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Abstract We study a recently introduced formulation for fluid-structure interaction
problems which makes use of a distributed Lagrange multiplier in the spirit of the
fictitious domain method. The time discretization of the problem leads to a mixed
problem for which a rigorous stability analysis is provided. The finite element space
discretization is discussed and optimal convergence estimates are proved.
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1 Introduction

Numerical schemes for fluid-structure interaction problems include interface fitted
meshes (thus requiring suitable remeshing in order to keep the fluid computational
grid aligned with the interface) or interface non-fitted meshes (allowing to keep the
fluid computational grid fixed and independent from the position of the solid).

The immersed boundary method (see [21] for a review) is a typical example of
non-fitted schemes. It has been introduced in the 70’s for the simulation of biological
problems related to the blood flow in the heart and it has been extended to finite
elements in a series of papers starting from [5] byusing a variational approach (fe- ibm)
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and [22] where finite elements and reproducing kernel particle methods are combined.
The fe- ibm allows for thick (i.e., of codimension zero) or thin (i.e., of codimension
one) structures. In particular, in [7] the original fiber-like description of the structure
has been abandoned in favor of a more natural and intrinsically thick modeling of
the solid domain. With this representation, a unified treatment of immersed structures
is possible in any combination of dimensions. Two novelties have been introduced
in [18]: a compressible model for the structure has been considered, and the motion
of the solid has been taken care with a fully variational approach.

In [4] a new formulation (dlm- ibm) for fluid-structure interaction problems has
been introduced based on the fe- ibm which makes use of a distributed Lagrange
multiplier in the spirit of the fictitious domain method (see, for instance, [14–16]).
The dlm- ibm in the codimension one case has some similarities with the so called
“immersogeometric” method recently introduced in [19,20]. An important feature of
the dlm- ibm, as it has been shown in [4], is that its semi-implicit time discretization
results to be unconditionally stable as opposed to the standard fe- ibmwhere a suitable
cfl condition has to be satisfied (see [3,6,17]).

The time discretization of the problem leads to a saddle point problem (see Prob-
lem 5 and its discrete counterpart Problem 6). The main contribution of this paper is
the rigorous analysis of Problems 5 and 6: it is shown that the saddle point problems
are stable and that the discrete solution converges optimally towards the continuous
one. Suitable conditions on the solid mesh are stated: in the case of codimension zero
structures, the mesh is assumed to allow H1 stability for the L2 projection (more
detailed description of this assumption is given in the discussion after Proposition 7);
in the case of codimension one structures, the solid meshsize is assumed to satisfy a
suitable compatibility condition with respect to the fluid one.

The structure of the paper is the following: in Sect. 2 we introduce the problem
and derive the dlm- ibm in the case of solids of codimension zero. This is a new
approach and provides an interesting result, since the dlm- ibm, previously derived as
a modification of the fe- ibm, is now seen as a natural fictitious domain formulation
originating froma strong formof afluid-structure interaction problem.Section 3 recalls
the semi-implicit time discretization of the dlm- ibm and the known energy estimates.
Section 4 is the core of our paper in the case of thick structures, presenting the analysis
of themixed problem and of its numerical approximation. Finally, Sect. 5 performs the
same analysis of the mixed problem in the case where thin structures are considered.

2 Fictitious domain approach in the case of a thick solid immersed in a
fluid

Thefluid-structure interaction system thatwe are going to analyze in this paper consists
of a solid elastic body immersed in a fluid. We refer to a thick solid when it occupies a
domain of codimension zero, and to a thin solid when the corresponding domain can
be reduced to a region of codimension one in the fluid by using standard assumptions
on the behavior of the involved physical quantities. This case will be treated in Sect. 5.

Let � f
t ⊂ R

d and �s
t ⊂ R

d with d = 2, 3 be the time dependent regions occupied

by the fluid and the structure, respectively. We set � the interior of �
f
t ∪ �

s
t and
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DLM/FD for FSI 713

assume that � is a fixed domain. We denote by �t = ∂�
f
t ∩∂�s

t the moving interface
between the fluid and the solid regions. For simplicity, we assume that the structure is
immersed in the fluid so that ∂�s

t ∩ ∂� = ∅.
Assuming that both the fluid and the solid material are incompressible, the fluid-

structure interaction problem can be written in a very general form as follows:

ρ f u̇ f = divσ f in �
f
t

divu f = 0 in �
f
t

ρs u̇s = divσ s in �s
t

divus = 0 in �s
t

u f = us on �t

σ f n f = −σ sns on �t .

(1)

The system can be complemented with the following initial and boundary conditions
on ∂�:

u f (0) = u f 0 on �
f
0 ,

us(0) = us0 on �s
0,

u f (t) = 0 on ∂�.

(2)

In (1) u, σ , and ρ denote velocity, stress tensor, and mass density, respectively. The
subscript f or s refers to fluid or solid.We assumemoreover that ρ f and ρs are positive
constants.

In the following we introduce the constitutive laws for fluid and solid materials and
derive the variational formulation of (1)–(2).

First of all, let us define some functional spaces we shall work with. For a domain
ω we denote by L2(ω) the space of square integrable functions in ω, endowed with
the norm ‖v‖20,ω = ∫

ω
|v|2dx and the corresponding scalar product denoted by (·, ·)ω.

Then H1(ω) is the space of functions belonging to L2(ω) together with their gradient;
then ‖v‖21,ω = ‖v‖20,ω + ‖∇v‖20,ω defines the norm in H1(ω). We denote by H1

0 (ω)

the subspace of H1(ω) of functions vanishing on the boundary of ω and by L2
0(ω)

the subspace of L2(ω) of functions with zero mean value. When ω = � we omit the
subscripts �.

