
Numer. Math. (2017) 135:895–922
DOI 10.1007/s00211-016-0820-3

Numerische
Mathematik

A non-symmetric coupling of the finite volume method
and the boundary element method

Christoph Erath1 · Günther Of2 ·
Francisco-Javier Sayas3

Received: 1 September 2015 / Published online: 13 July 2016
© Springer-Verlag Berlin Heidelberg 2016

Abstract As model problem we consider the prototype for flow and transport of a
concentration in porous media in an interior domain and couple it with a diffusion
process in the corresponding unbounded exterior domain. To solve the problem we
develop a new non-symmetric coupling between the vertex-centered finite volume and
boundary element method. This discretization provides naturally conservation of local
fluxes and with an upwind option also stability in the convection dominated case. We
aim to provide a first rigorous analysis of the system for different model parameters;
stability, convergence, and a priori estimates. This includes the use of an implicit
stabilization, known from the finite element and boundary element method coupling.
Some numerical experiments conclude the work and confirm the theoretical results.
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1 Model problem and introduction

Throughout this work, let � ⊂ R
d , d = 2, 3, be a bounded domain with connected

polygonal Lipschitz boundary � and �e = R
d\� is the corresponding unbounded

exterior domain. We consider the same model problem as in [11,12]: find u and ue

such that

div (−A∇u + bu) + cu = f in �, (1a)

−�ue = 0 in �e, (1b)

ue(x) = C∞ log |x | + O(1/|x |) for |x | → ∞, d = 2, (1c)

ue(x) = O(1/|x |) for |x | → ∞, d = 3, (1d)

u = ue + u0 on �, (1e)

(A∇u − bu) · n = ∂ue

∂n
+ t0 on �in, (1f)

(A∇u) · n = ∂ue

∂n
+ t0 on �out , (1g)

where A is a symmetric diffusion matrix, b is a possibly dominating velocity field,
c is a reaction function, f is a source term, and C∞ is an unknown constant. The
coefficients are allowed to be variable. The coupling boundary � = ∂� = ∂�e is
divided in an inflow and outflow part, namely �in := {

x ∈ �
∣
∣b(x) · n(x) < 0

}
and

�out := {
x ∈ �

∣
∣ b(x) · n(x) ≥ 0

}
, respectively, where n is the normal vector on �

pointing outward with respect to �. We allow prescribed jumps u0 and t0 on �. The
radiation condition for the two dimensional case, which will be complemented with
the additional hypothesis that the diameter of � is less than one, guarantees that our
problem has a unique solution. Other radiation conditions are also possible, but some
lead to restrictions on the data. Changing from one to the other is a relatively simple
exercise adding sources. See [9,21] for more information on radiation conditions.

The model problem in the interior domain � is the prototype for flow and transport
of a concentration in porous media. Usually, boundary values such as Dirichlet and/or
Neumann boundary conditions are needed to solve the problem. These problems are
often convection dominated and the conservation law, e.g., local conservation of fluxes,
should also be preserved for a numerical approximation of the solution. Therefore,
a finite volume method (FVM) is often the method of choice since it provides an
easy option to stabilize the convection term and it natural preserves conservation of
numerical fluxes due to its formulation. However, if the domain is unbounded, one
would have to truncate the domain. The above formulation solves also another issue,
i.e., if we do not know any boundary conditions, we assume a diffusion process in
the corresponding (unbounded) exterior domain �e, which “replaces” the boundary
values. The method of choice for unbounded domains is the boundary element method
(BEM), which reduces the discretization to the boundary and therefore avoids the
truncation of �e. Therefore, we consider an FVM–BEM coupling as in [10–12]. To
the best of the authors knowledge, these works are the first theoretical justifications of
a FVM–BEM coupling, where a three field coupling approach is used with either the
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Non-symmetric FVM-BEM coupling 897

vertex-centered (finite volume elementmethod, boxmethod) FVMor the cell-centered
FVM.

In this work we analyze and verify a non-symmetric FVM–BEM coupling with the
vertex-centeredFVM, in the followingonlynamedFVM.Themainmotivationof using
this is to get an easier coupling formulation and a smaller system of linear equations,
which saves computational costs. The idea of a non-symmetric coupling approach
goes back to [3,20]. This coupling formulation applied for a finite element method
(FEM)–BEM discretization is also known as Johnson–Nédélec coupling. However,
the analysis in this early works relied on specific choices of the discretization spaces
or on the compactness of a certain integral operator, which was in fact a restriction to a
smoothboundary. In particular, a rigorousmathematical analysis forLipschitz domains
was not known. Recently, the work in [25] provided a first analysis, which overcame
these restrictions. Meanwhile, several extensions and simplifications are possible,
such that a SIAM review paper [26] was published. Among these extensions there
are results on the non-symmetric formulation for the potential equation with variable
coefficients [22,27], non-linearities [1,16], for elasticity [16,28], and for boundary
value problems [17,23]. In addition, similar results have been reported on related
coupling formulations [1,17] and the DG-BEM coupling [19]. We want to mention
that the counterpart to the non-symmetric coupling is the symmetric coupling first
introduced in [7]. However, symmetry is referred to a diffusion–diffusion transmission
problem, i.e., the whole system is symmetric. We stress that this would be destroyed
if one applies convection in the interior domain.

There exist a couple of papers, which analyze the vertex-centered FVM, e.g., [2,18]
to mention only the very first works. It is well known that for pure diffusion with
piecewise constant diffusion coefficient on a primal mesh the standard FEM and the
FVM bilinear form are exactly the same. Thus the schemes differ basically only on the
right-hand side.However, for all other diffusion problems [4] and a possible convection
field and a reaction term the systems are different. Contrary to standard FEM,FVMstill
provides local flux conservation due to its formulation and provides an easy upwind
stability option for convection dominated problems. The standard analysis approach
makes use of a comparison between the FEM and FVM bilinear form [2,4,5,15,18].
For our FVM–BEM coupling wemay apply similar techniques for the FVMpart. Note
that contrary to a classical FEM–BEM coupling we do not have a classical Galerkin
orthogonality property due to the FVM formulation based on the conservation law.
Thus the analysis differs significantly to an FEM–BEM analysis. However, we use
the equivalent formulation of a stabilized continuous coupling formulation, extended
here for the convection–diffusion–reaction problem in �, and compute an ellipticity
constant. Based on the continuous stabilization we introduce a stabilization for the
FVM–BEM coupling. This is needed for pure diffusion models and for convection–
diffusion–reaction problems,where the energynorm reduced to a semi-norm.We stress
that the stabilization is only needed for theoretical purposes since the formulation is
equivalent to the standard system. We aim to provide a discrete ellipticity estimate,
convergence, and a priori estimates for the FVM–BEM coupling. Our new analysis
technique gives us a recipe for the coupling of BEM with a non-Galerkin method like
FVM. Furthermore, this work improves the results in [10,11] for a three field FVM–
BEM coupling, where we had to assume a little bit more regularity on the unknown

123
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exterior conormal solution and some constraints on the convection and reaction terms
for some special model problem configurations. However, as for the non-symmetric
FEM–BEM coupling we have a theoretical constraint on the eigenvalues of A, which
is not needed in [10,11].

