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Abstract The main goal of the paper is to establish time semidiscrete and space-
time fully discrete maximal parabolic regularity for the time discontinuous Galerkin
solution of linear parabolic equations. Such estimates have many applications. They
are essential, for example, in establishing optimal a priori error estimates in non-
Hilbertian norms without unnatural coupling of spatial mesh sizes with time steps.

1 Introduction

Let � be a Lipschitz domain in R
d , d = 2, 3 and I = (0, T ). We consider the heat

equation as a model of a parabolic second order partial differential equation,

∂t u(t, x) − �u(t, x) = f (t, x), (t, x) ∈ I × �,

u(t, x) = 0, (t, x) ∈ I × ∂�,

u(0, x) = u0(x), x ∈ �

(1)
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with a right-hand side f ∈ Ls(I ; L p(�)) for some 1 ≤ p, s ≤ ∞ and u0 ∈ L p(�),
1 ≤ p ≤ ∞. The maximal parabolic regularity for u0 ≡ 0 says that there exists a
constant C such that,

‖∂t u‖Ls (I ;L p(�)) + ‖�u‖Ls (I ;L p(�)) ≤ C ‖ f ‖Ls (I ;L p(�)),

1 < p, s < ∞, for all f ∈ Ls(I ; L p(�)),

(see, e.g., [1–3]). The maximal parabolic regularity is an important analytical tool and
has a number of applications, especially to nonlinear problems and/or optimal control
problemswhen sharp regularity results are required (cf. [4–7]). Our aim in this paper is
to establish similarmaximal parabolic regularity results for timediscrete discontinuous
Galerkin solutions as well as for the fully discrete Galerkin approximations. Such
results are very useful, for example, in fully discrete a priori error estimates and are
essential in order to keep the spatial mesh size h and the time steps k independent of
each other (cf. [8]). In [9] we apply the results of this paper to establish pointwise best
approximation estimates for fully discrete Galerkin solutions.

Maximal parabolic regularity with applications to semidiscrete finite element
Galerkin solutions in space were analyzed for smooth domains in [10,11] and for
convex polyhedra in [12]. Time discrete results are much less known in the finite ele-
ment community. Explicit methods are treated in [13–15]. Implicit Euler methods with
pointwise norms in time are considered in [16,17]. A more systematic investigation
of discrete maximal parabolic regularity for various time schemes was carried out by
Sobolevskiĭ and Ashyralyev and summarized in the book [18].

In this paper, we investigate maximal parabolic regularity for a family of time dis-
continuous Galerkin (dG) methods, which were first deeply analyzed for linear second
order parabolic problems in [19]. There is a number of important properties that make
the dG schemes attractive for temporal discretization of parabolic problems. For exam-
ple, such schemes allow for a priori error estimates of optimal order with respect to
discretization parameters, such as the size of time steps and the mesh width, as well as
with respect to the regularity requirements for the solution (see, e.g., [20,21]). Differ-
ent systematic approaches for a posteriori error estimation and adaptivity developed
for finite element discretizations can be adapted for dG temporal discretization of par-
abolic equations, (see, e.g., [22,23]). Since the trial space allows for discontinuities
at the time nodes, the use of different spatial discretizations for each time step can
be directly incorporated into the discrete formulation, (see, e.g., [22]). Compared to
the continuous Galerkin methods, dG schemes are not only A-stable but also strongly
A-stable, (see, e.g., [24]). An efficient and easy to implement approach that avoids
complex coefficients, which arise in the equations obtained by a direct decoupling for
high order dG schemes, was developed in [25]. For the treatment of optimal control
problems, Galerkin methods are particularly suitable since they expose an important
property that the two approaches optimize-then-discretize, i.e., the discretization of
the optimality system built up on the continuous level, and discretize-then-optimize,
i.e., discretization of the state equation and subsequent construction of the optimality
system on the discrete level, lead to the same discretization scheme, (see, e.g., [26]).
Compared to continuous Petrov–Galerkin time-stepping schemes (see [27] for details),
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Discrete maximal parabolic regularity 925

dG schemes also have the advantage that the adjoint state can use the same discretiza-
tion as the state variable. This allows for unified numerical treatment and simplifies a
priori and a posteriori error analysis, (see, e.g., [28–31]).

The main results of this paper for the time semidiscrete discontinuous Galerkin uk
solution consist roughly of two parts. First, for the homogeneous problem (i.e. f = 0)
with u0 ∈ L p(�), 1 ≤ p ≤ ∞ we show

‖∂t uk‖L∞(Im ;L p(�)) + ‖�uk‖L∞(Im ;L p(�)) +
∥
∥
∥
∥

[uk]m−1

km

∥
∥
∥
∥
L p(�)

≤ C

tm
‖u0‖L p(�), (2)

for m = 1, 2, . . . , M . Then, using this smoothing result, we also establish discrete
maximal parabolic regularity for the inhomogeneous problemwhen u0 = 0.We show,

(
M

∑

m=1

‖∂t uk‖sLs (Im ;L p(�))

) 1
s

+ ‖�uk‖Ls (I ;L p(�))

+
(

M
∑

m=1

km

∥
∥
∥
∥

[uk]m−1

km

∥
∥
∥
∥

s

L p(�)

) 1
s

≤ C ln
T

k
‖ f ‖Ls (I ;L p(�)), (3)

for 1 ≤ s ≤ ∞ and 1 ≤ p ≤ ∞, with obvious notation changes in the case of s = ∞.

In the case of the lowest order piecewise constant method, i.e., q = 0, the first terms
on the left-hand side of the above estimates vanish. In contrast to the continuous case,
the limiting cases s, p ∈ {1,∞} are allowed, which explains the logarithmic factor in
(3). We also provide the fully discrete analog of (2) and (3).

The rest of the paper is organized as follows. In the next section we introduce the
discretization method and the resolvent estimates, which build the main analytical
tool of the paper. For better communication of the ideas we first analyze the dG(0)
method, which is technically much simpler, and in the following section we analyze
the general dG(q) case. That is done in Sects. 3 and 4, respectively. At the end of
Sect. 4 we provide an example of how such maximal parabolic regularity results can
rather easily lead to optimal order error estimates. Finally, Sect. 5 is devoted to fully
discrete Galerkin solutions. In Sect. 6 we provide an extension of our results to the
case of a general norm fulfilling a resolvent estimate. This generalization, being of an
independent interest, is used, for example, in [9] for derivation of pointwise interior
(local) error estimates of fully discrete Galerkin solutions.

2 Preliminaries

To introduce the time discontinuous Galerkin discretization for the problem, we par-
tition I = (0, T ) into subintervals Im = (tm−1, tm] of length km = tm − tm−1, where
0 = t0 < t1 < · · · < tM−1 < tM = T . The maximal and minimal time steps are
denoted by k = maxm km and kmin = minm km , respectively. We impose the following
conditions on the time mesh (as in [32]):
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926 D. Leykekhman, B. Vexler

(i) There are constants c, β > 0 independent on k such that

kmin ≥ ckβ.

(ii) There is a constant κ > 0 independent on k such that for allm = 1, 2, . . . , M−1

κ−1 ≤ km
km+1

≤ κ.

(iii) It holds k ≤ 1
4T .

The semidiscrete space Xq
k of piecewise polynomial functions in time is defined by

Xq
k = {uk ∈ L2(I ; H1

0 (�)) : uk |Im ∈ Pq(H
1
0 (�)), m = 1, 2, . . . , M},

where Pq(V ) is the space of polynomial functions of degree q in time with values in
a Banach space V . We will employ the following notation for functions in Xq

k

u+
m = lim

ε→0+ u(tm + ε), u−
m = lim

ε→0+ u(tm − ε), [u]m = u+
m − u−

m . (4)

Next we define the following bilinear form

B(u, ϕ) =
M

∑

m=1

〈∂t u, ϕ〉Im×� + (∇u,∇ϕ)I×� +
M

∑

m=2

([u]m−1, ϕ
+
m−1)� + (u+

0 , ϕ+
0 )�,

(5)
where (·, ·)� and (·, ·)Im×� are the usual L2 space and space-time inner-products,
〈·, ·〉Im×� is the duality product between L2(Im; H−1(�)) and L2(Im; H1

0 (�)). We
note, that the first sum vanishes for u ∈ X0

k . The dG(q) semidiscrete (in time) approx-
imation uk ∈ Xq

k of (1) is defined as

B(uk, ϕk) = ( f, ϕk)I×� + (u0, ϕ
+
k,0)� for all ϕk ∈ Xq

k . (6)

Rearranging the terms in (5), we obtain an equivalent (dual) expression of B:

B(u, ϕ) = −
M

∑

m=1

〈u, ∂tϕ〉Im×� + (∇u,∇ϕ)I×� −
M−1
∑

m=1

(u−
m, [ϕ]m)� + (u−

M , ϕ−
M )�.

