chlur 5, + / (Uit = ) <s>ds+—/ (0 — e €) d

< Chnu,ni,l(sjﬁf /S (ur — upe)* () dé
J 9j

by (3.1) and (3.2). Arguing similarly for the term |u, —i ;1 |, integrating, and summing
up over the grid intervals we obtain (4.5).
Regarding the last estimate, observe that forany y € S;4; andx € S; we can write

q qj+1
‘q( )—L s|q<x)—q(y>|+‘q<y>— ths
hjt1 hj+
qj+1
< CVhlullp2s,us,, ) + ‘q(y) - h’—j :
J
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Curve shortening flow coupled to lateral diffusion 1185

Thanks to the continuity of ¢ we can choose y € S;j41 such that

2
hjsi (q(y)—thsﬂ) < /S @(©) = an, )7dE = /S (¢ — qn)’dx.
! j+1 / i+

Using this fact and (3.1) yields that

[ o
Sj

With similar arguments for g — g;/h; and g — g1/ h ;| we obtain that

. Fhul
hj+1

2
2 2 2
dx = C?ullys s, + € /S la—ap’ax
J

2 2

. 2
_ qj+1 dx

hji

+‘q

‘ _4i-1
j—1

2 2 2
< CR Il s s, 08, + € / g —alde. @10)
J J J—

The terms |c —c;| and |c—cj_1| can be estimated similarly as |u; —u ;| and |u; — 12 _1]
whence

le—ciPP+le—cj 1+ lur —itj 11> + lug — it |* dx
S J J J i
J

< CR gy s, + C/s.(”’ — un)? @) dE + Ch2 el ) + C/s. e = cpldx.
J J

.11

We can use the boundedness of |u,| from below (2.5) to get forany x,y € S; US; 11
(suppose y < x or change the order of integration otherwise)

Y 1/2
[T(x) — 7 (y)l 5/ |Tx(§)|d§§C\/ﬁ(/ qux(€)|2d§) :
y SiUS 41

Choosing y € S;j1 suchthat i (|t(y) — ‘L'j+1|2 < fS,-+1 (t — 13,)%dx we can write

lt(x) — tj1> < Jt(x) — TP+ 1t () — tj41

C
< Chlluligas,us,.,) + ;/s (t — th)%dx .
j+1

Repeating the same sort of argument for |t — 7;_1| and integrating over S; we get
2 2 2 2000112
=t = o e = Py < Ol s,
J

@ Springer



1186 P. Pozzi, B. Stinner

+C / (t — )2dx. (4.12)
SjUSjJrlUSj,]

Putting all estimates together and summing up over the grid intervals (4.6) follows. O

Lemma 4.2 Assume thatt € (0, T is such that

Kok

5= |lupx] <2C* on [0, 1], and @.13)

Aol
lerlleqo,m,zoocstyy = 2CSHcllcqo, 1,11 (s1y)

where é(Sl) is a constant for the embedding H' (S') < L (S). Then the following
estimate holds with some constant C > 0:

t
/ () — cn (PP dx + / / ex — epe|? dds
st 0 Jst

< c/l (lux @] — lune @) dx + Ch>
S

r r
+C/ / |c—ch|2dxdt+C/ / |u,—uh,|2dxdt
0 Js! 0 Jst

r r
+ C/ / It — | 2dxdt + C/ / (ux| = |une))? dxdt. (4.14)
0 Js! 0 Js!

Proof The difference between the continuous (2.4) and the discrete version (3.7) reads

c Ch
/(c|ux|—ch|uhx|>zzhdx+/ ( = - = )chxdx=o
sl st \ux|  lupxl

for all test functions & (x, 7) of the form ¢, = > i (t)@;(x). Choosing

th=Ip(c) —ch=c—cp+Ip(c) —c

a short calculation yields that

d 1 5 (¢ — cn)xl?
— ~(c— d —d

1
= / (c(upx| — luxl)); (c — cp)dx —/ —(c — cp)*|unxl; dx
Sl Sl 2
d
+ o (/ (clux| — cplupx])(c — Ih(C))dx)
t st

- /S[(Cluxl — cnlupxl) (¢ = In(c)), dx

n (¢ = cp)x(c — In(c))x dx
st |uhx|
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Curve shortening flow coupled to lateral diffusion 1187

(c —cp)x Uyl — lupy / [tx] — lupyl
+/ c dx + cy(Ip(c) — )y ————dx
st VTunel Tl st U ] |

=S k;. (4.15)
j=1

Using Lemma 4.1 we can write

1= | [ entnd = lube = ends + [ el = lusbite = s

<

/Sl cr(upy | — lux (e — cp) dx

N
+CZ/S lelle — cal(jur — itj1* + |ug — itj—1|*)dx
j=177

N
+CZ/ lclle = ch|Lj dx
. S
j=17"
< el (el — luxD?dx ++ [ (€ — e dx
= lLoo(Sl) Sl hx X 2 Sl h
+ Cllcll oo g1y llc = cnll oo st (h2 +/ lur — um|2dx)
Sl
N
+c/ |c|2|c—ch|2dx+CZ/ L j|%dx.
s —1/S;
J
Together with (2.6), the assumptions (4.13), and (4.6) we obtain that
K1l < c/l(|uhx| - |ux|>2dx+C/l<c—ch>2|uhx|dx
N S
. 2 2 2
+C/ |u; uh[|dx+C/ T — 1|“dx + Ch”.
St St