Throughout, we denote by Lm(·) and Hm(·), m > 0 the standard Lebesgue
and Sobolev spaces equipped with the usual norms ‖ · ‖L2(·) and ‖ · ‖Hm (·),
respectively. For ω ⊂ �, (·, ·)ω is the L2 scalar product. The space Hm−1/2(�)

is the space of all traces of functions from Hm(�) and the duality between
Hm(�) and H−m(�) is given by the extended L2-scalar product 〈·, ·〉� . The space
H1

�oc(�) := {
v : � → R

∣
∣ v|K ∈ H1(K ), for all K ⊂ � open and bounded

}
collects

functions with local H1 behavior. Furthermore, the Sobolev space W 1,∞ contains
exactly the Lipschitz continuous functions. If it is clear from the context, we do not
use a notational difference for functions in a domain and its traces. To simplify the
presentation we equip the space H := H1(�) × H−1/2(�) with the norm

‖v‖2H := ‖v‖2H1(�)
+ ‖ψ‖2H−1/2(�)

for v = (v, ψ) ∈ H.
With this notation we can specify the model data as: the diffusion matrix A : � →

R
d×d has entries in W 1,∞(T ) for all T ∈ T , where T denotes the triangulation of �

introduced in Sect. 3.1. Furthermore,A is bounded, symmetric and uniformly positive
definite, i.e., there exist positive constants CA,1 andCA,2 withCA,1|v|2 ≤ vTA(x)v ≤
CA,2|v|2 for all v ∈ R

d and almost all x ∈ �. Note that these assumptions include
A with coefficients that are T -piecewise constant. The best constant CA,1 equals the
infimum over x ∈ � of the minimum eigenvalue of A(x), which we will denote
λmin(A). Furthermore, b ∈ W 1,∞(�)d and c ∈ L∞(�) satisfy

γ (x) := 1

2
div b(x) + c(x), γ (x) ≥ 0 for almost every x ∈ � (2)

with the function γ ∈ L∞(�). We stress that our analysis holds for constant b and
c = 0 as well. Finally, we choose the right-hand side f ∈ L2(�), u0 ∈ H1/2(�), and
t0 ∈ H−1/2(�). In the two dimensional case we additionally assume diam(�) < 1 to
ensure H−1/2(�) ellipticity of the single layer operator defined below.

Then ourmodel problem reads in aweak sense: find u ∈ H1(�) and ue ∈ H1
�oc(�e)

such that (1a)–(1g) hold.
The model problem (1) admits a unique solution for both, the two and three dimen-

sional case [11].

Remark 1 To replace the radiation condition (1c) by ue(x) = O(1/|x |) for |x | → ∞
in two dimensions one would have to assume the scaling condition

〈∂ue/∂n, 1〉� = 0

to guarantee solvability. As opposed for the purely diffusive case, this condition cannot
be easily transformed into a condition on the data.
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Non-symmetric FVM-BEM coupling 899

The content of this paper is organized as follows. Section 2 gives a short summary on
integral equations and the weak formulation of our model problem based on the non-
symmetric approach. We show an ellipticity estimate through an equivalent stabilized
weak formulation and state the ellipticity constant explicitly. In Sect. 3 we introduce
the non-symmetric FVM–BEMcoupling to solve ourmodel problem. Section 4 proves
stability, convergence, and an a priori result for our coupling. Numerical experiments,
found in Sect. 5, confirm the theoretical results. Some conclusions complete to work.

2 Integral equation and weak coupling formulation

The representation formula for the exterior Laplace equation (1b) with the radiation
condition (1c)–(1d) and φ(x) = ∂

∂nue(x)|� , x ∈ R reads

ue(x) = −
∫

�

G(x − y)φ(y) dsy +
∫

�

∂

∂ny
G(x − y)ue(y)|� dsy (3)

with the fundamental solution for the Laplace operator

G(z) :=
{

− 1
2π log |z| for z ∈ R

2\{0},
1
4π

1
|z| for z ∈ R

3\{0}.

From (3) we obtain (taking traces) the boundary integral equation on �

ue|� = (1/2 + K)ue|� − Vφ. (4)

The single layer operator V and the double layer operator K are given, for smooth
enough input, by

(Vψ)(x)=
∫

�

ψ(y)G(x − y) dsy, (Kθ)(x) =
∫

�

θ(y)
∂

∂ny
G(x − y) dsy, x ∈ �,

where ny is a normal vector with respect to y. The integral equation (4) holds on �

except on corners and edges. We recall [8, Theorem 1] that these operators can be
extended to bounded operators

V ∈ L
(

Hs−1/2(�); Hs+1/2(�)
)

, K∈ L
(

Hs+1/2(�); Hs+1/2(�)
)

, s ∈[− 1
2 ,

1
2

]
.

It is also well-known that V is symmetric and H−1/2(�) elliptic, since we additionally
assume diam(�) < 1 in the two dimensional case, which can always be achieved by
scaling. The expressions

‖ · ‖2V := 〈V·, ·〉�, ‖ · ‖2V−1 := 〈·,V−1·〉�

define norms in H−1/2(�) and H1/2(�), respectively. These norms are equivalent to
the usual ones.
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900 C. Erath et al.

We consider a weak form of the model problem (1) in terms of boundary integral
operators. For that we use the non-symmetric approach, i.e, calculate the weak for-
mulation of the interior problem and replace the interior conormal derivative by the
exterior φ := ∂ue/∂n|� and the corresponding jump relations t0, (1f)–(1g). Second,
we take the weak form of (4) and replace the exterior trace ue|� by the interior trace
u|� and the jump u0, (1e). Then the coupling reads: find u ∈ H1(�), φ ∈ H−1/2(�)

such that

A(u, v) − 〈φ, v〉� = ( f, v)� + 〈t0, v〉�, (5a)

〈ψ, (1/2 − K)u〉� + 〈ψ,Vφ〉� = 〈ψ, (1/2 − K)u0〉� (5b)

for all v ∈ H1(�), ψ ∈ H−1/2(�). The bilinear form in (5a) is given by

A(u, v) := (A∇u − bu,∇v)� + (cu, v)� + 〈b · n u, v〉�out .

Lemma 1 The bilinear form A is coercive (in the H1(�) norm and H1(�) semi-
norm, respectively) and continuous on H1(�) × H1(�), i.e., for all v,w ∈ H1(�)

and γ (x) from assumption (2) there holds

A(v, v) ≥

⎧
⎪⎪⎨

⎪⎪⎩

CA,1‖v‖2H1(�)
for γ (x) > 0 almost everywhere in �,

C�
A,1‖v‖2

H1(�)
for γ (x) > 0 on ω � �, |ω| > 0, γ (x) = 0 elsewhere,

C ′
A,1‖∇v‖2

L2(�)
for γ (x) = 0 almost everywhere in �,

(6)

|A(w, v)| ≤ CA,2‖w‖H1(�)‖v‖H1(�). (7)

Here, the constants CA,1 = min{λmin(A), inf x∈� γ (x)} > 0, C ′
A,1 = λmin(A) > 0

and CA,2 > 0, depend on the data A, b and c. The constant C�
A,1 = min{λmin(A),

C(γ (x), ω,�)} > 0 depends additionally on the constant C(γ (x), ω,�) > 0, which
is not known but depends on γ (x) > 0 in ω, ω, and �.

Proof There holds

∫

�out
b · n v2 ds ≥ 1

2

∫

�

b · n v2 ds = 1

2

∫

�

div (bv2) dx

= 1

2
((div b)v, v)� + (bv,∇v)�.

