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Abstract In this paper we consider the convergence analysis of adaptive finite ele-
ment method for elliptic optimal control problems with pointwise control constraints.
We use variational discretization concept to discretize the control variable and piece-
wise linear and continuous finite elements to approximate the state variable. Based
on the well-established convergence theory of AFEM for elliptic boundary value
problems, we rigorously prove the convergence and quasi-optimality of AFEM for
optimal control problems with respect to the state and adjoint state variables, by using
the so-called perturbation argument. Numerical experiments confirm our theoretical
analysis.
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1 Introduction

Adaptive finite element method (AFEM for short), contributed to the pioneer work of
Babuska and Rheinboldt [2], becomes nowadays a popular approach in the community
of engineering and scientific computing. It aims at distributing more mesh nodes
around the area where the singularities happen to save the computational cost. Various
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types of reliable and efficient a posteriori error estimators, which are used to detect the
location of singularity and essential for the success of AFEM, have been developed in
the last decades for different kind of problems, we refer to [36] for an overview.

Although AFEM has been successfully applied for more than three decades, the
convergence analysis is rather recent which started with Dorfler [13] and was further
studied in [6,7,31-33]. Besides convergence, optimality is another important issue in
AFEM which was firstly addressed by Binev et al. [6] and further studied by Stevenson
[34,35]. The so-called Dorfler’s marking proposed in [13] and quasi-error introduced
in [7] consisting of the sum of the energy error and the scaled estimator are crucial
to prove the contraction of the errors and quasi-optimal cardinality of the standard
AFEM which avoids marking for oscillation [13] and circumvents the interior node
property of mesh refinement [32,33].

AFEM also finds successful application in optimal control problems governed by
partial differential equations, starting from Liu, Yan [26] and Becker, Kapp, Rannacher
[3]. In [3] the authors proposed a dual-weighted goal-oriented adaptivity for optimal
control problems while in [26] residual type a posteriori error estimates were derived.
We refer to [17,18,24,27-30] for more details of recent advance. Recently, Kohls,
Rosch and Siebert derived in [22] an error equivalence property which enables one to
derive reliable and efficient a posteriori error estimators for optimal control problems
with either variational discretization or full control discretization.

There also exist some attempts to prove the convergence of AFEM for optimal
control problems. In [14] the authors considered the piecewise constant approxima-
tion of the control variable and gave an error reduction property for the quadruplet
(u,y, p,o), where u, y, p denote the optimal control, state, and adjoint state vari-
ables and o the associated co-control variable. However, additional requirements on
the strict complementarity of the continuous problem and non-degeneracy property
of the discrete control problem are assumed and the marking strategy is extended
to include the discrete free boundary between the active and inactive control sets.
In [4] the authors viewed the control problems as a nonlinear elliptic system of the
state and adjoint variables and gave a convergence proof for the adaptive algorithm
involving the marking of data oscillation. In [23] the authors proved that the sequence
of adaptively generated discrete solutions converged to the true solutions for optimal
control problems, but obtained only the plain convergence of the adaptive algorithm
without convergence rate and optimality. In this paper we intend to give a rigorous
convergence proof for the adaptive finite element algorithm of elliptic optimal con-
trol problem in an optimal control framework. Compared to [4], the AFEM adopted
in current paper uses Dorfler’s marking [13] and is a standard algorithm in that it
employs only the error indicators and does not use the oscillation indicators. More-
over, for the convergence analysis of AFEM we use the standard convergence results
of AFEM for elliptic boundary value problems so that the proof is more clear and
rigorous.

Inspired by the work [11] of Dai, Xu and Zhou where the convergence and optimality
of AFEM for elliptic eigenvalue problem are proved by exploiting a certain relationship
between the finite element eigenvalue approximation and the associated finite element
boundary value approximation, in this paper we will provide a rigorous convergence
analysis of the adaptive finite element algorithm for optimal control problems governed
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by a linear elliptic equation. Under mild assumptions on the initial mesh from which
the adaptive algorithm starts, we show that the energy norm errors of the state and
adjoint state variables are equivalent to the boundary value approximations of the state
and adjoint state equations up to a higher order term. Then based on the well-known
convergence result of AFEM for elliptic boundary value problems, we are able to
prove the convergence of AFEM for the optimal control problems (OCPs for short).
To be more specific, the AFEM for OCPs is a contraction for the sum of the energy
errors and the scaled error estimators of the state y and the adjoint state p, between
two consecutive adaptive loops. We also show that the AFEM yields a decay rate of
the energy errors of the state y and the adjoint state p plus oscillations of the state and
adjoint state equations in terms of the number of degrees of freedom. This result is an
improvement over the plain convergence result presented in [23].

We remark that we study the AFEM for OCPs under energy norm errors for the state
and adjoint state. Compared to a priori error estimates for optimal control problems
[20], it seems to be more suitable to work with L2%-norm errors for the control, the
state and the adjoint state, including a posteriori error estimates and the convergence
analysis. However, the motivation to study AFEM in energy norm in this paper is two
folds. Firstly, up to now almost all AFEMs with guaranteed convergence are based
on energy norm error, the only contribution of convergent AFEM under L2-norm
to our knowledge is [12] by Demlow and Stevenson, where the convergence result
of AFEM under energy norm is used to prove the convergence of AFEM with L2
norm by establishing certain equivalence property between the L?-norm error and
the weighted energy norm error. Secondly, to work with L?-norm we have to assume
H?-regularity for the solution of elliptic equation, this excludes the most interesting
case where the domain may be non-convex or the coefficient of the elliptic operator
may be discontinuous. However, if we have H?2-regularity for the solution of elliptic
equation we can already achieve optimal a priori error estimates for the optimal control
problems and AFEM is thus not attractive.

The rest of the paper is organised as follows. In Sect. 2 we recall some well-known
results on the convergence analysis of AFEM for elliptic boundary values problems. In
Sect. 3 we introduce the finite element approximation of the optimal control problems
and derive a posteriori error estimates. We also present Dorfler’s marking strategy and
the adaptive algorithm for the optimal control problems. In Sect. 4 we give a rigorous
convergence analysis of the AFEM for optimal control problems and the quasi-optimal
cardinality is proved in Sect. 5. Numerical experiments are carried out in Sect. 6 to
validate our theoretical result. Finally, we give a conclusion in Sect. 7 and outlook the
possible extensions and future work.

Let Q c R4 (d = 2, 3) be a bounded polygonal or polyhedral domain which is not
necessarily convex. We denote by W49 (2) the usual Sobolev space of order m > 0,
1 < g < oo with norm | - [|;s.4,0 and seminorm | - | 4. o. For ¢ = 2 we denote
W4(Q) by H™(2) and || - llm.@ = |l - llm.2.@, which is a Hilbert space. Note that
HY(Q) = L*(Q) and H} () = {v € H'(Q) : v = 00n d$2}. We denote C a generic
positive constant which may stand for different values at its different occurrences but
does not depend on mesh size. We use the symbol A < B to denote A < C B for some
constant C that is independent of mesh size.
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2 Preliminaries

In this section, we recall some well-known results on the adaptive finite element
approximation to a linear elliptic boundary value problem, which are then used for the
convergence analysis of AFEM for optimal control problems. Some of the results are
collected from [7,11], see also [16].

Consider the following second order elliptic equation

Ly=f inQ,
{ y=0 on 0%2, 2.1

where f € L?(Q) and L is a linear second order elliptic operator of the following
form:

49 9y
Ly :=— —\aii— .
yi=— 2 7 (au 8xi) +aoy
i,j=1
We denote L* the adjoint operator of L
d
ad ay
L*y = — —\aji— .
vim= 3 g (g ) +ao
i,j=1 -
Here 0 < ap < 00, q;5 € whe@) G, j=1,...,d)and (@ij)axa is symmetric and

positive definite. We denote A = (g;;)axq and A™ its adjoint. Let

d
dy dv

a(y, v) =/Q Z "ffﬁg +apyv | dx, Vy,ve H(} (2).
ij=1 e

It is clear that a(-, -) is a bounded bilinear form over HOl (2) and defines a norm

I - lla.2 = +/a(-, ) which is equivalent to || - [|1.q.
The standard weak form of (2.1) reads as follows: Find y € HO1 (£2) such that

a(y,v) = (f,v) Yve Hi(Q). (2.2)

Foreach f € H~!(R) the above problem admits a unique solution by the well-known
Lax—Milgram theorem. Since the elliptic equation (2.2) is linear with respect to the
right-hand side f, we can define a linear and bounded solution operator S : L?(Q) —
Hj () such that y = Sf. ) )

Let 7;, be a regular triangulation of € such that Q = Urc7;, T. We assume that 7, is
shape regular in the sense that: There exists a constant y* > 0 such that Z—; < y* for
all T € 7, where hr denotes the diameter of T and pr is the diameter of the biggest
ball contained in 7. We set 1 = maxr¢7;, hr. In this paper, we use &, to denote the
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set of interior faces (edges or sides) of 7;, and #7), to denote the number of elements
of 7y,.

On 7, we construct a family of nested finite element spaces V}, consisting of piece-
wise linear and continuous polynomials such that Vj, ¢ C(22) N HO1 (2). We define
the standard Galerkin projection operator Ry, : H(} () — V, by [9]

a(y —Rpy,vp) =0 Y, € Vp, (2.3)
which satisfies the following stability result

IReYlae S I¥lag Yy € Hy (). 2.4

A standard finite element approximation to (2.2) can then be formulated as: Find
yn € Vp such that

a(yn, vn) = (f, vn) Vvn € V. 2.5

Similarly, we can define a discrete solution operator S, : L*(2) — Vj, such that
yin = Sy f. Thus, we have y, = Ry = R, Sf.