The equations in (1) are written using the Eulerian description, but the deformation
of the solid is usually described in the Lagrangian framework. For this, we consider
�s

t as the image of a reference domain B ⊂ R
d . For every t ∈ [0, T ], we associate

points s ∈ B and x ∈ �s
t via a family of mappings X(t) : B → �s

t . We refer to
s ∈ B as the material or Lagrangian coordinate and to x = X(s, t) as the spatial or
Eulerian coordinate with x ∈ �s

t . We assume that X fulfills the following conditions:
X(t) ∈ W 1,∞(B), X(t) is one to one, and there exists a constant γ such that for all
t ∈ [0, T ] ‖X(s1, t) − X(s2, t)‖ ≥ γ ‖s1 − s2‖ for all s1, s2 ∈ B. Note that this
requirements imply that X(t) is invertible with Lipschitz inverse. This in particular
implies that Y ∈ H1(B)d if and only if v = Y(X−1(t)) ∈ H1(�s

t )
d . The defor-

mation gradient is defined as F = ∇sX and we indicate with |F| its determinant.
In (1), the dot over the velocity denotes the material time derivative. In the fluid,
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714 D. Boffi, L. Gastaldi

using the Eulerian description, we have u̇ f = ∂u f /∂t + u f · ∇u f . In the solid, the
Lagrangian framework is preferred and the spatial description of the material velocity
reads

us(x, t) = ∂X(s, t)
∂t

∣
∣
∣
x=X(s,t)

(3)

so that u̇s(x, t) = ∂2X(s, t)/∂t2|x=X(s,t). Thanks to the incompressibility condition
for fluid and solid, expressed by the divergence free condition in (1), it results that |F|
is constant in time and equals its initial value. In particular, if the reference domain B
coincides with the initial position of the solid �s

0 one has that |F| = 1 for all t .
Let us introduce now the constitutive laws for fluid and solid materials, in order

to model the stress tensor. We consider a Newtonian fluid characterized by the usual
Navier–Stokes stress tensor

σ f = −p f I + ν f ∇symu f , (4)

where ∇symu = (1/2)
(∇u f + (∇u f )

�)
is the symmetric gradient and ν f represents

the viscosity of the fluid. The solid material is assumed to be viscous-hyperelastic,
so that the Cauchy stress tensor can be represented as the sum σ s = σ

f
s + σ s

s of a
fluid-like part, with viscosity νs ,

σ
f
s = −psI + νs∇symus (5)

and an elastic part σ s
s . By changing variable from Eulerian to Lagrangian, we express

σ s
s in term of the first Piola–Kirchhoff stress tensor P:

P(F(s, t)) = |F(s, t)|σ s
s(x, t)F

−�(s, t) for x = X(s, t). (6)

On the other hand, hyperelasticmaterials are characterized by a positive energy density
W (F) which is related to the Piola–Kirchhoff stress tensor as follows:

(P(F(s, t))αi = ∂W

∂Fαi
(F(s, t)) =

(
∂W

∂F
(F(s, t))

)

αi
, (7)

where i = 1, . . . ,m and α = 1, . . . , d. The elastic potential energy of the body is
given by:

E (X(t)) =
∫

B
W (F(s, t))ds. (8)

Let v ∈ H1
0 (�)d be given. We multiply the first equation in (1) by v|

�
f
t
, integrate over

�
f
t , and integrate by parts; analogously, we multiply the third equation by v|�s

t
and

integrate over �s
t , and integrate by parts. Summing up the two equations and taking
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DLM/FD for FSI 715

into account the transmission conditions on�t , we obtain the following equationwhich
corresponds to the principle of virtual work:

∫

�
f
t

ρ f u̇ f vdx +
∫

�s
t

ρs u̇s vdx +
∫

�
f
t

σ f : ∇symvdx +
∫

�s
t

σ s : ∇symvdx = 0.

Introducing the models (4)–(5) and taking into account (3) and (6), we arrive to the
following equation

∫

�
f
t

ρ f u̇ f vdx +
∫

B
ρs

∂2X
∂t2

v(X(s, t))ds +
∫

�
f
t

ν f ∇symu f : ∇symvdx

−
∫

�
f
t

p f divvdx +
∫

�s
t

νs∇symus : ∇symvdx

+
∫

B
P(F(s, t)) : ∇sv(X(s, t))ds −

∫

�s
t

psdivvdx = 0 ∀v ∈ H1
0 (�)d , (9)

where we used the standard notation D : E = ∑d
α,i=1 DαiEαi for all tensors D and E.

We observe that in (9) p f and ps are not uniquely determined. In fact, if we take
p f + c f and ps + cs instead of p f and ps , respectively, the left hand side of (9) does
not change if c f = cs . To avoid this situation we impose that

∫

�
f
t

p f dx +
∫

�s
t

psdx = 0. (10)

At the end, the incompressibility condition for both materials can be written in varia-
tional form as:

∫

�
f
t

divu f qdx +
∫

�s
t

divusqdx = 0 ∀q ∈ L2
0(�). (11)

Then the fluid-structure interaction problem can be written in the following form.

Problem 1 For t ∈]0, T ] find u f (t) ∈ H1(�
f
t )d , p f (t) ∈ L2(�

f
t ), us(t) ∈

H1(�s
t )

d , ps(t) ∈ L2(�s
t ), and X(t) ∈ H1(B)d such that u f (t) = us(t) on �t ,

and equations (9), (10), (11), (3), and (2) are satisfied together with X(0) = X0 on B,
where X0 : B → �s

0.

Remark Thanks to (3), the initial condition for us provides also an initial condition
for ∂X/∂t .

In the following, we use a fictitious domain approach with a distributed Lagrange
multiplier in order to rewrite the variational formulation of the problem. Namely,
we extend the fluid velocity and pressure into the solid domain by introducing new
unknowns with the following meaning:

u =
{
u f in �

f
t

us in �s
t

, p =
{
p f in �

f
t

ps in �s
t

(12)
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716 D. Boffi, L. Gastaldi

with the condition that the material velocity of the solid is equal to the velocity of the
fictitious fluid, that is

∂X(s, t)
∂t

= u(X(s, t), t) for s ∈ B. (13)

This equation, which governs the evolution of the immersed solid, represents a con-
straint for the problem, therefore we enforce it in variational form by introducing a
Lagrange multiplier as follows. Let � be a functional space to be defined later on and
c : � × H1(B)d → R a bilinear form such that

c is continuous on � × H1(B)d

c(μ,Z) = 0 for all μ ∈ � implies Z = 0.
(14)

For example we can take as � the dual space of H1(B)d and define c as the duality
pairing between H1(B)d and (H1(B)d)′, that is:

c(μ,Y) = 〈μ,Y〉 ∀μ ∈ (H1(B)d)′, Y ∈ H1(B)d . (15)

Alternatively, one can set � = H1(B)d and define

c(μ,Y) = (∇sμ,∇sY)B + (μ,Y)B ∀μ, Y ∈ H1(B)d . (16)

Relation (13) can now be written in variational form as:

c
(

μ,u(X(·, t), t) − ∂X
∂t

(t)

)

= 0 ∀μ ∈ �. (17)

Then the problem can be formulated in the following weak form.