If 1
2div b(x) + c(x) ≥ γ (x) > 0 of assumption (2) is positive almost everywhere in

�, it follows that

A(v, v) ≥ (A∇v,∇v)� + 1

2
((div b)v, v)� + (cv, v)� ≥ CA,1‖v‖2H1(�)

.
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Non-symmetric FVM-BEM coupling 901

If γ (x) > 0 holds on a set ω � � of positive measure but γ (x) = 0 on �\ω, we
can use a compactness argument (or the Deny–Lions theorem) to prove coercivity of
A in H1(�). Then the coercivity constant C�

A,1 is not known. When γ (x) = 0 almost

everywhere in �, we only obtain coercivity of A with respect to the H1 semi-norm
and the constant C ′

A,1. Using simple arguments, the continuity bound (7) can be easily
proved with

CA,2 = 2max
{‖A‖L∞(�)d×d , ‖b‖L∞(�), ‖c‖L∞(�)

} + C2
�‖b · n‖L∞(�out ),

where C� is the norm of the trace operator H1(�) → L2(�out ). �
For convenience the system (5a)–(5b) can be written in the product space

H = H1(�)× H−1/2(�) as follows: we introduce the bilinear form B : H×H → R

B((u, φ); (v, ψ)) := A(u, v) − 〈φ, v〉� + 〈ψ, (1/2 − K)u〉� + 〈ψ,Vφ〉�, (8)

and the linear functional

F((v, ψ)) := ( f, v)� + 〈t0, v〉� + 〈ψ, (1/2 − K)u0〉�. (9)

Then (5a)–(5b) is equivalent to: find u ∈ H such that

B(u; v) = F(v) for all v ∈ H. (10)

With integration by parts we calculate

B(v; v) = (A∇v,∇v)� + (( 1
2div b + c

)
v, v

)
�

− 〈b · n v, v〉�in + 〈b · n v, v〉�out

− 〈ψ, v〉� + 〈ψ, (1/2 − K)v〉� + 〈ψ,Vψ〉�,

and thus we see

B((1, 0); (1, 0)) =
∫

�

( 1
2div b + c

)
dx +

∫

�

|b · n| ds.

Thus if 1
2div b + c = 0 in � and b · n = 0 on � (in particular, when b = (0, 0)T and

c = 0), it follows that B((1, 0); (1, 0)) = 0. This lack of coercivity will be remedied
using an equivalent variational problem for the sake of analysis.

Therefore, we define the linear operator

P((v, ψ)) := 〈1, (1/2 − K)v + Vψ〉� =
∫

�

((1/2 − K)v + Vψ) ds

and introduce a parameter β depending on γ (x) of assumption (2);

β :=
{
1 if γ (x) = 0 almost everywhere in �,

0 else.
(11)
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902 C. Erath et al.

Then the β-dependent perturbation of the bilinear form B(u, v) is

B̃ (u; v) := B(u, v) + β P(u) P(v), (12)

and of the linear map F(v)

F̃(v) := F(v) + β〈1, (1/2 − K)u0〉� P(v). (13)

Thus a stabilized variational formulation is given by: find u ∈ H such that

B̃ (u; v) = F̃(v) for all v ∈ H. (14)

Note that this type of stabilization has also been considered in [22] and [1]. We
emphasize that this formulation is introduced purely for theoretical purposes, and
the discretization will be applied directly on (5a)–(5b).

Lemma 2 The variational formulation (10) and the stabilized version in (14) are
equivalent.

Proof The equivalence of formulations was stated in [1, Theorem 14] for a pure diffu-
sion problem. The convection and reaction terms in the bilinear form A do not affect
the proof. We note that we will see a similar result for the FVM–BEM discretization
in Lemma 4. �

The next theorem on the coercivity of the bilinear form B̃ is an extended and
improved version of the one stated in [22, Theorem 3.1] and [1, Theorem 15] for a
purely diffusive problem. We extend it by the convection and reaction terms in the
bilinear form and present an improved ellipticity constant compared to [22, Theo-
rem 3.1]. This is possible due to some modification of the proof inspired by [23].
Before we state the theorem, we recall an important contractivity result for the double
layer operator [22, Lemma 2.1] with the contraction constant CK from [29]: there
exists CK ∈ [1/2, 1) such that

‖(1/2 + K)v‖2V−1 ≤ CK〈V−1(1/2 + K)v, v〉�. (15)

Furthermore, we define for β = 0

Cbc :=
{
inf
x∈�

γ (x) for γ (x) > 0 almost everywhere in �,

C(γ (x), ω,�) for γ (x) > 0 on ω � �, |ω| > 0, γ (x) = 0 elsewhere
(16)

with γ (x) from assumption (2) and the unknown constant C(γ (x), ω,�) > 0 intro-
duced in Lemma 1.
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Non-symmetric FVM-BEM coupling 903

Theorem 1 If λmin(A) > CK/4, then B̃ is H-elliptic. More precisely, for all v =
(v, ψ) ∈ H holds

B̃ (v; v) ≥ Cstab

[
‖∇v‖2L2(�) + (1 − β)‖v‖2L2(�) + β P(v)2 + ‖ψ‖2V

]
. (17)

The stability constant Cstab reads

Cstab =
⎧
⎨

⎩

min
{

Cbc,
1
2

[
λmin(A) + 1 − √

(λmin(A) − 1)2 + CK
]}

for β = 0,

min
{
1, 1

2

[
λmin(A) + 1 − √

(λmin(A) − 1)2 + CK
]}

for β = 1

and depends on the model data A, b, c, and the contraction constant CK.

Remark 2 The right-hand side in (17) defines an equivalent norm in H. While this is
obvious for β = 0, a simple compactness argument (see [1, Lemma 10 and (65)] for
a similar argument) shows the equivalence for β = 1. Note that we only do not know
the constant Cstab explicitly in the second case of (16).

Proof The proof is in the spirit of previous publications [1,22,23] on the non-
symmetric FEM–BEM coupling, but extended here for the different interior model
problem. Therefore, we only present the key points.

An element v ∈ H1(�) can be decomposed as a sum v = v� + v0, where v� is
harmonic and v0 ∈ H1

0 (�). Thus (∇v�,∇w)� = 0 for allw ∈ H1
0 (�), which implies

that

‖∇v‖2L2(�)
= ‖∇v0‖2L2(�)

+ ‖∇v�‖2L2(�)
= ‖∇v0‖2L2(�)

+ 〈Sintv, v〉�, (18)

where Sint := V−1(1/2+K) denotes the Steklov–Poincaré operator, i.e., the Dirichlet
to Neumann map of the interior Laplace problem. The term 〈Sintv, v〉� will help to
compensate possible negative contributions of the non-symmetric coupling to the total
energy of the system. Let us first recall our choice of β depending on γ (x) in (11)
and the definition of Cbc in (16). This allows us to write the coercivity estimate of
Lemma 1 as

A(v, v) ≥ λmin(A)‖∇v‖2L2(�)
+ (1 − β)Cbc‖v‖2L2(�) for all v ∈ H1(�).