(7)
The analysis of such schemes in non-Hilbertian setting is usually done by using

a semigroup approach that represents time stepping formulas as a Dunford–Taylor
integral in the complex plane [33, Ch. 9]. This approach requires certain resolvent
estimates. For Lipschitz domains and a given γ ∈ (0, π/2), the resolvent estimate
(see [34]) guarantees the existence of a constant C such that for all u ∈ L p(�),
1 ≤ p ≤ ∞, and any z ∈ C\�γ the following estimate holds:

‖(z + �)−1u‖L p(�) ≤ C

1 + |z| ‖u‖L p(�), (8)
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Discrete maximal parabolic regularity 927

where the Laplace operator −� is supplemented with homogeneous Dirichlet bound-
ary conditions, and

�γ = {z ∈ C : |arg (z)| ≤ γ }. (9)

Using the identity �(z + �)−1 = Id−z(z + �)−1, one immediately obtains,

‖�(z + �)−1u‖L p(�) ≤ C‖u‖L p(�), z ∈ C\�γ , 1 ≤ p ≤ ∞, u ∈ L p(�).

(10)
We note, that all our results for semidiscrete solutions hold if we replace the Laplace
operator−�with amore general self-adjoint second order elliptic operator A provided
it satisfies (8).

3 Estimates for dG(0)

For the ease of the presentation, we first establish the results for the lowest order
piecewise constant discretization dG(0). In this case, we use the following notation,

uk,m = uk |Im , u+
k,m = uk,m+1, u−

k,m = uk,m, m = 1, 2, . . . , M − 1. (11)

First, we establish results for the homogeneous problem. In this case the dG(0) method
is equivalent to the Backward Euler method.

3.1 Results for the homogeneous problem

Let f = 0, u0 ∈ L p(�) and let uk ∈ X0
k be the semidiscrete approximation of (1)

defined by

B(uk, χk) = (u0, χk,1), ∀ χk ∈ X0
k , (12)

i.e., the dG(0) solution uk satisfies

uk,1 − k1�uk,1 = u0,
uk,m − km�uk,m = uk,m−1, m = 2, 3, . . . , M.

(13)

The first result shows that the solution can not grow from one time step to the next
one.

Lemma 1 Let uk be the solution of (12). Then, for u0 ∈ L p(�), 1 ≤ p ≤ ∞ there
holds

‖uk,m‖L p(�) ≤ ‖u0‖L p(�) ∀ m = 1, 2, . . . , M.

Proof First, we assume u0 ∈ L∞(�) and establish

‖uk,m‖L∞(�) ≤ ‖u0‖L∞(�) m = 1, 2, . . . , M. (14)
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928 D. Leykekhman, B. Vexler

It is sufficient to consider only a single time step,

uk,1 − k1�uk,1 = u0. (15)

We want to show that ‖uk,1‖L∞(�) ≤ ‖u0‖L∞(�). Assume it is false. Let x0 ∈ � be
a point where uk,1 attains a maximum. By [35, Theorem 3.3], we know that uk,1 ∈
C0(�), hence, there exists an open ball Bδ(x0) of radius δ > 0 centered at x0 with
Bδ(x0) ⊂ � such that

uk,1(x) > ‖u0‖L∞(�) for all x ∈ Bδ(x0).

Hence,

uk,1(x) − u0(x) > 0 on Bδ(x0).

By the maximum principle, from

−�uk,1 = 1

k1

(

u0 − uk,1
)

< 0 on Bδ(x0),

we obtain a contradiction to the assumption that uk,1 has a maximum at the interior
point x0. This contradiction establishes (14). Next, using a duality argument, we will
show

‖uk,1‖L1(�) ≤ ‖u0‖L1(�). (16)

Consider the problem, to find zk,1 ∈ H1
0 (�) that satisfies,

zk,1 − k1�zk,1 = z0, with z0 = sgn uk,1.

The solution zk,1 can be thought of as a single step of the dG(0) method to a parabolic
problem with initial condition sgn uk,1. Thus,

‖uk,1‖L1(�) = (uk,1, z0) = (zk,1, uk,1) + k1(∇zk,1,∇uk,1)

= (u0, zk,1) ≤ ‖u0‖L1(�)‖z0‖L∞(�) ≤ ‖u0‖L1(�),

where we have used (14) for zk and the fact that ‖z0‖L∞(�) = ‖sgn uk,1‖L∞(�) = 1.
This establishes (16). Interpolating, we obtain the lemma for 1 ≤ p ≤ ∞. Next we
will establish a smoothing result. ��
Theorem 1 (Homogeneous smoothing estimate) Let uk ∈ X0

k be the solution of (12)
with u0 ∈ L p(�), 1 ≤ p ≤ ∞. Then there exists a constant C independent of k such
that

‖�uk,m‖L p(�) ≤ C

tm
‖u0‖L p(�), m = 1, 2, . . . , M.
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Discrete maximal parabolic regularity 929

Proof The proof is given on page 1321 in [36] for the L2(�) norm, but the proof is
valid for the L p(�) norm as well by using the resolvent estimate (8) with respect to
the L p(�) norm. ��

Remark 1 Let uk ∈ X0
k be the solution of (12) with u0 ∈ L p(�), 1 ≤ p ≤ ∞. Then

there exists a constant C independent of k such that

‖uk,m‖L p(�) + (tm − tl)‖�uk,m‖L p(�) ≤ C‖uk,l‖L p(�), ∀ m > l ≥ 1.

From (13), we immediately obtain the following result.

Corollary 1 Let uk ∈ X0
k be the solution of (12) with u0 ∈ L p(�), 1 ≤ p ≤ ∞.

Then there exists a constant C independent of k such that

∥
∥
∥
∥

[uk]m−1

km

∥
∥
∥
∥
L p(�)

≤ C

tm
‖u0‖L p(�), m = 1, 2, . . . , M.

3.2 Results for the inhomogeneous problem

Now we consider uk ∈ X0
k to be the dG(0) solution to the parabolic equation with

u0 = 0, i.e., uk satisfies,

B(uk, ϕk) = ( f, ϕk)I×�, ∀ ϕk ∈ X0
k . (17)

Thus, the dG(0) solution satisfies

uk,1 − k1�uk,1 = k1 f1,

uk,m − km�uk,m = uk,m−1 + km fm, m = 2, 3, . . . , M, (18)

where

fm(·) = 1

km

∫

Im
f (t, ·)dt.

Since fm is the L2 projection of f onto the piecewise constant functions on each
subinterval Im , we have

max
1≤m≤M

‖ fm‖L p(�) ≤ C‖ f ‖L∞(I ;L p(�)), 1 ≤ p ≤ ∞, (19a)

M
∑

m=1

km‖ fm‖rL p(�) ≤ C‖ f ‖rLr (I ;L p(�)), 1 ≤ p ≤ ∞, 1 ≤ r < ∞. (19b)

We now state our main result for the dG(0) approximations.
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930 D. Leykekhman, B. Vexler

Theorem 2 (Maximal parabolic regularity) Let 1 ≤ s, p ≤ ∞ and u0 = 0. Then,
there exists a constant C independent of k such that for every f ∈ Ls(I ; L p(�)) and
uk satisfying (17), the following estimate holds:

‖�uk‖Ls (I ;L p(�)) ≤ C ln
T

k
‖ f ‖Ls (I ;L p(�)), 1 ≤ s ≤ ∞, 1 ≤ p ≤ ∞.