Problem 2 Given u0 ∈ H1
0 (�)d and X0 ∈ W 1,∞(B)d , for almost every t ∈]0, T ]

find (u(t), p(t)) ∈ H1
0 (�)d ×L2

0(�),X(t) ∈ H1(B)d , and λ(t) ∈ � such that it holds

ρ f
d

dt
(u(t), v) + b(u(t),u(t), v) + a(u(t), v)

− (divv, p(t)) + c(λ(t), v(X(·, t))) = 0 ∀v ∈ H1
0 (�)d (18a)

(divu(t), q) = 0 ∀q ∈ L2
0(�) (18b)

δρ

(
∂2X
∂t2

(t),Y
)

B
+ (P(F(t)),∇sY)B − c(λ(t),Y) = 0 ∀Y ∈ H1(B)d (18c)

c
(

μ,u(X(·, t), t) − ∂X
∂t

(t)

)

= 0 ∀μ ∈ � (18d)

u(0) = u0 in �, X(0) = X0 in B. (18e)
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Here δρ = ρs − ρ f and

a(u, v) = (ν∇symu,∇symv) with ν =
{

ν f in �
f
t

νs in �s
t

,

b(u, v,w) = ρ f
2 ((u · ∇v,w) − (u · ∇w, v)) .

We assume that ν ∈ L∞(�) and that there exists a positive constant ν0 > 0 such that
ν ≥ ν0 > 0 in �.

Remark In the literature of the Immersed Boundary Method, it is generally assumed
that the fluid and the solid visco-hyperelastic materials have the same viscosity. If
this is not the case, the integral in the definition of a has to be decomposed into the
integral over� f

t and�s
t . Therefore, in the finite element discretization, the associated

stiffness matrix has to be recomputed at each time step as ν is discontinuous along the
moving interface �t . This could be avoided if we treat this term using the fictitious
domain method as it is done for the first integral containing the time derivative of u.
Then Problem 2 takes the following form.

Problem 3 Given u0 ∈ H1
0 (�)d andX0 ∈ W 1,∞(B)d , find (u(t), p(t)) ∈ H1

0 (�)d ×
L2
0(�), X(t) ∈ H1(B)d , and λ(t) ∈ �, such that for almost every t ∈]0, T ] it holds

ρ f
d

dt
(u(t), v) + b(u(t),u(t), v) + ã(u(t), v)

−(divv, p(t)) + c(λ(t), v(X(·, t))) = 0 ∀v ∈ H1
0 (�)d

(divu(t), q) = 0 ∀q ∈ L2
0(�)

δρ

(
∂2X
∂t2

(t),Y
)

B
+ d

(
∂X
∂t

(t),Y
)

+(P(F(t)),∇sY)B − c(λ(t),Y) = 0 ∀Y ∈ H1(B)d

c
(

μ,u(X(·, t), t) − ∂X
∂t

(t)

)

= 0 ∀μ ∈ �

u(0) = u0 in �, X(0) = X0 in B,

where ã(u, v) = ν f (∇symu,∇symv) and

d(X, Y) =
1

2

∫

B
(νs − ν f )

(
∇sXF−1 + F

−�∇sX�)
:
(
∇sYF−1 + F

−�∇sY�)
|F|ds.

For the sake of simplicity, in the rest of this paper we are going to consider a constant
viscosity throughout the domain.

First of all we show that Problems 1 and 2 are equivalent.

Theorem 1 Let (u f ,us, p f , ps,X) be a solution of Problem 1, such that X(t) ∈
W 1,∞(B)d and X(t) : B → �s

t is one to one, then setting (u, p) as in (12), there
exists λ(t) ∈ � such that (u, p,X,λ) is a solution of Problem 2.

Conversely, let (u, p,X,λ) be a solution of Problem 2 such thatX(t) ∈ W 1,∞(B)d

and X(t) : B → �s
t is one to one. Set u f (t) = u(t)|

�
f
t
, p f (t) = p(t)|

�
f
t
, us(t) =

u(t)|�s
t
, ps(t) = p(t)|�s

t
, then (u f ,us, p f , ps,X) is a solution of Problem 1.
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718 D. Boffi, L. Gastaldi

Proof Let (u f ,us, p f , ps,X) be a solution of Problem 1. Taking into account that
∂�s

t ∩ ∂� = ∅, the third condition in (2) gives u = 0 on ∂�. From (12), we obtain

that u ∈ H1
0 (�)d , since u f (t) ∈ H1(�

f
t )d , us(t) ∈ H1(�s

t )
d , and u f (t) = us(t) on

�t , and that p ∈ L2
0(�) thanks to (10). Next (11) implies (18b), while (14), and (17)

gives that (18d) holds true. Setting

u0 =
{
u f 0 in �

f
0

us0 in �s
0,

the initial conditions (18e) are satisfied. It remains to prove (18a) and (18c). For this,
we introduce λ(t) ∈ � such that (18a) is satisfied. Differentiating condition (13) with
respect to time gives u̇(x, t) = ∂2X(s, t)/∂t2|x=X(s,t), hence recalling the incompress-
ibility of the structure, we have the following equality

∫

�
f
t

ρ f u̇ vdx =
∫

B
ρ f

∂2X(s, t)
∂t2

v(X(s, t))ds.

Then taking into account the definition of the forms a and b and (17), we have from (9):

∫

B
δρ

∂2X
∂t2

v(X(s, t))ds +
∫

B
P(F(s, t)) : ∇sv(X(s, t))ds = c(λ(t), v(X(·, t)))

for all v ∈ H1
0 (�)d . Since X(t) : B → �s

t is one to one and belongs to W 1,∞(B),
Y = v(X(·, t)) is an arbitrary element of H1(B)d and (18c) holds true.

