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Abstract In this paper, we study scalar multivariate non-stationary subdivision
schemes with integer dilation matrix M and present a unifying, general approach
for checking their convergence and for determining their Hölder regularity (latter in
the case M = mI,m ≥ 2). The combination of the concepts of asymptotic similarity
and approximate sum rules allows us to link stationary and non-stationary settings
and to employ recent advances in methods for exact computation of the joint spectral
radius. As an application, we prove a recent conjecture by Dyn et al. on the Hölder reg-
ularity of the generalized Daubechies wavelets. We illustrate our results with several
examples.

Mathematics Subject Classification 65D17 · 15A60 · 39A99

1 Introduction

We provide a general, unifying method for convergence and regularity analysis of
multivariate non-stationary, i.e. level-dependent, subdivision schemes with an integer
dilation matrix M whose eigenvalues are all larger than 1 in the absolute value. It
has been believed until recently that the joint spectral radius approach, successfully
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used for the regularity analysis of stationary subdivisions, is not applicable in the
non-stationary setting. Our results dismiss this belief. We show that the joint spectral
radius techniques are applicable for all non-stationary schemes that satisfy two mild
assumptions: all level-dependent masks have the same bounded support and satisfy the
so-called approximate sum rules. We show that the approximate sum rules are “almost
necessary” for convergence and regularity of non-stationary schemes.We derive sharp
criteria for convergence of non-stationary schemes in the spacesC� , � ≥ 0, and, in the
caseM = mI,m ≥ 2, obtain a formula for theHölder exponent of their limit functions.
The application of our results allows us, e.g. to determine the Hölder regularity of
the generalized Daubechies wavelets and, thus, prove the recent conjecture by Dyn
et al. [32]. In this paper we focus mainly on subdivision schemes, although our results
are applicable to all non-stationary refinable functions, in particular, the ones used for
constructions of non-stationary wavelets.

Subdivision schemes are linear iterative algorithms that interpolate or approximate
data on a given polygonal mesh. From starting data, such schemes repeatedly compute
local, linear weighted averages of sequences of real numbers or point in R

s , s =
2, 3. The weights are real numbers that define the so-called subdivision mask of the
scheme. The scheme converges, if the subdivision recursion generates a continuous
limit function from every starting data sequence. The first subdivision scheme is the
corner cutting algorithm by de Rham [30] that generates smooth curves from the given
vertices of a polygon in R

2.
Subdivision schemes are simple to implement, intuitive in use, and possess many

other nice properties (linearity, shift-invariance, etc). This motivates their wide pop-
ularity in modeling freeform curves and surfaces and in computer animation. The
potential of subdivision schemes has recently also become apparent in the context of
isogeometric analysis, a modern computational approach that integrates finite element
analysis into conventional CAD systems. Thus, in the last ten years, there has been
an increase of interest in subdivision schemes. The main questions when analyzing
any scheme are its convergence and the regularity of its limit functions. Both of these
questions can be answered effectively using the matrix approach that reduces these
questions to computation of the joint spectral radius of a special, compact set of square
matrices.

Non-stationary subdivision schemes were introduced to enrich the class of limit
functions of stationary schemes and have very different and distinguished proper-
ties. Indeed, it is well-known that stationary subdivision schemes are not capable of
generating circles, ellipses, or, in general, of generating exponential (quasi-) poly-
nomials xγ eλ·x , x ∈ R

s , γ ∈ N
s
0, λ ∈ C

s , while non-stationary schemes generate
function spaces that are much richer and include exponential polynomials as well as
exponential B-splines (see e.g. [2,27,35,46,48,53,63]). This generation property is
important in several applications, e.g. in biological imaging [28,29], geometric design
[51,62,67] and in isogeometric analysis (see [3,13,14,23] and references therein). The
interest in non-stationary subdivision schemes is also due to the fact that they include
Hermite schemes that do not only model curves and surfaces, but also their gradient
fields. Such schemes are used in geometric modelling and biological imaging, see
e.g. [39,54–56,65]. Additionally, multi-resolution analysis based on any stationary
subdivision scheme uses the same filters at each level of the decomposition and recon-
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struction. On the contrary, non-stationary wavelet and frame constructions are level
adapted and more flexible, see e.g. [32,37,48,50,66]. Unfortunately, in practice, the
use of subdivision is mostly restricted to the class of stationary subdivision schemes.
One reason for that is the lack of general methods for their analysis, especiallymethods
for their convergence and regularity analysis. This motivates our study.

The main difficulty is that the matrix approach cannot be directly extended to the
non-stationary setting. In the stationary case, the Hölder regularity of subdivision
limits is derived from the joint spectral radius of a finite set of linear operators which
are restrictions of transition matrices of the subdivision scheme to their special linear
subspace. In the non-stationary case, one deals with a sequence of transition matrices
and a sequence of their corresponding linear subspaces. Both may not converge a
priori. Deep analysis of such sequences allows us to prove that the sequence of such
linear subspaces does possess a limiting subspace (provided the scheme converges).
Moreover, as in the stationary case, we show how to express the Hölder regularity of
non-stationary subdivision in terms of the joint spectral radius of the limit points of the
sequence of transition matrices restricted to this limiting linear subspace. Both results
provide a powerful tool for analysis of non-stationary subdivision schemes. Several
numerical examples demonstrate the efficiency of our method.

Finally, note that there is another class of non-stationary schemes that can generate
C∞ limits (Rvachev-type functions) with bounded support, see [33]. The trade-off
is that the supports of their level-dependent subdivision masks grow from level to
level of the subdivision recursion. Our approach for regularity analysis is based on
computations of the joint spectral radius of a compact set of matrices. Therefore,
naturally, it does not apply to Rvachev-type schemes, since, the corresponding matrix
sets are unbounded. For analysis and applications of Rvachev-type schemes we refer
the reader, for example, to [15,33,49].

1.1 Framework

Let M = mI , m ≥ 2. Given an initial set of data c(1) := {c(1)(α) ∈ R, α ∈ Z
s}

a subdivision scheme iteratively constructs a sequence of progressively denser data
by means of local refinement rules which are based on the sequence of subdivision
operators {Sa(k) , k ≥ 1}. The subdivision operators Sa(k) : �(Zs) → �(Zs) are linear
operators and map coarser sequences c(k) ∈ �(Zs) into finer sequences c(k+1) ∈ �(Zs)

via the rules

c(k+1) := Sa(k) c(k), Sa(k) c(k)(α) :=
∑

β∈Zs

a(k)(α − Mβ)c(k)(β), k ≥ 1, α ∈ Z
s .

(1)
The masks {a(k), k ≥ 1} are sequences a(k) := {a(k)(α) ∈ R, α ∈ Z

s} of real num-
bers and we assume that all a(k) have bounded supports in {0, . . . , N }s with N ∈ N.
To be able to use the joint spectral radius approach, we furthermore assume that the
sequence {a(k), k ≥ 1} is bounded. Such schemes are called either level-dependent,
or non-stationary or non-homogeneous. Here we use the term non-stationary and
denote these type of subdivision schemes by the corresponding collection of subdi-
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vision operators {Sa(k) , k ≥ 1}. A subdivision scheme whose refinement rules are
level independent is said to be stationary (see [5], for example) and, for all k ≥ 1, is
defined by the same sequence a := {a(α) ∈ R, α ∈ Z

s} of refinement coefficients,
i.e. a(k) = a, k ≥ 1. The corresponding subdivision scheme is therefore denoted by
Sa. There is a multitude of results on convergence and regularity of stationary subdi-
vision schemes in the literature (for example see [5,11,12,43,47,57] and references
therein). These results rely on polynomial generation and reproduction properties of
subdivision operators and employ the so-called restricted spectral radius or the joint
spectral radius techniques. It has been believed until recently that these two concepts
have no immediate application in the non-stationary setting. The reason for this belief
is that convergent non-stationary schemes do not necessarily generate or reproduce
any polynomial spaces, see e.g. [19].