Following [22] and using (15), we can easily estimate

〈ψ, (1/2 + K)v〉� = 〈Vψ,V−1(1/2 + K)v〉�
≤ ‖V−1(1/2 + K)v‖V‖ψ‖V = ‖(1/2 + K)v‖V−1‖ψ‖V
≤ C1/2

K 〈Sintv, v〉1/2� ‖ψ‖V
for all (v, ψ) ∈ H. Therefore, for all v = (v, ψ) ∈ H, we can estimate

B̃ (v; v) = A(v, v) + 〈ψ,Vψ〉� − 〈ψ, (1/2 + K)v〉� + β P(v)2
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≥ λmin(A)‖∇v‖2L2(�) + (1 − β)Cbc‖v‖2L2(�) + β P(v)2

+ ‖ψ‖2V − C1/2
K 〈Sintv, v〉1/2� ‖ψ‖V

≥ λmin(A)‖∇v0‖2L2(�) + (1 − β)Cbc‖v‖2L2(�) + β P(v)2

+
(〈Sintv, v〉1/2�‖ψ‖V

)� (
λmin(A) − 1

2

√
CK

− 1
2

√
CK 1

)(〈Sintv, v〉1/2�‖ψ‖V
)

,

where in the last inequality we have used the harmonic splitting (18). Since λmin(A) >

0, the quadratic form in the right-hand side of the above estimate is positive definite
if and only if

∣
∣
∣
∣
λmin(A) − 1

2

√
CK

− 1
2

√
CK 1

∣
∣
∣
∣ = λmin(A) − 1

4
CK > 0.

Calculating the smallest eigenvalue of the matrix above, we can bound

B̃ (v; v) ≥ Cstab

(
‖∇v0‖2L2(�) + 〈Sintv, v〉� + (1 − β)‖v‖2L2(�)

+β P(v)2 + ‖ψ‖2V
)

,

which, using (18), is the estimate of the statement of the theorem. �

Remark 3 Note that this result also improves the estimate of [22, Theorem 3.1] for
a pure diffusion problem in �. The smallest eigenvalue in Cstab in the case β = 1 is
observed to be sharp in the numerical experiments of [22], contrary to the constant
reported therein.

Using the boundedness of A in (7) and mapping properties of the integral operators,
it is easy to conclude that the bilinear form B̃ defined in (12) and the linear form F̃
in (13) are bounded. Thus we can conclude the unique solvability of (14). Due to
the equivalence of the formulations in Lemma 2, the original variational formulation
(5a)-(5b) is uniquely solvable.

Remark 4 Note that the equivalence of (14) and (10) shown in Lemma 2 and the
ellipticity estimate (17) also hold true on the discrete level, if the constants are in the
discretization space of H−1/2(�). In other words, a possible FEM–BEM coupling
solution, as shown in Remark 7, exists and is unique and the Céa Lemma applies.

3 A non-symmetric FVM–BEM coupling

In this section we develop a FVM–BEM coupling discretization in the sense of a
non-symmetric coupling approach. From now on we assume t0 ∈ L2(�). First, let us
introduce the notation for the triangulation and some discrete function spaces.
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3.1 Triangulation

Throughout, T denotes a triangulation or primal mesh of �, and N and E are the
corresponding set of nodes and edges/faces, respectively. The elements T ∈ T are
non-degenerate triangles (2-D case) or tetrahedra (3-D case), and considered to be
closed. For the Euclidean diameter of T ∈ T we write hT := supx,y∈T |x − y|.
Moreover, hE denotes the length of an edge or Euclidean diameter of E ∈ E . The
triangulation is regular in the sense of Ciarlet [6], i.e., the ratio of the diameter hT

of any element T ∈ T to the diameter of its largest inscribed ball is bounded by a
constant independent of hT , the so called shape-regularity constant. Additionally, we
assume that the triangulation T is aligned with the discontinuities of the coefficients
A, b, and c of the differential equation (if any), the data f , u0, and t0. Throughout,
if n appears in a boundary integral, it denotes the unit normal vector to the boundary
pointing outward the domain.We denote by ET ⊂ E the set of all edges/faces of T , i.e.,
ET := {

E ∈ E
∣
∣ E ⊂ ∂T

}
and by E� := {

E ∈ E
∣
∣ E ⊂ �

}
the set of all edges/faces

on the boundary �.

Dual mesh
We construct the dual mesh T ∗ from the primal mesh T as follows. In two dimensions
we connect the center of gravity of an element T ∈ T with the midpoint of the edges
E ∈ ET ; see Fig. 1a, where the dashed lines are the new boxes, called control volumes.
In three dimensions we connect the center of gravity of an element T ∈ T with the
centers of gravity of the four faces E ∈ ET . Furthermore, each center of gravity of a
face E ∈ ET is connected by straight lines to themidpoints of its edges. The elements of
this dual mesh T ∗ are taken to be closed. Note that they are non-degenerate domains
because of the non-degeneracy of the elements of the primal mesh. Given a vertex

V1

V2

V3

V4

V5

V6

V7

a1

a2

a3

a4 a5

a6

a7

(a) Constructions of T ∗.

V1

V3

V4

V7

a1

a3

a4

a7

τ17

τ34

(b) Edges for upwinding.

Fig. 1 The construction of the dual mesh T ∗ from the primal mesh T in two dimensions with the center of
gravity point in the interior of the elements in (a); the dashed lines (gray boxes) are the new control volumes
Vi of T ∗ and are associated with ai ∈ N . In (b) we see an example intersection τ17 = V1 ∩ V7 �= ∅ of two
neighboring cells V1, V7 ∈ T ∗, where τ17 is the union of two straight segments. For a3, a4 ∈ N , where
both a3 and a4 lie on �, τ34 = V3 ∩ V4 �= ∅ is only a single segment
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906 C. Erath et al.

ai ∈ N from the primal mesh T (i = 1 . . . #N ), there exists a unique box containing
ai . We thus number the elements of the dual mesh Vi ∈ T ∗, following the numbering
of vertices.

Remark 5 In two dimensions, instead of starting the construction of the boxes in the
center of gravity, we can use the center of the circle circumscribed to the element. Con-
necting these points with the midpoints of the edges we form the so called Voronoi
or perpendicular bisector meshes, since the connection between to neighbor’s circum-
scribed circle points is perpendicular to the shared edge. Our analysis works with such
meshes as well.

Discrete function spaces
We define with S1(T ) := {

v ∈ C(�)
∣
∣ v|T affine for all T ∈ T

}
the piecewise

affine and globally continuous function space on T . The space P0(E�) is the E�-
piecewise constant function space. On the dual mesh T ∗ we provide P0(T ∗) :={
v ∈ L2(�)

∣
∣ v|V constant V ∈ T ∗}. With the aid of the characteristic function χ∗

i
over the volume Vi ∈ T T ∗ we write for v∗

h ∈ P0(T ∗)

v∗
h =

∑

xi ∈N
viχ

∗
i ,

with real coefficients vi . Furthermore, we define the T ∗-piecewise constant interpo-
lation operator

I∗
h : C(�) → P0(T ∗), I∗

h v :=
∑

ai ∈N
v(ai )χ

∗
i (x). (19)

Because of the construction of the dual mesh from the primal mesh and the definition
of I∗

h there hold the well known results:

Lemma 3 Let T ∈ T and E ∈ ET . For vh ∈ S1(T ) there holds

∫

E
(vh − I∗

h vh) ds = 0, (20)

‖vh − I∗
h vh‖L2(T ) ≤ hT ‖∇vh‖L2(T ), (21)

‖vh − I∗
h vh‖L2(E) ≤ Ch1/2

E ‖∇vh‖L2(T ), (22)

where the constant C > 0 depends only on the shape regularity constant.