Let us now prove the converse. Let (u, p,X,λ) be a solution of Problem 2 and set
u f (t) = u(t)|

�
f
t
, p f (t) = p(t)|

�
f
t
, us(t) = u(t)|�s

t
, ps(t) = p(t)|�s

t
. From (18d)

and (14) we have that (13) is fulfilled. Using again the fact that X(t) : B → �s
t is one

to one, we takeY = v(X(t)) in (18c) and sum it to (18a). Equations (9) and (11) follow
from the definition of u f , us , p f and ps . Moreover, we have that the condition (10)
holds true since p ∈ L2

0(�). It is easy to verify that the initial and boundary conditions
are fulfilled. ��
Thanks to the elastic properties of the viscous-hyperelastic material, (see (7) and (8)),
we have the following energy estimate (see [4] for the details).

Proposition 2 Let us assume that δρ ≥ 0, that the potential energy density W is a
C1 convex function over the set of second order tensors and that for almost every
t ∈ [0, T ], the solution of Problem 2 is such that X(t) ∈ (W 1,∞(B))d with ∂X

∂t (t) ∈
L2(B)d , then the following equality holds true

ρ f

2

d

dt
||u(t)||20 + ν||∇symu(t)||20 + δρ

2

d

dt

∥
∥
∥
∥
∂X(t)

∂t

∥
∥
∥
∥

2

0,B
+ d

dt
E(X(t)) = 0. (19)

Proof The proof is quite simple. Take v = u(t), q = p(t), Y = ∂X(t)/∂t , and μ =
λ(t) in equations (18a)–(18d) respectively and sum. The inequality (19) is achieved
using (7) and (8) to estimate the second term arising from (18c). ��
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DLM/FD for FSI 719

3 Time semi-discretization

In this subsection we briefly recall the results of [4] related to the time discretization
of Problem 2 and to the analysis of the stability of the resulting scheme. The presented
results are valid not only for thick structures but also for thin ones, according to the
formulation that will be presented in Sect. 5.

Given an integer N > 0, set �t = T/N the time step and tn = n�t . For a given
function z depending on t we denote by zn the approximation of z(tn).

Problem 2 presents several nonlinear terms whose time discretization by an implicit
method would require the solution of a nonlinear stationary system with non trivial
computational cost. Therefore we adopt the following semi-implicit time advancing
scheme:

Problem 4 Given u0 ∈ H1
0 (�)d and X0 ∈ W 1,∞(B), for n = 0, . . . , N − 1 find

(un, pn) ∈ H1
0 (�)d × L2

0(�), Xn ∈ H1(B)d , and λn ∈ �, such that

ρ f

(
un+1 − un

�t
, v

)

+ b(un,un+1, v) + a(un+1, v)

− (divv, pn+1) + c(λn+1, v(Xn)) = 0 ∀v ∈ H1
0 (�)d (20a)

(divun+1, q) = 0 ∀q ∈ L2
0(�) (20b)

δρ

(
Xn+1 − 2Xn + Xn−1

�t2
,Y

)

B
+ (P(Fn+1),∇sY)B

− c(λn+1,Y) = 0 ∀Y ∈ H1(B)d (20c)

c
(

μ,un+1(Xn) − Xn+1 − Xn

�t

)

= 0 ∀μ ∈ � (20d)

u0 = u0, X0 = X0 (20e)

In the second term of (20c) the implicit quantityP(Fn+1)might be difficult to compute,
in such case different choices can be made. In particular, if P is linear with respect to
F this term does not cause any trouble; otherwise it can be linearized.

In order to initialize equation (20c) we need to know the first two valuesX0 andX1.
These can be obtained from the initial conditions taking into account (13) and (14) as
follows:

c
(

μ,u0(X0) − X1 − X0

�t

)

= 0 ∀μ ∈ �.

Following the same lines of the proof of Proposition 2, we can show the following
unconditional stability for the time advancing scheme, (see [4] for the details).
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720 D. Boffi, L. Gastaldi

Proposition 3 Under the same assumptions as in Proposition 2, if un ∈ H1
0 (�)d and

Xn ∈ H1(B)d for n = 0, . . . , N satisfy Problem 4 with Xn ∈ (W 1,∞(B))d , then the
following estimate holds true for all n = 0, . . . , N − 1

ρ f
2�t

(‖un+1‖20 − ‖un‖20
) + ν‖∇symun+1‖20

+ δρ

2�t

(∥
∥
∥Xn+1−Xn

�t

∥
∥
∥
2

0,B
−

∥
∥
∥Xn−Xn−1

�t

∥
∥
∥
2

0,B

)

+ E(Xn+1)−E(Xn)
�t ≤ 0.

(21)

4 Analysis of the stationary problem

We now focus on the stationary problem that we resolve at each time step and we
analyze its well-posedness and finite element discretization. We consider a linear
model for the Piola–Kirchhoff stress tensor, that is

P(F) = κF = κ∇sX. (22)

In this case, we have that the energy density is W (F) = (κ/2)F : F and the elastic
potential energy is given by

E(X) = κ

2

∫

B
F : Fds = κ

2

∫

B
|∇sX|2ds.

With this simplification it is possible to apply the results on existence, uniqueness,
stability and error estimates of linear saddle point problems, see [2]. We think that
the results can be extended to the nonlinear case with additional assumptions on the
nonlinear terms. Hence we have the following saddle point problem.

Problem 5 Let X ∈ W 1,∞(B)d be invertible with Lipschitz inverse and u ∈ L∞(�).
Given f ∈ L2(�)d , g ∈ L2(B)d , and d ∈ L2(B)d , find u ∈ H1

0 (�)d , p ∈ L2
0(�),

X ∈ H1(B)d , and λ ∈ � such that

a f (u, v) − (divv, p) + c(λ, v(X)) = (f, v) ∀v ∈ H1
0 (�)d

(divu, q) = 0 ∀q ∈ L2
0(�)

as(X,Y) − c(λ,Y) = (g,Y)B ∀Y ∈ H1(B)d

c(μ,u(X) − X) = c(μ,d) ∀μ ∈ �

(23)

where

a f (u, v) = α(u, v) + a(u, v) + b(u,u, v) ∀u, v ∈ H1
0 (�)d

as(X,Y) = β(X,Y)B + γ (∇sX,∇sY)B ∀X,Y ∈ H1(B)d

It is easy to see that Problem 5 corresponds to one step of Problem 4 if we take:
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u = un+1, p = pn+1, X = Xn+1/�t, λ = λn+1

f = ρ f
�t u

n

g = δρ

�t2
(
2Xn − Xn−1

)

d = − 1
�tX

n

α = ρ f /�t, β = δρ/�t, γ = κ�t

and X = Xn and u = un in the nonlinear terms.
We remark that while α and γ are strictly positive, the constant β might vanish

when the densities in the solid and in the fluid are equal.