In this paper, wemake use of the concepts of approximate sum rules and asymptotic
similarity to link stationary and non-stationary settings and show how to employ the
joint spectral radius for smoothness analysis of non-stationary schemes. This allows
us to provide a general and unifying approach for the analysis of convergence and
regularity of a vast majority of non-stationary subdivision schemes. Our results gen-
eralize the existing well-known methods in [18,34,36], which only allow us to check
convergence and Hölder regularity of special instances of non-stationary schemes. In
fact, the sufficient conditions in [34] are based on the concept of asymptotic equiva-
lencewhich we recall in the following Definition 1, where E is a set of representatives
of Z

s/MZ
s , i.e. E � {0, . . . ,m − 1}s .

Definition 1 Let � ≥ 0. Two non-stationary schemes {Sa(k) , k ≥ 1} and {Sb(k) , k ≥ 1}
are called asymptotically equivalent (of order �), if they satisfy

∞∑

k=1

mk�‖Sa(k) − Sb(k)‖∞ < ∞, for ‖Sa(k)‖∞ := max
ε∈E

{
∑

α∈Zs

|a(k)(Mα + ε)|
}

.

(2)

In the case of M = 2I and under certain additional assumptions on the schemes
{Sa(k) , k ≥ 1} and {Sb(k) , k ≥ 1}, the method in [34] allows us to determine the
regularity of {Sa(k) , k ≥ 1} from the known regularity of the asymptotically equivalent
scheme {Sb(k) , k ≥ 1}. In [36], in the univariate binary case, the authors relax the
condition of asymptotic equivalence. They require that the D j th derivatives of the
symbols

a(k)∗ (z) :=
∑

α∈Z
a(k)(α)zα, z ∈ C\{0}, k ≥ 1,

of the non-stationary scheme {Sa(k) , k ≥ 1} satisfy

|D ja(k)∗ (−1)| ≤ C 2−(�+1− j)k, j = 0, . . . , �, � ≥ 0, C ≥ 0, (3)

and, additionally, assume that the non-stationary scheme is asymptotically equivalent
(of order 0) to some stationary scheme. The conditions in (3) can be seen as a general-
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ization of the so-called sum rules in (4). In the stationary case, sum rules are necessary
for smoothness of subdivision, see e.g [4,5,42,45].

Definition 2 Let � ≥ 0. The symbol

a∗(z) =
∑

α∈Zs

a(k)(α)zα, z ∈ C
s\{0},

satisfies sum rules of order � + 1 if

a∗(1) = ms and max|η|≤�
max

ε∈
\{1} |D
ηa∗(ε)| = 0. (4)

In the above definition, 
 := {e−i 2πm ε, ε ∈ E} and Dη, η ∈ N
s
0, denotes the ηth

directional derivative.
In the spirit of (3), in this paper, we present a generalization of the notion of sum

rules which we call approximate sum rules.

Definition 3 Let � ≥ 0. The sequence of symbols {a(k)∗ (z), k ≥ 1} satisfies approx-
imate sum rules of order � + 1, if

μk := |a(k)∗ (1) − ms | and δk := max|η|≤�
max

ε∈
\{1} |m
−k|η|Dηa(k)∗ (ε)| (5)

satisfy
∞∑

k=1

μk < ∞ and
∞∑

k=1

m k� δk < ∞. (6)

We call the sequence {δk, k ≥ 1} sum rule defects. If the sequences {μk, k ≥ 1} and
{δk, k ≥ 1} are zero sequences, then the symbols of the corresponding non-stationary
scheme satisfy sum rules of order � + 1.

Note that, even in the univariate binary case, the assumption on {δk, k ≥ 1} in (6),
i.e. ∞∑

k=1

2�kδk < ∞, δk := max
j≤�

2−k j |D ja(k)∗ (−1)|, (7)

is less restrictive than the decay condition on {δk, k ≥ 1} in (3). In Theorem 1,
we showed that approximate sum rules are close to being necessary conditions for
regularity of non-stationary schemes, i.e. even in the univariate binary setting, the sum
rules defects {δk, k ≥ 1} must decay faster than 2−�k , if the limit functions of the
scheme areC�. Indeed, in the binary univariate case, we show that under assumption of
asymptotical similarity (see Definition 5) to a stationary scheme whose basic refinable
function is stable, the C�-regularity of the non-stationary scheme implies that the sum
rules defects {δk, k ≥ 1} must decay faster than 2−�k . Clearly, there is still a gap
between the corresponding necessary condition limk→∞ 2−�kδk = 0 and one of the
sufficient conditions

∑
k∈N 2−�kδk < ∞. See also Example 1. Moreover, in [22], the

authors proved that this decay rate of the sum rules defects is necessary for generation
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of � linearly independent functions from {xγ eλx , γ ∈ N0, λ ∈ C}. This resembles the
stationary setting andmotivates ourmultivariate convergence and smoothness analysis
of non-stationary schemes.

In [18], in the univariate binary non-stationary setting, milder sufficient conditions
than asymptotic equivalence are essentially derived under the assumptions that the
scheme {Sa(k) , k ≥ 1} is asymptotically similar to a suitable non-stationary scheme
{Sb(k) , k ≥ 1}, i.e. limk→∞ ‖a(k) − b(k)‖∞ = 0 , and both satisfy sum rules of order
1. Here we generalize the notion of asymptotic similarity making use of the following
concept of set of limit points of a sequence of masks.

Definition 4 For the mask sequence {a(k), k ≥ 1} we denote byA the set of its limit
points, i.e. the set of masks a such that

a ∈ A, if ∃{kn, n ∈ N} such that lim
n→∞ a(kn) = a.

The following definition of asymptotic similarity generalizes the one given in [18].
This notion allows us to relate the properties of non-stationary subdivision schemes
to the corresponding properties of the stationary masks in A.

Definition 5 Two non-stationary schemes {Sa(k) , k ≥ 1} and {Sb(k) , k ≥ 1} are
called asymptotically similar, if their sets of limit points coincide.

1.2 Summary of the results

For the reader’s convenience, we summarize here the main results presented in this
paper. The details are given in Sect. 3.

In the rest of the paper we assume that the symbols {a(k)∗ (z), k ≥ 1} satisfy
approximate sum rules and are re-scaled in such a way that a(k)∗ (1) = ms , k ≥ 1. In
this case μk in (5) are equal to zero for all k ≥ 1 and do not affect our convergence
and regularity analysis. On the contrary, if the sequence {μk, k ≥ 1} is not summable,
then such a re-scaling can change the properties of the scheme, see Example 1.

One of our results states that even in the univariate case approximate sum rules are
close to being necessary for convergence and smoothness of non-stationary subdivision
schemes.

Theorem 1 Let � ≥ 0. Assume that a univariate binary subdivision scheme Sa is
convergent and its basic refinable limit function is stable. Assume, furthermore, that
a = limk→∞ a(k) and the non-stationary subdivision scheme {S(k)

a , k ≥ 1} converges
to C� limit functions. Then limk→∞ 2 �kδk = 0 for {δk, k ≥ 1} in (7).

The proof of Theorem 1 is given in Sect. 4. Thus, if the scheme converges to a C�

limit function, then the sum rule defects {δk, k ≥ 1} decay faster than 2−�k , i.e., satisfy
δk = o(2−�k). This does not imply the approximate sum rules, i.e.