For the following purpose, we follow the idea of [11] to introduce the quantity « ()
as follows

k(h) = sup inf |ISf — vplla, - (2.6)
FeL2(@), [ flo.a=1"#EVh

We note that the quantity « (%) is determined by the regularity of Sf which is further
induced by properties of the domain €2. Indeed, if the boundary of €2 is smooth, like
C!, the additional regularity Sf € H 2(Q) holds and thus « (h) = O(h). This is still
true for polygonal or polyhedral boundaries if the domain is convex. The regularity is
reduced, however, in the vicinity of non-convex portions of polygonal or polyhedral
boundaries. Grisvard proved in [15] the precise regularity results (Theorem 2.4.3 for the
two-dimensional case and Corollary 2.6.7 for the three-dimensional case): There exists
an¢e € (0, %], which depends on the shape of the domain, such that Sf € H S+ (2)
for each f € L?(R). Obviously, « (h) < 1 for h € (0, ho) if hg < 1.

The following results are standard and can be found in, e.g., [9,11]

Proposition 2.1 For each f € L*(S2), there hold

ISf = Shfllae S @ fllo,e 2.7

and
1Sf = Sufllo.e S kWIS — Snfllaq- (2.8)
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Now we are in the position to review the residual type a posteriori error estimator
for the finite element approximation of an elliptic boundary value problem. We define
the element residual 77 (y;,) and the jump residual jg (y;) by

Frm):=f—Lyn=f+V-(AVyy) —aoy, inT € Ty, (2.9)
JEQR) : =[AVyplg -ng on E € &, (2.10)

where [AVy, ] -ng denotes the jump of AV y;, across the common side E of elements
T+ and T, ng denotes the outward normal oriented to 7 ~. For each element T € 7y,
we define the local error indicator 7, (v, T') by

Bl—=

inn. T) = [ B3 IFrGwlgr + D heljeGwlde] - @10
Ec&, ECOT

Then on a subset w C €2, we define the error estimator 7, (yy, w) by

1

2

inGm @)= D, HownT) | . (2.12)
TeT,.TCow

Thus, 15, (v, $2) constitutes the error estimator on 2 with respect to 7.

For f € L2(2) we also need to define the data oscillation as (see [32,33])

1

2

ose(f.T) = lhr(f = frllor. ose(f. T) = [ D os®(£.T)] . (2.13)

TeT,

where fr denotes the L2-projection of f onto piecewise constant space on T'. It is
easy to see that

osc(fi + f2. Tn) < osc(fi, T) +ose(fo. Tn). Vfi. fr € LA(Q). (2.14)

For the above defined data oscillation we have the following lemma whose proof can
be found in [11, Lemma 2.4].

Lemma 2.2 There exists a constant C, which depends on A, the mesh regularity
constant y* and the coefficient ¢, such that

osc(Lv, Tp) < Cyllvlla,@, 0sc(L™v, Tp) < Cullvlla,e Vv € Vi (2.15)

Now we can formulate the following global upper and lower bounds for the a
posteriori error estimators of elliptic boundary value problems (see, e.g., [13,36]):

C1i3 (vn, ), (2.16)
ly — yallZ g + C308¢*(f — Lyn, Tp). (2.17)

Iy — yall2 g
Caii (i, Q)

NN
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For our following purpose we also need to study the adjoint equation of the elliptic
boundary value problem (2.1). For each g € L3(), let pE H(} (€2) be the solution of
the following adjoint equation

a(v,p)=1(g,v) Yve HOI(Q) (2.18)
with its finite element approximation

a(vp, pn) = (&, vp) Yup € Vj. (2.19)
We can also give the a posteriori global upper and lower error bounds:

Cr2 (pn, Q), (2.20)
Ip — pull o + Clzosc* (g — L* py, Tp). (2.21)

lp = pulZq
Caofz (pn, )

NN

To analyze the adaptive finite element approximation for the optimal control prob-
lem, we introduce the AFEM for a system of two source problems associated with
the state and adjoint state equations, which is some trivial extension for the existing
results of the adaptive finite element approximation of the scalar problem (see [7]).
Specifically, we introduce the adaptive finite element algorithm to solve a system
of elliptic boundary value problems (2.2) and (2.18) based on the error estimators
T ns Q) + 115 (pa Q).

The adaptive finite element procedure consists of the following loop

SOLVE — ESTIMATE — MARK — REFINE.

The ESTIMATE step is based on the a posteriori error estimators derived above, while
the step REFINE can be done by using iterative or recursive bisection of elements with
the minimal refinement condition (see [34,36]). Due to [7], the procedure REFINE
here is not required to satisfy the interior node property of [32].

There are different kinds of adaptive algorithms which differ from the marking
strategies (see [31-33]). Here we apply Dorfler’s marking strategy introduced in [13],
which marks only the error estimator ﬁ% (v, Q)+ ﬁi (ph, 2) to obtain the set of marked
elements M, C 7, and avoids the marking for oscillation (compare Algorithm 3.7).

Then the adaptive algorithm for solving elliptic boundary value problems is also
standard, see e.g. [7, Section 2.7], except that we solve instead a system of elliptic
boundary value problems (2.2) and (2.18) (compare Algorithm 3.8).

We denote T the class of all conforming refinements by bisection of 7j, (see [7]
for more details). Given a fixed number b > 1, for any 7, € T and M}, C 7j, of
marked elements,

Thy., = REFINE(Z},,, Mp,)
outputs a conforming triangulation 7, ,, € T, where at least all elements of M,

are bisected b times. We define R7; 7, =~ = T \(Tn, N Tpy,) as set of refined
elements, which satisfies My, C Rz, 7, -
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Then we can formulate the following standard result on the complexity of the
refinement, see [7, Lemma 2.3] and [35] for more details.

Lemma 2.3 Assume that Ty, verifies condition (b) of Sect. 4 in [35]. Let Ty, (k > 0)
be a sequence of conforming and nested triangulations of Q2 generated by REFINE
starting from the initial mesh Ty,. Assume that Ty, , is generated from Ty, by
Ty = REFINE(Ty,,, My,) with a subset My, C Tp,. Then there exists a con-

A

stant Cy depending on Tp, and b such that

k
#Tnyyy — #Thy < Co D # My, Yk > 1. (2.22)
i=0

1

We define

Iy, P2 = aly, y) +a(p, p).

The convergence of adaptive algorithm based on Dorfler’s marking strategy is proven
in [7] and the techniques are then used extensively for the convergence analysis of
AFEM for a different kind of boundary value problems. The following Theorem 2.4,
Lemma 2.5 and Lemma 2.6 are extensions of corresponding results for the single
elliptic equation in [7] by some primary operations. We remark that in [10] the authors
used a similar idea to prove the convergence of adaptive finite element computations
for multiple eigenvalues.

Theorem 2.4 Let (yn,, pn,) € Vi, X Vi, be a sequence of finite element solutions
of problems (2.2) and (2.18) based on the adaptively refined mesh Ty, produced by
AFEM. Then there exist constants 7 > 0 and B € (0, 1), depending only on the shape
regularity of meshes, the data and the parameters used in Dorfler’s marking algorithm,
such that for any two consecutive iterates k and k + 1 we have

1 = Yagsrr P = PNl + 7 (i, Ohsrs @)+ T, (P )
< 52(||(y = Y» P = PNz + 7 (i, O ) + 7, (P 9))). (2.23)

Here

1
L 2.24
VS U+ ez 2:24)

with some constant § € (0, 1).
To prove the optimal complexity of the adaptive algorithm we need further results.
The following lemma presents a localized upper bound estimate for the distance

between two nested solutions of the elliptic boundary value problems (2.2) and (2.18)
(see [7, Lemma 3.6] and [11, Lemma 6.2]).
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Lemma 2.5 Let (Y., pr) € Vi X Vi and Vigyys Phgyy) € Vi X Vi, be the
discrete solutions of problems (2.2) and (2.18) over a mesh Ty, and its refinement T, |
with marked element My, C Ty,. Let R'Thk =Ty be the set of refined elements. Then
the following localised upper bound is valid

1O = Vs P = Pres)lla < €0 D0 (i, One- T + iy (i T)).

TeRr
7-hk_>Thk-¢-|

(2.25)

Consequently, we can show the optimality of Dorfler’s marking strategy in the
following lemma (see [7, Lemma 5.9] and [11, Proposition 6.3] for the proof).

Lemma 2.6 Let (yn,, pn,) € Vi X Vi and Yy Phiyy) € Vi X Vi, be the
discrete solutions of problems (2.2) and (2.18) over a mesh T, and its refinement
Thyyy with marked element My, C Ty,.. Suppose that they satisfy the energy decrease

property

15 =Yg 2= P 12470 (0562 (f = Ly Tiuer) 05628 =L gy Ty 1))

< B3 (1= D= PrOI2+70(05¢2(f = Ly, Ta) +05¢* (6= L* piy. Tip) )
(2.26)

with Yy > 0 a constant and Bg e (0, %). Then the set Rﬂk—’ﬂkﬂ of marked elements
satisfies the Dorfler property

> (i One T+ (i 1)) =0 " (g, One- T) + i1, (P T))

TGR’Thk_)Th[H_] TE’Z;,k
(2.27)
o Ca(1-249) Ao o)
with 6 = E @ 1122070 where Cop = max(1, 7 ).
3 Adaptive finite element method for the optimal control problem
In this section we consider the following elliptic optimal control problem:
in IO = 31y = vald g + S lul} 3.1
min Ju) ==y — —|lu .
. y 7 1V = Yallo.o T Flitlo,@
subject to
Ly=u inQ,
[ y=0 onag, 3.2)
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where @ > 0 is a fixed parameter, y; € L%(Q) is the desired state and U,y is the
admissible control set with bilateral control constraints:

Upa = {u € LX), a<u<bae. in Q}

where a,b e Randa < b.