4.1 Well-posedness of Problem 5

Problem 5 fits in the framework of saddle point problemswith the following functional
setting. Let us introduce the Hilbert space

V = H1
0 (�)d × L2

0(�) × H1(B)d (24)

endowed with the graph norm

|||V|||V =
(
‖v‖21 + ‖q‖20 + ‖Y‖21,B

)1/2
,

where V = (v, q,Y) is a generic element of V.
We define the bilinear forms A : V × V → R and B : V × � → R

A(U,V) = a f (u, v) − (p, divv) + (divu, q) + as(X,Y)

B(V,μ) = c(μ, v(X) − Y).
(25)

Then Problem 5 can be reformulated as follows: given f ∈ L2(�), g ∈ L2(B), and
d ∈ H1(B)d , find (U,λ) ∈ V × � such that

A(U,V) + B(V,λ) = (f, v) + (g,Y)B ∀V ∈ V

B(U,μ) = c(μ,d) ∀μ ∈ �.
(26)

In order to verify the well-posedness of (26) we have to check the two inf-sup condi-
tions, see [2, Chapt. 4]. The kernel of the operator associated with the bilinear form B

is given by:

K = {V ∈ V : B(V,μ) = 0 ∀μ ∈ �}. (27)

Then V ∈ K if and only if v(X) − Y = 0 in the sense of H1(B)d .
For the sake of simplicity, in the sequel we neglect the convective term associated

with the trilinear form b.
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Proposition 4 (First inf-sup condition) There exists α0 > 0 such that

inf
U∈K

sup
V∈K

A(U,V)

|||U|||V|||V|||V ≥ α0. (28)

Proof Weshow that there exists a constantα0 > 0 such that for anyU = (u, p,X) ∈ K

it holds

sup
V∈K

A(U,V)

|||V|||V ≥ α0|||U|||V. (29)

It is well known that for any p ∈ L2
0(�) there exists an element v̂ ∈ H1

0 (�)d such
that divv̂ = −p, see [2], with ‖v̂‖1 ≤ C‖p‖0.

Given U = (u, p,X) we take V = (v, q,Y) with v = au + bv̂, q = ap, and
Y = X. Then

|||V|||2
V

= ‖v‖21+‖q‖20+‖Y‖21,B ≤ a2‖u‖21+(a2 + C2b2)‖p‖20+‖X‖21,B. (30)

Since a f is coercive and continuous on H1
0 (�)d there exist two positive constants

such that for all u, v ∈ H1
0 (�)d it holds

a f (u,u) ≥ c1‖u‖21
a f (u, v) ≤ c2‖u‖1‖v‖1.

Hence we have

A(U,V) = aa f (u,u) + ba f (u, v̂) − a(p, divu)

−b(p, divv̂) + a(divu, p) + as(X,X)

≥ ac1‖u‖21 + b‖p‖20 − bc2‖u‖1‖v̂‖1 + as(X,X)

≥ ac1‖u‖21 + b‖p‖20 − bc22
2ε ‖u‖1 − ε

2bC
2‖p‖20 + as(X,X)

=
(

ac1 − bc22
2ε

)

‖u‖21 + b
(
1 − ε

2C
2
) ‖p‖20 + as(X,X).

We can choose ε, a, and b so that 1 − εC2/2 > δ > 0 and ac1 − bc22/(2ε) > δ > 0
and we arrive at

A(U,V) ≥ δ
(
‖u‖21 + ‖p‖20

)
+ as(X,X).

It remains to bound by below the last term as(X,X). By definition we have

as(X,X) = β‖X‖20,B + γ ‖∇sX‖20,B ≥ min(β, γ )‖‖X‖21,B.

We observe that if β = 0 we still obtain the desired estimate, since U ∈ K and
X = u(X) so that ‖X‖0,B = ‖u(X)‖0,B ≤ ‖u‖0 ≤ C�‖u‖1 where C� is the Poincaré
constant.
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Therefore we can determine a constant C > 0 such that

A(U,V) ≥ C
(
‖u‖21 + ‖p‖20 + ‖X‖21,B

)
.

This inequality together with (30) gives the desired estimate (29). ��
Remark In the proof of the above proposition, the assumption (22) has been used in
order to have the coerciveness of the bilinear form as . The result extends easily to
nonlinear cases whenever the elastic potential energy satisfies the following bound for
some positive constant γ0

E(X) ≥ γ0‖X‖21,B.

Proposition 5 (Second inf-sup condition) There exists a constant β0 > 0 such that
for all μ ∈ � it holds

sup
V∈V

B(V,μ)

‖V‖V ≥ β0‖μ‖�. (31)

Proof Recalling the definition of B we have to show that

sup
(v,q,Y)∈V

c(μ, v(X) − Y)

‖(v, q,Y)‖V ≥ β0‖μ‖�.

We give the proof for the choices of c given in (15) and (16). In the first case c is the
duality pairing between H1(B)d and (H1(B)d)′. By definition of the norm in the dual
space (H1(B)d)′ we have

‖μ‖(H1(B)d )′ = sup
Y∈H1(B)d

〈μ,Y〉
‖Y‖H1(B)d

≤ sup
(v,q,Y)∈V

〈μ, v(X) − Y〉
(‖v‖21 + ‖Y‖21,B)1/2

which gives (31).
The proof is exactly the same for the case of c given by the scalar product in H1(B)d .

��

4.2 Finite element discretization

Let us consider a familyTh of regularmeshes in� and a familyT B
h of regularmeshes in

B.We denote by hx and hs themeshsize of Th and T B
h , respectively. Let Vh ⊆ H1

0 (�)d

and Qh ⊆ L2
0(�) be finite element spaces which satisfy the usual discrete ellipticity

on the kernel and the discrete inf-sup conditions for the Stokes problem [2]. Moreover,
we set

Sh = {Y ∈ H1(B)d : Y|T ∈ P1(T ) ∀T ∈ T B
h }. (32)
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The natural choice for �h , corresponding to the case of c given by (16), is to take
�h = Sh . This is actually reasonable also when c is defined by (15), since in this case
the duality pairing can be represented as a scalar product in L2(B), that is:

c(μ,Y) = (μ,Y) ∀μ ∈ �h,Y ∈ Sh . (33)

Of course, several other choices for�h might be made; we are not going to investigate
them in this paper.