∑
k∈N δk2 �k < ∞,

but is close to this condition. Thus, Theorem 1 indicates that approximate sum rules
is a natural assumption for convergence to a C� limit, and cannot be relaxed by much.
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In the stationary case, the Hölder regularity of the subdivision limits, as well as the rate
of convergence of the corresponding subdivision scheme Sa, are determined explicitly
in terms of the joint spectral radius of the set of certain square matrices which are
derived from the subdivision mask a and depend on the order of sum rules satisfied
by a∗(z). Since, in the non-stationary setting, one cannot assume that all subdivision
symbols {a(k)∗ (z), k ≥ 1} satisfy sum rules, see [10,20], the concept of the joint
spectral radius is not directly applicable and has no straightforward generalization. For
this reason, in Theorem 2, we establish a link between stationary and non-stationary
settings via the setA of limit points of {a(k), k ≥ 1} and provide sufficient conditions
for C�-convergence, � ≥ 0, and Hölder regularity of non-stationary schemes. Under
C�-convergence we understand the convergence of subdivision in the norm ofC�(Rs),
see Definition 9 in Sect. 2. Note that C0-convergence is the usual convergence of
subdivision in �∞ norm and C�-convergence implies the convergence of the scheme
toC� limit functions, but not vice versa, see Definition 6 in Sect. 2. As in the stationary
setting, each mask in the limit set A determines a set of transition matrices, see e.g.
(13). We denote the collection of the restrictions of all these transition matrices to
a given finite dimensional difference subspace V� by TA|V�

, see Sect. 2 for more
details. Theorem 2 states thatC�-convergence and Hölder regularity of non-stationary
schemes is determined by the joint spectral radius ρA of this collection TA|V�

.

Theorem 2 Let � ≥ 0 and {δk, k ≥ 1} be defined in (5). Assume that the symbols of
{Sa(k) , k ≥ 1} satisfy approximate sum rules of order � + 1 and ρA := ρ

(
TA|V�

)
<

m−�, where A is the set of limit points of {a(k), k ≥ 1}. Then the non-stationary
scheme {Sa(k) , k ≥ 1} is C�-convergent and theHölder exponentα of its limit functions
satisfies

α ≥ min
{
− logm ρA , − lim sup

k→∞
logm δk

k

}
.

The proof of Theorem 2 is given in Sect. 3.4. Thus, in the non-stationary case, the
smoothness of the limit function depends not only on the joint spectral radius of the
matrices in A, but also on the rate of decay of the sum rules defects {δk, k ≥ 1}.
Note that, as in the stationary case, the order of approximate sum rules satisfied by the
symbols of a non-stationary scheme can be much higher than its regularity.

For applications of Theorem 2 to parameter dependent non-stationary schemes see
[8]. There are several immediate important consequences of Theorem 2 that generalize
the corresponding results in [18,34,36]. For example the following Corollary extends
the results in [18] with respect to the dimension of the space, the regularity of the limit
functions and the more general notion of asymptotic similarity given in Definition 5.

Corollary 1 Let � ≥ 0. Assume that the symbols of the scheme {Sa(k) , k ≥ 1} satisfy
sum rules of order �+1 and ρA := ρ

(
TA|V�

)
< m−�, whereA is the set of limit points

of {a(k), k ≥ 1}. Then any other asymptotically similar scheme {Sb(k) , k ≥ 1} whose
symbols satisfy sum rules of order � + 1 is C�-convergent and the Hölder exponent of
its limit functions is α ≥ − logm ρA.
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Theorem 2 provides a lower bound for the Hölder exponent of the subdivision limits,
whereas the next result allows us to determine its exact value, under slightly more
restrictive assumptions.

Theorem 3 Let � ≥ 0. Assume that a stationary scheme Sa is C�-convergent with the
stable refinable basic limit function φ whose Hölder exponent αφ satisfies � ≤ αφ <

� + 1. If the symbols of the scheme {Sa(k) , k ≥ 1} satisfy approximate sum rules of
order � + 1, limk→∞ a(k) = a and, additionally

lim sup
k→∞

δ
1/k
k < ρa := ρ({Tε,a|V�

, ε ∈ E}),

then the scheme {Sa(k) , k ≥ 1} is C�-convergent and the Hölder exponent of its limit
functions is also αφ .

The proof of Theorem 3 is given in Sect. 3.5. An important special class of non-
stationary schemes that satisfy assumptions of Theorem 3 are the schemes whose
symbols satisfy sum rules of order � + 1, see Corollary 4 in Sect. 3.5.

The main application of Theorem 3 is the proof of the following conjecture by Dyn
et al. stated in [32].

Conjecture 1 ([32]) The Hölder regularity of every generalized Daubechies type
wavelet is equal to the Hölder regularity of the corresponding classical Daubechies
wavelet.

Weprove this conjecture in Theorem 5 and compute some of the correspondingHölder
exponents, see Sect. 3.6.1.

This paper is organized as follows. In Sect. 2, we summarize important known fact
about stationary and non-stationary subdivision schemes. The proofs of the results
stated in Sect. 1.2 are given in Sect. 3. In particular, in Sect. 3.3, we provide sufficient
conditions for convergence of non-stationary subdivision schemes whose symbols
satisfy assumptions of Theorem 2 with � = 0. The argument in the proof of the
corresponding Theorem 4 is actually independent of the choice of the dilation matrix
M . For that reason we give a separate proof of convergence and, then, in Sect. 3.4,
present the proof of the more general statement of Theorem 2. In Sect. 3.5, we give
the proof of Theorem 3. We illustrate our convergence and regularity results with
several deliberately simple examples in Sect. 3.6. There we also prove Conjecture 1
formulated in [32] about the regularity of generalized Daubechies wavelets. Next, in
Sect. 4, we prove the necessary conditions stated in Theorem 1.

2 Background and preliminary definitions

In this section we recall well-known properties of subdivision schemes. We start
by defining convergence and Hölder regularity of non-stationary and, thus, also of
stationary subdivision schemes. We would like to distinguish between the follow-
ing two different types of convergence, both being investigated in the literature
on stationary and non-stationary subdivision schemes. We denote by �∞(Zs) the
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space of all scalar sequences c = {c(α), α ∈ Z
s} indexed by Z

s and such that
‖c‖�∞ := supα∈Zs |c(α)| < ∞.

Definition 6 A subdivision scheme {Sa(k) , k ≥ 1} converges to C� limit functions,
if for any initial sequence c ∈ �∞(Zs), there exists the limit function gc ∈ C�(Rs)

(which is nonzero for at least one nonzero sequence c) such that

lim
k→∞

∥∥∥gc(M−kα) − Sa(k) Sa(k−1) . . . Sa(1) c(α)

∥∥∥
�∞

= 0. (8)

In the next Definition 9 we consider a stronger type of convergence, the so-called
C�-convergence of subdivision. Note that both types of convergence coincide in the
case � = 0. In Definition 9 we make use of the concept of a test function (see, for
example [24]). To define this concept we need to recall the following properties of the
test functions.

Definition 7 Let � ≥ 0.A compactly supported summable function f satisfies Strang-
Fix conditions of order � + 1, if its Fourier transform f̂ satisfies

f̂ (0) = 1, Dμ f̂ (α) = 0, α ∈ Z
s\{0}, μ ∈ N

s
0, |μ| < � + 1.

Definition 8 A compactly supported f ∈ L∞(Rs) is stable, if there exists 0 < C1 ≤
C2 < ∞ such that for all c ∈ �∞(Zs),

C1‖c‖�∞ ≤
∥∥∥∥∥

∑

α∈Zs

c(α) f (· − α)

∥∥∥∥∥
∞

≤ C2‖c‖�∞ .

By [5, p. 24], this type of stability is equivalent to �∞ linear independence of integer
shifts of f . The function f is called a test function, if it is sufficiently smooth, com-
pactly supported, stable and satisfies Strang-Fix conditions of order � + 1. Possible
examples of the test functions f are tensor-product box splines.

Definition 9 A subdivision scheme {Sa(k) , k ≥ 1} is C�-convergent, if for any initial
sequence c ∈ �∞(Zs) there exists the limit function gc ∈ C�(Rs) such that for any
test function f ∈ C�(Rs)

lim
k→∞

∥∥∥∥∥gc(·) −
∑

α∈Zs

Sa(k) Sa(k−1) . . . Sa(1)c(α) f (Mk · −α)

∥∥∥∥∥
C�

= 0. (9)

Note that, for C�-convergence, it suffices to check (9) just for one test function f . In
this paper, we also investigate the Hölder regularity of subdivision limits.