Similarly for K>, using again Lemma 4.1, (2.6), embedding theory and the assumptions
(4.13) to estimate |[¢ — cp || oo (s1) We can write

1 1
1K2| < 5/1 lc — cnl*unxls — |ux|t|dx+5/1 lc — cnl?|luxl|dx
S S

IA

N
2 .2 . 2
Clie = enllz oo sty E /(luz—ujl + lup —ij—1|")dx
- S;
j:1 J

N
1 1
+Clic = chlloogsty D (5/ |c—ch|2dx+§/ |Lj|2dx)
j=1 Sj Sj

+C/ lc — ch|2dx
Sl
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1188 P. Pozzi, B. Stinner

< Ch2+C/ |u,—uh,|2dx+C/ lc — cpldx
St N
+C [ Q= Pax + [ 1z =P

For K3 we note that by (2.6), (4.13), and (3.2)

| el = enhuna e = 1 |
= | [ = amtmlc = tnends+ [ e = unidyte = (o) d
< 5/51@ = cn)une| dx + C/SI(|ux| = lunc)* dx + Cahllel 1, (4-16)

with & > 0 that will be picked later on. We will refer to this estimate later on when
integrating (4.15) with respect to time. For the term K4 we infer from (3.2) and (4.13)
that

Kal = | [ et = e = tienas + [ (€= e = Iteoplunl dx
S N
< C [ el = D dx + € [ (e =Pl dx + Cllally 1

By the interpolation estimates (3.2), (3.3), (4.13), and embedding theory we have the
following estimates for the terms involving spatial gradients (for € > 0 arbitrarily
small):

_ 2 —1 2
|K5|S€/ |(c —cp)xl dx—i—Ce/ |(c — In(c))xl dx
st st

|uhx| |uhx|
(¢ — cn)x|?
<o [ RTIE bt ColelByg i
N

[t

[t ]

|(c — cn)sl?
|K6|se/ " dx + Ce | (ux| = lunx])® dx,
sl sl
|K7| < CllelFpg1,h* + c/l<|ux| — lunx)® dx.
S

Summarizing all these estimates we obtain from (4.15) that we arrive at

d 1 cx — chel?
— /—|c—ch|2|uhx|dx +/ de
dr \Js1 2 st lupyl
2
¢y —¢
Sf/ |x hxl dx
St 1779

d
+ o (/ (c—ch>|uhx|(c—1h<c)>dx+/ (x| — |uhx|>(c—1h<c>)dx)
t sl sl
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Curve shortening flow coupled to lateral diffusion 1189

+C [ o= cuPlunsddr +C [ lue = P
N N

+C [ = nldx € [ dud = ol dx -+ Cl,
N N

Integrating with respect to time from O to 7, using (4.16), (4.13), and embedding theory
we get for € small enough that

f
/ |c(r‘)—ch(f)|2dx+/ / lex — cnyl® dxdt
s1 0 s1

< C/I lco — chol* dx +/] [(coluox| — conlunox|)(co — In(co))| dx
s s
A = P - -2
+0s/ |c(r>—ch(r)|2dx+c:/ (e (D] — lune P)1)* dx
+C/ / lc — cpl |uhx|dxdt+C/ / |u,—uh,| dxdt
+c/ T — ] dxdt+C/ / (x| — |une))® dxdt + Czh?.
0
Note that
/ lco — crol® dx =/ lco — In(co)|* dx < Clicoll 1 g1y P
s1 s! B HESD
and, similarly with some arguments as used to estimate K3
/ [(coluox| — conluonx)(co — In(co))| dx < C”COHHI(SI h* + C””OHHZ(SI

Choosing & small enough and using the above estimates for the initial data yields the
claimed estimate (4.14). O

Lemma 4.3 Assume that t € (0, T] is such that

kek

< lupx| <2C* on [0, 1],

4||C||L2 (4.17)

2
||Ch||L2 ]Hl(Sl)) = OT],HI(SI))'

Then the following estimate holds for some C > 0:

r
// |ut—uht|2dxdt+/ |T(7) — Ty (D)% dx
0 Js! ) N )

t t
< C/ It — 1| dxdt + C/ / (Jux| — |une))* dxdt
0 Jst 0 Jst
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1190 P. Pozzi, B. Stinner

r
+C/ / lc — cp|? dxdt + Ch?. (4.18)
0 Js!