Then the finite element counterpart of Problem 4 reads.

Problem 6 Let X ∈ W 1,∞(B)d be invertible with Lipschitz inverse and u ∈ L∞(�).
Given f ∈ L2(�)d , g ∈ L2(B)d , and d ∈ L2(B)d , find uh ∈ Vh, ph ∈ Qh, Xh ∈ Sh,
and λh ∈ �h such that

a f (uh, v) − (divv, ph) + c(λh, v(X)) = (f, v) ∀v ∈ Vh
(divuh, q) = 0 ∀q ∈ Qh

as(Xh,Y) − c(λh,Y) = (g,Y)B ∀Y ∈ Sh
c(μ,uh(X) − Xh) = c(μ,d) ∀μ ∈ �h .

(34)

Using the same notation as in the previous subsection, we set

Vh = Vh × Qh × Sh,

then the finite element counterpart of (26) reads: given f ∈ L2(�), g ∈ L2(B), and
d ∈ H1(B)d , find (Uh,λh) ∈ Vh × �h such that

A(Uh,V) + B(V,λh) = (f, v) + (g,Y)B ∀V ∈ Vh

B(Uh,μ) = c(μ,d) ∀μ ∈ �h .
(35)

It is well-known that sufficient conditions for existence and uniqueness of the solution
of (35) are the discrete versions of the two inf-sup conditions (28) and (31).

Proposition 6 (First discrete inf-sup condition) Assume that Vh × Qh is stable for
the Stokes equation. There exists α1 > 0 independent of hx and hs such that

inf
Uh∈Kh

sup
Vh∈Kh

A(Uh,Vh)

|||Uh |||V|||Vh |||V ≥ α1, (36)

where the discrete kernel Kh is given by

Kh = {
Vh ∈ Vh : B(Vh,μh) = 0 ∀μh ∈ �h

}
.

Proof We show that there exists a constant α0 > 0 such that for any Uh =
(uh, ph,Xh) ∈ Kh it holds

sup
Vh∈Kh

A(Uh,Vh)

|||Vh |||V ≥ α1|||Uh |||V. (37)
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Since the couple (Vh, Qh) is stable for Stokes equations, for any ph ∈ Qh there exists
an element v̂h ∈ Vh such that (divv̂h, q) = −(ph, q) for all q ∈ Qh , see [2], with
‖v̂h‖1 ≤ C‖ph‖0.

Given Uh = (uh, ph,Xh) we take Vh = (vh, qh,Yh) with vh = auh + bv̂h ,
qh = aph and Yh = Xh . Then as in the continuous case

|||Vh |||2V ≤ a2‖uh‖21 + (a2 + C2b2)‖ph‖20 + ‖Xh‖21,B. (38)

Since a f is coercive and continuous on H1
0 (�)d , we have

A(Uh,Vh) = aa f (uh,uh) + ba f (uh, v̂h) − a(ph, divuh) − b(ph, divv̂h)

+ a(divuh, ph) + as(Xh,Xh)

≥ ac1‖uh‖21 + b‖ph‖20 − bc2‖uh‖1‖v̂h‖1 + as(Xh,Xh)

≥ ac1‖uh‖21 + b‖ph‖20 − bc22
2ε

‖uh‖1 − ε

2
bC2‖ph‖20 + as(Xh,Xh)

=
(

ac1 − bc22
2ε

)

‖uh‖21 + b
(
1 − ε

2
C2

)
‖ph‖20 + as(Xh,Xh).

Choosing again ε, a and b so that 1 − εC2/2 > δ > 0 and ac1 − bc22/(2ε) > δ > 0,
we obtain

A(Uh,Vh) ≥ δ
(
‖uh‖21 + ‖ph‖20

)
+ as(Xh,Xh).

It remains to bound by below the last term as(Xh,Xh). By definition we have for
β > 0

as(Xh,Xh) = β‖Xh‖20,B + γ ‖∇sXh‖20,B ≥ min(β, γ )‖‖Xh‖21,B,

and as(Xh,Xh) = γ ‖∇sXh‖20,B if β = 0. In this case we need to estimate ‖Xh‖0,B by
means of the other terms appearing in the right hand side of the last two inequalities.
This part of the proof depends on the definition of c.

First case. Let us assume first that c is given by (15). Taking into account (33), we
have that Uh ∈ Kh is characterized by Xh = P0(uh(X)) where P0 represents the L2

projections onto Sh . Hence we obtain

‖Xh‖0,B = ‖P0(uh(X))‖0,B
≤ ‖uh(X)‖0,B + ‖uh(X) − P0(uh(X))‖0,B
≤ ‖uh(X)‖0,B + Chs |uh(X)|1,B ≤ ‖uh‖0,� + Chs |uh |1,�.

Therefore we can determine a constant C > 0 such that

A(U,V) ≥ C
(
‖uh‖21 + ‖ph‖20 + ‖Xh‖21,B

)
.
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Second case. In the case of c given by (16), the fact that Uh ∈ Kh implies that
Xh = P1(uh(X)) where P1 stands for the H1 projections onto Sh , so that we obtain

‖Xh‖0,B = ‖P1(uh(X))‖0,B ≤ ‖P1(uh(X))‖1,B
≤ ‖uh(X)‖1,B ≤ ‖uh‖1.

These inequalities together with (38) give the desired estimate (37). ��
If c is given by (15) (which has the discrete counterpart (33)), we make the additional
assumption that the mesh sequence T B

h is such that the L2-projection P0 from H1(B)d

onto Sh is H1-stable, that is

|P0v|1,B ≤ c|v|1,B ∀v ∈ H1(B)d , (39)

where | · |1,B is the H1-seminorm.

Proposition 7 (Second discrete inf-sup condition) There exists a constant β1 > 0
independent of hx and hs such that for all μh ∈ �h it holds true

sup
Vh∈Vh

B(Vh,μh)

‖Vh‖V ≥ β1‖μh‖�. (40)

Proof First case. Let c be given by (15), so that (33) holds true. Then we have to show
that there exists β1 > 0 independent of h such that

sup
Vh∈Vh

(μh, vh(X) − Yh)

‖Vh‖V ≥ β1‖μh‖�.