Remark 3.1 We remark that all the theories presented below can be generalized to the
case that the control acts on a subdomain @ C €. In this case the control operator
B : L*(w) — L?(Q) is an extension by zero operator and the governing equation
reads Ly = Bu.

With the solution operator S of the elliptic equation (3.2) introduced in the last
section, we can formulate the reduced optimization problem

. A 1 o
min - J (u) = J (Su, u) = || Su — yallg.o + §||u||(2m. (3.3)

uelUyg

Since the above optimization problem is linear and strictly convex, there exists a unique
solutionu € U,y by standard arguments (see [25]). Moreover, the first order necessary
and sufficient optimality condition can be stated as follows:

f’(u)(v —u) = (au+ S*(Su—yz),v—u) >0, Vv Uy, 3.4

where S* is the adjoint of S [21]. Introducing the adjoint state p := S*(Su — y4) €
H(} (£2), we are led to the following optimality system:
a(y,v) = (u,v), Vv € Hy(S),
a(w, p) = (y = ya, w), Yw € Hy(Q), (3.5)
(0u + p,v—u) 20, Yv e Uy.

Hereafter, we call u, y and p the optimal control, state and adjoint state, respectively.
From the last inequality of (3.5) we have the pointwise representation of u (see [25]):

1
u = Plap) [_E”] , (3.6)

where P, 5 is the orthogonal projection operator from L*(Q) to Uyg.

Next, let us consider the finite element approximation of (3.1)—(3.2). In this paper,
we use the piecewise linear finite elements to approximate the state y, and variational
discretization for the optimal control u (see [20]). Based on the finite element space
Vi, we can define the finite dimensional approximation to the optimal control problem
(3.1)—(3.2) as follows: Find (uy, yn) € Ugq x Vj, such that

min J, = l - z 2 5 3.7
h(Yhs up) = 2||)’h vallp.o + > lunllo.o (3.7)

up€lag
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subject to
a(yp, vp) = (up, vp), Yoy € Vj. (3.8)

Similar to the continuous case we have y, = Spuj,. With this notation we can formulate
a reduced discrete optimization problem

. ~ 1 o
min  Jy(up) i= Jy(Spttn, un) = ~ISpun — valg o + = lunld g (3.9
upelUaq 2 ’ 2 ’

We note that the above optimization problem can be solved by the projected gradient
method or the semi-smooth Newton method, see [5,19,21,30] for more details.

Similar to the continuous problem (3.1)—(3.2), the above discretized optimization
problem also admits a unique solution uj;, € U,4. Moreover, the first order necessary
and sufficient optimality condition can be stated as follows:

T} (up) (v — up) = (@up + S;(Suun — ya), vi — up) =0, Yoy € Ugg, (3.10)

where S;lk is the adjoint of Sy, . Introducing the adjoint state p;, := S;lk (Spup—ya) € Vy,
the discretized first order necessary and sufficient optimality condition is equivalent to:

a(yp, vp) = (up, vp), Y, € Vy,
a(wy, pn) = On — ya, wp), Ywp € Vy, (3.11)
(aup + pp,vp —up) 20, Yoy € Ugq.

Hereafter, we call uy,, y; and pj, the discrete optimal control, state and adjoint state,
respectively. Similar to the continuous case (3.6) we have

1
up = Plap) [_Eph} . (3.12)

It should be noticed that uy, is not generally a finite element function in Vj,.

For convenience we define yh := Suy, and ph = S*(Spup — yq). It is obvious that
yj, and py, are the standard Galerkin projections of y” and p”, i.e., y, = Ryy" and
pr = Ry, p". The following equivalence property is established in [22].

Theorem 3.2 Let (u,y, p) € Uyg X H(; (2) x HOI(SZ) and (up, yn, pr) € Uyq X

Vi, X Vj, be the solutions of problems (3.1)—(3.2) and (3.7)—(3.8), respectively. Then
the following an equivalence property holds:

lu —unllo.g + Iy — yallag + 1P = pallag ~ IY" = yullag + 19" = pallag
(3.13)
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1132 W. Gong, N. Yan

Proof For completeness we include a brief proof. Setting v = uj, in (3.4) and vj, = u
in (3.10) we are led to

(ou + S*(Su— yg), up, —u) >0, (3.14)
(aup + Sy (Spun — ya), u —up) = 0. (3.15)
Adding the above two inequalities, we conclude from (3.5) that

allu —unllgq < (S (Shun — ya) — S*(Su — ya), u — up)

= (S5 (Spup — ya) — S*(Spun — ya), u — up)
+ (S*(Spun — ya) — S*(Su— ya), u — up)

= (S, (Spup — ya) — S*(Spun — ya), u — up)
+ (Spup — Su, Su — Suy)

= (S, (Spun — ya) — S*(Shup — ya), u — up)
+ (Spup — Su, Su — Spuy)
+ (Spup — Su, Spup — Suyp,). (3.16)

It follows from Young’s inequality that

allu — upll§.o < ClSun — Spunlz.q + CIS* (Swun — ya) — Sp(Shun — ya) 7. -
(3.17)

Moreover, from (3.5) we have

ly = yilla,e < Iy — Sunlla, + ISun — yulla,
< Cllu —upllo,@ + 1Sup — yrlla,
and
Ip = prllae < Ilp — S*(Shun — y) lla,@ + 18" (Shun — ya) — prlla,o

<
< Cl|Su — Spupllo,@ + 18" (Shun — ya) — prlla,o
< Cllu — upllo,@ + 1S*(Spun — ya) — pulla,e + CllSun — yulla,@-

Combining the above estimates we prove the upper bound.
Now we prove the lower bound. Note that

|Sup — Shuplla,o < 1Sup — Sulla,@ + |Su — Spuplla,o

Cllu —uplo,o + 11y — yulla,2- (3.18)

N IN
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Similarly, we can derive that

I1S*(Shun — ya) — Sy (Shun — ya) la.2
< NS*(Shun — ya) — S*(Su = ya)la,@ + 15" (Su — ya) — S, (Spun — ya) la,2
< Cl|Spup — Sullo, + II1p — pulla.c
=Clly = ynllaa +lp — prllaq- (3.19)

Thus, we can conclude from the above estimates the lower bound. This completes the
proof. O

Next, we will prove a compact equivalence property which shows the certain rela-
tionship between the finite element optimal control approximation and the associated
finite element boundary value approximation.

Theorem 3.3 Leth € (0, hy), (u, y, p) € Ugq X H(} () x HO1 () and (up, yn, pn) €
Uaa x Vi, x Vy, be the solutions of problems (3.1)—(3.2) and (3.7)—(3.8), respectively.
Then the following equivalence properties hold

Iy = yallag = IY" — )’h||a,§2+0(/<(h))(||y —Yilla,o+lp — phlla,sz), (3.20)

1P = Pullae = 19" = palla.g + 06 (Iy = willae+1p = pallag) (2D
provided hy < 1.
Proof 1t is obvious that
y=wm=Y'=wm+y=y" p—p=p"—p+pr-p'. (322
Moreover, it follows from the stability results of the elliptic equation that
Iy = ¥"lla.g < Cllu —unllo.e, I1p = Pllag < Clly = yillog.  (3.23)

In the following we estimate ||y — yullo..- Let ¥ € HO1 (€2) be the solution of the
following auxiliary problem

L*y =y—y, inQ,

Y =0 on 0L2. (3.24)

Let ¥, € V}, be the finite element approximation of . In the following proof we use
the duality argument (see, e.g., [9]). Multiplying by y — y;, on both sides of (3.24) and
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integration by parts, we can conclude from (2.7) that

Iy = wallg.q = aly — yu. ¥)
=a(y —yn. ¥ —¥n) +aly — yn, ¥n)
=a(y =y, ¥ —Yn) + @ —up, Yn — )+ @ —up, ¥)
< CeMly = ynlla.ally — ynllo.e
+CA + () lu —upllo,elly — yullo,

< C(K(h)lly = Yhlla,@ + llu — Mhllo,sz)lly — yrllo,e,
where « (h) is defined in (2.6). This in turn implies
Iy = yullo,o < Ck(Mly = ynlla,@ + Cllu — upllo,- (3.25)
Considering (3.23) we have
Ip = P"lla.e < Ck )y = ynlla.e + Cllu — upllo.- (3.26)

It remains to estimate ||u — uj,||o,q. Note that it follows from (3.14), (3.15) and the
definition of §;' that

allu — Mh||(2),g < (S (Spup — ya) — S*(Su — ya), u — up)
= (), (Spun — ya) — Sy (Spu — ya), u — up)
+ (S (Spu — ya) — S*(Su — ya), u — up)
= (Sp(up—u), Sp(u—up))+(S; (Spu—ya)—S*(Su — yq), u—up)
< (S (Spu — ya) — S*(Su — ya), u — up),

which yields
lu —unllo.@ < CIS; (Spu — ya) — S*(Su— ya)llo.e- (3.27)

Let¢ € HO1 (£2) be the solution of the following auxiliary problem

H Lo = S;(Spu — ya) — $*(Su—yg) inQ, (3.28)

¢ =0 on 0.