Proof Using (18), we can write the dG(0) solution as

uk,m =
m

∑

l=1

kl

⎛

⎝

m−l+1
∏

j=1

r(−km− j+1�)

⎞

⎠ fl , m = 1, 2, . . . , M,

where r(z) = (1 + z)−1. Then,

�uk,m =
m

∑

l=1

kl

⎛

⎝�

m−l+1
∏

j=1

r(−km− j+1�)

⎞

⎠ fl , m = 1, 2, . . . , M.

Hence

‖�uk,m‖L p(�) ≤
m

∑

l=1

kl

∥
∥
∥
∥
∥
∥

⎛

⎝�

m−l+1
∏

j=1

r(−km− j+1�)

⎞

⎠ fl

∥
∥
∥
∥
∥
∥
L p(�)

, m = 1, 2, . . . , M.

From Remark 1, since each term in the sum on the right-hand side can be thought of
as a homogeneous solution with initial condition fl at t = tl−1, we have

∥
∥
∥
∥
∥
∥

⎛

⎝�

m−l+1
∏

j=1

r(−km− j+1�)

⎞

⎠ fl

∥
∥
∥
∥
∥
∥
L p(�)

≤ C

tm − tl−1
‖ fl‖L p(�).

Thus, we obtain

‖�uk,m‖L p(�) ≤ C
m

∑

l=1

kl
tm − tl−1

‖ fl‖L p(�), m = 1, 2, . . . , M. (20)

For s = ∞, we obtain from the above estimate and using (19),

‖�uk‖L∞(I ;L p(�)) = max
1≤m≤M

‖�uk,m‖L p(�) ≤ C max
1≤m≤M

m
∑

l=1

kl
tm − tl−1

‖ fl‖L p(�)

≤ C max
1≤l≤M

‖ fl‖L p(�) max
1≤m≤M

m
∑

l=1

kl
tm − tl−1

≤ C ln
T

k
‖ f ‖L∞(I ;L p(�)),
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Discrete maximal parabolic regularity 931

where in the last step we used that

m
∑

l=1

kl
tm − tl−1

≤ 1 +
∫ tm−1

0

dt

tm − t
= 1 + ln

tm
km

≤ C ln
T

k
, (21)

by using the assumption kmin ≥ Ckβ and k ≤ T
4 . For s = 1, we have

‖�uk‖L1(I ;L p(�)) =
M

∑

m=1

km‖�uk,m‖L p(�) ≤ C
M

∑

m=1

km

m
∑

l=1

kl
tm − tl−1

‖ fl‖L p(�).

Changing the order of summation and using (19), we obtain

‖�uk‖L1(I ;L p(�)) ≤ C
M

∑

l=1

kl‖ fl‖L p(�)

M
∑

m=l

km
tm − tl−1

≤ C ln
T

k

M
∑

l=1

kl‖ fl‖L p(�) ≤ C ln
T

k
‖ f ‖L1(I ;L p(�)),

where we used again that

M
∑

m=l

km
tm − tl−1

≤ C ln
T

k
.

Interpolating between s = 1 and s = ∞, we obtain the result for any 1 ≤ s ≤ ∞. ��
Remark 2 The appearance of the logarithmic term is natural for the critical values
s = 1, p = 1, s = ∞, or p = ∞, since the corresponding maximal parabolic
regularity results for the continuous problem hold only for 1 < s, p < ∞. For s = 2
or p = 2, the power of the logarithm can be lowered. Thus, for p = 2, from [30] we
know,

‖�uk‖L2(I ;L2(�)) ≤ C‖ f ‖L2(I ;L2(�))

and from (20), we have

‖�uk‖Ls (I ;L2(�)) ≤ C ln
T

k
‖ f ‖Ls (I ;L2(�)), 1 ≤ s ≤ ∞.

Interpolating between s = 2 and s = ∞ and between s = 2 and s = 1, we obtain

‖�uk‖Ls (I ;L2(�)) ≤ C

(

ln
T

k

) |s−2|
s ‖ f ‖Ls (I ;L2(�)), for any ≤ s ≤ ∞.
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932 D. Leykekhman, B. Vexler

Similarly, we can obtain,

‖�uk‖L2(I ;L p(�)) ≤ C

(

ln
T

k

) |p−2|
p ‖ f ‖L2(I ;L p(�)), for any 1 ≤ p ≤ ∞.

Corollary 2 (Maximal parabolic regularity for jumps) Let 1 ≤ s, p ≤ ∞ and u0 = 0.
Then, there exists a constant C independent of k such that for every f ∈ Ls(I ; L p(�))

and uk satisfying (17), the following estimate holds,

max
1≤m≤M

∥
∥
∥
∥

[uk]m−1

km

∥
∥
∥
∥
L p(�)

≤ C ln
T

k
‖ f ‖L∞(I ;L p(�)), 1 ≤ p ≤ ∞,

(
M

∑

m=1

km

∥
∥
∥
∥

[uk]m−1

km

∥
∥
∥
∥

s

L p(�)

) 1
s

≤ C ln
T

k
‖ f ‖Ls (I ;L p(�)), 1 ≤ s < ∞, 1≤ p≤∞,

where the jump term [uk]0 at t = 0 is defined as uk,1.

Proof Since by (18) on each time subinterval Im we have

k−1
m [uk]m−1 = �uk,m + fm, m = 1, 2, . . . , M,

��
by using Theorem 2, we have

max
1≤m≤M

k−1
m ‖[uk]m−1‖L p(�) ≤ max

1≤m≤M

(‖�uk,m‖L p(�) + ‖ fm‖L p(�)

)

≤ C ln
T

k
‖ f ‖L∞(I ;L p(�)).

Similarly, using Theorem 2, for 1 ≤ s < ∞ we have

M
∑

m=1

km

∥
∥
∥
∥

[uk]m−1

km

∥
∥
∥
∥

s

L p(�)

≤ Cs

M
∑

m=1

km
(∥
∥�uk,m

∥
∥s
L p(�)

+ ‖ fm‖sL p(�)

)

≤ Cs

(

ln
T

k

)s

‖ f ‖sLs (I ;L p(�)),

where the constant Cs depends on s. By taking the s-root we obtain the corollary.

4 Estimates for dG(q)

In this section we will establish the dG(q) version of the results from the previous
section. It is convenient to introduce some additional notation. Let q ≥ 1 and ψl(t) ∈
Pq([0, 1]), l = 0, 1, . . . , q be the standard Lagrange basis functions on the interval
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[0, 1], i.e., ψl

(
j
q

)

= δl j , where δl j is the Kronecker symbol. Then for any uk ∈ Xq
k

on the time interval Im = (tm−1, tm] we have

uk |Im =
q

∑

l=0

Um
l (x)ψl

(
t − tm−1

km

)

, (22)

with Um
l ∈ H1

0 (�) independent of t . In this notation, we have

u+
k,m = Um+1

0 and u−
k,m = Um

q .

4.1 Results for the homogeneous problem

Let uk ∈ Xq
k be the semidiscrete in time solution to the parabolic equation with f ≡ 0,

i.e.,
B(uk, ϕk) = (u0, ϕ

+
k,0), ∀ ϕk ∈ Xq

k . (23)

Alternatively, on a single interval Im , we have

U 1
l = rl,0(−k1�)u0, l = 0, 1, . . . , q, (24)

Um
l = rl,0(−km�)Um−1

q , l = 0, 1, . . . , q, m = 2, 3, . . . , M,

where the rational functions rl,0 are of the form,

rl,0(λ) = pl,0(λ)

p̂(λ)
, l = 0, 1, . . . , q, (25)

with p̂ being a polynomial of degree q + 1 with no roots on the right-half complex
plane and pl,0, l = 0, 1, . . . , q being polynomials of degree q (cf. [36], page 1322).
Since rq,0(λ) is a subdiagonal Padé approximation of e−λ, we also have (cf. [37])

rq,0(0) = pq,0(0) = p̂(0) = 1 and |rq,0(λ) − e−λ| = O(|λ|2q+2), (26)

as λ → 0. The rational functions rl,0 satisfy the following properties, which we will
often use

rl,0(0) = 1, and rl,0(λ) − 1 = λ p̃l(λ)

p̂(λ)
, l = 0, 1, . . . , q, (27)

where p̃l(λ) are some polynomials of degree q. The first property follows, for example,
by considering the homogeneous Neumann problem with initial condition u0 = 1.
Then the exact solution u and the dG(q) solution uk are the same and equal to 1,
i.e., u = uk = 1. Hence, all nodal values Um

l = 1 for all m = 1, 2, . . . , M and
l = 0, 1, . . . , q. For example for m = 1, we have

1 = U 1
l = rl,0(−k1�)u0 = rl,0(−k1�)1 = rl,0(0),
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934 D. Leykekhman, B. Vexler

and as a result rl,0(0) = 1. The second property in (27) is just a consequence of the
first one.