Proof The proofs are standard. Note that for (20) we need the fact, that the dual mesh
T ∗ is constructed through the midpoint of an edge E ∈ E in the two dimensional case
and the center of gravity point if E is a face in the three dimensional case. A proof
of (21) can be found in [10], and (22) follows from (21) through the standard trace
inequality. Note that the above statements are independent of the choice of the interior
point in T ∈ T for the T ∗ construction. �
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Non-symmetric FVM-BEM coupling 907

3.2 The discrete system

A classical finite volume discretization describes numerically a conservation law of
the model problem, i.e., a quantity in a volume can only change due to the inflow
and outflow flux balance through its boundary. More precisely, for our model problem
we integrate (1a) over each dual control volume V ∈ T ∗ and apply the divergence
theorem. If we use the transmission condition (1f)–(1g) we thus get a balance equation
for the interior problem

∫

∂V \�
(−A∇uh + buh) · n ds +

∫

V
cuh dx

+
∫

∂V ∩�out
b · n uh ds −

∫

∂V ∩�

φh ds =
∫

V
f dx +

∫

∂V ∩�

t0 ds (23)

for all V ∈ T ∗. Note that the discretization in the interior domain follows along the
dual mesh T ∗. Here, uh ∈ S1(T ) andφh ∈ P0(E�) approximate u andφ, respectively.
We can rewrite (23) in terms of a variational formulation;

AV (uh, vh) − 〈φh, I∗
h vh〉� = ( f, I∗

h vh)� + 〈t0, I∗
h vh〉�

with the finite volume bilinear form AV : S1(T ) × S1(T ) → R given by

AV (uh, vh) :=
∑

ai ∈N
vh(ai )

(∫

∂Vi \�
(−A∇uh + buh) · n ds

+
∫

Vi

cuh dx +
∫

∂Vi ∩�out
b · n uh ds

)
. (24)

Remark 6 Note that the trial and test spaces are different in practice. The test functions
in the finite volume part are inP0(T ∗), which is realized by taking nodal values vh(ai )

in (24) and by interpolation I∗
h vh ∈ P0(T ∗) for vh ∈ S1(T ). We have chosen the

above definition to simplify the notation below.

To complete the coupling formulation we choose as in the classical non-symmetric
FEM–BEM formulation the BEM equation (4) and replace the continuous ansatz and
test spaces by discrete subspaces. Finally, the discrete system reads: find uh ∈ S1(T )

and φh ∈ P0(E�) such that

AV (uh, vh) − 〈φh, I∗
h vh〉� = ( f, I∗

h vh)� + 〈t0, I∗
h vh〉�, (25a)

〈ψh, (1/2 − K)uh〉� + 〈ψh,Vφh〉� = 〈ψh, (1/2 − K)u0〉� (25b)

for all vh ∈ S1(T ), ψh ∈ P0(E�).
As in the continuous case we write the system in a more compact way. We consider

the product spaceHh := S1(T ) ×P0(E�). The bilinear form BV : Hh ×Hh → R is
given by
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BV ((wh, φh); (vh, ψh)) := AV (wh, vh) − 〈φh, I∗
h vh〉�

+ 〈ψh, (1/2 − K)wh〉� + 〈ψh,Vφh〉�,

and the linear functional FV : Hh → R is given by

FV ((vh, ψh)) := ( f, I∗
h vh)� + 〈t0, I∗

h vh〉� + 〈ψh, (1/2 − K)u0〉�. (26)

The (25a)–(25b) is equivalent to: find uh ∈ Hh such that

BV (uh; vh) = FV (vh) for all vh ∈ Hh . (27)

3.3 Upwind scheme

In general it is a non trivial task to get a stable discrete solution for convection
dominated problems. Finite volume schemes, however, allow an easy upwind sta-
bilization [24]. If we want to apply an upwind scheme for the finite volume scheme,
we replace buh on the interior dual edges/faces Vi\� in AV (24) by an upwinded
approximation. Given Vi ∈ T ∗, we consider the intersections with the neighboring
cells τi j = Vi ∩ Vj �= ∅ for Vj ∈ T ∗. Note that in two dimensions τi j is the union of
two straight segments or (when the associated vertices ai , a j ∈ N lie on �) a single
segment; see Fig. 1b. In three dimensions τi j consists of one or two polygonal surfaces.
We then compute the averages

βi j := 1

|τi j |
∫

τi j

b · ni ds, Ai j := 1

|τi j |
∫

τi j

A ds,

where ni points outward with respect to Vi , and the parameter

λi j := �(βi j |τi j |/‖Ai j‖∞),

for a weight function � : R → [0, 1], which is being applied to the Péclet number.
Then we consider the value

uh,i j := λi j uh(ai ) + (1 − λi j )uh(a j )

instead of uh when restricted to τi j ⊂ ∂Vi \ �. In this work we choose the upwind
value defined by the classical (full) upwind scheme by

�(t) := (sign(t) + 1)/2, (28)

i.e., λi j = 1 for βi j ≥ 0 and λi j = 0 otherwise. A second choice will be

�(t) :=
⎧
⎨

⎩

min
{
2|t |−1, 1

}
/2 for t < 0,

1 − min
{
2|t |−1, 1

}
/2 for t ≥ 0,

(29)
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Non-symmetric FVM-BEM coupling 909

where we can steer the amount of upwinding to reduce the excessive numerical diffu-
sion. Whenever we apply an upwind scheme for the convection part, we replace the
finite volume bilinear form AV in the system (25a)–(25b) by

Aup
V (uh, vh) :=

∑

ai ∈N
vh(ai )

⎛

⎝
∫

∂Vi \�
−A∇uh · n ds +

∫

Vi

cuh dx

+
∑

j∈Ni

∫

τi j

b · n uh,i j ds +
∫

∂Vi ∩�out
b · n uh ds

⎞

⎠ ,

(30)

where Ni denotes the index set of nodes in T of all neighbors of ai ∈ N .

4 Stability and convergence

In this section we want to introduce a stabilized FVM–BEM coupling version of (27)
for analysis purposes only. As in (14) we use the “implicit theoretical” stabilization
of [1].

Similar as above we define B̃V : Hh × Hh → R and F̃V : Hh → R by

B̃V (uh; vh) := BV (uh; vh) + β P(uh)P(vh), (31)

F̃V (vh) := FV (vh) + β〈1, (1/2 − K)u0〉� P(vh). (32)

Then the stabilized FVM–BEM coupling reads: find uh ∈ Hh , such that

B̃V (uh; vh) = F̃V (vh) for all vh ∈ Hh . (33)

Remark 7 The discretized version of the stabilized FEM–BEM coupling reads with
the stabilized weak form (14): find uh,F E M ∈ Hh such that

B̃
(
uh,F E M ; vh

) = F̃(vh) for all vh ∈ Hh .

See also Remark 4.

In the spirit of Lemma 2 and [1, Theorem 14] we can state the equivalence of the
two presented FVM–BEM formulations.

Lemma 4 The FVM–BEM coupling (27) and its stabilization (33) are equivalent. The
statement is also true if we replace AV by Aup

V in the corresponding bilinear forms.

Proof In case of β = 0 the two formulations are obviously the same. Thus we only
have to consider β = 1. If uh = (uh, φh) is a solution of (27), testing with vh = (0, 1)
it follows that

P(uh) = 〈1, (1/2 − K)uh + Vφh〉� = 〈1, (1/2 − K)u0〉�, (34)
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which means that we can add the stabilization term to (27) to get the stabilized ver-
sion (33). Reciprocally, testing (33) with vh = (0, 1), it follows that

P(uh)(1 + 〈1,V1〉�) = 〈1, (1/2 − K)u0〉�(1 + 〈1,V1〉�).