By definition of the norm in the dual space � = (H1(B)d)′, there exists Ỹ ∈ H1(B)d

such that

‖μh‖� = sup
Y∈H1(B)d

(μh,Y)

‖Y‖1,B = (μh, Ỹ)

‖Ỹ‖1,B
= (μh, P0Ỹ)

‖Ỹ‖1,B
. (41)

where P0 denotes the projection operator from H1(B)d into �h = Sh .
Well-known properties of P0 and (39) imply

‖P0Ỹ‖0,B ≤ ‖Ỹ‖0,B
|P0Ỹ|1,B ≤ c|Ỹ|1,B
‖Ỹ − P0Ỹ‖0,B ≤ Chs |Ỹ|1,B.

Therefore there exists a constantC such that ‖P0Ỹ‖1,B ≤ C‖Ỹ‖1,B. This last inequal-
ity inserted in (41) gives

‖μh‖� ≤ C
(μh, P0Ỹ)

‖P0Ỹ‖1,B
≤ C sup

Yh∈Sh
(μh,Yh)

‖Yh‖1,B
≤ C sup

Vh∈Vh

c(μh, vh(X) − Yh)

‖Vh‖V = C sup
Vh∈Vh

B(Vh,μh)

‖Vh‖V .
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Second case. Let us now consider c given by (16), hence it is the scalar product in
H1(B)d . By definition of the norm in H1(B)d and of the H1-projection operator P1
we have:

‖μh‖� = sup
Y∈H1(B)d

c(μ,Y)

‖Y‖1,B ≤ sup
Y∈H1(B)d

c(μ, P1Y)

‖P1Y‖1,B
≤ sup

Y∈Sh
c(μ,Y)

‖Y‖1,B ≤ sup
Vh∈Vh

B(Vh,μh)

‖Vh‖V .

��
Remark Condition (39) has been widely studied in the literature. It can be easily
obtained by using an inverse inequality on quasi-uniform meshes. Weaker assump-
tions than the quasi-uniformity of the mesh have been investigated in several papers,
see for example [1,8,10–12]. In particular, the stability of the L2-projection in H1

has been proved in [12] under the assumption that neighboring element-sizes obey
a global growth-condition and in [8] in the case of locally quasiuniform meshes.
These conditions have been weakened in [10], while [11] extends the result to meshes
generated by red-green-blue refinements in adaptive procedures for piecewise linear
finite elements. Recently [1] has improved the previous results to cover the case of
many commonly used adaptive meshing strategies. More general mesh refinements
are considered in [13].

From the theory of the discretization of saddle point problems, the above proposi-
tions yield the following error estimate theorem (see [2, Th. 5.2.1]).

Theorem 8 Let (u, p,X,λ) and (uh, ph,Xh,λh) be solutions of Problems 5 and 6.
Under the assumption (39) if c is given by (15), the following optimal error estimate
holds true:

‖u − uh‖1 +‖p − ph‖0 + ‖X − Xh‖1,B + ‖λ − λh‖�

≤ C inf v∈Vh
q∈Qh
Y∈Sh
μ∈Sh

(‖u − v‖1 + ‖p − q‖0 + ‖X − Y‖1,B + ‖λ − μ‖�

)
.

5 The case of a thin solid immersed in a fluid

In this sectionwe consider the case of thin structureswith very small constant thickness
ts , so that we assume that the physical quantities depend only on variables along the
middle section of the structure and are constant in the normal direction. In order to
maintain the same notation in the final formulation of the problem, the region occupied
by the solid is �s

t ×]− ts, ts[, where �s
t is a subset of � of codimension one (a surface

in the 3D case or a curve in the 2D one). Therefore we have that the reference domain
B is a subset of Rd−1 and the deformation gradient F : B → R

d×(d−1) is such that

|F| =
∣
∣
∣
∣
∂X
∂s

∣
∣
∣
∣ if d = 2, |F| =

∣
∣
∣
∣
∂X
∂s1

× ∂X
∂s2

∣
∣
∣
∣ if d = 3,

s, s1 and s2 being the parametric variables in B.
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Following the same arguments as in [3], Equations (9)–(11) can be written in the
following form:

ρ f
d

dt
(u(t), v) + b(u(t),u(t), v) + a(u(t), v)

−(divv, p(t)) = 〈F1(t), v〉 + 〈F2(t), v〉 ∀v ∈ H1
0 (�)d

(divu(t), q) = 0 ∀q ∈ L2
0(�)

〈F1(t), v〉 = −δρ

∫

B

∂2X
∂t2

v(X(s, t)) ds ∀v ∈ H1
0 (�)d

〈F2(t), v〉 = −
∫

B
P(F(s, t)) : ∇sv(X(s, t)) ds ∀v ∈ H1

0 (�)d .

(42)

Hereu and p represent velocity andpressure of thefluid, respectively, δρ = (ρs−ρ f )ts ,
and P = ts P̃ where P̃ is obtained from (6) with the necessary modifications to cover
the present situation. Moreover, the motion of the thin structure is governed by the
following condition

u(x, t) = ∂X(s, t)
∂t

∣
∣
∣
x=X(s,t)

.

Then the problem has the same form as Problem 2 by rewriting the above body motion
constraint variationally as

c
(

μ,u(X(·, t), t) − ∂X
∂t

(t)

)

= 0

for all μ in a suitably defined functional space �. Assuming that X(t) ∈ W 1,∞(B) is
one to one, u(X(·, t), t) represents the trace of u along �s

t . Therefore u(X(·, t), t) ∈
H1/2(B)d ; we set � = (H1/2(B)d)′ and c : � × H1/2(B)d → R given by

c(μ, z) = 〈μ, z〉 ∀μ ∈ �, z ∈ H1/2(B)d , (43)

where 〈·, ·〉 is the duality pairing between H1/2(B)d and � = (H1/2(B)d)′.
With this definition, we can perform the same stability analysis as in Sect. 2 and

show that Propositions 2 and 3 hold true also in this case. In the following we analyze
the well-posedness of Problem 5 and its finite element discretization. The discussion
will be carried on using the same arguments as in Sects. 4.1 and 4.2 relying on the
formulation (26).