Remark 3 The dG(1) solution uk on each subinterval Im is of the form

Um
0

(
tm − t

km

)

+Um
1

(
t − tm−1

km

)

and the rational functions are p̂(λ) = 1 + 2
3λ + λ2

6 , r0,0(λ) = 1 + 2
3λ, and r1,0(λ) =

1 − λ
3 .

For later proof we require two supplementary results.

Lemma 2 Let the rational function r(z) be of the form r(z) = p(z)
p̂(z) , where p̂(z) is a

polynomial of degree q +1 with no roots on the right half complex plane and p(z) is a
polynomial of degree q, for some q ≥ 0. Then, there exists a constant C independent
of k > 0, such that for any g ∈ L p(�)

‖r(−k�)g‖L p(�) ≤ C‖g‖L p(�). (28)

Proof For simplicity we assume that the roots z1, z2, . . . , zq of p̂ are pairwise distinct.
If it is not the case, the argument can be slightly modified. For q = 0 we have
r(z) = c0

z−z0
and the desired estimate follows directly by the resolvent estimate (8),

since

r(−k�)g = −c0
k

( z0
k

+ �
)−1

g

and therefore by (8)

‖r(−k�)g‖L p(�) ≤ |c0|
k

C

1 + |z0|
k

‖g‖L p(�) ≤ C |c0|
|z0| ‖g‖L p(�).

For q > 0 we use the partial fraction decomposition

r(z) =
q

∑

i=0

ci
z − zi

with some ci ∈ C. Applying the estimate for q0 to each summand we obtain

‖r(−k�)g‖L p(�) ≤ C

( q
∑

i=0

|ci |
|zi |

)

‖g‖L p(�),

which completes the proof. ��
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Lemma 3 Let the rational function r(z) be of the form r(z) = zp(z)
p̂(z) , where p̂(z) is a

polynomial of degree q+1 with no roots on the right-half complex plane and p(z) is a
polynomial of degree q, for some q ≥ 0. Then for any g ∈ L p(�) with �g ∈ L p(�),
1 ≤ p ≤ ∞, there exists a constant C independent of k such that

‖r(−k�)g‖L p(�) ≤ Ck‖�g‖L p(�).

Proof This lemma is just a consequence of the previous one. We set r̃(z) = p(z)
p̂(z) and

obtain:

r(−k�)g = −k� r̃(−k�)g = −k r̃(−k�)�g.

The the result follows by Lemma 2. ��
Lemma 4 Let the rational function r(z) be of the form r(z) = zp(z)

p̂(z) , where p̂(z) is a
polynomial of degree q +1 with no roots on the right half complex plane and p(z) is a
polynomial of degree q, for some q ≥ 1. Then, there exists a constant C independent
of k, such that for any g ∈ L p(�)

‖r(−k�)g‖L p(�) ≤ C‖g‖L p(�). (29)

Proof We set r̃(z) = p(z)
p̂(z) and obtain:

‖r(−k�)g‖L p(�) ≤ k‖�r̃(−k�)g‖L p(�).

The estimate

‖�r̃(−k�)g‖L p(�) ≤ C

k
‖g‖L p(�)

is provided on the top of page 1322 in [36] using a decomposition r(z) = r1(z)+r2(z),
where r1(z) = c

z−z0
, with z0 being a root of p̂(z) and c such that the degree of

the polynomial in the numerator of r2(z) is less or equal q − 1. Then the estimate
for �r̃1(−k�)g follows directly by applying a dG(0) type argument and the term
�r̃2(−k�)g is estimated using the Dunford–Taylor formula. ��

Next we provide some properties of the dG(q) solutions of the homogeneous prob-
lem.

Lemma 5 Let uk be the solution of (23) with u0 ∈ L p(�), 1 ≤ p ≤ ∞. Then,

‖uk‖L∞(Im ;L p(�)) ≤ C‖u0‖L p(�), ∀ m = 1, 2, . . . , M.

Proof The proof is given in [36, Thm. 5.1] for the L2(�) norm, but the proof is valid
for the L p(�) norm as well by using the resolvent estimate (8) with respect to the
L p(�) norm.
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936 D. Leykekhman, B. Vexler

Theorem 3 (Homogeneous smoothing estimate) Let uk be the solution of (23) with
u0 ∈ L p(�), 1 ≤ p ≤ ∞. Then there exists a constant C independent of k such that

‖�uk‖L∞(Im ;L p(�)) ≤ C

tm
‖u0‖L p(�), m = 1, , 2 . . . , M.

Proof Again the proof is given in [36, Thm. 5.1] for the L2(�) norm, but the proof is
valid for the L p(�) norm as well by using the resolvent estimate (8) with respect to
the L p(�) norm. ��
Remark 4 Notice that the statement of Theorem 3 is equivalent to

‖�Um
l ‖L p(�) ≤ C

tm
‖u0‖L p(�), m = 1, 2, . . . , M, l = 0, 1, . . . , q, (30)

which we will use in the following proofs.

Remark 5 Let uk be the solution of (23). Then there exists a constant C independent
of k such that

‖u−
k,m‖L p(�) + (tm − tn)‖�uk,m‖L∞(Im ;L p(�)) ≤ C‖u−

k,n‖L p(�), m > n,

n = 1, 2, . . . , M,

or in terms of nodal values

‖Um
q ‖L p(�)+(tm − tn)‖�Um

l ‖L p(�) ≤C‖Un
q ‖L p(�), m>n, n = 1, 2, . . . , M,

l = 0, 1, . . . , q. (31)

Theorem 4 (Homogeneous smoothing estimate for jumps) Let uk be the solution of
(23) with u0 ∈ L p(�), 1 ≤ p ≤ ∞. Then there exists a constant C independent of k
such that

∥
∥
∥
∥

[uk]m−1

km

∥
∥
∥
∥
L p(�)

≤ C

tm
‖u0‖L p(�), m = 1, 2, . . . , M,

where [uk]0 = U 1
0 − u0.

Proof For m > 1, using (24), we have

[uk]m−1 = Um
0 −Um−1

q = r0,0(−km�)Um−1
q −Um−1

q = (r0,0(−km�) − Id)Um−1
q .

Using (27) and Lemma 3, we obtain

∥
∥
∥
∥

[uk]m−1

km

∥
∥
∥
∥
L p(�)

≤ C
∥
∥
∥�Um−1

q

∥
∥
∥
L p(�)

.
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Now by Remark 4 and the assumption on the time mesh (i i), we obtain

∥
∥
∥�Um−1

q

∥
∥
∥
L p(�)

≤ C

tm−1
‖u0‖L p(�) ≤ C

tm
‖u0‖L p(�).

That finishes the proof for this case.
For m = 1, by Lemma 5 we have,

∥
∥
∥
∥

[uk]0
k1

∥
∥
∥
∥
L p(�)

= 1

k1
‖U 1

0 − u0‖L p(�) ≤ C

k1
‖u0‖L p(�) = C

t1
‖u0‖L p(�).

��
Similarly, we can obtain the corresponding result for the time derivative.

Theorem 5 (Homogeneous smoothing estimate for time derivatives) Let uk be the
solution of (23) with u0 ∈ L p(�), 1 ≤ p ≤ ∞. Then there exists a constant C
independent of k such that

‖∂t uk‖L∞(Im ;L p(�)) ≤ C

tm
‖u0‖L p(�).