Definition 10 The Hölder regularity of the C0-convergent scheme {Sa(k) , k ≥ 1} is
α = � + ζ , if � is the largest integer such that gc ∈ C�(Rs) and ζ is the supremum of
ν ∈ [0, 1] such that

max
μ∈Ns

0,|μ|=�
|Dμgc(x) − Dμgc(y)| ≤ |x − y|ν, x, y ∈ R

s .
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We call α the Hölder exponent of the limit functions of {Sa(k) , k ≥ 1}.
Instead of studying the regularity of all limit functions of aC0-convergent subdivision
scheme, one usually restricts the analysis to the so-called basic limit functions, which
are defined as follows. Let δ := {δ(α) = δ0,α, α ∈ Z

s}, where δ0,α , α ∈ Z
s , is the

Kronecker delta symbol, i.e., δ0,0 = 1 and zero otherwise. The compactly supported
basic limit functions φk generated from the initial sequence δ are given by

φk := lim
�→∞ Sa(k+�) . . . Sa(k+1) Sa(k)δ, k ≥ 1.

An interesting fact about convergent non-stationary schemes is that the compactly
supportedbasic limit functionsφk aremutually refinable, i.e., they satisfy the functional
equations

φk =
∑

α∈Zs

a(k)(α)φk+1(M · −α), k ≥ 1, (10)

where {a(k)(α), α ∈ Z
s} is the k-level subdivision mask. We remark that, without

loss of generality, to study convergence and regularity of a non-stationary subdivision
scheme it suffices to study the continuity and the Hölder regularity of the function φ1.
This fact is shown in the next lemma (see also [58]).

Lemma 1 Let αφk be the Hölder exponent of φk , k ≥ 1. If a(k)(0) �= 0, then αφk = αφ1

for all k ≥ 1.

Proof Let k ≥ 1. Due to (10) and the compact support of the mask a(k), we have
αφk ≥ αφk+1 and it suffices to show that αφk+1 ≥ αφk . To do that we show that, for
any compactly supported function h, the operator g = �h = ∑

α∈Zs a(k)(α)h(· −
α) preserves the regularity of h. Note that, due to a(k)(0) �= 0, its symbol satisfies
a(k)∗ (z) �= 0 in the neighborhood of zero. Thus, the meromorphic function b(k)∗ (z) =
1/a(k)∗ (z), z ∈ C

s\{0}, has the Taylor expansion b(k)∗ (z) = ∑
β∈Ns

0
b(k)(β)zβ in the

neighborhood of zero. Then, due to a(k)∗ (z)b(k)∗ (z) = 1 and by the Cauchy product
formula, we get

∑

β∈Ns
0

b(k)(β)g(· − β) =
∑

β∈Ns
0

∑

α∈{0,...,N }s
b(k)(β − α)a(k)(α)h(· − β)

= b(k)(0)a(k)(0)h = h.

Therefore, for the Hölder exponents of g and h we get αh ≥ αg and, thus, also
αφk+1 ≥ αφk . �

For our analysis, for the sequence of masks {a(k), k ≥ 1} supported on {0, . . . , N }s ,
we define the so-called transition matrices T (k)

ε , k ≥ 1, ε ∈ E � {0, . . . ,m − 1}s , as
follows. Accordingly to [12], we set

K :=
∞∑

r=1

M−rG, where G := {−m, . . . , N + 1}s, (11)
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Regularity of non-stationary subdivision: a matrix approach 649

and define the |K | × |K | matrices

T (k)
ε,a(k) :=

[
a(k)(ε + Mα − β)

]

α,β∈K , ε ∈ E . (12)

For simplicity we write T (k)
ε instead of T (k)

ε,a(k) . If the symbols {a(k)∗ (z), k ≥ 1} satisfy
sum rules of order � + 1, then the linear operators T (k)

ε have common invariant dif-
ference subspaces Vj ⊂ R

|K |, each of which is orthogonal to {[p(α)]α∈K ∈ R
|K | :

p ∈ �n}, n = 0, . . . , j . The spaces � j are the spaces of polynomials of total degree
less than or equal to j = 0, . . . , �. The existence of Vj , j = 0, . . . , �, is guaranteed
for C�-convergent stationary subdivision schemes and is indeed used for analysis of
convergence and regularity in the stationary setting. We refer the reader, for exam-
ple, to the papers [4,5,7,12,43,47] for more details on the structure of Vj and for
characterizations of regularity of stationary subdivision schemes in terms of spectral
properties of the matrices Tε,a|Vj , ε ∈ E . Similarly to (12), these matrices are derived
from the stationary mask a as follows: define

Tε,a := [a(ε + Mα − β)]α,β∈K , ε ∈ E, (13)

and determine their restrictions Tε,a|Vj to Vj . Since, in general, in the non-stationary
setting, the existence of such invariant subspaces is not guaranteed by the regularity
of the limit functions, in this paper we study non-stationary schemes {Sa(k) , k ≥ 1}
whose sequences of masks possess setsA of limit points, see Definition 4. This allows
us, similarly to the stationary setting, to establish a link between the regularity of non-
stationary schemes and the spectral properties of the collection of square |K | × |K |
matrices Tε,a restricted to Vj , j = 0, . . . , �. This collection we denote by TA|Vj :=
{Tε,a|Vj , ε ∈ E, a ∈ A}.

We conclude this section by recalling the notion of the joint spectral radius of a set
of square matrices, see [64].

Definition 11 The joint spectral radius (JSR) of a compact collection of square matri-
ces M is defined by ρ(M) := limn→∞ maxM1,...,Mn∈M ‖ ∏n

j=1 Mj‖1/n .
Note that ρ(M) is independent of the choice of the matrix norm ‖ · ‖.

3 Convergence and Hölder regularity of non-stationary schemes

In this section we derive sufficient conditions for convergence and Hölder regularity
of a wide class of non-stationary subdivision schemes. In our proofs we make use
of the special structure of the matrices Tε,a, a ∈ A in (13), and the matrices T (k)

ε in
(12) associated with a sequence of masks {a(k), k ≥ 1}. This structure is ensured
after a suitable change of basis, which we discuss in Sect. 3.1. In the rest of the
paper, we call such a basis a transformation basis. In Sect. 3.2, we illustrate two
important differences between sum rules and approximate sum rules. In Sect. 3.3, we
show that a non-stationary subdivision scheme {S(k)

a , k ≥ 1} is convergent if its
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symbols satisfy approximate sum rules of order 1 and, in addition, its sequence of
masks {a(k), k ≥ 1} possesses the set of limit pointsA such that ρ

(
TA|V0

)
< 1. Note

that, after an appropriate adaptation of the notation in Sects. 1 and 2, the proof of this
convergence result is also valid in the case of a general integer dilation matrix M , the
spectral radius of whose inverse satisfies ρ(M−1) < 1. In Sect. 3.4, we analyze the
Hölder regularity of the basic limit function φ1 under the assumptions of approximate
sum rules of order �+1, � ≥ 0, and ρ

(
TA|V�

)
< m−�. In Sect. 3.5, we prove Theorem

3 and show that under a certain stability assumption the quantity ρ
(
TA|V�

)
determines

the exact Hölder exponent of the subdivision limits. This result allows us to prove in
Sect. 3.6 a recent conjecture on regularity of Daubechies wavelets stated in [32]. In
Sect. 3.6, we also illustrate our results with several examples.
We start by stating important properties of the set A.

Proposition 1 Let � ≥ 0. Let A be the set of limit points of {a(k), k ≥ 1}. Assume
that {a(k)∗ (z), k ≥ 1} satisfy approximate sum rules of order �+ 1. Then, the symbols
associated with the masks in A satisfy sum rules of order � + 1.

Proof The proof follows from Definition 4 and the fact that approximate sum rules in
Definition 3 imply that limk→∞ δk = limk→∞ μk = 0. �

Next, we would like to remark that the class of the non-stationary schemes we analyze
is not empty.