Proof The proof of this lemma follows the lines of the analogous Lemma 5.1 in [12].
However, some additional terms concerning the dependence on ¢ have to be estimated.
More precisely, while the terms 11, . . ., Is as defined below in (4.19) have been treated
in [12] already, the terms Jp, ... Js depend on c or ¢j, and are new. They can be dealt
with using similar arguments, though.

Let us first write down the difference between the continuous geometric equation
(2.2) and its discrete version (3.12):

u up
/(ut|ux|—uht|uhx|><ph+( - ——")whxdx
sl lux|  |upl

= /S F(©)vluln dx — /S InCF @)Wl lgn dx
~2 /S @l Bhne dx + ¢ /S el W dx
for all ¢, € Xj. As a test function we choose
on = Inuy —upr = (uy —upy) + (puy —uz) € Xp .

Observing that

Uy Uhx d (1 2
—— ) (U —u =—\=zlt—wulu
(|Mx| |uhx|) (uyx htx) a1 (2| nl”l hx|)

[2ep |
Fux - \T— T+ (Th — (T - TR)T) ;
1729

some straightforward calculations show that

" d [ 1
/1 g = e Pl S [ S = o Plunel dx
S S

| f
= /] ur(lupx | — lux ) (puy — wpe) dx + 8/1 Wne | \h5 (Tnity — tpe)x dx
N S

[ = w0~ Bl s
JS

u u u
+ ( S )(u,—lhu»xdx—/ wer - (v =5 (o — (- mym) )
st 5! ux|

el unxl
1
- /sl Fvupx| — luxNUpus — upe) dx — 5 /Sl Unfen))y Vh\uhx|h§ (Tpus — upe)y dx
+/Sl F@W = vp) @y — upg)luny] dx —/Sl F@W =)y — Tyu) || dx
+ /S @) — T (Fen) g — wn)lunel dx

+/Sl v (f(©) = In(f (cn))) Upur — ur)upy| dx
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Curve shortening flow coupled to lateral diffusion 1191

=h+bh+L+L+I+7+Dh+B+0+J5+ J. (4.19)

An evaluation of the integrals 11, I> and I3 is given in [12, Lemma 5.1], therefore
we can assert

) < 6/1 ane =y Pl dx + c5/1(|uhx| — ux)?dx + CH,
S S
I, < Ch?,

il =€ [l = Plunsl o -+ Coh,
S

with € > 0 to be chosen later. Note that, for I, one uses Young’s inequality ab <
a® + b?/4 and (3.4) to obtain

1 1
h=—¢ / Ut = wnaa P g dx + / n) e lune |G (it )y = ) dx
S N
L 2 2
< |(nao) el une |G dx < Ch2.
24 s!

Next we use interpolation (3.3) and (4.17) to obtain that

[14] = ‘/l(f — 1) - (uy — Tpup)y dx
s

5/ It — 74 Plune] dx + CH2.
Sl

Noting that

[t [ty — lupy]

< Clt — ol +Clt — wl?,

Tt + (th — (th - T)T)

ot x| loax ]

by (4.17) we can infer that

15| < C/1 |70 — 7l ] dx +C/1 (el = lunc])* dx.
N N

The integral J; can be estimated exactly as /1 because of its similar structure. Using
4.17)

11| < 6/1 ltne — e |uny| dx +Ce/1<|uhx| — ux)?dx + Ch*
S S

with € > 0 to be chosen later. For J> we note the following using (4.17), (3.4), (3.5),
(3.2), and the boundedness of f”:

1/2 172
2] < Ch? (/S | Cem)) Pluan| dx) (/5 |(Intas = ne) x| s dx)
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1192 P. Pozzi, B. Stinner

1/2 1/2
<Ch ( /S 1 |(1h(f(ch)))x|2dx) ( /S g = uh,|2|uhx|dx)
1/2 1/2
<Ch (/ |(f(ch))x|2dx) (/ [y — gy dx)
N sl
1/2 1/2
+Ch (/S |(f<ch>)x|2dx) (/S Jus = uht|2|uhx|dx)

< cehZ/I lenxl® dx + Clliyur — uil a1, + € / e — e ||| dx
S S

= E/l luy — uht|2|uhx|dx + Ce (/1 |Chx|2dx) h2 +Ch2.
S S

Using Young’s inequality, noting that |v — v,| = |t — 73|, and using interpolation
estimates we also infer that

2 2
= [l = Plansldx +C [ |10 = Plundlay.
S N

[Ja] SC/ Ir—rh|2|uhx|dx—|—Ch4.
Sl

The second last term Js5 can be estimated using (4.17), (3.4) and the L°°-bounds for
f and f’ as follows:

|Js] 56/1 |ty — wpe|*upx|dx + Ce/l | £(c) — In(f (en) P lupxldx
S S
56/1 |ty — tupe|*upx|dx
S

e [ 1@ = slenpax+ . [ 7@ - h@las

56/1 |ut—um|2|uhx|dx+C€/1 lc — cp|*dx + Cch? (1+/1 |chx|2dx).
N S S

Similarly,

|J6|§C/ |c—ch|2dx~|—Ch2(1+/ |chx|2dx).
S1 St

Collecting all the estimates and by embedding theory we obtain from (4.19) that (for
h<1l

d 1
/Sl |ty — e |*upy| dx + E/Sl ST = | |upy| dx

<ce [ =Pl as+ € (14 [ tenar) e
N N
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Curve shortening flow coupled to lateral diffusion 1193