Proof For m > 1, using (22) and (24), we have

∂t uk |Im = k−1
m

q
∑

l=0

Um
l (x)ψ ′

l

(
t − tm−1

km

)

= k−1
m

q
∑

l=0

rl,0(−km�)ψ ′
l

(
t − tm−1

km

)

Um−1
q (x).

By the fact that
∑q

l=0 ψl

(
t−tm−1
km

)

= 1 we have
∑q

l=0 ψ ′
l

(
t−tm−1
km

)

= 0. Using (27),

i.e., rl,0(0) = 1 we obtain

q
∑

l=0

rl,0(z)ψ
′
l

(
t − tm−1

km

)

= z p̃t (z)

p̂(z)
,

where p̂(z) is the same polynomial as in (25) and p̃t (z) is some polynomial of degree
q−1whose coefficients are time dependent, but uniformly bounded on Im . Thus again
by Lemma 3, we obtain

‖∂t uk‖L∞(Im ;L p(�)) ≤ C‖�Um−1
q ‖L p(�).

Remark 4 and the assumption on the time mesh (i i), finishes the proof for m > 1.

123



938 D. Leykekhman, B. Vexler

For m = 1, by Lemma 5 we have,

‖∂t uk‖L∞(I1;L p(�)) ≤ Ck−1
1

q
∑

l=0

‖U 1
l ‖L p(�)‖ψ ′

l ‖L∞(I1) ≤ C

t1
‖u0‖L p(�).

��

4.2 Results for the inhomogeneous problem

In this section we establish properties of the dG(q) solution uk ∈ Xq
k to the inhomo-

geneous parabolic equation with u0 = 0, that satisfies,

B(uk, ϕk) = ( f, ϕk), ∀ ϕk ∈ Xq
k . (32)

Alternatively, on a single time interval Im , we have

U 1
l = k1

q
∑

j=0

rl, j (−k1�) f 1j , l = 0, 1, . . . , q,

Um
l = rl,0(−km�)Um−1

q + km

q
∑

j=0

rl, j (−km�) f mj , l = 0, 1, . . . , q,

m = 2, 3, . . . , M, (33)

where

f mj (·) = 1

km

∫

Im
f (t, ·)ψ j

(
t − tm−1

km

)

dt,

and the rational functions

rl, j = pl, j (λ)

p̂(λ)
, l, j = 0, 1, . . . , q, (34)

are as in the homogenous case with p̂ being a polynomial of degree q + 1 with no
roots on the right half complex plane and pl, j , l, j = 0, 1, . . . , q being polynomials
of degree q (cf. [36], page 1322).

Notice that for m = 1, 2, . . . , M ,

‖ f mj ‖L p(�) ≤ C‖ f ‖L∞(Im ;L p(�)) and ‖ f mj ‖L p(�) ≤ Ck−1
m ‖ f ‖L1(Im ;L p(�)). (35)

Theorem 6 (Maximal parabolic regularity)Let uk satisfy (32)with f ∈ Ls(I ; L p(�))

for 1 ≤ s, p ≤ ∞. There exists a constant C independent of k and f such that

‖�uk‖Ls (I ;L p(�)) ≤ C ln
T

k
‖ f ‖Ls (I ;L p(�)).
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Proof Using (33), we have the following representation

Um
l = kmG

m
l + rl,0(−km�)

m−1
∑

n=1

kn

⎛

⎝

m−n−1
∏

j=1

rq,0(−km− j−1�)

⎞

⎠Gn
q , (36)

where

Gm
l =

q
∑

j=0

rl, j (−km�) f mj , m = 1, 2, . . . , M.

with the usual convention that
∏0

j=1 is an empty product. The proof now follows along
the lines of Theorem 2. Taking the Laplacian of both sides we obtain

�Um
l = km�Gm

l + �rl,0(−km�)

m−1
∑

n=1

kn

⎛

⎝

m−n−1
∏

j=1

rq,0(−km− j−1�)

⎞

⎠Gn
q ,

and as a result

‖�Um
l ‖L p(�) ≤ ‖km�Gm

l ‖L p(�)

+
∥
∥
∥
∥
∥
∥

�rl,0(−km�)

m−1
∑

n=1

kn

⎛

⎝

m−n−1
∏

j=1

rq,0(−km− j−1�)

⎞

⎠Gn
q

∥
∥
∥
∥
∥
∥
L p(�)

.

By Lemma 4, we have

‖km�Gm
l ‖L p(�) ≤ C max

0≤ j≤q
‖ f mj ‖L p(�), l = 0, 1 . . . , q, (37a)

and by Lemma 2 we also have

‖Gm
l ‖L p(�) ≤ C max

0≤ j≤q
‖ f mj ‖L p(�), l = 0, 1 . . . , q. (37b)

On the other hand by Remark 5 for any l = 0, 1, . . . , q, since each term in the sum on
the right-hand side can be thought of as a homogeneous solution with initial condition
Gn

q at t = tn−1, we have

∥
∥
∥
∥
∥
∥

�rl,0(−km�)

m−1
∑

n=1

kn

⎛

⎝

m−n−1
∏

j=1

rq,0(−km− j−1�)

⎞

⎠Gn
q

∥
∥
∥
∥
∥
∥
L p(�)

≤ C
m−1
∑

n=1

kn
tm − tn−1

‖Gn
q‖L p(�). (38)
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To establish the result for s = ∞, we observe

‖�uk‖L∞(I ;L p(�)) = max
1≤m≤M

max
0≤l≤q

‖�Um
l ‖L p(�)

≤ C max
1≤m≤M

max
0≤ j≤q

‖ f mj ‖L p(�)+C max
1≤m≤M

m−1
∑

n=1

kn
tm − tn−1

‖Gn
q‖L p(�)

≤ C max
1≤m≤M

max
0≤ j≤q

‖ f mj ‖L p(�)

(

1 + max
1≤m≤M

m−1
∑

n=1

kn
tm − tn−1

)

≤ C ln
T

k
max

1≤m≤M
max
0≤ j≤q

‖ f mj ‖L p(�),

where in the last step we used (21). Using (35) we can conclude that for s = ∞

‖�uk‖L∞(I ;L p(�)) ≤ C ln
T

k
max

1≤m≤M
‖ f ‖L∞(Im ;L p(�)) ≤ C ln

T

k
‖ f ‖L∞(I ;L p(�)).

Similarly, for s = 1, we have

‖�uk‖L1(I ;L p(�)) ≤
M

∑

m=1

km max
0≤l≤q

‖�Um
l ‖L p(�)

≤ C
M

∑

m=1

km max
0≤ j≤q

‖ f mj ‖L p(�) + C
M

∑

m=1

km

m−1
∑

n=1

kn
tm − tn−1

‖Gn
q‖L p(�)

≤ C
M

∑

m=1

km max
0≤ j≤q

‖ f mj ‖L p(�)

+ C
M

∑

m=1

km

m−1
∑

n=1

kn
tm − tn−1

max
0≤ j≤q

‖ f nj ‖L p(�)

≤ C
M

∑

m=1

km

m
∑

n=1

kn
tm − tn−1

max
0≤ j≤q

‖ f nj ‖L p(�).

Changing the order of summation and using (21) we obtain,

M
∑

m=1

km

m
∑

n=1

kn
tm − tn−1

max
0≤ j≤q

‖ f nj ‖L p(�) ≤
M

∑

n=1

kn max
0≤ j≤q

‖ f nj ‖L p(�)

M
∑

m=n

km
tm − tn−1

≤ C ln
T

k

M
∑

n=1

kn max
0≤ j≤q

‖ f nj ‖L p(�).
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Thus, by using (35), we have

‖�uk‖L1(I ;L p(�)) ≤ C ln
T

k

M
∑

m=1

km max
0≤ j≤q

‖ f mj ‖L p(�) ≤ C ln
T

k
‖ f ‖L1(I ;L p(�)).