Now we use the duality argument again. It follows from the continuous and discrete
adjoint state equations that

IS (Shu — ya) — S*(Su — yd)||(2),9 =a(p, S (Spu — ya) — S*(Su — ya))
=a(p — ¢n. S (Shu—ya) —S* (Su—ya))+a(@n. Sy (Spu—ya)—S*(Su — ya))
=a(p — ¢n. Sy (Shu — ya) — S*(Su — ya)) + (¢n, Shu — Su)
= a($ — én. S (Shu—ya)—S*(Su — ya))+(pn — ¢, Spu — Su)+ (¢, Spu — Su),
(3.29)
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where ¢, € V), is the finite element approximation of ¢». We can conclude from (2.7),
(2.8) that

a(@ — én, Sy (Spu — ya) — S*(Su — ya))
< Cre(M)|IS; (Shu — ya) — S*(Su — ya)llo,ll Sy (Swu — ya) — S*(Su — ya)lla.2
(3.30)

and

(@n — ¢, Shu — Su) < Ck*(W) IS} (Sp — ya) — S*(Su — ya)llo.olIShu — Sulla g
(3.31)
(¢, Spu — Su) < Cx(W)|| Sy, (Spu — ya) — S*(Su — ya) llo.el|Shu — Sulla,@.
(3.32)

Using the fact that k%(h) < «(h) < 1 when hg < 1, we are able to derive that

1S5 (Sput — ya) — S*(Su — ya)llo,e
< Ce(M 1Sy (Shu — ya) — 8*(Su = ya)la.e + 1 Spu — Sulla,@). (3.33)

Combining (3.27) and (3.33) we are led to

lu —unllo.a
S k(h)(IS; (Spu — ya) — S*(Su — ya)la,@ + II1Shu — Sulla,)
Sk Ulpn = plla.a + 1S, (Shu — ya) — Sy (Shun — Ya)lla,.@ + 11Shu — Sulla.2)
Sk lpr = plla,e + 1Shu — Spuplla,e + 1Shu — Sulla,@)
Sk Ulpn = plla.e + 1Shun — Sulla,@ + 1Shu — Spunlla.)
Sk lpn = plla.e + 1yn — Yla. + llu — unllo.)- (3.34)

If hg < 1then k(h) < 1forall h € (0, hg), and we arrive at

lu —unllo,e S W Ulpn — Pllaa + lIve = ylla,Q)- (3.35)

Inserting the above estimate into (3.23) and (3.26), we can conclude from (3.22) the
desired results (3.20), (3.21). This completes the proof. O

Now we are in the position to consider the adaptive finite element method for the
optimal control problem (3.1)—(3.2). At first we will derive a posteriori error estimates
for above optimal control problems. To begin with, we firstly introduce some notations.
Similar to the definitions (2.9) and (2.10) we define the element residuals ry 7 (yz),

rp,7(pn) and the jump residuals jy £(yn), jp,£(pn) by
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ry 1)t =up — Ly, =up +V - (AVyp) —aoyy, inT €7, (3.36)
rp.1(Pr) :=Yn —Ya — L*pp=yn —ya +V - (A*Vpy) —aopp, inT €Ty,
(3.37)
Jy.eQn) i =[AVylg -ng on E € &, (3.38)
Jp.E(pn) : =[A"Vpplg -ng on E € &,. (3.39)

For each element T € 7, we define the local error indicators 7y ,(y;, T) and
Np.n(pn, T) by

Bl—

nynOn T) = | hlry Gl s+ D, heliyeOnlge | - (3.40)
Eec&y,ECOT

=

Npu(pn T) = | hplrpr(o)l5r + D helipe(enle | - G4D
Ee&,, ECOT

Then on a subset w C 2, we define the error estimators 1y, ; (yr, @) and 1, 5 (pp, @)
by

nyaGno) = D nl,onT)| . (3.42)
TeT, . TCo
3
npa(pn- @)= D 0o T)| - (3.43)
TeT,,TCw

Thus, ny 5 (yr, 2) and np 5 (pr, 2) constitute the error estimators for the state equation
and the adjoint state equation on  with respect to 7.

Note that Sjuj; and S; (Spun — yq) are the standard Galerkin projections of Suy,
and S*(Spup — yaq), respectively. Similar to (2.16)—(2.17), standard a posterior error
estimates for elliptic boundary value problems give the following upper bounds (see,
e.g., [36]) which show the reliability of the error estimators.

Lemma 3.4 Let S and Sy, be the continuous and discrete solution operators defined
above. Then the following a posteriori error estimates hold

Ciny.n*(yn, Q), (3.44)
Cinp.n’(pn, Q). (3.45)

2
|Sun — Shunlly o

NN

IS*(Spuen — ya) — S;(Snun — Yl o

Then we can also derive the following global a posteriori error lower bounds, i.e.,
the global efficiency of the error estimators.
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Lemma 3.5 Let S and S), be the continuous and discrete solution operators defined
above. Then the following a posteriori error lower bounds hold

ézny,hz(yh, Q
Conp.n®(pn, 2

< ISun — Spunlly o + Cz05¢* (up — Ly, Tp),  (3.46)
< IS*(Shun — ya) — Sy (Swun — ya) ;.o

+C308¢* (v — ya — L* p, Tn). (3.47)
Let hg € (0, 1) be the mesh size of the initial mesh 7j,, and define

K(hg) := sup «(h).
he(0,ho]

It is obvious that kK (hg) < 1 if hg < 1. For ease of exposition we also define the
following quantities:

My (s pi)s T) = 03, ns T) + 15y (i T,
0s¢®((yn» pu)» T) = 0sc”(up — Ly, T) + 0sc>(yw — ya — L* pi. T),
and the straightforward modifications for n%((yh, pr), ) and osc®((yn, pr). Tn).
Now we state the following a posteriori error estimates for the finite element approx-
imation of the optimal control problem.
Theorem 3.6 Let h € (0, ho). Assume that (u, y, p) € Uag x H} () x H}(Q) and
Un, yn, pr) € Uga X Vi x Vi, are the solutions of problems (3.1)—(3.2) and (3.7)—

(3.8), respectively. Then there exist positive constants C1, Co and C3, independent of
the mesh size h, such that

I =y p = Pz < Cimp(Gn. pi). ) (3.48)

and

Conp (s 1) ) <N = s p — P2 + C305¢* (s pr)s Tn) - (3.49)
provided hg < 1.

Proof Notethat y" = Suy, yu» = Spup, p" = S*(Spup—yq) and p, = Sy (Shun—ya)-
From the estimates (3.20), (3.21) and Lemmas 3.4 and 3.5 we have

1 =y, p— plI2
<20" = w2 g + 1" = pul2. o) + Cr MG — yue p — Pl
< 2C1n2 ((vhs pu)s ) + C1RZ (o) (v — yis p — pi) 2
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and

Coanmn®(ns pn)s ) < (Y™ = yull2 o + 110" = palla o) + C308¢* (i, ). Tn)
<N =y, p = p)liz.g + C308¢* (i, pi). Th)
+ G2 ) Iy = Yy p — P12

We obtain the desired results by choosing

2C Gy Cs
=, O=——F"— Ci=——F—"—. (350
1 — Ci1k2(ho) 1 + C2k2(ho) 1 + C2k2(ho)

O

Now we present the adaptive algorithm for solving optimal control problems. Note
that there are two error estimators 1y, (yn, T) and np 5 (pr, T) contributed to the state
approximation and adjoint state approximation, respectively. We use the sum of the
two estimators as our indicators for the marking strategy. The marking algorithm based
on Dorfler’s strategy for optimal control problems can be described as follows

Algorithm 3.7 Dorfler’s marking strategy for OCPs

(1) Given a parameter 0 < 0 < 1;
(2) Construct a minimal subset M, C 7, such that

> ui (e ). T) = 0n3 ((n. pa)- ).
TeMy;

(3) Mark all the elements in M.

Then we can present the adaptive finite element algorithm for the optimal control
problem (3.7)—(3.8) as follows:

Algorithm 3.8 Adaptive finite element algorithm for OCPs:

(1) Given an initial mesh 75, with mesh size h¢, construct the finite element space
Vho-

(2) Set k = 0 and solve the optimal control problem (3.7)-(3.8) to obtain
Whys Yng» Phy) € Uaa X Vi X V.

(3) Compute the local error indicator 0, ((ya,, pr). T)-

(4) Construct My, C 7y, by the marking Algorithm 3.7.

(5) Refine My, to get a new conforming mesh 7, , by procedure REFINE.

(6) Construct the finite element space Vj, ., and solve the optimal control problem
(3.7)—(3.8) to obtain (up,, | » Yhyyy> Phist) € Uad X Vi X Vi -

(7) Setk =k + 1 and go to Step (3).
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4 Convergence of AFEM for the optimal control problem

In this section we intend to prove the convergence of the adaptive Algorithm 3.8. The
proof uses some ideas of [11, 16] and some results of [7]. Following Theorem 3.3, we
may firstly establish some relationships between the two level approximations, which
will be used in our analysis for both convergence and optimal complexity.