[l = nPunddx + Co [ sl = funel? sl
S N

+ Ce/ lc — cnl? dx.
S]

Choosing € small enough, integrating with respect to time from 0 to 7 and using (4.17)
we obtain that

r
//|ut—uht|2dxdt+/ |T(F) — 1 (D)|* dx
0 JS! st

< C/l |70 — ton|?|uonx| dx + Ch*
S

r r
+c// |r—th|2dxdt+C//(|ux|—|uhx|)2dxdt
0 Js! 0 Js!
r

+ c/ lc — cp|* dxdr. (4.20)
0 JS!

Note that by

luy — upel?® = luxllunx ||t — tnl? 4 (x| — lupe])? (4.21)

and by interpolation theory (3.3) we have that

2
ugx — Uoh
/|ro—r0h|2|u0hx|dxs/ desc/ (o — Tpug)s > dx < CH2.
sl sl [0y | sl

Thus, (4.20) yields the claimed estimate. O

Lemma 4.4 Assuming that

*%k

< lupx| <2C* on [0, 1], (4.22)

there exists a constant C > 0 such that for all t € [0, 1]
t
/ (lux (D] — lunc (])?dx < Ch* + C/ / lc — cpl*dxdt’
Sl 0 Js!
t t
+c/ (t — ) dxdt’ + C/ / iy — upe|? dxdt’. (4.23)
0 Jst 0 Jst

Proof Note that thanks to the assumption that 2C* > g5, > C**/2 the discrete length
elements are comparable, that is C‘qu_l <q;j <Cqjt1.
Integrating (4.1) with respect to ¢ we obtain

t t t
(hjq—q,-)(t)=(h,-q—qj)(0)—/0 B+dt’—/0 B—dz’—/o Bdt'. (4.24)
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1194 P. Pozzi, B. Stinner

Clearly
lhjq —q;j1(0) = [hjluox| = hjlunoxlis; | < chl(uo — Ihuo)x| < ch/hjlluoll p2s;) -

Using (4.2), (4.3), and (2.8) we get (in S;)

r t 1/2
/|B|dﬂ5€hj (/ |ut—r|2dt/)
0 0
t 1/2
x (/0 If(C)—f(Cj)|2+|f(C)—f(6j1)|2dt’)
t 1/2
+C (/0 If(epI? + If(cj'—l)lzdt/)
t 1/2
x (/O e = rP(lgh; = a1 + lgh; — gj111%) dr')
t 1/2
+C (/0 lur —r[*(qj—1 +f1j+1)dt')
t 1/2
X (/0 UF NP+ 1fj—DIGj—1 + g+t — ;,.|2d/)
t 1/2 t 1/2
([ apireppar) ([ @+ gzt = - iy - rpPar)
0 0
! 1/2
+C(/ Clj—l|f(cj—1)|2dt/)
0

! 1/2
X (/ (Qj‘i‘ijl)Kut_r)_(lf.ijfl—rjflﬂzdl‘/) .
0

Using (2.9), the fact that gx < 2C*hy forall k, [ f(c) — f(c)| < I f | Lowylc — cxl
and the boundedness of f, f/, u; and r we obtain that

o, t 172
/lBldt/SCh(/ |C_Cj|2+|C—Cj_1|2dt,)
0 0
t 5 5
+C(/0 (lghj —qj—11" + lghj — g1l )dt’)
t 1/2
+Ch(/ |r—rj|2dt’)
0
t
+Ch(/ |(u;—r)—(b'tj—rj)|2dt/)
0

t 1/2
+ Ch (/O |y — 1) — (tj—1 — rj_1)|2dr’) :

1/2

1/2
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Curve shortening flow coupled to lateral diffusion 1195

Integrating (4.4) with respect to ¢ yields
' y 1/2
/ |Bt|di’ < C (/ |uy — r|2dt’)
0 0
t 1/2
x (/0 ur —r*(Igh; — q;1° + lghj — qj41 ) df/)
t 1/2
+C (/ (gj +qj+Dluj — lezdl/)
0
' 1/2
X (/ (gj +qj+) W —r) — (@ — rj)IZdt/)
0
t 1/2
+C (/ (qj +qj+1)ur — rlzdt’)
0
t 1/2
X (/ (qj + qj+DIw —r) — (uj — r,-)Izdt’) )
0

Thanks to (2.9), (3.16), the bounds for u,, r, and the fact that g, < 2C*hy for all k we
obtain