Since the single layer operator is coercive, (34) follows and we can eliminate the β-
dependent term in (33) to get (27). Note that the proof is independent of the particular
choice of the finite volume bilinear form, and it therefore holds for Aup

V as well. �
The idea of our analysis is to estimate the difference of the stabilized FEM–BEM

coupling and the stabilized FVM–BEM coupling. For that we need the following
two estimates, which are standard in the context of FVM [5,11,15] with the above
constructed dual mesh, but here extended to the coupling problem.

Lemma 5 For the difference of the right-hand side of (9) and (26), there holds

|F(vh) − FV (vh)| ≤ C

⎛

⎝
∑

T ∈T
hT ‖ f ‖L2(T )‖∇vh‖L2(T )

+
∑

E∈E�

h1/2
E ‖t0 − t0‖L2(E)‖∇vh‖L2(TE )

⎞

⎠ (35)

for all vh = (vh, ψh) ∈ Hh with a constant C > 0, which depends only on the shape
regularity constant. Here, t0 is the E�-piecewise integral mean of t0 and TE is the
element associated with E.

Proof It is easy to see that from (9) and (26) we get

|F(vh) − FV (vh)| = |( f, vh − I∗
h vh)� + 〈t0, vh − I∗

h vh〉�|.

The triangle inequality and the Cauchy–Schwarz inequality and (20)–(22) lead to the
assertion. �

The next lemma gives us an estimate between the weak and the finite volume
bilinear form for a function vh ∈ S1(T ).

Lemma 6 Let us assume thatb·n is piecewise constant on�in , i.e.,b·n|�in ∈ P0(E in
� ).

For all vh, wh ∈ S1(T ) there hold

|A(wh, vh) − AV (wh, vh)| ≤ C1

∑

T ∈T

(
hT ‖wh‖H1(T )‖vh‖H1(T )

)
, (36)

|A(wh, vh) − Aup
V (wh, vh)| ≤ C2

∑

T ∈T

(
hT ‖wh‖H1(T )‖vh‖H1(T )

)
, (37)

with constants C1, C2 > 0, depending only on the model data A, b, c, and on the
shape regularity constant.
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Proof Let us define v∗
h := I∗

h vh ∈ P0(T ∗). Using integration by parts for A(wh, vh)

and AV (wh, vh) the lines in the proof of [11, Lemma 5.2] show with (20)

A(wh, vh) − AV (wh, vh)

=
∑

T ∈T

⎛

⎝(−(div A)∇wh + (div b)wh + b · ∇wh + cwh, vh − v∗
h)T

+
∑

E∈ET

((A − A)∇wh · n, vh − v∗
h)E

−
∑

E∈ET ∩�in

(b · n(wh − wh), vh − v∗
h)E

⎞

⎠ . (38)

Here, div A is the divergence operator applied to the columns of A, A =
(1/|T |) ∫

T A dx , i.e., [11, Lemma 5.2] applies also for the piecewise integral means
of the entries in A on T , and wh ∈ P0(E�) is the best L2(�) approximation of wh .
With the fact that ∇wh as well as the outer normal vector n of T are constant on E ,
we prove with standard approximation arguments

|A(wh, vh) − AV (wh, vh)| ≤
∑

T ∈T
CT

(
‖wh‖H1(T )‖vh − v∗

h‖L2(T )

+
∑

E∈ET

‖A − A‖L∞(T )‖∇wh‖L2(E)‖vh − v∗
h‖L2(E)

+
∑

E∈ET ∩E in
�

‖wh − wh‖L2(E)‖vh − v∗
h‖L2(E)

)
.

Here, the constant CT > 0 only depends on the shape regularity constant, and
the model data A, b, and c. Next we note that there holds ‖A − A‖L∞(T ) ≤
ChT ‖A‖W 1,∞(T ), i.e., the Poincaré inequality in W 1,∞(T ) applies because of the
uniform continuity of A|T ; see [14, proof for equation (34)]. Together with the stan-
dard scaling inequalities ‖∇wh‖L2(E) ≤ Ch−1/2

E ‖∇wh‖L2(T ) and ‖wh −wh‖L2(E) ≤
Ch1/2

T ‖∇wh‖L2(T ), (21)–(22), we prove (36). To prove (37) we write

|A(wh, vh) − Aup
V (wh, vh)| ≤ |A(wh, vh) − AV (wh, vh)|

+ |AV (wh, vh) − Aup
V (wh, vh)|.

Note that we can directly apply (36) for the first and [11, Lemma 6.1] for the second
difference to show (37). �
Remark 8 If A is T -piecewise constant, all parts with A vanish in (38) because of
div A = 0 and (20) since ∇wh is constant. This is well-known and if b = (0, 0)T and
c = 0 there even holds A(wh, vh) = AV (wh, vh), see, e.g., [2,18].
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Collecting all the results together we prove:

Lemma 7 Let us assume thatb·n is piecewise constant on�in , i.e.,b·n|�in ∈ P0(E in
� ).

For all wh = (wh, ξh) ∈ Hh and vh = (vh, ψh) ∈ Hh there holds

|B̃ (wh; vh) − B̃V (wh; vh) | ≤ C
∑

T ∈T

(
hT ‖wh‖H1(T )‖vh‖H1(T )

)
(39)

with a constant C > 0, which depends only on the model data A, b, c, and the
shape regularity constant. The statement is also true if we replace AV by Aup

V in the
corresponding bilinear forms.

Proof We estimate

|B̃ (wh; vh) − B̃V (wh; vh) | = |A(wh, vh) − AV (wh, vh) − 〈ξh, vh − I∗
h vh〉�|

≤ C
∑

T ∈T

(
hT ‖wh‖H1(T )‖vh‖H1(T )

)
,

where we used (36) and (20) since ξh ∈ P0(E�). Using (37), the proof with Aup
V

follows from this bound. �
Theorem 2 (Stability) There exists H > 0 such that the following statement is valid
provided that T is sufficiently fine, i.e., h := maxT ∈T hT < H: Let λmin(A) >

CK/4 with the contraction constant CK ∈ [1/2, 1) of the double layer potential.
Furthermore, let b · n be piecewise constant on �in , i.e., b · n|�in ∈ P0(E in

� ). Then,
there exists a constant CVstab > 0 such that

B̃V (vh; vh) ≥ CVstab‖vh‖2H for all vh ∈ Hh . (40)

The constant CVstab > 0 depends only on the model data A, b, c, the contraction
constant CK, and the shape regularity constant. In particular, existence and uniqueness
of the discrete solution uh = (uh, φh) ∈ Hh = S1(T ) × P0(E�)) of our FVM–BEM
coupling (27) follow directly from Lemma 4. The statement also holds if we replace
AV by Aup

V in the corresponding bilinear forms.

Proof From (39) we see with C ′ > 0

B̃V (vh; vh) ≥ B̃ (vh; vh) − C ′h‖vh‖2H1(�)
.