Theorem 4.1 Let h, H € (0, ho) and (u,y, p) € Uyg X HOl (2) x Hé (2) be the
solution of problem (3.1)—(3.2). Assume that (uyp, yn, pn) € Ugzqg X Vi x Vj, and
(up, yu, pa) € Usa x Vg x Vg are the solutions of problem (3.7)—(3.8), respectively.
Define y¥ := Suy and p" = S*(Sguy — vq). Then the following properties hold

Iy = yillag = [ = Ray"| _ + 0GGH Iy = il
+1ly = illag + 1P = pllag + 1P — prllag), (&.1)
Ip = pules = | - thHHa,Q + 0@ (o) (Iy = yhllag
+ly = yalag+1p = prllae +1p — prlag), (4.2)
ose(u = Ly, i) = ose (un = LRuy™ T3) + 0 (o)) (Iy = il
+lp = prllae+ Iy = yalao+ 1P — prllag). (43)
osc(yn — ya — L™ pp, Tp) = osc (yH —ya — L*Ryup™, Th)

+ 0 Mho)(Ily = yalla,
+1p = pullae+ 1y —yullao+ lp — prllag) (4.4)

and
My s Q) = i (Ray™, Q) + 0@ Ho) (Ily — ulla. + 1y — Yerlla.e
+1p = prllag + Ilp — Prllag), 4.5)
Npn(pns Q) = i (Rup™, Q) + O o) (Ily = yalla.o + 11y — yrlla,@
+1lp = pullae + 1P — prllag) (4.6)
provided hg < 1.
Proof Note that
y—wn =y =Ry + Ry =y 4y —yH (4.7)
and
p—rpn=p"—Rup" +RyP" - p" +p - p". (4.8)
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On the other hand, it follows from (2.4), the triangle inequality and the stability results
for elliptic equation that

IRAOH — " lae + 1y = Y lae S IV = ¥ lag + 1y — ¥ lag
<y = ' lag + 1y — y7llag
Sllu—upllog+ llu —unlloe (4.9

and

IRA(P" = P"lao + 12— PPl S I1P" = P llae + 1P — P llag
<y = wllog + Iy — yallo.o
S llu—uplloe +kMW)ly — yalla,o
+llu —ugllo,e +c(H)Ily — yulla,o-
(4.10)

where in the last inequality we used (3.25). It follows from (3.35) that

IRA G = Y a2 + 11y = Y lla2 + IR (P = P lae +11p — P lae
Sk(Iy = yillog + 17 = prllag) + € ED(Iy = villag + 1P = pillas)

<& (Iy = yullog + 17 = palleg + 1y = virlae + 19 = prlag) @11

provided /1y < 1. Combining this with (4.7), (4.8) yields (4.1) and (4.2).
Then we prove (4.3), (4.4). Note that

up — Ly = upg — LRy + LR — ¥ + (up — up), (4.12)
Yo —Yd — L¥pn = yu — ya — L*Rpp™ + L*Ry(p™ — p") + (n — yu).  (4.13)

From Lemma 2.2 we have

osc(LRy (™ — y"), Tp) S IRvOH =y a2,
osc(L*Ru(p™ — p"), Tn) S IR — pMlaa,

which together with (4.11) imply

ose(LRy (v = Y, Th) + ose(L* Ry (p™ = p"), Th)
S#G0)(1y = wllag +1p = pallog + 1y = valag + 1 = pallag). “14)
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Moreover, since f7 is the L>-projection of f onto piecewise polynomials on 7', there
holds

osc(f.T) = D Ihr(f = Fldr | S 1/l

TeT,

By using the triangle inequality and (3.25) we thus have

oscup —up, Tp) Sllup —ugloe S llu—upllo.e+ llu —unloo,
osc(yn — yu, Tn) S llyn — yullo.o S llu —unlloo + llu —unllo.q
+x(H)ly = yalla,o +« My — ynlla,os

which together with (3.35) yield

ose(un = up, Tn) S #(ho)(Iy = yullog + 1P = Prllae
+y = vyulla,o+lp— pHIIa,sz), (4.15)
osc(yn — yu. Tn) S i?(ho)(lly = Ynlla,a +1Ip = prllae
Hy = virllae + 1 = prllag). (4.16)
We can conclude the desired results (4.3), (4.4) from the definition of the data oscil-
lation and (4.12)—(4.16).
Now it remains to prove (4.5) and (4.6). From the definition of yH and yh we know

that y" — y* is the solution of an elliptic boundary value problem with right hand side
up — upg. It follows from (2.17) and (4.9) that

i (Ra(y" =™, @) < H(yh =" =Ri(" = yH)Ha,sz

+osc (uh —up — LRy =y, 771)
S u = unllo.g + llu —ur o o

tosc (uh —uy — LRy =y, Th) L @17
From (2.14), (3.35), (4.14) and (4.15) we are led to
ose(un —un — LRG" =y, ) S #(o) (Iy = villag + 1P = pulac
1y = valog + 1P = pllag).  @18)
Note that

My s Q) = I (Ruy™, @) = i (Ruy™ + Ry =y, Q).
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Combining this with (3.35), (4.17) and (4.18) gives

My s @ = iRy, @) +£h0) (1 = yullee + 1y = il
+1p = pillag + 11 = prllag),
which proves (4.5). Similarly we can prove (4.6). Thus, we complete the proof of the
theorem. o

Now we are ready to prove the error reduction for the sum of the energy errors
and the scaled error estimators of the state y and the adjoint state p, between two
consecutive adaptive loops.

Theorem 4.2 Let (u,y, p) € Uuq X HO1 () x HO1 (2) be the solution of problem
(3.1)-(3.2) and (up;, yn;s Pry) € Uaa x Vi, % Vi, be a sequence of solutions to
problem (3.7)—(3.8) produced by Algorithm 3.8. Then there exist constants y > 0 and
B € (0, 1) depending only on the shape regularity of meshes and the parameter 6 used
by Algorithm 3.7, such that for any two consecutive iterates k and k + 1, we have
”(y — Yhgy1o P — phk+1)”¢21 + V’?iw ((yhk+1 s Phk+1), Q)
< B (10 = e p = PrOIZ + 777, (s i), D) (4.19)

provided hy < 1. Therefore, Algorithm 3.8 converges with a linear rate 8, namely,
the kth iterate solution (up,, yn,, pn,) of Algorithm 3.8 satisfies

1 = Y- p = Pl + ¥, (g Piy)» ) < Cop™, (4.20)

where Co = ||(y = Yhg» P = pr)llz + ¥, (Who» Pho)» K-

Proof For convenience, we use (uxg, yu, pu) and (uy, yn, pr) to denote (up,, yn, .
Pr) and  (Upy (s Yy o> Phyyy)» Tespectively. So it suffices to prove that for

(up, vy, pg) and (up, yn, pr), there holds

I = yne p = Pl + v 15 (Gne pa). Q)
<B (16 =y 0 = Ol + 7 (G P, D). @2D)

Recall that y := Suy, y* := Suy and p™ := S*(Sgup — ya), p" := S*(Shup —
vq). It follows from Algorithm 3.7 that Dorfler’s marking strategy is satisfied for
(v, p™). So we conclude from Theorem 2.4 that there exist constants 7 as defined
in (2.24) and B € (0, 1) satisfying

I = Ruy™, p = Rup™)I12 + 7 (i3 (Ray™ . @) + i3 (R p™, Q)
<A (167 =Ray™, p" = Rup™)2

+7 (@ Ruy™, @) + i} (Rup", @), (4.22)
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Note that Ry y? = yy and Ry p™ = py, we thus have

1™ = Ray™. p™ = Rup™IG + 7 (T Ruy™ . Q) + i3 (Rup™ . )
< B (165 = yu o™ = P2+ 7 (1?01, D + 0pir* (1, D) ). (423)

We conclude from (4.1), (4.2) and (4.5), (4.6) that there exists a constant 6’4 > 0 such
that

Iy = ya, p— P2+ 710% (s i), )
<A+ IGT =Ry, p? = Rup™)IZ + (1 + 87 (1 Ry, Q)
+ i (Rap™, @)

+Ca(t +87R20) (16 = v p = PIZ + 1 = yir, p = pi0)I2)

+Ca(1 + 878207 (16 = i p = POIZ+ 1O = yas p = pi)I2),
where Young’s inequality with &7 is used and §; € (0, 1) satisfies
A+8)p> < 1. (4.24)

Thus, there exists a positive constant Cs depending on C4 and y such that Cis(1 +
571 +7) < Csé; ' and

Iy = yh, p— PIIZ + 7102 (s ), )

2
< (1481 (H O = Ry, pf = Ryp™|”
+7 (R 2+ B Rip, @)
+Cs87 R o) (10 = s p = pIE + 11 = v, p = P2 (4.25)

It follows from (4.23) and (4.25) that

Iy = yas p— PIZ + 7102 (s ), Q)

<+ 8B (H 0" — i " = o)+ 70 o o, sz))

+Cs87 R o) (10 = 3 p = PIE + 110 = v, p = P2 (4.26)
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Then using Theorem 3.3 we arrive at

1 =30 2 = PIG + 7 (s pa), )
< 1+ 808+ CoR NG = v, p = PO + 71> (O, i), )
+ 507" 200 (10 =y p = pOIZ + 16 = yar. p = p2))
<+ 51)52(”@ —yu,p = Pz + 70’ (Om, p), Q))
+ (G587 R ho) + (1 + 81 (2Cok (ho) + C2R2(h0) )| = v, p = P2