Remark 1 In general, for an arbitrary compact set A of masks, there exists a non-
stationary subdivision scheme {Sa(k) , k ≥ 1} with the set of limit points A. One
possible way of constructing {Sa(k) , k ≥ 1} from a given set A is presented in
Example 2.

3.1 Transformation basis

Let � ≥ 0 and � j be the spaces of polynomials of total degree less than or equal to
j = 0, . . . , �. If the symbols of the masks a ∈ A satisfy sum rules of order � + 1,
then the corresponding stationary subdivision operators Sa posses certain polynomial
eigensequences {pa(α), α ∈ Z

s}, pa ∈ � j , j = 0, . . . , �. These polynomial egense-
quences are possibly different for different a. For each j = 0, . . . , �, the number
d j+1 of such eigensequences is equal to the number of monomials xη, η ∈ N

s
0, of

total degree |η| = j , see [42,45]. These eigensequences, written in a vector form with
ordering of the entries as in (12), become common left-eigenvectors of the correspond-
ing matrices Tε,a. There are at least two different ways of constructing the so-called
transformation basis of R

|K |. The approach in [4] makes use of the eigensequences
of the stationary subdivision operator. We cannot do that as the eigensequences of
Sa, a ∈ A, possibly differ for different a. For that reason, we follow the approach
in [26,58,61], which makes use of the elements in the common invariant subspaces
Vj of Tε,a, a ∈ A. The transformation basis can be constructed as follows: Take
the first unit vector of R

|K | and extend it to a basis of R
|K | by choosing appropriate

d j+2 vectors from Vj , j = 0, . . . , � − 1, and a complete basis of V�. Note that, any
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vector from Vj is constructed to be orthogonal to the polynomial vectors [pa(α)]α∈K ,
pa ∈ �i , i = 0, . . . , j . We choose d j+2 vectors, say v j,η, from Vj in such a way that
they are orthogonal to all but one vector [αη]α∈K for the corresponding η ∈ N

s
0 with|η| = j + 1.

This choice of the transformation basis guarantees that the transformed matrices
Tε,a ∈ R

|K |×|K |, ε ∈ E , are block-lower triangular and of the form

⎛

⎜⎜⎜⎜⎜⎝

1 0
B2

b1,ε,a
. . .

b2,ε,a B�+1
b�+1,ε,a Tε,a|V�

⎞

⎟⎟⎟⎟⎟⎠
, (14)

where the d j × d j matrices Bj are diagonal with diagonal entries equal to m− j+1;

the matrices b j,ε,a are of size
(
|K | − ∑ j

i=1 di
)

× d j . Moreover, if {a(k)∗ (z), k ≥ 1}
satisfy approximate sum rules of order � + 1, then, after the same change of basis, the
matrices T (k)

ε ∈ R
|K |×|K |, ε ∈ E , k ≥ 1, are sums of a block-lower and a block-upper

triangular matrices

T̃ (k)
ε + �(k)

ε :=

⎛

⎜⎜⎜⎜⎜⎜⎝

1 0
B2

b(k)
1,ε

. . .

b(k)
2,ε B�+1

b(k)
�+1,ε Q(k)

ε

⎞

⎟⎟⎟⎟⎟⎟⎠
+

⎛

⎜⎜⎜⎜⎜⎜⎝

c(k)
1,ε . . .

c(k)
2,ε . . .

. . .

c(k)
�+1,ε . . .

0 O

⎞

⎟⎟⎟⎟⎟⎟⎠
, (15)

where b(k)
j,ε are of size

(
|K | − ∑ j

i=1 di
)

× d j ; the matrices c(k)
j,ε of size d j ×

(
|K | − ∑ j−1

i=1 di
)
; O is the zero matrix of the same size as Q(k)

ε .

3.2 Sum rules versus approximate sum rules

The following example illustrates two important differences between sum rules and
approximate sum rules stated inDefinitions 3 and 4, respectively. Firstly, the re-scaling
of all symbols of a non-stationary subdivision masks to ensure that μk = 0, k ≥ 1,
can change the properties of the non-stationary scheme if the sequence {μk, k ≥ 1}
is not summable. In other words, in contrast to the stationary case, the properties of
a(k)∗ (1), k ≥ 1, are crucial for convergence and regularity analysis of non-stationary
schemes. Secondly, even in the univariate case, the existence of the factor (1+z) for all
non-stationary symbols a(k)∗ (z) and the contractivity of the corresponding difference
schemes do not guarantee the convergence of the associated non-stationary scheme,
if {μk, k ≥ 1} is not summable.

123



652 M. Charina et al.

Example 1 Let s = 1, M = 2. It is well-known that the convergence of Sa in the
stationary case is equivalent to the fact that the difference (or derived) scheme Sb with
the symbol b∗(z) such that

a∗(z) = (1 + z) b∗(z), z ∈ C\{0},
is zero convergent, i.e, for every v ∈ R

|K | orthogonal to a constant vector and
ε1, . . . , εk ∈ {0, 1}, the norm ‖Tε1,a . . . Tεk ,av‖ goes to zero as k goes to∞. In the non-
stationary case, this characterization is no longer valid. Consider the non-stationary
scheme with the masks

a(k) :=
(
1 + 1

k

)
a, k ≥ 1. (16)

Note that μk = 2
k , δk = 0 and, thus, we can conclude that the non-stationary scheme

{Sa(k) , k ≥ 1} does not satisfy approximate sum rules. However, it is asymptotically
similar to Sa and the associated symbols satisfy

a∗(k)(z) := (1 + z)

(
1 + 1

k

)
b∗(z), k ≥ 1, z ∈ C\{0}.

We show next that the zero convergence of the associated difference schemes with
symbols

(
1 + 1

k

)
b∗(z) does not imply the convergence of the corresponding non-

stationary scheme. Indeed, for ε j ∈ {0, 1}, we get

‖T (1)
ε1

. . . T (k)
εk

v‖ =
k∏

j=1

(
1 + 1

j

)
‖Tε1,a . . . Tεk ,av‖ = (k + 1)‖Tε1,a . . . Tεk ,av‖.

The convergence of Sa implies the existence of an operator norm such that

‖Tε1,a . . . Tεk ,av‖ ≤ Cγ k, C > 0, γ < 1.

Therefore, the norm ‖T (1)
ε1 . . . T (k)

εk v‖ goes to zero as k goes to∞, but the corresponding
non-stationary scheme is not convergent. Otherwise, the Fourier-transform of its basic
limit function φ1 would satisfy φ̂1(ω) = ∏∞

j=1 a
( j)∗ (e−i2π2− jω), ω ∈ R, but

φ̂1(0) = lim
k→∞ 2

k∏

j=1

(
1 + 1

j

)
b∗(1) = lim

k→∞ 2(k + 1)b∗(1) = ∞.

Note that, if we rescale themasks so that allμk = 0, k ≥ 1, we get back the convergent
stationary scheme Sa.

3.3 Convergence

We start by recalling that, in the stationary case, for convergence analysis via the joint
spectral radius approach one uses the subspace

123



Regularity of non-stationary subdivision: a matrix approach 653

V0 :=
⎧
⎨

⎩v ∈ R
|K | :

|K |∑

j=1

v j = 0

⎫
⎬

⎭ , (17)

where K is defined in (11). This subspace also plays an important role in the proof
of the following Theorem 4 that provides sufficient conditions for convergence of a
certain big class of non-stationary schemes. In the case M = mI , m ≥ 2, Theorem 4
is an instance of Theorem 2 with � = 0. Note though that in the proof of Theorem 4
we do not assume that M = mI , m ≥ 2, and, thus, we need a more general definition
of approximate sum rules of order 1.