Interpolating between s = 1 and s = ∞ we obtain the result for any 1 ≤ s ≤ ∞. ��

Remark 6 As in the case of dG(0) the appearance of a logarithmic term is natural,
since in contrast to the continuous case the choices s, p ∈ {1,∞} are allowed. The
power of the logarithm can be improved for p = 2 or s = 2. In fact, we can obtain
the following estimates (cf. Remark 2),

‖�uk‖Ls (I ;L2(�)) ≤ C

(

ln
T

k

) |s−2|
s ‖ f ‖Ls (I ;L2(�)),

and

‖�uk‖L2(I ;L p(�)) ≤ C

(

ln
T

k

) |p−2|
p ‖ f ‖L2(I ;L p(�)).

Theorem 7 (Maximal parabolic regularity for jumps) Let uk satisfy (32) with f ∈
Ls(I ; L p(�)) for 1 ≤ s, p ≤ ∞. Then there exists a constant C independent of k and
f such that

max
1≤m≤M

∥
∥
∥
∥

[uk]m−1

km

∥
∥
∥
∥
L p(�)

≤ C ln
T

k
‖ f ‖L∞(I ;L p(�)), for s = ∞,

(
M

∑

m=1

km

∥
∥
∥
∥

[uk]m−1

km

∥
∥
∥
∥

s

L p(�)

) 1
s

≤ C ln
T

k
‖ f ‖Ls (I ;L p(�)), for 1 ≤ s < ∞.

Proof Using (33) and (36), we have the following representation for the jump terms

[uk]m−1

km
= Um

0 −Um−1
q

km

= Gm
0 + k−1

m

(

r0,0(−km�)Um−1
q −Um−1

q

)

= Gm
0 + k−1

m

(

r0,0(−km�) − Id
)

Um−1
q .

Using that r0,0 − 1 satisfies (27) and using Lemmas 2, 3, and proceeding similarly to
the proof of Theorem 6, we have
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942 D. Leykekhman, B. Vexler

k−1
m ‖[uk]m−1‖L p(�) ≤ C

(

‖Gm
0 ‖L p(�) + ‖�Um−1

q ‖L p(�)

)

≤ C max
0≤ j≤q

‖ f mj ‖L p(�) + C
m−1
∑

n=1

kn
tm − tn−1

max
0≤ j≤q

‖ f nj ‖p
L(�)

≤ C
m

∑

n=1

kn
tm − tn−1

max
0≤ j≤ ‖ f nj ‖L p(�). (39)

Now, the proof of the cases s = 1 and s = ∞ is identical to the one of the previous
Theorem 6 and we have

max
1≤m≤M

∥
∥
∥
∥

[uk]m−1

km

∥
∥
∥
∥
L p(�)

≤ C ln
T

k
‖ f ‖L∞(I ;L p(�)), 1 ≤ p ≤ ∞,

M
∑

m=1

km

∥
∥
∥
∥

[uk]m−1

km

∥
∥
∥
∥
L p(�)

≤ C ln
T

k
‖ f ‖L1(I ;L p(�)), 1 ≤ p ≤ ∞.

For 1 < s < ∞ using the Hölder inequality with 1
s + 1

s′ = 1, we obtain,

∥
∥
∥
∥

[uk]m−1

km

∥
∥
∥
∥
L p(�)

≤ C
m

∑

n=1

kn
tm − tn−1

max
0≤ j≤q

‖ f nj ‖L p(�)

≤ C

(
m

∑

n=1

kn
tm − tn−1

max
0≤ j≤q

‖ f nj ‖sL p(�)

)1/s (
m

∑

n=1

kn
tm − tn−1

)1/s′

≤ C

(

ln
T

k

)1/s′ ( m
∑

n=1

kn
tm − tn−1

max
0≤ j≤q

‖ f nj ‖sL p(�)

)1/s

. (40)

Hence

M
∑

m=1

km

∥
∥
∥
∥

[uk]m−1

km

∥
∥
∥
∥

s

L p(�)

≤ C

(

ln
T

k

)s/s′ M
∑

m=1

km

m
∑

n=1

kn
tm − tn−1

max
0≤ j≤q

‖ f nj ‖sL p(�).

Changing the order of summation, we obtain

M∑

m=1
km

∥
∥
∥

[uk ]m−1
km

∥
∥
∥

s

L p(�)
≤ C

(

ln T
k

)s/s′ M∑

n=1
kn max0≤ j≤q ‖ f nj ‖sL p(�)

M∑

m=n

km
tm−tn−1

≤ C
(

ln T
k

)1+s/s′ M∑

n=1
kn max0≤ j≤q ‖ f nj ‖sL p(�)

= C
(

ln T
k

)s ‖ f ‖sLs (I ;L p(�))
.

Taking the s-root we finish the proof. ��
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Theorem 8 Let uk satisfy (32). Then there exists a constant C independent of k and
f such that

(
M

∑

m=1

‖∂t uk‖sLs (Im ;L p(�))

) 1
s

≤ C ln
T

k
‖ f ‖Ls (I ;L p(�)), 1 ≤ s < ∞, 1 ≤ p ≤ ∞.

Proof Similarly to the proof of Theorem 4, using (22) and (33), we have

∂t uk |Im = k−1
m

q
∑

l=0

Um
l (x)ψ ′

l

(
t − tm−1

km

)

+
q

∑

l=0

Gm
l (x)ψ ′

l

(
t − tm−1

km

)

= k−1
m

q
∑

l=0

rl,0(−km�)ψ ′
l

(
t−tm−1

km

)

Um−1
q (x)+

q
∑

l=0

Gm
l (x)ψ ′

l

(
t−tm−1

km

)

.

Using (27) and
∑q

l=0 ψ ′
l

(
t−tm−1
km

)

= 0, we can conclude that

q
∑

l=0

rl,0(z)ψ
′
l

(
t − tm−1

km

)

= z p̃t (z)

p̂(z)
,

where p̂(z) is the same polynomial as in (25) and p̃t (z) is some polynomial of degree
q whose coefficients are time dependent, but uniformly bounded on Im . Thus again
by Lemma 3 and Lemma 4, we obtain

‖∂t uk‖L∞(Im ;L p(�)) ≤ C‖�Um−1
q ‖L p(�) + C max

0≤ j≤q
‖ f mj ‖L p(�).

The rest of the proof is identical to the proof of the previous theorem. ��

4.3 Application to optimal order error estimates

As an application of the maximal parabolic regularity, we show optimal convergence
rates for the dG(q) solution. First, we establish that the error is bounded by a certain
projection error. A similar result was obtained for the L2(I ; L2(�)) norm in [29].
First, we define a projection πk for u ∈ C(I, L2(�)) with πku|Im ∈ Pq(L2(�)) for
m = 1, 2, . . . , M on each subinterval Im by

(πku − u, φ)Im×� = 0, ∀ φ ∈ Pq−1(Im, L2(�)), q > 0, (41a)

πku(t−m ) = u(t−m ). (41b)

In the case q = 0, πku is defined solely by the second condition.
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944 D. Leykekhman, B. Vexler

Theorem 9 Let u be the solution to (1) with u ∈ C( Ī ; L p(�)) and uk be its dG(q)
approximation (6), for q ≥ 0. Then there exists a constant C independent of k such
that

‖u − uk‖Ls (I ;L p(�)) ≤ C ln
T

k
‖u − πku‖Ls (I ;L p(�)), 1 ≤ s, p < ∞,

where the projection πk is defined above in (41).

Proof Put e := u − uk = (u − πku) + (πku − uk) := ηk + ξk . For 1 ≤ s, p < ∞,
we have

‖e‖Ls (I ;L p(�)) = sup
ψ∈Ls′ (I ;L p′ (�))

‖ψ‖
Ls

′
(I ;L p′ (�))

=1

(e, ψ)I×�,
1

s
+ 1

s′ = 1,
1

p
+ 1

p′ = 1.

For each such ψ , we consider a dual problem for zk ∈ Xq
k satisfying

B(ϕk, zk) = (ϕk, ψ)I×� for all ϕk ∈ Xq
k .

Thus, we have

(e, ψ)I×� = (ηk, ψ)I×� + (ξk, ψ)I×� := J1 + J2.

Using the Hölder inequality, we find

J1 ≤ ‖ηk‖Ls (I ;L p(�))‖ψ‖Ls′ (I ;L p′ (�))
≤ ‖ηk‖Ls (I ;L p(�)).