+ 587 k2 )y = yns p — P11,

and thus

I =y 2 = PG + 7> (O, i), )
<A+ 808 (16 =y, p = P2 + 71> (m, i), D)

+ Cak (h) |y = yu, p — P2 + CadT 2 o)y — yu, p — P12, (4.27)

where C4 is a positive constant depending on 6'5 and 6’6 when hg < 1. So we can
derive

(1 — Ca87 ' RE oDy = yis p — PONZE + 700> ((n, pr), )
< (4008 + CR ) I = vt p = pi) 2
+ (L + DB 7> (O, pr), Q), (4.28)

or equivalently,

Iy — ya, p — PN+ (s pr), )

1%

1 — C48; %2 (ho)

o (L4380 + CaR (ho)
T 1= Cy87 R2(ho)
(1+8)B%p

1 — C487 %2 (ho)

Iy = yu, p— pr)l2

5 (e, pr), ). (4.29)

Since x (hg) < 1 provided that 1y < 1, we can define the constant 8 as

1
g (14 81)B* + Cai (ho)
T\ 1= CusT R (ho) ’

(4.30)
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which satisfies 8 € (0, 1) if hg < 1 in view of (4.24). Then

YV 2
Iy = yh, p — PIIE + ——————17 (1, P1), )
Y= n P = pnll L= Cas @2(ho) ™" Yh> P
(1+81)p%y )
<BHI = yu, p— P2+ - —— (O, pr), Q).
( (14 81)B? + Cui (ho) )
(4.31)
Now we choose
y
— — (4.32)
v 1 — C487 ' &2 (ho)
it is obvious that
A+ (1+8)B2(0 — Ca8) %% (ho))
(14 81)B2 + Cai (ho) (14 81)B2 + Cai (ho)
< (1= Cas7 'R (ho))y <y
Then we obtain (4.21), this completes the proof. O

Remark 4.3 We remark that the requirement 2o < 1 on the initial mesh 7, is not
restrictive for the convergence analysis of AFEM for nonlinear problems, such as opti-
mal control problems studied in this paper, see, e.g., [14]. For a similar requirement
we refer to [10,11] for the convergence analysis of adaptive finite element eigenvalue
computations and to [31] for the adaptive finite element computations for nonsym-
metric boundary value problems, we should also mention [16] for an adaptive finite
element method of semilinear elliptic equations.

Remark 4.4 In the adaptive Algorithm 3.8 we use the sum of the error estimators
ny,n(¥n, T) contributed to the state approximation and 1, , (pp, T') contributed to the
adjoint state approximation as an indicator to select the subset M, for refinement.
This marking strategy enables us to prove the convergence and quasi-optimality (see
Sect. 5) of AFEM for optimal control problems. We remark that it is also possible to
apply Dorfler’s strategy to the contributions 1y, 5 (yr, T) and 1, 5 (pi, T) as follows:

o Construct a minimal subset My,,1 C 7 such that 3 7cpy, n;h(yh, T) >
0135, n, Q).

e Construct another minimal subset M, » C 7j, such that ZTeM;,,z ”%,h(ph’ T) >
on7 1, (s ).

e Set My, := Mj, 1 UMy » and mark all the elements in M.

With this marking strategy we can also prove the convergence of AFEM for optimal
control problems by using the results of [7,11] for single boundary value problems. To
be more specific, the error reduction (4.22) can be derived separately for the state and
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adjoint state approximations. However, the resulting over-refinement for this marking
strategy prevents us to prove the quasi-optimality of the adaptive algorithm.

We also would like to point out that in our convergence analysis we used the same
mesh for the state and adjoint state approximations, another possibility is to use dif-
ferent meshes for the state and adjoint state. Therefore, starting from the same initial
mesh we obtain different adaptive meshes for the state and adjoint state approximations
where the refinement of each mesh can be generated by the error indicators correspond-
ing to the respective state and adjoint state equations. It will be an interesting topic
to prove the convergence of AFME based on the above different discretizations for
primal and dual variables.

5 Complexity of AFEM for the optimal control problem

In this section we intend to analyze the complexity of the adaptive finite element
algorithm for optimal control problems based on known results on the complexity for
elliptic boundary value problems. The proof uses some ideas of [11,16] and some
results of [7].

Similar to [7,11], for our purpose to analyse the complexity of AFEM for optimal
control problems we need to introduce a function approximation class as follows

Ay = {0 pova) € HY®) x HY (@) x LX) 5 |0 py sy < +00),
where y > 0 is some constant and

|(y, P, Ya)ls,y =supe inf #T — #7Tp,)".
; 2
e>0 T CTyy: inf (|(—y7.p—p)I>
+(y+Dosc?((yr.pr). 1)) <e

Here T C 7, means that 7 is a refinement of 7y, y7 and p7 are elements of the
finite element space corresponding to the partition 7. It is seen from the definition
that A}, = Aj forall y > 0, thus we use A* throughout the paper with corresponding
norm | - |s. So A is the class of functions that can be approximated with a given
tolerance ¢ by continuous piecewise linear polynomial functions over a partition 7°
with number of degrees of freedom #7 — #7j,, < g 1/s |v|$/ 5

Now we are in the position to prepare for the proof of optimal complexity of
Algorithm 3.8 for the optimal control problem (3.1)—(3.2). At first, we define yhk =
Sup, and phk = S*(Sp,un, — ya). Then we have the following result.

Lemma 5.1 Let (up,, yn,, pry) € Uaa X Vi x Vi, and Whyi1s Yhsrs Phiyr) €
Uad X Vi X Vi, be discrete solutions of problem (3.7)—(3.8) over mesh Ty, and
its refinement Ty, ., with marked elements My, . Suppose they satisfy the following

property
1 = Vi P = Pl + 505 (O Piger): i)
<B2(16 = v = P12 + 7205 (O ) Tr)) - (5D
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with y, and B, some positive constants. Then for the associated state and adjoint state
approximations we have

O™ = R 3" P = Ry PPONG + 7205 (R Y™, Ry ). T
< B2(16™M = Ry, ph = Ry p") 12 + 705X (O i)y ) (52)

with

* o=

FA QSRR e UV Ve
1 — Cs87 &2 (ho) CT 1= G587k (o)

where Cs is some constant depending on Cy, 6‘5 and 6’6. 6‘5, 6‘6 and §1 € (0, 1) are
some constants as in the proof of Theorem 4.2.

Proof The proof follows along the lines of the proof of Theorem 4.2 when (4.5), (4.6)
are replaced by (4.3), (4.4). Specifically, in the proof of Theorem 4.2 we use (4.22),
Theorems 3.3 and 4.1 to prove (4.21). Conversely, here we need to prove (4.22) from
(4.21), Theorems 3.3 and 4.1. The definitions of B* and y, are very similar to (4.30)
and (4.32). O

Next, we are able to derive a result similar to Lemma 2.6 concerning the optimality
of Dorfler’s marking strategy for the optimal control problems.

Corollary 5.2 Let (up,, Ve Pii) € Uaa X Vi X Vi and (uhk+l’ Vhists phk+l) €
Uaa X Vo X Vi, be discrete solutions of problem (3.7)—~(3.8) over the mesh Ty,
and its refinement Ty, | with marked elements M. Suppose they satisfy the following

property

Iy = Yhns P — phk+l)”czz + V*OSCZ((yth s Phi)s Thiy)
< BEUIG = Y, P = Pr) N2 + v205c (g, P Tng))

with constants y, > 0 and By € (0, \/g). Then the set R771k_’77'k+1 of refined elements
satisfies the Dorfler property

D i One o) T) =60 Dy (G i) T) (5.3)
TGRThk—’Tth T€Ty,
A Cr(1-282) A oY
with 60 = BT (2T and Co = max(1, - ).

Proof From the statement of this corollary we know that the assumption (5.1) in
Lemma 5.1 is satisfied, due to Lemma 5.1 we can conclude (5.2). Note that y,, =
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1148 W. Gong, N. Yan

R, y" and D = Ry, p . By the lower bounds in Lemma 3.5 and the definition of
Cp we have

(1= 28D Camn (i i) ) < (1= 28D (16" = v, P = piy)I2
+ C~'3OSC2(()’hk, Phk)a 72!/())

= (1 =28 (16" =y " = P12

Cs _
+ )7_)/*0502((_))]11(7 Phk)y ,Th[\))
%

< Cot =28 (6™ = v P = i)

+ 7405¢* (Vg » Phy)s 7711())'

Thus, it follows from (5.2) that
62 22 2
—(1=282) D i (Gnes pr)> T)
Co TeTy,
< (=28 (10" = e P = P12 + 72056 (e P, Tip))
= 10" = yer P = )Nz + 72056 (Wng» i) Tie)
= 2B = g P = P2 + 7056 (e P, Ti))

<NO™ = yug, p" — prOlIZ + 705> (Dnes Pre)s Tii)
=2 (O™ = Ry ¥, 1 = Rigy 212

7205 (R Y, R P, Ti)

< NO™M = yuy, P — POl = 1™ = Ry, ™, p™ — Ry p™0)1I2
7 (0562 (e Pr)s Ti) = 20562 (R ™, Ry 2, Tr)) - (5:4)

Note that y, and Ry, y" are the Galerkin projections of y"* on Vj, and Vj,, .
respectively. From the standard Galerkin orthogonality we have

IO = Yy P = P12 = 1O = R ™, p™ = Ry, p™0112
= |y — Rieer Y™ P — Ry P12 (5.5)