Definition 12 Let 
 = {e2π iM−T ξ : ξ is a coset representative of Z
s/MT

Z
s} . The

symbols {a(k)∗ (z), k ≥ 1} satisfy approximate sum rules of order 1, if the sequences
{μk, k ≥ 1} and {δk, k ≥ 1} with

μk :=
∣∣∣a(k)∗ (1) − | det(M)|

∣∣∣ and δk := max
ε∈
\{1} |a

(k)∗ (ε)| (18)

are summable.

In the case of a general dilation matrix, the set E is the set of coset representatives
E � Z

s/MZ
s .

Theorem 4 Assume that the sequence of symbols {a(k)∗ (z), k ≥ 1} satisfies approx-
imate sum rules of order 1 and ρ

(
TA|V0

)
< 1, where A is the set of limit points of

{a(k), k ≥ 1}. Then the non-stationary scheme {Sa(k) , k ≥ 1} is C0-convergent.

Proof By [37], the convergence of a non-stationary scheme is equivalent to the con-
vergence of the associated cascade algorithm. Thus, to prove the convergence of the
non-stationary scheme {Sa(k) , k ≥ 1}, we show, for v ∈ R

|K |, that the vector-sequence
with the elements T (1)

ε1 . . . T (k)
εk v, k ≥ 1, converges as k goes to infinity for every

choice of ε1, . . . εk,∈ E .
Due to Proposition 1, each a ∈ A satisfies sum rules of order 1. Therefore, by Sect.

3.1, the vector (1 0 . . . 0) is a common left eigenvector of all matrices

Tε,a =

⎛

⎜⎜⎝

1 0 · · · 0

bε,a Tε,a|V0

⎞

⎟⎟⎠ , ε ∈ E, a ∈ A.

Due to the assumption of approximate sum rules of order 1, by Sect. 3.1, we have

T (k)
ε = T̃ (k)

ε + �(k)
ε , ε ∈ E, k ≥ 1, (19)
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with

T̃ (k)
ε =

⎛

⎜⎜⎝

1 0 · · · 0

b(k)
ε Q(k)

ε

⎞

⎟⎟⎠ , �(k)
ε =

(
c(k)
ε

O

)
.

Thus, the canonical row unit vector (1 0 . . . 0) is a quasi-common left-eigenvector of
the operators T (k)

ε , ε ∈ E , i.e. (1 0 . . . 0) T (k)
ε = (1 0 . . . 0) + c(k)

ε , where the row
vector c(k)

ε vanishes as k tends to infinity and the corresponding sequence of norms
{‖�(k)

ε ‖, k ≥ 1} is summable. Moreover, b(k)
ε and Q(k)

ε converge by subsequences as
k goes to infinity to bε,a and Tε,a|V0 for some a ∈ A, respectively.

By assumption ρ
({Tε,a|V0 , ε ∈ E, a ∈ A}) < 1. Thus, the existence of the oper-

ator norm of {Tε,a|V0 , ε ∈ E, a ∈ A} and the continuity of the joint spectral radius

imply that there exists k̄ such that ρ
(
{Q(k)

ε , ε ∈ E, k ≥ k̄}
)

< 1. This implies that

for all vectors v ∈ R
|K |, the product T̃ (1)

ε1 . . . T̃ (k)
εk v converges as k goes to infinity for

every choice of ε1, . . . , εk ∈ E .
By well-known results on the joint spectral radius of block triangular families of

matrices (see e.g. [1]), we obtain that ρ
(
{T̃ (k)

ε , ε ∈ E, k ≥ k̄}
)

= 1. Moreover, the

family of matrices {T̃ (k)
ε , ε ∈ E, k ≥ k̄} is non-defective (see e.g. [40]), thus by

[1,64], there exists an operator norm ‖ · ‖ such that

‖T̃ (k)
ε ‖ ≤ 1 for all ε ∈ E, k ≥ k̄. (20)

Due to our assumption that the approximate sum rules of order 1 are satisfied, we also
have

‖�(k)
ε ‖ ≤ Cδk where

∞∑

k=1

δk < ∞, (21)

and C is a constant which does not depend on k.
Next, for n, � ∈ N, we observe that

T (n)
εn

. . . T (n+�)
εn+�

=
(
T̃ (n)

εn
+ �(n)

εn

)
. . .

(
T̃ (n+�)

εn+�
+ �(n+�)

εn+�

)
= T̃ (n)

εn
. . . T̃ (n+�)

εn+�
+ Rn,�,

where Rn,� is obtained by expanding all the products. From (20), (21) we get

limn→∞ Rn,∞ = O implying convergence of
∏k

j=1 T
( j)
ε j v as k → ∞. The reasoning

for limn→∞ Rn,∞ = O is as follows

‖Rn,∞‖ ≤
∞∑

j=1

( ∞∑

k=n

δk

) j

=
∞∑

j=0

( ∞∑

k=n

δk

) j

− 1 =
∞∑

k=n

δk

(
1 −

∞∑

k=n

δk

)−1

.

�
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Corollary 2 Let {Sa(k) , k ≥ 1} be a C0-convergent subdivision scheme with the set
of limit points A such that ρ(TA|V0) < 1. Then any other asymptotically similar
non-stationary scheme {Sb(k) , k ≥ 1} satisfying approximate sum rules of order 1 is
C0-convergent.

Wewould like to remark that Theorem 4 generalizes [18, Theorem 10] dealingwith the
binary univariate case under the assumption that the non-stationary scheme reproduces
constants. Theorem 4 is also a generalization of the corresponding results in [34,36]
that require that stationary and non-stationary schemes are asymptotically equivalent.

3.4 C�-convergence and Hölder regularity

In this section we prove Theorem 2 stated in the Introduction, i.e. we derive sufficient
conditions for Hölder regularity of non-stationary multivariate subdivision schemes.
Note that Theorem 2 with � = 0 also implies the convergence of the corresponding
non-stationary scheme.We, nevertheless, gave the proof ofC0-convergence separately
in Theorem 4, see Sect. 3.3, to emphasize that it is not affected by the choice of the
dilation matrix M , whereas our proof of C�-convergence in this section does depend
on the choice of M = mI ,m ≥ 2. The proof of Theorem 2 is long, thus, in Sect. 3.4.1,
we present several crucial auxiliary results and then prove this theorem in Sect. 3.4.2.

3.4.1 Auxiliary results

In the proof of Theorem 2 we make use of the summable sequence {ηk, k ≥ 0} which
we define next. Note first that under the assumption ρ(TA|V�

) < m−� of Theorem 2,
there exist γ ∈ (0,m−�) and k̄ such that

‖Q(k)
ε ‖ < γ < m−�, ε ∈ E, k ≥ k̄, (22)

where Q(k)
ε are sub-matrices of the matrices T̃ (k)

ε in (15). This property of Q(k)
ε is

guaranteed by [1,64] and the convergence of {Q(k)
ε , k ≥ 1} to Tε,a|Vj . Furthermore,

by approximate sum rules of order � + 1 (Definition 3), the sequence {σ0 := 1, σk =
mk�δk, k ≥ 1} is summable and so is the sequence {ηk, k ≥ 0} with

ηk :=
k∑

j=0

σ j q
k− j , q := m�γ. (23)

Indeed, since q < 1, we have

∞∑

k=0

ηk =
∞∑

j=0

σ j

∞∑

n=0

qn = 1

1 − q

∞∑

j=0

σ j < ∞. (24)

In the following Lemma 2 we estimate the asymptotic behavior of the matrix prod-
ucts

Pk = R1 . . . Rk, k ≥ 1, (25)
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where, for some non-negative real number c, the (� + 2) × (� + 2) matrices R j are
defined by

R j :=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 + σ jm−�j σ jm−�j σ jm−�j . . . σ jm−�j σ jm−�j

c m−1 + σ jm−(�−1) j σ jm−(�−1) j . . . σ jm−(�−1) j σ jm−(�−1) j

c c
...

...
...

...
. . .