1/2

t t
/O |BT|dt’ < C( /O (Igh; — q;1* + |gh; — gj+11%) dt’)

t 12
+ Ch (/ |(u,—r)—(uj—rj)|2dt’) .
0

Repeating the same arguments for B~ and putting all estimates together we infer from
(4.24) and recalling (4.9) that

t 1/2
lhjq(t) —q;®] < Chy/hjlluoll mzs;) + Ch (/0 le —c;I* + |C—Cj—1|2df/)
' 1/2 ‘ 1/2
+Ch(/ |(u,—L'¢j)|2dt/) +Ch(/ |(u,—b'tj1)|2dt/)
0 0
t 1/2
+c(/0 (Igh; —q,-|2+|qh,-—q,+1|2+|th—q,_1|2)dr’)

‘ 1/2
+ Ch (/ |‘L’—‘EJ'|2-|—|‘L'—‘E]'1|2+|‘L’—‘L'j+1|2dt/)
0

Squaring the above expression, integrating with respect to space over S;, using and
(4.11), (4.12), and (4.10) leads to

/S \hjq() — q;(0) P dx
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1196 P. Pozzi, B. Stinner

< Ch4 (HMOHHZ(S) / ”C”H](S)+ ”ul”Hl(M) + ||M||%_12(M)df/)

+Ch2/ / lc — cplPdxdt’ +Ch2/ / (g — qh)zdxdt
+Ch2/ / (t — w)*dxdt’ +Ch2/ / : —up|>dxdt’,  (4.25)

where M; := S; U S;41 US;_1. Summing up over all grid elements and using that
/ (hjq —q;)* dx = hf/ (@ —qn)dx > Chz/ (q — qn)* dx
Sj Sj Sj
a Gronwall argument yields the claimed estimated (4.23). O

5 Proof of the convergence Theorem 1.1

Thanks to the estimates in the previous Sect. 4 we are ready to prove the main result.
We follow the lines of [12, Theorem 5.3] but need to also derive the estimates for
¢ — ¢y, and repeat some arguments for the convenience of the reader.

Proof First of all note that from standard ODE theory we have local existence and
uniqueness of a discrete solution (uy,, ¢j,) of (1.6), (1.7). Assume that T* € (0, T) is
the maximal time for which we have that

& < |upx| =2C*on [0, T*],

<A4lc|?, and

2
”Ch”LZ([O,T*],Hl(Sl)) ([O,T],HI(SI))’

||Ch||c([0,T*],Loc(sl)) = 2C(Sl)||C||c([0,T],H1(S')) G.D

where C(S!) is a constant for the embedding H!(S') < L°°(S"). Inserting equation
(4.23) into (4.18) [note that (4.17) and (4.22) are satisfied thanks to (5.1)] gives for
t € [0, T*] that

t
// |u,—u,,,|2dxdt+/ |T(7) — Ty (D)% dx
0 Js! N
r r
§C// |t—rh|2dxdt+C// le — cp|? dxdt
0 JS! 0 Js!
r t t
+c/ (/ |r—rh|2dxd/+// |ut—uht|2dxdt/) dt
0 0 Js! 0 Js!
f t
+c/ (// |c—ch|2dxdt’) dt + Ch?
0 0 Jst

7 7
§C/ |r—th|2dxdt+C/ |c—ch|2dxdt
0 Js! 0 Js!
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r ot
+ c/ / / lus — upe|>dxdt’'dt + C h?,
0 Jo Js!

where, for the last inequality, we have used the monotonicity of the integrands. For

instance,
r ot r ot
/ / lc — cplPdxdt’dt < / / lc — cpl?dxdt'dt
0 Jo Js! 0o Jo Js!

r
< C/ lc — cplPdxdt’.
0 Jst

A Gronwall argument yields that

f f
// |ut—uht|2dxdt+/ It(f)—rh(f)|2dx§Ch2+C// lc — cn|*dxdt.
0Js! st 0Js!
(5.2)

Inserting this estimate into (4.23) gives for ¢ € [0, T*] (again using the monotonicity
of the integrands)

t
/ (Jux )| = |uns (D)) ?dx < Ch* + C/ / lc — cp|?dxdt’. (5.3)
N 0 Js!

Next, we plug (5.2) and (5.3) into (4.14) [note that (4.13) is satisfied thanks to (5.1)]
to obtain for # € [0, T*] that

T i
/ lc@) — ch(D> dx + c// lex — cpel? dxdt < c/ lc — cpl?dxdt + Ch?.
st 0J5s! 0J5S!

Applying Gronwall again yields

r
/ le(f) — e (D> dx + c/ / lex — cnx|> dxdt < Ch?.
N 0 Js!
Inserting this into (5.2) and (5.3) we obtain that
/Sl (17® = s @ + le@® — e @) dx + /Sl(|ux(r‘)| = luns (D)) *dx
T
+/0 /S1 (|u, —up)? + lex — chx|2) dxdt < C h. (5.4)

The constants appearing so far do not depend on 7*. Since uy, is constant on each
grid interval, the above estimate together with classical embedding theory (see for
example [4, Theorem 2.2]) implies

e (x, O = Jux (2, O = e (5 O = fupx 5 O oo st
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1198 P. Pozzi, B. Stinner

C
Vh
2 C** — C\/E— C\/E(”MO”HZ(SI) + ||“t||L2([0,T],H2(Sl)))

EC**_

ot G, O] = lna G O 251y — RN Ol g2sty

> ™ — CVh > %C**,

forall 1 < ho with hy € (0, 1) sufficiently small independently of 7*. Similarly, after
eventually decreasing & (recall also (2.8)), |upy| < %C *forall h < hg independently
of T*.