On the other hand using that B(u − uk, χk) = 0 for any χk ∈ Xq
k , we obtain

J2 = B(ξk, zk) = −B(ηk, zk) =
M

∑

m=1

(ηk, ∂t zk)Im×� − (∇ηk,∇zk)Im×�

+ (η−
k,m, [zk]m)� = −(∇ηk,∇zk)I×�,

where we used that the first sum vanishes due to (41a) and the sum involving jumps
due to (41b). Integrating by parts in space, using the Hölder inequality and Theorem
6, we obtain

J2 = −(∇ηk,∇zk)I×� = (ηk,�zk)I×� ≤ ‖ηk‖Ls (I ;L p(�))‖�zk‖Ls′ (I ;L p′ (�))

≤ C ln
T

k
‖ηk‖Ls (I ;L p(�))‖ψ‖Ls′ (I ;L p′ (�))

≤ C ln
T

k
‖ηk‖Ls (I ;L p(�)).

Combining the estimates for J1 and J2 we obtain the result. ��
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If the exact solution is sufficiently smooth then the above result easily leads to an
optimal convergence rate, modulo a logarithmic term.

Corollary 3 Let u ∈ Wq+1,s(I ; L p(�)) be the solution to (1) and uk be its dG(q)
approximation for q ≥ 0. Then there exists a constant C independent of k such that

‖u − uk‖Ls (I ;L p(�)) ≤ Ckq+1 ln
T

k
‖u‖Wq+1,s (I ;L p(�)), 1 ≤ s, p < ∞.

Remark 7 The above result can be extended to the case of non-homogeneous Dirichlet
boundary conditions. Let g ∈ C(I ; L2(�)) ∩ L2(I ; H1(�)) be given and consider
the equation

∂t u(t, x) − �u(t, x) = f (t, x), (t, x) ∈ I × �,

u(t, x) = g(t, x), (t, x) ∈ I × ∂�,

u(0, x) = u0(x), x ∈ �.

It turns out, that it is convenient to use πkg as boundary conditions for the semidiscrete
solution, i.e.

uk ∈ πkg + Xq
k : B(uk, ϕk) = ( f, ϕk)I×� + (u0, ϕ

+
k,0)� for all ϕk ∈ Xq

k .

Then following the lines of the proof of Theorem 9 and using that ξk = πku − uk has
homogeneous boundary conditions, i.e., ξk ∈ Xq

k , we obtain

(ξk, ψ)I×� = −(∇ηk,∇zk) = (ηk,�zk)I×� +
∫

I

∫

∂�

(g − πkg)∂nzk ds dt.

Under an additional assumption on � that for any v ∈ H1
0 (�) with �v ∈ L p′

(�) the
estimate

‖∂nv‖L p′ (∂�)
≤ c‖�v‖L p′ (�)

holds, we obtain

‖u − uk‖Ls (I ;L p(�)) ≤ C ln
T

k

(‖u − πku‖Ls (I ;L p(�)) + ‖g − πkg‖Ls (I ;L p(∂�))

)

,

1 ≤ s, p < ∞.

The above assumption is fulfilled, for example, if on � the W 2,p′
elliptic regularity

holds.

5 Fully discrete solutions

In this section, we consider the fully discrete approximation of the equation (1). From
now on we assume that the domain � is a polygonal/polyhedral convex domain. For
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946 D. Leykekhman, B. Vexler

h ∈ (0, h0]; h0 > 0, let T denote a quasi-uniform triangulation of � with mesh size
h, i.e., T = {τ } is a partition of � into cells (triangles or tetrahedrons) τ of diameter
hτ such that for h = maxτ hτ ,

diam(τ ) ≤ h ≤ C |τ | 1d , ∀ τ ∈ T , d = 2, 3,

hold. Let Vh be the set of all functions in H1
0 (�) that are polynomials of degree r on

each τ , i.e., Vh is the usual space of conforming finite elements. To obtain the fully
discrete approximation we consider the space-time finite element space

Xq,r
k,h = {vkh : vkh |Im ∈ Pq(Vh), m = 1, 2, . . . , M, q ≥ 0, r ≥ 1}. (42)

We define a fully discrete analog ukh ∈ Xq,r
k,h of uk introduced in (6) by

B(ukh, ϕkh) = ( f, ϕkh)I×� + (u0, ϕ
+
kh)� for all ϕkh ∈ Xq,r

k,h . (43)

Moreover, we introduce the discrete Laplace operator �h : Vh → Vh by

(−�hvh, χ)� = (∇vh,∇χ)�, ∀ χ ∈ Vh .

The semidiscrete results from the first part of the paper translate almost immediately
to the fully discrete setting provided we have the corresponding resolvent estimate,

‖(z+�h)
−1χ‖L p(�) ≤ C

1 + |z| ‖χ‖L p(�), ∀ z ∈ C\�γ , ∀ χ ∈ Vh, 1≤ p ≤ ∞,

(44)
with some constant C independent of h. Such a result was established in [38] for
smooth domains. Later it was extended to convex polyhedral domains in [39] (for
some γ > 0) via stability and smoothing properties of the semigroup Eh(t) = e−�h t

and directly for an arbitrary γ > 0 but with logarithmic dependence of the constant
C on h in [40].

5.1 Result for the homogeneous problem

Let ukh ∈ Xq,r
k,h be the fully discrete dG(q)cG(r ) solution to the parabolic equation

with f ≡ 0, i.e.
B(ukh, ϕkh) = (u0, ϕ

+
kh,0), ∀ ϕkh ∈ Xq,r

k,h . (45)

Theorem 10 (Fully discrete homogeneous smoothing estimate) Let ukh be a solution
of (45) with u0 ∈ L p(�), 1 ≤ p ≤ ∞. Then there exists a constant C independent of
k and h such that

‖∂t ukh‖L∞(Im ;L p(�))+‖�hukh‖L∞(Im ;L p(�))+k−1
m ‖[ukh]m−1‖L p(�) ≤ C

tm
‖u0‖L p(�),

for m = 1, 2, . . . , M.
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5.2 Results for the inhomogeneous problem

Let ukh ∈ Xq,r
k,h be the dG(q)cG(r ) solution to the inhomogeneous parabolic equation

with u0 = 0, i.e.
B(ukh, ϕkh) = ( f, ϕkh), ∀ ϕkh ∈ Xq,r

k,h . (46)

Theorem 11 (Fully discrete maximal parabolic regularity) Let ukh satisfy (46) with
f ∈ Ls(I ; L p(�)), 1 ≤ s, p ≤ ∞. Then there exists a constant C independent of k
and h such that

(
M

∑

m=1

‖∂t ukh‖sLs (Im ;L p(�))

) 1
s

+ ‖�hukh‖Ls (I ;L p(�))+
(

M
∑

m=1

km

∥
∥
∥
∥

[ukh]m−1

km

∥
∥
∥
∥

s

L p(�)

) 1
s

≤ C ln
T

k
‖ f ‖Ls (I ;L p(�)),

with obvious notation changes in the case of s = ∞.

5.3 Application to optimal order error estimates

Similarly to the semidiscrete case, as an application of the maximal parabolic regu-
larity, we show optimal convergence rates for the dG(q)cG(r ) solution.

Theorem 12 Let u be the solution to (1) with u ∈ C( Ī ; L p(�)) and ukh be the
dG(q)cG(r) solution for q ≥ 0 and r ≥ 1. Then there exists a constant C independent
of k and h such that for 1 ≤ s, p < ∞,

‖u − ukh‖Ls (I ;L p(�))

≤ C ln
T

k

(‖u−πku‖Ls (I ;L p(�))+‖Phu−u‖Ls (I ;L p(�))+‖Rhu − u‖Ls (I ;L p(�))

)

,

where the projection πk is defined in (41), Ph : L2(�) → Vh is the orthogonal L2

projection and Rh : H1
0 (�) → Vh is the Ritz projection.