By (2.15), the triangle and Young’s inequalities we have

0Sc* ((Vngs Pig)s T) < 205 (R, ™, Ry ™), T)
+2C2 g = Rigr Y™ P — Ry P12,
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which together with the dominance of the indicator over oscillation (see [7, Remark
2.1])

n g (yhkv T)a (56)

0s¢” (upy, — Lyw, T) < 173
) <y gy (P, T) (5.7)

osc*(yn, — Ya — L¥*pn, T

implies

05C2((yhk P Phk)a 77'lk) - 20502 ((th+1 yhk, th-H Phk) s ,];lk-f—])

< D0 0 (g Py T) + 056 (ngr p)s T 0 Ty

TGRT’%”Tth

—20sc? ((th+1 yhk’ th-H phk) ’ Thk N IZ;’k-H)

2
< Z Uﬁk((th, Phk), T)+ 2C3 (yhk - th+1yhk’ Phy — th+| phk) )a
TERThk”Tth
<A+2C2C) DL 1w (Ome pr)s T, (5.8)
TERThk”Tth

where we used (2.25) in the last inequality. Combining (5.4)—(5.8) and (2.25) we
obtain

C -
C,—za =285 > (On o). T)
0

T€Ty,
S@C+U+2C2C07) D 0 Owo ), T). (59)
TERThk”Tth
By choosing
Cr1 _np2 - -
G & 2ﬂ*~) _ C2(1—2/3$)~
Ci+ (1 +2C3Cp  Co(Cr+ (1+2C2CD7)

we complete the proof. O

Lemma 5.3 Let (y, p, yqa) € A* and Ty, (k > 0) be a sequence of meshes generated
by Algorithm 3.8 starting from the initial mesh Tp,. Let T, , = REFINE (7, , My,)

where My, is produced by Algorithm 3.7 with 6 satisfying 6 € (0, W’m)
Then ’
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1150 W. Gong, N. Yan

_L 1
#Mi < Cs (10 = s 2 = PrOI2 + 7052 (O P Tod)) 10 2 vl
(5.10)

Coy

where the constant Cs depends on the discrepancy between 6 and e +2cICny)

Proof Let p, p1 € (0, 1) satisty p; € (0, p) and

Cry
0 <
C3(C1 + (1 +2C2Cy)y)

(1—p%).
Choose 81 € (0, 1) to satisfy (4.24) and
(1+81)%p7 < 0%, (5.11)
which implies
(148)p} < 1. (5.12)

Set

1

1 2
e = —=p1 (I =y p = PrOI2 + v05X (s i) )
ﬁp Iy — Y- p— Pu)lly +v Yhi» Phi)s Thy

and let 75, be a refinement of 7y, with minimal degrees of freedom satistying

Iy = yaes = Pu)II2 + (v + Dosc®(nes pi)s Th,) < €. (5.13)

We can conclude from the definition of A* that

_1 H
#7;15 _#7710 5 & s |(ya P, )’d)|$

Let 7, := Ty, @ T, be the smallest common refinement of 7, and 7,. Let
Vi, C HO1 () and Vj,, C HO1 (2) be the finite element spaces defined on 7, and
Th,, respectively. Assume that (up, , yu,, pn,) € Uga X Vi, x Vj, is the solution of
problem (3.7)—(3.8).

Define yhg := Suy, and ph8 = S*(Sp,un, — yq). From the definition of oscillation
we can conclude from Lemma 2.2 that

0sc (uhg — LRy, yhs, 7},*)

< osc (uhg - LRhgyhs, ’Th*) + osc (L(Rh* - Rhg)yhg, ﬂl*)

(Rn, — R, )y"e

< osc (uh‘g — LRy v, 771*) +Cs

a,
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and

osc (yhg —ya — L*Ry, p', Th) < osc ()’hg — ya — L*Ry, p", Th)
+ osc (L*(Rh* — R, ) ", Th)
< osc ()’hg — ya — L*Ry, p", 77,)

+ Cy

(R, — Rau,) p")

a,Q )

Then from Young’s inequality we have

osc? ((Rh*)’he, R, p"), Th) < 20sc? ((Rhsyhﬁ, R, p"), Th)

+2C2 |((Rh. =R )y", (R, ~Ra)p" ) ) 2

a

Due to the orthogonality

2 2
[ S [

a
2

9
a

B H ((Rh*_Rhg)th’ (R, = Rhﬁ)phg))

we arrive at

2

1
. + —zosc2 ((Rh*yh*”, Rh*Phs) ,Th*)

h h h h
& _R s’ & _R 8)
” (y hY's P hi P 22

2
+ = osc? ((Rhsyhs, Rhgphg) , 7?;*) .
a2

< | (o = Ray, P~ R )

From (2.24) of Theorem 2.4 we can see that y < which implies

1
2c2°

2
H (yhs — R, y"e, phe — Rh*p’“) Ha + posc? ((Rh*y'“, Rh*Phs) : Th)

2 1
+ —5osc? ((Rhgyhg, Rhsphe) %)
" C2

z + (7 + o)osc? ((Rheyhgv Rhephg) Th*)

<[ (e =R o =R )

< ” (yhs - Rhsyhs, phe — Rhsphs)

witho = é —y € (0, 1). Following the similar procedure as in the proof of Theorem

4.2 when (4*.5), (4.6) are replaced by (4.3), (4.4), we are led to
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1 = Yo 2 = PrIlg + 056 (One P, Ti,)
<A (10 = v p = PROIZ + (7 + )05 (O, pi). Ti))

<A (10 =y p = PO + 7 + DoscX (O pi). Ti))s (5.14)

where

(1 481) + Cyic(ho)\
Fo '_( 1 — C487 '%2(ho) )

and Cy is the constant that appeared in the proof of Theorem 4.2. Thus, it follows from
(5.13), (5.14) and the definition of ¢ that

1 = Yoo 2 = PrING + 05 (Ony P, Ti,)
<A (10 =y p = PrOIE + 705 (O P Ti)) - (5:15)

with g = %ﬁom.
In view of (5.12) and the definitions of By and §; we have ,812 e (0, %) provided
ho < 1. It follows from Corollary 5.2 that

> mn Gue ). T) =00 D 0 (G pr). T). (5.16)
TERThk‘)Th* TG'Z;”(
. C2(1-28}) _— y A &
where 61 = E G (2C2E ) V1= 1=Cso R2(hy) Cs = max(1, 5 ) and

1
5 ((1 +61)B2 +c5k(ho))2
1 = .

1 — Cs58; ' &2 (ho)

It follows from the definition of y in (2.24) and y in (4.32) that y; < 1, which together
with C3 > 1 (see [11]) implies Cs = % Since hg < 1, we obtain that | > y and
,31 € (0, \/Li,o) from (5.11). It is easy to see from (3.50) and y; > y that

b — Ca(1—28D) N e 1= o)
);_13(61 +(142C2CH7) G (% +1+ 2C561)
_ Ca(1 + Co2 (ho)) 1o}
Ca(1+ Cof2(ho)) (QU=GEID 4 1 4 €2C1(1 = E172(ho)) )
> (1= p?)
G (S +1+2c20))

Cry

= 1— 2 >0,
o+ (1 +2c2cy A

(5.17)
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provided Ay < 1. This implies

> 0 O or)T) >0 D 1 (G P> T).

TGRThk —Tp, TeTy,

Note that Algorithm 3.7 selects a minimal set My, satisfying

> (O ) T) =0 > 13 (g ). T).
TeMy, TeTy,

Thus,

#th < #RIE’I‘*) s < #771* - #7;11( < #/]71; - #/]71()

1 TS 2 2 %
< (75,01) (Il(y — Yngs P — i)l + vosc™ (Vg » Phy)s 771;))
1
x|y, p, Ya)ls »

which is the desired result with an explicit dependance on the discrepancy between 6
Gy
and & e 2cIe .
We are now ready to prove that Algorithm 3.8 possesses optimal complexity for
the state and adjoint state approximations.

Theorem 5.4 Let (u, y, p) € Uqa x H} () x H} (2) be the solution of problem (3.1)~
3.2 and (up,, Y, Ph,) € Uaa % Vi, x Vi, be a sequence of solutions of problem
(3.7)—~(3.8) corresponding to a sequence of finite element spaces Vy,, with partitions
Tp, produced by Algorithm 3.8. Then the nth iterate solution (yp,, pn,) of Algorithm
3.8 satisfies the optimal bound

I = Vi, P — P2+ v0sc® (s Piy)s Tny) S #Tn, — #T50) ™%, (5.18)

where the hidden constant depends on the exact solution (u, y, p) and the discrepancy

Coy
between 6 and e +2CICny)

Proof 1Tt follows from (2.22) and (5.10) that

n—1

#771/1 - #7—,:10 5 Z#th
k=0

|
—

n 1 1

S D (10 = s 2= PrOIE + vosX (O, i) Ta)) 10 Pyl (519)
k

Il
)
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From the lower bound (3.49) we have

1 = Y- p = Pl + v, (Gg» Py Q) < Ca(ll(y — Vi 2 — Pl

+y05¢*((Vhe» Phe)s 'Ezk)),

where Cq = max(1 + CLZ %). Then we arrive at

n—1

#Th, —#Tny S D (||<y = Y P = PNz + v (G i) sz>)
k=0

1
x|y, p, ya)ls - (5.20)

1
2s

Due to (4.19), we obtain for 0 < k < n that
1G5 = Yo 2 = PRIZ + 1, Oy 21> D < B2 (I = 3 p = P12
717 (G P, D)