Next observe that using (5.4), (3.6), and embedding theory we can write for ¢ €
[0, 7]

||Ch(t)||Lc>0(51) =< ||Ihc(f)||L00(Sl) + Il(cp — IhC)(t)”LOO(SI)

C
= lelleqo, 1, L0051y + ﬁ”(ch — OOl 251y

C
< lelleqoryieesty + 7 (Ien = YOl 251, + e = YOl 2(sn) )

A C
1
<C(S )“C”C([O,T],HI(SI)) + ﬁ (h +h“C”C([O,T],H1(Sl)))

3
< EC<Sl>||c||c<[o,n,yl<s1»

for all h < hg independently of T* (after decreasing kg if required). Using (5.4) we
can easily derive that

2 2
”Ch ”LZ([O,T*],Hl(Sl)) S 3||C||L2([O,T],H1(Sl))

for all 4 < hg independently of 7* (after decreasing h¢ again if required). Continuity
of the solution (uy, c,) with respect to time yields a contradiction to the maximality
of T*. It follows that T* = T and the theorem is proved. O

Corollary 5.1 Under the assumptions of Theorem 1.1 we have that

sup lu(®) = un (@)l 51, < Ch*. (5.5)
t€(0,T]

Proof From Theorem 1.1, (4.21), and the fact that |uy| and |upy| are bounded we
obtain immediately the bound for the semi-norm [ — up|g1(g1y. To prove the L2-
bound note that u(x, t) — up(x, 1) = u(x,0) — up(x, 0) + fot ur(x,t') —up (x, tdt'
and use Theorem 1.1 again with the interpolation result (3.2) for the initial values. O
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6 Numerical simulations
6.1 Sources and reaction terms
We now aim for assessing the results in Theorem 1.1. Exact solutions to the PDE

system (1.4), (1.5) are difficult to obtain whence we prescribe functions (u, ¢) and
account for source terms to ensure that they are solutions, i.e., we consider

1 Uy J‘
U — - flc ) 6.1
x| \ lux] |th|
1
¢ + el ( = ) =5 6.2)
|th| lx] \luxl /),

with functions s, : S' x [0, 7] — R and s : S' x [0, T] — R.

The required extension of the weak formulation (2.2), (2.3) is straightforward. With
respect to the spatial discretization of the source terms we apply the interpolation 7,
as follows: Instead of the equations (1.6), (1.7) we have

Up
/ In (upe - o) lupe| + =
st u

[

g dx = /S1 I (F Ccnpn) i + I (s~ ) sl dx,
(6.3)

d
4 (/ ch{h|uhx|dx) +/ Chaxh dx :/ Iy (s) e lupy | dx. (6.4)
dr \Js! st upyl sl

6.2 Time discretization

We apply a semi-implicit scheme which reads as follows:

Problem 6. 1 (Fully Discrete Scheme) Given atime step § > 0, let M = T'/§ and find
functions ”31 )() € Xy and cg () e Yp,me{0,..., M}, of the form

N
ugy (x) = Zu§m>¢j(x>, e () =D e (x)
j=1 j=1

with " € R and ¢ € R, such that ) (-) = w0, ¢\ (-) = cho, and such that for
all o € Xp, ¢ € Ypandallm € {0, ..., M — 1}

(m+1) (m) . y D
Sh Sh m Shx
/31 Ih(f-wh)w(gm o o d

Uspx

= [ i (rion) - w0 (s o) s, 69)
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! On)) n D) _ ) () i Gy
5 (/ ( i g = ey |u6hx|) Ch dx) / ol min,
S st lu Ush |
= / Iy (sg'"“)) Culult)| dx. (6.6)
S

For a more sophisticated time discretization of PDEs on evolving surfaces we refer,
for instance, to [20]. We solve the above fully discrete problem using the following
algorithm:

Algorithm 6.1 Given data: N (number of nodes), § (time step), (uq, co) (initial data),
M (number of time steps), tol (abort if any segment length becomes smaller).

1. Setm = 0.
Initialize ul(zo)
u©

= upy = Ipug and c}(lo) = cpo = Ipco by computing the values
= up(x;) and ¢ = co(x;),i = 1,..., N.
Also, compute q(o) |u EO) (0) (hi=1,...,N.

0)

Abort if min; q; < tol.