Proof Put e := u − ukh = (u − Phπku) + (Phπku − ukh) := ηkh + ξkh . For
1 ≤ s, p < ∞, we have

‖e‖Ls (I ;L p(�)) = sup
ψ∈Ls′ (I ;L p′ (�))

‖ψ‖
Ls

′
(I ;L p′ (�))

=1

(e, ψ)I×�,
1

s
+ 1

s′ = 1,
1

p
+ 1

p′ = 1.

For each such ψ , consider a dual problem

B(ϕkh, zkh) = (ϕkh, ψ)I×�.
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948 D. Leykekhman, B. Vexler

Thus, we have

(e, ψ)I×� = (ηkh, ψ)I×� + (ξkh, ψ)I×� := J1 + J2.

Using the Hölder inequality, the triangle inequality, the stability of the L2 projection
Ph in L p(�) and the approximation properties of πk and Ph , we find

J1 ≤ C‖ηkh‖Ls (I ;L p(�))‖ψ‖Ls′ (I ;L p′ (�))
≤ C‖ηkh‖Ls (I ;L p(�))

= C‖u − Phπku‖Ls (I ;L p(�)) ≤ C‖u − Phu‖Ls (I ;L p(�))

+ C‖Ph(u − πku)‖Ls (I ;L p(�)) ≤ C‖u − Phu‖Ls (I ;L p(�))

+ C‖u − πku‖Ls (I ;L p(�)).

On the other hand, using that B(u − ukh, χkh) = 0 for any χkh ∈ Xq,r
k,h , and the

properties of the L2 projection and the properties of πk , we obtain

J2 = B(ξkh, zkh) = −B(ηkh, zkh)

=
M

∑

m=1

(ηkh, ∂t zkh)Im×� − (∇ηkh,∇zkh)Im×� + (η−
kh,m, [zkh]m)�

=
M

∑

m=1

(u − πku, ∂t zkh)Im×� − (∇ηkh,∇zkh)Im×� + (u−
m − (πku)−m, [zkh]m)�

= −(∇(u − Phπku),∇zkh)I×�.

where we used that the first sum vanishes due to (41a) and the sum involving jumps
due to (41b). Using the properties of the Ritz projection, integrating by parts in space,
and using the Hölder inequality and Theorem 6, we obtain

J2 = −(∇(u − Phπku),∇zkh)I×� = −(∇(Rhu − Phπku),∇zkh)I×�

= (Rhu − Phπku,�hzkh)I×�

≤ C‖Ph(Rhu − πku)‖Ls (I ;L p(�))‖�hzkh‖Ls′ (I ;L p′ (�))

≤ C ln
T

k
‖Rhu − πku‖Ls (I ;L p(�))‖ψ‖Ls′ (I ;L p′ (�))

≤ C ln
T

k

(‖Rhu − u‖Ls (I ;L p(�))

+ ‖u − πku‖Ls (I ;L p(�))

)

.

Combining the estimates for J1 and J2 we obtain the result. ��

Corollary 4 If the solution u to (1) satisfies u ∈ Wq+1,s(I ; L p(�)) ∩ Ls

(I ;Wr+1,p(�)) and � such that elliptic W 2,p′
- regularity holds, then there exists
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a constant C independent of k and h such that

‖u−ukh‖Ls (I ;L p(�)) ≤C ln
T

k

(

kq+1‖u‖Wq+1,s (I ;L p(�)) + hr+1‖u‖Ls (I ;Wr+1,p(�))

)

,

1 ≤ s, p < ∞.

6 Fully discrete results in general norms

For the future references we provide discrete maximal parabolic regularity results in
general norms. For example, we use these results to establish pointwise best approxi-
mation estimates in [9] for fully discrete Galerkin solutions.

Let � be a Lipschitz domain and let T = {τ } be an arbitrary partition of � into
cells τ (triangles, tetrahedrons, quads, or hexahedrons, not necessary quasi-uniform).
Let Vh be the set of all functions in H1

0 (�) that belong to a certain polynomial space
(i.e., Pr or Qr ) on each τ . As before, we define a fully discrete solution ukh ∈ Xq,r

k,h
by

B(ukh, ϕkh) = ( f, ϕkh)I×� + (u0, ϕ
+
kh)� for all ϕkh ∈ Xq,r

k,h , (47)

where

Xq,r
k,h = {vkh : vkh |Im ∈ Pq(Vh), m = 1, 2, . . . , M}, for some q ≥ 0, r ≥ 1.

(48)
As in the previous section, we introduce the discrete Laplace operator �h : Vh → Vh
by

(−�hvh, χ)� = (∇vh,∇χ)�, ∀ χ ∈ Vh,

and the orthogonal L2 projection Ph : L2(�) → Vh by

(Phv, χ)� = (v, χ)�, ∀ χ ∈ Vh .

Let |||·||| be a norm on Vh such that for some γ ∈ (0, π
2 ) the following resolvent

estimate holds,

∣
∣
∣

∣
∣
∣

∣
∣
∣(z + �h)

−1χ

∣
∣
∣

∣
∣
∣

∣
∣
∣ ≤ Mh

|z| |||χ ||| , for z ∈ C\�γ , (49)

for all χ ∈ Vh , where �γ is defined in (9) and the constant Mh is independent of z.
For quasi-uniform meshes, this assumption is fulfilled for |||·||| = ‖·‖L p(�) with a

constant Mh ≤ C independent of h, see [39], as discussed and exploited above. For

a weighted norm |||·||| = ‖σ N
2 ·‖L2(�) with the weight σx0(x) = √|x − x0|2 + h2 and

Mh ≤ C |ln h| we established this estimate in [9], and used the corresponding result
to obtain interior (local) pointwise estimates. Moreover, the resolvent estimate (49) is
known also to hold in L p(�) norms on a class of non quasi-uniform meshes as well,
see [41].
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6.1 Smoothing estimates for the homogeneous problem in general norms

For the homogeneous heat equation (1), i.e. f = 0 and its discrete approximation
ukh ∈ Xq,r

k,h defined by

B(ukh, ϕkh) = (u0, ϕ
+
kh,0) ∀ ϕkh ∈ Xq,r

k,h , (50)

we have the following smoothing result.

Theorem 13 (Fully discrete smoothing estimate in general norms) Let |||·||| be a norm
on Vh fulfilling the resolvent estimate (49). Let ukh be the solution of (50). Then, there
exists a constant C independent of k and h such that

sup
t∈Im

|||∂t ukh(t)||| + sup
t∈Im

|||�hukh(t)||| + k−1
m |||[ukh]m−1||| ≤ CMh

tm
|||Phu0||| ,

for m = 1, 2, . . . , M, where Ph : L2(�) → Vh is the orthogonal L2 projection. For
m = 1 the jump term is understood as [ukh]0 = u+

kh,0 − Phu0.

6.2 Discrete maximal parabolic estimates for the inhomogeneous problem in
general norms

Now, we consider the inhomogeneous heat equation (1), with u0 = 0 and its discrete
approximation ukh ∈ Xq,r

k,h defined by

B(ukh, ϕkh) = ( f, ϕkh), ∀ ϕkh ∈ Xq,r
k,h . (51)

Theorem 14 (Discrete maximal parabolic regularity in general norms) Let |||·||| be a
norm on Vh fulfilling the resolvent estimate (49) and let 1 ≤ s ≤ ∞. Let ukh be a
solution of (51). Then, there exists a constant C independent of k and h such that

(
M

∑

m=1

∫

Im
|||∂t ukh(t)|||s dt

) 1
s

+
(

M
∑

m=1

∫

Im
|||�hukh(t)|||s dt

) 1
s

+
(

M
∑

m=1

km
∣
∣
∣

∣
∣
∣

∣
∣
∣k−1

m [ukh]m−1

∣
∣
∣

∣
∣
∣

∣
∣
∣

s
) 1

s

≤ CMh ln
T

k

(∫

I
|||Ph f (t)|||s dt

) 1
s

,

where Ph : L2(�) → Vh is the orthogonal L2 projection and with obvious notation
change in the case of s = ∞. Form = 1 the jump term is understood as [ukh]0 = u+

kh,0.

The proofs of the above two results are identical to the proofs of the corresponding
time discrete results from Sect. 4, provided the resolvent estimate (49) holds.
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