Thus,
Y i
#75, = #Ti S (10 = i, = P12+ 7%, Oy P25 D) 710 Py

n—1 ek ) ) _% %
> B5 S (10 = ne = a2+ v0d, (s £1,) D) T 10 Py
k=0

(5.21)

where the last inequality holds due to the fact that 8 < 1.
From (5.6), (5.7) we have

08¢ (Vs Pi)s Tny) < Mty (Gs PD-2)

which together with (5.21) yields

1

#Tp, — #1py S (Il(y — s P — Pu)IE + 05 (Vs P Thn)) * (522

this completes the proof. O

Remark 5.5 From (3.35) and the equivalence property (3.13) we can conclude that
Theorem 4.2 also implies the convergence of |u — uy, [lo,@, namely, for the n-th
iterate solution uy, of Algorithm 3.8 there holds

lu — un, 5.0 < B (5.23)
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We remark that the control variable can also be included into the complexity analysis
of AFEM for optimal control problems to obtain

lu =, 5.0 S #Tn, — #Tng) > (5.24)

However, the above results are sub-optimal for the optimal control as illustrated by
the numerical results in Sect. 6. To prove the optimality of the AFEM for the con-
trol variable, it seems that we need to work with an AFEM based on L2-norm error
estimators. We refer to [20] for an optimal a priori error estimate. We expect that the
results in [12] will enable us to prove the optimal convergence of the AFEM for the
optimal control u, this will be postponed to future work.

6 Numerical experiments

In this section we carry out some numerical tests in two dimensions to support our
theoretical results obtained in this paper. We take the elliptic operator L as —A with
homogeneous Dirichlet boundary conditions for all the examples.

Example 6.1 This example is taken from [1]. The domain €2 can be described in polar
coordinates by

3
Q=[(r,l7), 1l<r<l, 0<19<§n].

We take the exact solutions as

y(r,9) = (r)‘ — ") sin(A),
p(r,®) = a(r* — r*?) sin(A9),

u(r,9) = Play) {—g}

with A = % and v = vy = % Wesetao = 0.1, a = —0.3 and b = 1. We assume the
additional right hand side f for the state equation.

We give the numerical results for the optimal control approximation by Algorithm
3.8 with parameter & = 0.4 and 6 = 0.5. Figure 1 shows the profiles of the numeri-
cally computed optimal state and adjoint state. We present in Fig. 2 the triangulations
by Algorithm 3.8 after 8 and 10 adaptive iterations. We can see that the meshes are
concentrated on the reentrant corner where the singularities are located. We also illus-
trate the active sets of the continuous solution, the discrete solutions with variational
control discretization and piecewise linear control discretization after 9 adaptive iter-
ations with & = 0.4. In this example only the lower bound u > —0.3 is active. Figure
3 clearly shows that the active set crosses element edges and is not restricted to finite
element edges by our variational discretization for control u, and is much closer to
that of the continuous solution compared with full control discretization.
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To illustrate the efficiency of adaptive finite element method for solving optimal
control problems, we show in the left plot of Fig. 4 the error histories of the optimal
control, state and adjoint state with uniform refinement. We can only observe the
reduced orders of convergence which are less than one for the energy norms of the state
and adjoint state, and less than two for the L?-norm of the control. In the right plot of
Fig. 4 we present the convergence behaviours of the optimal control, state and adjoint
state, as well as the error estimators 7y, 5 (yn, $2) and np y(pp, $2) for the state and
adjoint state equations with adaptive refinement. In Fig. 5 we present the convergence
of the error ||[(y — yn, p — pn)lla and error indicator n, ((yn, pr), 2) with 6 = 0.4
and 6 = 0.5, respectively. It is shown from Fig. 5 that the error ||(y — yu, p — pi)lla
is proportional to the a posteriori error estimators, which implies the efficiency of the
a posteriori error estimators given in Sect. 3. Moreover, we can also observe that the
convergence order of the error ||(y — yi, p— pn)lla 1S approximately parallel to the line
with slope —1/2 which is the optimal convergence rate we can expect by using linear
finite elements, this coincides with our theory in Sect. 5. For the error ||u — uj|lo.q
we can observe a reduction with slope —1, which is better than the results presented
in Remark 5.5, and strongly suggests that the convergence rate for the optimal control
is not optimal.

Example 6.2 In the second example we consider an optimal control problem without
explicit solutions. We set @ = (—1, 1)?,a = 1073, a = —10 and b = 10. The desired
state y,4 is chosen as 10, 1, —10 and —1 in the first, second, third and fourth quadrant,
respectively.

Similar to the above example Fig. 6 shows the profiles of the numerically computed
optimal state and adjoint state. We present in the left plot of Fig. 7 the triangulation
generated by Algorithm 3.8 after 8 adaptive iterations with parameter & = 0.5. From
Fig. 6 we can see that the state and adjoint state are very smooth, so the AFEM should
produce a quasi-uniform mesh in this case and indeed we can observe this phenomena
from the left plot of Fig. 7. Since there are no explicit solutions we can not show the
convergence of the error ||(y — yi, p — pn)lla as in Example 6.1. Instead we show in
the right plot of Fig. 7 the convergence of the error indicator 1 ((y, pn), €2), the error
estimators 1y, 5 (yr, 2) and 1, ,(pp, 2) for the state and adjoint state equations. We
can observe an error reduction with slope —1/2. We also plot in Fig. 8 the boarders
of the active sets when using variational control discretization and piecewise linear
control discretization. In this example, both the upper and lower bounds are active and
we can observe a very sharp boundary between the active sets of the upper and lower
bounds.

Example 6.3 In this example we consider an optimal control problem without explicit
solutions defined on domain = (—1, 1) x (—1, D\[0, 1) x (x1, 0]. We setar = 1072,
a = 0 and b = 8. We take the desired state y; = 2.

We show in Fig. 9 the profiles of the numerically computed optimal state and
adjoint state, singularities for both the state and adjoint state can be observed around
the reentrant corner. We present in the left plot of Fig. 10 the triangulation generated by
Algorithm 3.8 after 8 adaptive iterations with & = 0.5 which is locally refined around
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the corner. Similar to Examples 6.1 and 6.2 we also illustrate the active sets of the
discrete solutions with both variational discretization and piecewise linear discretiza-
tion after 9 adaptive iterations with & = 0.4. In this example only the upper bound
u < 8isactive. Figure 11 clearly shows the advantage of variational dicretization over
full discretization for control u#. Since there are no explicit solutions we show in the
right plot of Fig. 10 the convergence of the error indicator 1, ((yx, pr), 2), the error
estimators 1y, (yr, §2) and 1, ,(pp, $2) for the state and adjoint state equations. We
can also observe an error reduction with slope —1/2.

7 Conclusion and outlook

In this paper we give a rigorous convergence analysis of the adaptive finite element
algorithm for optimal control problems governed by linear elliptic equations. We prove
that the AFEM is a contraction, for the sum of the energy errors and the scaled error
estimators of the state y and the adjoint state p, between two consecutive adaptive
loops. We also show that the AFEM yields a decay rate of the energy errors of the
state y and the adjoint state p plus oscillations of the state and adjoint state equations
in terms of the number of degrees of freedom.

We expect that the results should also be valid for optimal Neumann boundary
control problems (see [27]) by the following observations. The key point for the
convergence analysis is the equivalence property presented in Theorem 3.3 where the
relation between the finite element optimal control approximation and the standard
finite element boundary value approximation is established. Consider the governing
equation of the Neumann boundary control problem:

Ly=f in Q,
AVy-n=u onaQ.

Similar to the proof of Theorem 3.3 we can conclude from the trace theorem that

1
lu — unllo.oe < k2 ly = yulla,o + 1P = Prlla.e),

where u, is the discrete optimal control. Then we can obtain the counterpart of (3.20),
(3.21) for Neumann boundary control problems

1
1y = yilag = 19" = yalag + 0w W) (Iy = yilla.e + 1P = Pallesz):

1
1P = Prllae = 17" = pillage + OG> W) (Iy = willae + 1P = Phllac)

provided hp < 1. Thus, the convergence and complexity analysis of AFEM carries
out to the Neumann boundary control problems.

There are many important issues remained unsolved for the convergence analysis of
AFEM for optimal control problems compared to AFEM for boundary value problems.
Firstly, at this moment we only prove the optimality of AFEM for energy errors of
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the state and adjoint state variables, the convergence for the optimal control u is sub-
optimal. To prove the optimality of AFEM for the optimal control u it seems that we
should work on the optimality of AFEM for boundary value problems under L?-norms,
as done in [12]. This complicates the convergence analysis with additional restrictions
to the adaptive algorithms and will be postponed to future work.

Secondly, the convergence analysis of the adaptive finite element algorithm for
other kinds of optimal control problems like Stokes control problems (see [28]), and
non-standard finite element algorithm such as mixed finite element methods (see [8])
remains open and will be addressed in forthcoming papers.

Thirdly, we only prove the convergence of AFEM for optimal control problems
with control constraints using a variational control discretization. The full control
discretization concept by using piecewise constant or piecewise linear finite elements
is also very important among the numerical methods for control problems. This kind of
control discretization results in an additional discretised control space and an additional
contribution to the a posteriori error estimators (see [22]) which should be incorporated
within the adaptive algorithm and the corresponding convergence analysis. We also
intend to generalise our approach in this paper to analyse the convergence of AFEM
for optimal control problems with full control discretization in the future.
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