...
...

c . . . c σ jm− j σ jm− j

c . . . c
. . . m−� + σ j σ j

c . . . c . . . c γ

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(26)

In particular, in Lemma 2, we show that any norm of the r th column of the matrix
product Pk is bounded uniformly over k ≥ 1, i.e. that any norm of the column Pker ,
with er being the standard r th unit vector, is bounded uniformly over k ≥ 1.

Lemma 2 For every k ∈ N

‖Pker‖1 =
{
O(m−(r−1)k), r = 1, . . . , � + 1,
O(m(�+1) m−�k), r = � + 2.

Proof For simplicity of presentation we consider the case of M = 2I , i.e m = 2. Let
C1 be the smallest constant such that for each r = 1, . . . , � + 1, the r th column of
R1 does not exceed C12−(r−1), and the (� + 2)nd column does not exceed C12η1. We
show by induction on k that the sum of the r th column entries of Pk does not exceed
Ck 2−(r−1)k , r = 1, . . . , � + 1, or Ck 2(�+1) 2−�k ηk , r = � + 2, where

Ck = C1

k∏

j=2

(
1 + 2 �+1σ j + c 2 �22− j + c22�+1 η j−1

)
, k ≥ 2.

Due to

Ck = Ck−1

(
1 + 2 �+1σk + c 2 �22−k + c22�+1 ηk−1

)
, k ≥ 2, (27)

the sequence {Ck, k ≥ 1} increases and converges to

C̃ := C1

∞∏

j=2

(
1 + 2 �+1σ j + c 2 �22− j + c22�+1 η j−1

)
. (28)

Since the sums
∑∞

j=1 σ j ,
∑∞

j=1 2
2− j , and

∑∞
j=1 η j−1 are all finite, the infi-

nite product in (28) converges. By induction assumption, we have ‖Pk−1e j
∥∥
1 ≤

123



Regularity of non-stationary subdivision: a matrix approach 657

Ck−12−( j−1)(k−1), for j = 1, . . . , �+1, and ‖Pk−1e�+2
∥∥
1 ≤ Ck−12�+1 2−�(k−1)ηk−1.

Since the r th column of Pk is Pker , where er is the r th basis vector of R
�+2, we have

∥∥∥Pker
∥∥∥
1

=
∥∥∥Pk−1Rker

∥∥∥
1

≤
�+2∑

j=1

∥∥∥Pk−1e j
∥∥∥
1

(
Rk

)
jr .

Thus,
∥∥Pker

∥∥
1 ≤

�+2∑

j=1

∥∥∥Pk−1e j
∥∥∥
1

(
Rk

)
jr . (29)

Next we consider the following three cases.

Case 1: r = 1. The first column of the matrix Rk is (1 + σk2−�k, c, . . . , c)T . By
induction assumption and due to

∑�+1
j=2 2

−( j−1)(k−1) = 0 for � = 0 and (27), the
estimate (29) yields

∥∥Pke1
∥∥
1 ≤ Ck−1

(
1 + σk2

−�k + c
�+1∑

j=2

2−( j−1)(k−1) + c 2�+1 2−�(k−1)ηk−1

)

≤ Ck−1

(
1 + σk2

−�k + 2 c 2−(k−1) + c 2�+1 ηk−1

)
≤ Ck .

Case 2: 2 ≤ r ≤ � + 1. The r th column of the matrix Rk is

(Rk)r = (
σk2

−�k, . . . , σk2
−(�−(r−2)) k, 2−(r−1) + σk2

−(�−(r−1)) k, c, . . . , c
)T

.

By induction assumption the estimate in (29) becomes

∥∥Pker
∥∥
1 ≤ Ck−1

⎛

⎝σk

r−1∑

j=1

2−(�+1− j)k2−( j−1)(k−1) + (
2−(r−1) + σk2

−(�+1−r)k)2−(r−1)(k−1)

+ c
�+1∑

j=r+1

2−( j−1)(k−1) + c 2 �+12−�(k−1) ηk−1

⎞

⎠

≤ Ck−1

⎛

⎝σk2
−�k

r∑

j=1

2 j−1 + 2−(r−1)k + 2 c 2−r(k−1) + c 2 �+12−(r−1)(k−1) ηk−1

⎞

⎠

≤ Ck−1

(
σk2

−(r−1)k2r + 2−(r−1)k + c 2r+1 2−(r−1)k2−k + c 2−(r−1)k2 �+r ηk−1

)

≤ Ck−1 2
−(r−1)k

(
1 + 2 �+1ηk + c 2 �22−k + c 22�+1 ηk−1

)
≤ Ck 2

−(r−1)k .

Case 3: r = � + 2. The last column of the matrix Rk is
(
σk2−�k, . . . , σk2−k, σk, γ

)T .
Note that by definition of ηk we have ηk − σk = ηk−1, and recall that γ < 2−�. Then,
by induction assumption, we get

123



658 M. Charina et al.

∥∥Pke�+2
∥∥
1 ≤ Ck−1

⎛

⎝σk

�+1∑

j=1

2−(�+1− j)k2−( j−1)(k−1) + 2 �+12−�(k−1) γ ηk−1

⎞

⎠

= Ck−1

⎛

⎝σk2
−�k

�+1∑

j=1

2 j−1 + 2 �+12−�k (
ηk − σk

)
⎞

⎠

≤ Ck−1

(
σk2

−�k2 �+1 + 2 �+12−�k ηk − 2 �+1 2−�kσk

)

= Ck−12
�+12−�k ηk ≤ Ck2

�+12−�k ηk .

�

The estimates in Lemma 2 allow us to estimate the norms of the columns of the matrix
products T (1)

ε1 . . . T (k)
εk , ε1, . . . , εk ∈ E .

Lemma 3 Let ε1, . . . , εk ∈ E, � ≥ 0. Assume that the symbols of {Sa(k) , k ≥ 1}
satisfy approximate sum rules of order � + 1 and ρ(TA|V�

) < m−�. Then the norms

of the columns of T (1)
ε1 . . . T (k)

εk with indices 1 + ∑r−1
j=1 d j , . . . ,

∑r
j=1 d j are equal to

O(m−(r−1)k) for r = 1, . . . , � + 1. The norms of the other columns of this matrix
product are equal to O(m−�kηk).

Proof Let ε ∈ E . Under the assumptions of Theorem 2, the matrices T̃ (k)
ε in (15)

have the following properties: the matrix sequences {b(k)
j,ε, k ≥ 1} and {Q(k)

ε , k ≥ 1}
converge by subsequences as k goes to ∞, respectively, to b j,ε,a and Tε,a|V�

for some
a ∈ A; there exists c > 0 such that all the norms ‖b j,ε,a‖∞ ≤ c < ∞; the estimate
in (22) holds for 0 < γ < m−� and for some matrix norm ‖ · ‖ext . Furthermore,
approximate sum rules of order � + 1 and the definition of σk imply that the entries of
the matrices c(k)

j,ε, j = 1, . . . , � + 1, are bounded by σkm−(�+1− j)k . Next, let L0 = 0

and Li = ∑i
j=1 d j , i = 1, . . . , � + 1, with d j defined in Sect. 3.1. Set L = L�+1 and

write a vector v = (v1, . . . , v|K |)T ∈ R
|K | as

v =
(
v[1], v[2], . . . , v[�+1], v[�+2])

with

v[i] := (vLi−1+1, . . . , vLi )
T , i = 1, . . . , � + 1, v[�+2] := (vL+1, . . . , v|K |)T .

Consider the vector norm ‖v‖ := ∑�+1
i=1 ‖v[i]‖∞ + ‖v[�+2]‖ext , v ∈ R

|K |. Then

‖T (k)
ε v‖ ≤ ‖Rk ṽ‖, ṽ =

(
‖v[1]‖∞, . . . , ‖v[�+1]‖∞, ‖v[�+2]‖ext

)
∈ R

�+2,

where Rk is given in (26). Analogously, we get

‖T (1)
ε1

. . . T (k)
εk

v‖ ≤ ‖R1 . . . Rk ṽ‖.