The following inf-sup conditions ensure existence and uniqueness of the solu-
tion (26) in the case of thin structures.

Proposition 9 Let c be given by (43), then there exists α0 > 0 such that

inf
U∈K

sup
V∈K

A(U,V)

|||U|||V|||V|||V ≥ α0. (44)

Proof The proof is the same except for the case β = 0. The fact that U ∈ K implies
again thatX = u(X), that isX is the trace of u on � = X(B) and the bound ‖X‖0,B ≤
C‖u‖1 is a consequence of the trace theorem in H1

0 (�)d . ��
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Proposition 10 Let c be given by (43), then there exists a constant β0 > 0 such that
for all μ ∈ � it holds true

sup
V∈V

B(V,μ)

‖V‖V ≥ β0‖μ‖�. (45)

Proof Since � = (H1/2(B)d)′, we have the following definition of the norm in �:

‖μ‖� = sup
z∈H1/2(B)d

〈μ, z〉
‖z‖H1/2(B)d

= sup
z∈H1/2(B)d

c(μ, z)
‖z‖H1/2(B)d

.

Let us consider a maximizing sequence {zn}n∈N such that

lim
n→∞

c(μ, zn)
‖zn‖H1/2(B)d

= ‖μ‖�.

Thanks to the surjectivity of the trace operator from H1
0 (�)d to (H1/2(�))d , there

exists un ∈ H1
0 (�)d such that un(X) = zn with ‖un‖1 ≤ c‖zn‖H1/2(B)d for some

c > 1. Hence we obtain the desired inequality (45) as follows

sup
V∈V

B(V,μ)
‖V‖V = sup

V∈V
c(μ, v(X) − Y)

‖V‖V ≥ sup
v∈H1

0 (�)d

c(μ, v(X))

‖v‖1
≥ c(μ,un(X))

‖un‖1 ≥ 1

c

c(μ, zn)
‖zn‖H1/2(B)d

≥ 1

2c
‖μ‖�.

��
Let us now introduce a finite element discretization of Problem 2 with c given by (43).
With the same notation as in Sect. 4.2, we set �h = Sh ⊂ �. Then we have again that
the duality pairing of regular elements in � can be computed as the scalar product
in L2(B). Let us show the discrete inf-sup conditions which ensure existence and
uniqueness of the discrete solution together with optimal error estimate.

Proposition 11 (Discrete first inf-sup condition) Assume that Vh × Qh is stable for
the Stokes equation. There exists α1 > 0 independent of hx and hs such that

inf
Uh∈Kh

sup
Vh∈Kh

A(Uh,Vh)

|||Uh |||V|||Vh |||V ≥ α1, (46)

where the discrete kernel Kh is given by

Kh = {
Vh ∈ Vh : B(Vh,μh) = 0 ∀μh ∈ �h

}
.
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Proof Using the same arguments as in the proof of Proposition 6 we arrive to show
that

A(Uh,Vh) ≥ δ(‖uh‖21 + ‖ph‖20) + as(Xh,Xh),

with Vh bounded as in (38). The definition of as yields

as(Xh,Xh) = β‖Xh‖20,B + γ ‖∇sXh‖20,B

and in the case β = 0 we need to bound ‖Xh‖20,B. Since Uh ∈ Kh , we have by

definition that c(μ,uh(X) −Xh) = (μ,uh(X) −Xh)B = 0 for all μ ∈ Sh . Therefore
Xh = P0(uh(X)) where P0 is the L2-projection onto Sh , so that

‖Xh‖0,B = ‖P0(uh(X))‖0,B ≤ ‖uh(X)‖0,B + ‖P0(uh(X)) − uh(X)‖0,B
≤ ‖uh(X)‖0,B + Ch1/2s ‖uh(X)‖1/2,B ≤ ‖uh(X)‖0,B + Ch1/2s ‖uh‖1/2,�
≤ C‖uh‖1.

The last three inequalities together with (38) give the desired result. ��
Proposition 12 (Second discrete inf-sup condition) If hx/hs is sufficiently small and
the mesh T B

h is quasi-uniform, then there exists a constant β1 > 0 independent of hx
and hs such that for all μh ∈ �h it holds true

sup
Vh∈Vh

B(Vh,μh)

‖Vh‖V ≥ β1‖μh‖�. (47)

Proof In the proof of Proposition 10 we have shown that

sup
v∈H1

0 (�)d

c(μ, v(X))

‖v‖1 ≥ 1

2c
‖μ‖�

for all μ ∈ �. Let us fix μh ∈ �h . Since �h ⊂ �, the above inequality holds true
also for μh . Let ū ∈ H1

0 (�)d be the element in H1
0 (�)d where the above supremum

is attained, hence

c(μh, ū(X)) ≥ 1

2c
‖μ‖�‖ū‖1.

Let ūh = �ū ∈ Vh be the Clément interpolation of ū, which satisfies

‖ū − �ū‖r,� ≤ C

⎛

⎝
∑

K∈Th
h2−2r
K |ū|21,K

⎞

⎠

1/2

,
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then, we write

c(μh, ūh(X)) = c(μh, ū(X)) + c(μh, ūh(X) − ū(X)).

We bound the second term on the right hand side, using a trace theorem [9, Th.1.6.6]
as follows

‖ūh(X) − ū(X)‖0,B ≤ C(‖ūh − ū‖0,�‖ūh − ū‖1,�)1/2 ≤ Ch1/2x ‖ū‖1
and the first one by means of the following inverse inequality

‖μh‖0,B ≤ Ch−1/2
s ‖μh‖�.

Hence we obtain

c(μh, ūh(X)) = c(μh, ū(X)) + c(μh, ūh(X) − ū(X))

≥ 1
2c‖μ‖�‖ū‖1 − C‖μh‖0,Bh1/2x ‖ū‖1

≥ ‖μ‖�‖ū‖1
(

1
2c − C

(
hx
hs

)1/2)

.

The desired inequality follows easily from

sup
v∈Vh

c(μh, v(X))

‖v‖1 ≥ c(μ, ūh(X))

‖ūh‖1 ≥
(

1

2c
− C

(
hx
hs

)1/2
)

‖ū‖1
‖ūh‖1 ‖μh‖�

if (hx/hs)1/2 ≤ 1/(2cC). ��
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