The stability estimate (17) provides B̃ (vh; vh) ≥ C ′
stab‖vh‖2H with C ′

stab > 0, which
proves the coercivity estimate for h small enough. The proof with Aup

V is the same. �
Theorem 3 (A priori convergence estimate) There exists H > 0 such that the follow-
ing statement is valid provided that T is sufficiently fine, i.e., h := maxT ∈T hT < H:
Let λmin(A) > CK/4 with the contraction constant CK ∈ [1/2, 1) of the double layer
potentialK. Furthermore, letb·n be piecewise constant on�in , i.e.,b·n|�in ∈ P0(E in

� ).
For the solution u = (u, φ) ∈ H = H1(�) × H−1/2(�) of our model problem (10)
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and the discrete solution uh = (uh, φh) ∈ Hh = S1(T )×P0(E�)) of our FVM–BEM
coupling (27) there holds

‖u − uh‖H
≤ Cest

(
h‖ f ‖L2(�)+h1/2‖t0 − t0‖L2(�) + (1 + h) inf

vh∈Hh

‖u − vh‖H + h‖u‖H
)

,

where t0 is the E�-piecewise integral mean of t0. The constant Cest > 0 depends only
on the model data A, b, c, the contraction constant CK, and the shape regularity
constant. In particular, if u ∈ H2(�), φ ∈ H1/2(E�), and t0 ∈ H1/2(E�), where

H1/2(E�) :=
{
v ∈ L2(�)

∣
∣ v|E ∈ H1/2(E) for all E ∈ E�

}
,

we have first order convergence

‖u − uh‖H = O(h).

The statement is also true if we replace AV by Aup
V in the corresponding bilinear

forms.

In the following proof of Theorem 3, we write the symbol �, if an estimate holds
up to a multiplicative constant, which depends only on the model data A, b, c, the
contraction constant CK, and the shape regularity constant.

Proof For arbitrary vh = (vh, ψh) ∈ Hh we definewh = (wh, ϕh) := uh −vh ∈ Hh .
Then we get with (40)

‖uh − vh‖2H � B̃V (uh;wh) − B̃V (vh;wh)

= F̃V (wh) − F̃(wh) + B̃ (u;wh) − B̃V (vh;wh) ,

where we used the finite volume discrete system (33) and the FEM–BEM bilinear
from (14) with discrete test functions wh ∈ Hh . We remind that the solution of (10)
and the discrete solution of (27) are equivalent to the solutions of (14) and (33),
respectively; see Lemma 2 and Lemma 4. Since F̃V (wh)− F̃(wh) = FV (wh)−F(wh)

we apply (35) and insert vh to estimate

‖uh − vh‖2H � h‖ f ‖L2(�)‖∇wh‖L2(�) + h1/2
E�

‖t0 − t0‖L2(�)‖∇wh‖L2(�)

+ B̃ (u − vh;wh) + B̃ (vh;wh) − B̃V (vh;wh) ,

where hE�
:= maxE∈E�

hE . For the third to last term on the right-hand side we apply
the boundedness of B̃ and we estimate the last two terms with (39). Thus we obtain

‖uh − vh‖2H � h‖ f ‖L2(�)‖∇wh‖L2(�) + h1/2
E�

‖t0 − t0‖L2(�)‖∇wh‖L2(�)

+ ‖u − vh‖H‖wh‖H + h‖vh‖H1(�)‖wh‖H1(�).
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Finally with ‖wh‖H1(�) ≤ ‖wh‖H = ‖uh − vh‖H we get

‖uh − vh‖H � h‖ f ‖L2(�) + h1/2
E�

‖t0 − t0‖L2(�) + ‖u − vh‖H + h‖vh‖H1(�).

With ‖vh‖H1(�) ≤ ‖u − vh‖H + ‖u‖H and

‖u − uh‖H ≤ ‖u − vh‖H + ‖uh − vh‖H

we get the assertion with hE�
≥ h. The proof with Aup

V is the same. �
Remark 9 In [11, see Remark 5.1], where we consider a FVM–BEM coupling with a
three field coupling approach, we have the constraint φ ∈ L2(�) in the case γ (x) = 0
from assumption (2) to get convergence and an error estimate. Note that this regularity
is not needed therein to prove existence and uniqueness, see [11, see Remark 5.2].
Furthermore, there is also an additional assumption necessary in the case γ (x) = 0,
namely div b + c = 0 in � and b · n = 0 on �in . Thus Theorem 2, which essentially
shows existence and uniqueness of a discrete solution, and Theorem 3 for our non-
symmetric FVM–BEM coupling are much stronger than what is available for the
three field FVM–BEM coupling. However, the constraint λmin(A) > CK/4 on the
eigenvalues of A is not needed for the three field FVM–BEM coupling.

5 Numerical results

In this section we verify our new coupling with three examples in two dimensions.
We stress that in all experiments we consider the discrete FVM–BEM system (25a)–
(25b) and (27), respectively, where we replaceAV defined in (24) by the upwind form
Aup

V defined in (30) if we use an upwind scheme for the convection part. We mention
once again, that the equivalent stabilized FVM–BEM system (33) is only needed for
theoretical reasons.

All the numerical experiments are done in Matlab on a standard laptop with
a dual core 2.8 GHz processor and 16 GB memory. Only the implementation of
the matrices resulting from the V and K expressions is done in C using the mex-
interface ofMatlab [11,12]. As introduced earlier, we use the equivalence of norms,
i.e., ‖φ − φh‖2

H−1/2(�)
∼ ‖φ − φh‖2V := 〈V(φ − φh), φ − φh〉� , to calculate the

conormal error φ − φh . Then ‖φ − φh‖V leads to an approximation of a double
integral by quadrature. The details can be found in [10–12]. In all experiments and
in each iteration, T consists of triangles, which are up to rotation congruent. In this
work we only consider uniform mesh refinement, i.e., we divide all triangles by four
triangles.

5.1 Mexican hat problem

We consider the square � = (−1/4, 1/4)2. We take the exact solution to be
u(x1, x2) = (1−100x21−100x22 )e

−50(x21+x22 ) in the interior domain� and ue(x1, x2) =
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Fig. 2 The error ‖∇(u − uh)‖L2(�) in the H1 semi-norm, the error ‖u − uh‖L2(�) in the L2 norm, and
the conormal error ‖φ − φh‖V in the V norm in the example in Sect. 5.1 for uniform mesh-refinement
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Fig. 3 Interior and exterior solution on an uniformly generated mesh with 4096 elements in the example
in Sect. 5.1
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log
√

x21 + x22 in the exterior domain �e. The diffusion matrix is

A =
(
10 + cos x1 160 x1x2

160 x1x2 10 + sin x2

)
, (41)

and we take b = (0, 0)T and c = 0. Note that in � we have λmin(A) = 0.342278 and
λmax(A) = 10.247271. The right-hand side f and the jumps u0 and t0 are calculated
appropriately.We stress that u and ue are smooth in� and�e, respectively. Therefore,
we expect a convergence order O(h1) for a first order numerical scheme in the H1

norm, where h := maxT ∈T hT denotes the uniform mesh-size. This corresponds to
orderO(N−1/2)with respect to the number of elements N of T . The initial mesh T (0)

consists of 16 triangles. Figure 2 shows the curves of the interior error u−uh in the H1

semi-norm and L2 norm, respectively, and the conormal error of φ−φh in the V norm.
Both axes are scaled logarithmically; i.e., a straight line g with slope −p corresponds
to a dependence g = O(N−p) = O(h2p). The interior H1 semi-norm error leads to
a convergence order O(N−1/2), whereas the corresponding L2 norm error decreases
with O(N−1). Thus, the error in H1 norm behaves like O(N−1/2). The convergence
of the BEM conormal quantity is optimal in the sense ofO(N−3/4) due to the smooth
solution. Altogether we see ‖u − uh‖H = O(N−1/2) = O(h) with u = (u, φ) and
uh = (uh, φh) ∈ Hh , which was shown in Theorem 3 for smooth solutions.