2. Compute the vertex positions at time "D = (m + 1) from

(m) (m) (m+1) 1 (m+1) (m+1) 1, (m+1)
23(‘1z+1 iU <m> i1 +( D + (m))” qfﬂuH-l

+%f(c§’"))(f'.’ﬁ)1—ufm)1) il

(m+1) _  (m+1) (m+1)

|M l—l |i:1,...,N.
3. Compute the surface field values at time 1D = (m + 1)8 from

+1) ,  (m+1) (m+1)
(%5(‘1]’11 +4q; " )+( wrn + q(m+1))) ij

Jj+l1

1 _(m+1) 1 (m+1) 1 _(m+1) 1 (m+1)
(@qjﬂ __q(_m+l))cj+l "‘(@qj ——<,7z+1>) Ci 1

j+1 qj

and compute g;

— L™, +q]m>)( M) 4 s, (x; )(m+1))
+&a) ( 1 65 (x; +1)<m+1>)

+ (,sqj(m) ( (m) —i—(SSL()C )(m-i-l)) , j=1,...,N.

(m+1)

. If min; q; > tol and m + 1 < M then increase m by one and go to step 2.

Observe that the parametrization does not feature any more in the algorithm. The
identities in steps two and three are straightforward to compute. For instance, step two
is easily obtained from the continuous version (3.8).
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6.3 A radially symmetric solution

Consider a radially symmetric setting and denote by R(¢) and B(¢) the radius of the
evolving circle and the constant (in space) value of ¢ along the circle, respectively.
We pick v to be the outer unit normal of the enclosed ball. Then v = R’(¢) and
k = —1/R(t). The system (1.1), (1.2) becomes

B(OR'(1)

R'(1) = L + f(B()), B'(t)+ =0. 6.7)

R(t) R(1)
We consider the forcing function

f(B)=2B —1.

Note that this function is not bounded and thus does not satisfy the assumptions of
Theorem 1.1. However, the values of B in the subsequent simulations are bounded.
We may therefore think of cutting off f at suitable high and low values which are
outside of the computed values and locally smooth it sufficiently. This does not alter
the computational results but the Theorem then applies.

The constant functions (R(¢), B(t)) = (1, 1) are a stationary and stable solution to
(6.7). The solution for initial values R(0) = 1.25 and B(t) = 0.8 converges back to
this stable point and has been approximated with a standard MATLAB routine for the
comparison in Fig. 1.

Now let h = 1/N with N € N and define the initial position of the curve approxi-
mation by

u§.°> = R(0)(cos(27j/h), sin(27j/ h))

in which we set ¢” = B(0). Furthermore, we set § = h2. We then perform numerical

simulations with the scheme described in Algorithm 6.1. In order to be able to compare
with the solution to the ODE system (6.7) we use the length of the computed polygon
divided by 27 and the average of the values of ¢;, in the nodes,

N N

m _ 1 m  pmy _ 1 (m)

Ry = -2 ;" By =52 ¢ melo,... M},
j=1 j=1

Figure 1 gives a nice impression of the convergence as the computational effort
is increased. Note that the errors essentially are due to the spatial discretization. We
checked that changing the time step only has a marginal impact on the graphs.

6.4 An oscillating solution

Consider now the functions

. (1+ %sin(Zm)) cos(2mx)
’ t) =
e (1 — L sin@71)) sin(27x)
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1.3 1.1
~®“exactsolution| | e -
—="N=9 1.05 e it
~~-N=18 [ R Y N Sy
N=36 3] [ // ...... e
® = b T e
= [ 7
o !
3 g o iy
£ ) ) :
: = 09 . —* ~exact solution
e Sag-cg-g o Y/ — = N=9
_________________ F
- 0.85F i ---N=18
------------ R S - |7N-36
0.9 i i i i i i i 0.8 i i i i
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
time time

Fig.1 Numerical solutions for the radially symmetric solution. The solution (R (), B(t)) to the ODE (6.7)
is displayed as well as the solutions (Rgsy,, Bsy,) obtained via Algorithm 6.1 for several values of N

and
c(x,t) =tcos(8mrx)+ (1 — 1) sin(brx)

forx € [0, 1]and ¢t € [0, T] with T = 1. Let f(c) = 2c¢ (with regards to the lack of
bound the remark in the previous section applies again). Then (u, ¢) is a solution to
(6.1), (6.2) if the source terms are given by (writing s, = (s,,1, 5,2))

su1 = 7 cos(2mt) cos(2mx)