Figure 3 shows the solution in � and parts of �e. We observe the jump on the
coupling boundary � and remark that the BEM solution is generated pointwise with
the aid of the exterior representation formula (3) on a uniform grid. For points on the
boundary � coming from the exterior domain, we use the exterior trace of (3). Note
that instead of (4) this approximated trace reads

ue,h |�(x) = −(Vφh)(x) +
((

K + ϕ

2π

)
(uh − u0)

)
(x) (42)

for a point evaluation x ∈ �, where ϕ is the interior angle of the intersection of the
two tangential vectors in x .

Remark 10 For this example γ (x) = 0 from assumption (2). Thus the analysis needs
the stabilized bilinear form (31) with β = 1 from (11). We also remind that, we have
the condition λmin(A) > CK/4, whereCK ∈ [1/2, 1) is the contraction constant of the
double layer potential K, for our analysis. Note that our A with λmin(A) = 0.342278
fulfills this constraint. If one replace both values of 160 by 165 we get λmin(A) =
0.003033 which contradicts the bound. However, the experiments (not plotted here)
show the right convergence behavior. This confirms similar observations for FEM–
BEM couplings, e.g., [1]. In particular, the bound seems to be a theoretical bound also
for our FVM–BEM coupling approach.

5.2 Convection–diffusion problem

We consider the model problem on the square domain � = (0, 1/2) × (0, 1/2). We
choose a fixed diffusion matrix of A = 0.5 I, a convection field b = (1000x1, 0)T
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Fig. 4 The error ‖∇(u − uh)‖L2(�) in the H1 semi-norm, the error ‖u − uh‖L2(�) in the L2 norm, and
the conormal error ‖φ − φh‖V in the V norm in the example in Sect. 5.2 for uniform mesh-refinement

Fig. 5 Interior and exterior solution with a weighted upwinding stabilization on an uniformly generated
mesh with 4096 elements in the example in Sect. 5.2
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and a reaction coefficient c = 0. Note that for this problem we do not have an inflow
boundary �in and thus (1f) is not needed. For all calculations we use the upwind
discrete coupling with the weighting function � defined in (29). We prescribe an
analytical solution

u(x1, x2) = 0.5

(
1 − tanh

(
0.25 − x1

0.02

))

for the interior domain � and

ue(x1, x2) = log
√

(x1 − 0.25)2 + (x2 − 0.25)2

for the exterior domain �e. We calculate the right-hand side f and the jumps u0 and
t0 appropriately. Note that λmin(A) = 0.5 and that the problem is highly convection
dominated.

The initial mesh T (0) consists of 64 triangles. In Fig. 4 we plot the convergence rate
for uniform mesh-refinement with respect to the number of elements N in T . Since
the interior and exterior solution are smooth as in the previous example in Sect. 5.1,
we observe a similar convergence behavior, in particular, ‖u− uh‖H = O(N−1/2) =
O(h) with u = (u, φ) and uh = (uh, φh) ∈ Hh , which also confirms Theorem 3.
However, due to the strong convection, we have a preasymptotic phase. We want to
mention that without any upwind stabilization, it is not possible to get a stable solution
even for more than 4 million elements, which is the last mesh in our calculation. In
Fig. 5 we plot the interior and exterior solution. To resolve the shock at x1 = 0.25
better and thus to reduce the effects to the exterior domain, one can use adaptive mesh
refinement as in [13]. However, this is beyond this work.

5.3 A more practical example

Our last example is a more practical problem. The model can describe the stationary
concentration of a chemical dissolved and distributed in different fluids, where we
have a convection dominated problem in � and a diffusion distribution in �e. Note
that the interior is a classical model problem and as described above, the coupling with
the exterior problem can “replace” the boundary condition, which might be difficult
to find. Our interior domain� = (−1/4, 1/4)2\([0, 1/4]×[−1/4, 0]) is the classical
L-shape. The diffusion matrix A = α I in � is piecewise constant and reads

α : R × R → R : (x1, x2) �→

⎧
⎪⎨

⎪⎩

10−7 for x2 ≤ 0,

10−6 for x1 > 0,

5 · 10−7 else.

Additionally, we choose b = (15, 10)T and c = 10−2. The source is in the lower
square, i.e., f = 5 for −0.2 ≤ x1 ≤ −0.1, −0.2 ≤ x2 ≤ −0.05, and f = 0
elsewhere. We prescribe the jumps u0 = 0 and t0 = 0. Instead of a logarithmic
radiation condition, we impose that u = a∞+O(1/|x |) and |x | → ∞ for an unknown
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Fig. 6 Aconvection approximationwithout upwinding or any other stabilization leads to strong oscillations
in (a) in the example in Sect. 5.3. In (b) we see the transmission effects of the interior and exterior problem
through a contour line plot

a∞ ∈ R. An exterior solution of the Laplace equation satisfying this type of asymptotic
behavior at infinity must have zero average of the normal derivative on �, see [9]. We
must add a∞ to the representation formulas for the exterior solution (3) and (42),
respectively, and (4) becomes

ue|� = (1/2 + K)ue|� − Vφ + a∞.

Thus we have an additional term 〈ψh, a∞〉� on the left-hand side of (25b) and an
additional equation, which ensures 〈1, φh〉� = 0, as the counterpart. We use the full
upwind scheme, i.e., (28), for the approximation of the convection term and start with
a mesh of 48 triangles. This example is similar to the one in [11, Subsection 7.2] but
with a smaller diffusion. Note that the problem is highly convection dominated and
the analytical solution is unknown. An interior solution without any stabilization is
plotted in Fig. 6a and shows strong oscillations. In Fig. 6b we see the contour lines
based on a solution generated on a mesh T with 49,152 elements. The transport is
mainly from the source f �= 0 in the left lower square in the direction of the convection
b. We also can see the interaction with the exterior domain, hence, the contour lines
are circular. In general, the solution of such a problem may have local phenomena
such as injection wells. As seen in Fig. 7 this leads to step layers on the boundary
(0, 0) to (0,−1/4), due to the convection in this direction and the different diffusion
coefficient of the interior and exterior problem. Since we consider here a domain with
a reentrant corner and model data with jumps, it is well known that uniform mesh
refinement can not guarantee optimal convergence rates, i.e., u /∈ H2(�). An adaptive
mesh refinement steered through a robust a posteriori estimator could lead to a more
accurate solution as one can find in a similar example for the FVM–BEM three field
coupling approach in [13].
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Fig. 7 Interior and exterior solution with full upwinding stabilization on an uniformly generated mesh with
3072 elements in the example in Sect. 5.3

6 Conclusions

We presented a new FVM–BEM coupling method based on the non-symmetric
approach to solve a transmission problem, i.e., a convection diffusion reaction prob-
lem in an interior domain coupled with a diffusion process in an unbounded exterior
domain. The resulting schememaintains local flux conservation, also in the case when
an upwind scheme for convection dominated problems is used. We showed ellipticity
of the continuous and discrete system or for some model configurations the ellipticity
of their equivalent stabilized system. Additionally, we could improve the theoretical
elliptic constant from previous works. Note that the stabilized FVM–BEM system
was only used for theoretical purposes. This allowed us to show existence and unique-
ness, convergence, and an a priori estimate. We stress that for some critical model
configurations the assumptions on the data and regularity of the unknown solution are
weaker than for the comparable three field FVM–BEM coupling. Moreover, the non-
symmetric approach has less discrete unknowns and thus is computational cheaper.
Our work gives us a recipe for the coupling of BEM with a non-Galerkin method like
FVM. Our theoretical results were confirmed by three numerical examples, which
illustrate the strength of the chosen method in terms of local flux conservation and
convection dominated problems.
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