242 cos(2mx) (=2 + sin(271))(t cos(8mx) + (1 — 1) sin(67x))
/9 —cos(@nt) — 4sin(n(f — 2x)) — 4sin(2r (7 + 2x))
8 cos(2x)(—2 + sin(271))%(2 + sin(2xt))
+ (=9 + cos(dmt) + 4sin(2m(t — 2x)) + 4sin(Qn (¢ + 2x)))2’
sy2 = —m cos(2mt) sin(2mw x)
24/2sin(2rx) (2 + sin(2w 1)) (¢ cos(87x) 4+ (1 — 1) sin(67rx))
V9 —cos(dmt) — 4sinm (t — 2x)) — 4sin(2w (t + 2x))
n 8 sin(27x) (=2 + sin(271))(2 + sin(271))?
(9 — cos(dmt) — 4sin(2m(t — 2x)) — 4sin(Ru (¢t + 2x)))2’
Se = cos(8mx) — sin(6 x)
8(16¢ cos(8mx) + 9(1 — 1) sin(6x))
9 —cos(4rt) — 4sin(Qm (t — 2x)) — 4sin(2mw (r + 2x))
128 cos(2mx) sin(2t) sin(2wx)(3(—1 + 1) cos(6mw x) + 4t sin(8mw x))
B (9 — cos(4mt) — 4sin(Qm(t — 2x)) — 4sinm (¢t + 2x)))?2
" 47 cos(2mt)(—2cos(4mx) + sin(2wt))(t cos(8mwx) — (—1 4+ t) sin(brx))
9 — cos(4mt) — 4sinQ2m (t — 2x)) — 4sin(2m (¢t + 2x)) '

For the numerical simulations with Algorithm 6.1 we monitored the following
eITOrS:

& = sup/ |c—ch|2dx, & = sup/ |t —‘l:h|2dx, & = sup/ (Jux| — |uhx|)2dx,
m) J S1 ) J S1 m) J S
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Table 1 Errors and EOCs for the test problem described in Sect. 6.4

N &1 x 10 eoc| 52><102 eocy &3 eoc3 .5'4><102 eocy Es eocs

21 1.2912950 - 2.08142 - 1.15896 - 8.047392 - 25.488 -

61 0.0228319 3.78  0.17548 232 0.04038 3.15 0.133915 3.84 23531 223
121 0.0015801 3.90 0.04280 2.06 0.00637 2.70 0.009039 394 0.5707 2.07
241 0.0001023 3.97 0.01066 2.02 0.00135 226 0.000581 398 0.1420 2.02
401 0.0000134 3.99 0.00384 2.01 0.00047 2.08 0.000076 3.99 0.0511 2.01
701 0.0000014 4.00 0.00126 2.00 0.00015 2.03 0.000008 4.00 0.0167 2.00
1101 0.0000002 4.00 0.00051 2.00 0.00006 2.01 0.000001 4.00 0.0068 2.00

Note that the errors have been rounded but the EOCs have been computed using the complete numbers. N
is the number of nodes, 4 = 1/N is the spatial step size, and § = h? is the step size in time. The error terms
are defined in (6.8)

Table 2 Errors and EOCs for the test problem described in Sect. 6.4

m & x10 eoc; & x 102 eocy &3 eocs &4 x10 eocy E5/10 eocs
0 123630 - 1.60499 - 1.32017 - 1.03219 - 1.08707 -

1 0.45345 145  0.42590 1.91 046027 152 0.33786 1.61 0.38561 1.50
2 0.14034 1.69  0.11195 1.93  0.14138 1.70  0.09858 1.78 0.11754 1.71
3003979 1.82  0.02900 1.95 0.04043 1.81 0.02689 1.88 0.03303 1.83
4 001069 190 0.00746 1.96  0.01099 1.88 0.00705 1.93  0.00895 1.88
5 000278 194 0.00196 1.93  0.00290 192 0.00181 196 0.00247 1.86
6 0.00071 197  0.00057 1.78  0.00076 194 0.00046 198  0.00078  1.66
7 000018 1.97  0.00022 1.36  0.00021 1.88 0.00012 198  0.00035 1.16

Note that the errors have been rounded but the EOCs have been computed using the complete numbers.
The time step size is given by § = 0.02 x 27" the spatial step size is fixed at h = 1/N where N = 2001
is the number of nodes. The error terms are defined in (6.8)

(m+1) uE'Z“) _”((sr;?) 2 (m+1) _ (m+1)2
. m . m m
&y = Em 5/31 u; —fldx, & = Em 5/sl Cx —Cspe |Tdx

(6.8)

where we used sufficiently accurate quadrature rules on each interval S; for the spatial
integration.

We first picked several values for N as displayed in Table 1 and time steps of the
size 8 = h? where h = 1/N. We checked that by this choice of the time step the
spatial discretization error is dominating. The EOCs of &, &3, and &s are close to two
which is what Theorem 1.1 asserts. The error in c, is relatively high but this is not
surprising in view of the spatial oscillations of the surface quantity ¢ which are at a
higher frequency than those of the position field «. In turn, the EOCs of £ and &
are close to four and thus better than Theorem 1.1 predicts, a behavior which may be
expected for &;.
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1204 P. Pozzi, B. Stinner

We also assessed the discretization error with respect to the time stepping. For the
results in Table 2 we fixed a very fine spatial mesh with N = 2001 nodes and varied
the time step. Note that our semi-implicit time discretization is of consistency order
one. In accordance with this the EOCs of all errors are close to two for all fields. The
drops of the EOCs of some errors for small time steps (from about m = 5 in Table 2)
are due to the spatial discretization error becoming more significant.
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