The claim follows by Lemma 2. �
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3.4.2 Proof of Theorem 2

The proof of Theorem 2 is long, so we split it into two parts: Propositions 2 and 3.
In the first part of the proof, given in Proposition 2, we show that the assumptions of
Theorem 2 are indeed sufficient for the C�-convergence of non-stationary schemes.
In particular, we let f ∈ C�(Rs) be compactly supported, stable and refinable with
respect to the dilation matrix M = mI and the mask e ∈ �0(Z

s). Then, for every
j = 0, . . . , � and for every ν ∈ N

s
0, |ν| = j , we consider the sequence {Dν fk, k ≥ 1},

where for fk := T (1) . . . T (k) f

Dν fk = m jkT (1) . . . T (k)Dν f, T (k) f =
∑

α∈Zs

a(k)(α) f (M · −α), (30)

i.e. T (k) is the transition operator associated with the mask a(k), and show that
{Dν fk, k ≥ 1} converges uniformly to the ν-th partial derivative of φ1.

Proposition 2 Let � ≥ 0. Assume that the symbols of {Sa(k) , k ≥ 1} satisfy approxi-
mate sum rules of order �+1 and ρ(TA|V�

) < m−�. Then, for every j = 0, . . . , � and
for every ν ∈ N

s
0, |ν| = j , the sequence {Dν fk, k ≥ 1} in (30) converges uniformly to

the ν-th partial derivative of φ1. Moreover, there exists a constant C > 0 independent
of k such that for ηn as in (23) we have

‖Dν fk − Dνφ1‖∞ ≤ C
∞∑

n=k

ηn, |ν| = �, k ≥ 1. (31)

Proof Note that, by [12, p. 137], the function f in (30) is an appropriate starting
function for the cascade algorithm. Moreover, by [44, Theorem 6.3], the assumptions
on f imply that f satisfies Strang-Fix conditions of order �+1, i.e. its Fourier transform
f̂ satisfies

f̂ (0) = 1, Dμ f̂ (α) = 0, α ∈ Z
s\{0}, μ ∈ N

s
0, |μ| < � + 1.

Consequently, its derivatives Dν f , ν ∈ N
s
0, |ν| = j , j = 1, . . . , �, satisfy

Dμ(̂Dν f )(α) = 0, α ∈ Z
s, μ ∈ N

s
0, |μ| < j.

Thus, by the Poisson summation formula, we get

∑

α∈Zs

p(α)Dν f (x − α) = 0, x ∈ R
s, (32)

for all polynomial sequences {p(α), α ∈ Z
s}, p ∈ � j . Note that we can chose f

such that supp f ∩ Z
s ⊂ K . Then, the properties (32) of Dν f imply that, after the

transformation discussed in Sect. 3.1, the first
∑ j

i=1 di entries of the vectors

v(x) := (
Dν f (x + α)

)
α∈K , x ∈ [0, 1]s, |ν| = j, j = 1, . . . , �,
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are equal to zero. Note that the ordering of the entries in v(x) corresponds to the
ordering of the columns of T (k)

ε defined in (12). By Theorem 4, the limit functions of
the non-stationary scheme are C0(Rs), i.e. the sequence { fk, k ≥ 1} is a uniformly
convergent Cauchy sequence. Similarly to the stationary case, to show that the non-
stationary scheme is C j -convergent, j = 1, . . . , �, we need to study the uniform
convergence of the sequences {Dν fk, k ≥ 1} for all ν ∈ N

s
0, |ν| = j . Equivalently, for

every choice of ε1, . . . εk ∈ E , need to study the convergence of the vector-sequences
{m jkT (1)

ε1 . . . T (k)
εk w, k ≥ 1}, where T (k)

ε are defined from {a(k), k ≥ 1} and the

vector w ∈ R
|K | is arbitrary and such that its first

∑ j
i=1 di entries are zero. Lemma

3, the structure of w and the summability of {ηk, k ≥ 1} imply the convergence
of the vector-sequences {m jkT (1)

ε1 . . . T (k)
εk w, k ≥ 1} for j = 1, . . . , �. Thus, the

non-stationary scheme is C�-convergent.
We prove next the estimate (31). Let ν ∈ N

s
0, |ν| = �. Due to φ1 =

limk→∞ T (1) . . . T (k) f and by the assumption of refinability of f , i.e. f = T f =∑
α∈Zs e(α) f (Mx − α), we have

‖Dν fk − Dνφ1‖∞ ≤
∞∑

n=k

‖Dν fn+1 − Dν fn‖∞

=
∞∑

n=k

m�(n+1)‖T (1) . . . T (n)
(
T (n+1) − T

)
(Dν f )(M−(n+1)·)‖∞.

As above, to estimate the norms ‖T (1) . . . T (n)
(
T (n+1) − T

)
(Dν f )(M−(n+1)·)‖∞,

we need to estimate the vector-norms of

T (1)
ε1

. . . T (n)
εn

(
T (n+1)

εn+1
− Tεn+1,e

)
w,

where |K | × |K | matrices Tε,e, ε ∈ E , are derived from the mask e, see (14), and the
first

∑�+1
j=1 d j entries of the vector w ∈ R

|K | are zero. By assumption, there exists a

constant β > 0 such that the entries of all b j,ε,e and b
(k)
j,ε are less than β in the absolute

value. The approximate sum rules of order � + 1 imply that the absolute values of the

entries of the vectors
(
T (n+1)

εn − Tεn ,e

)
w with indices 1 + ∑r

j=1 d j , . . . ,
∑r+1

j=1 d j ,

r = 0, . . . , �, are bounded respectively by σn+1m−(�−r)(n+1). All other entries
are bounded by 2β. Thus, by Lemma 3, we get that the entries of the vectors

m�(n+1)T (1)
ε1 . . . T (n)

εn

(
T (n+1)

εn+1 − Tεn+1,e

)
w with indices 1 + ∑r

j=1 d j , . . . ,
∑r+1

j=1 d j ,

r = 0, . . . , �, are equal to O(σn+1), all other entries are equal to O(ηn). Therefore,
by definition of {ηk, k ≥ 1} in (23), we get

‖Dν fk − Dνφ1‖∞ ≤ C
∞∑

n=k

ηn, k ≥ 1,

for some C > 0 independent of k. �
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The second part of the proof of Theorem 2 is given in Proposition 3 which yields
the desired estimate for the Hölder regularity α of the scheme {Sa(k) , k ≥ 1}.
Proposition 3 Let k ≥ 1, h ∈ R

s , m−(k+1) < ‖h‖∞ ≤ m−k and � ≥ 0. Assume
that the symbols of {Sa(k) , k ≥ 1} satisfy approximate sum rules of order � + 1 and
ρ(TA|V�

) < m−�. Then there exists a constant C > 0 independent of k such that, for
ηn as in (23), we have

‖Dνφ1(· + h) − Dνφ1(·)‖∞ ≤ C
∞∑

n=k

ηn, ν ∈ N
s
0, |ν| = �. (33)

Moreover, the Hölder exponent α of φ1 ∈ C�(Rs) satisfies

α ≥ min

{
− logm ρA,− lim sup

k→∞
logm δk

k

}
. (34)

Proof Let k ≥ 1, |ν| = �, and h ∈ R
s satisfy m−(k+1) < ‖h‖∞ ≤ m−k . To derive the

estimate in (33), we use the triangle inequality

‖Dνφ1(· + h) − Dμφ1(·)‖∞ ≤ ‖Dμφ1(· + h) − Dμ fk(· + h)‖∞ + ‖Dμφ1 − Dμ fk‖∞
+‖Dμ fk(· + h) − Dμ fk(·)‖∞, (35)

where { fk, k ≥ 1} are defined in (30), and estimate each of the summands on the right
hand side. Note that, for �h fk := fk(· + h) − fk(·), we have

�h D
μ fk = m�kT (1) . . . T (k)�mkhD

μ f.

Due to ‖mkh‖∞ ≤ 1 and by the definition of �h , we have

supp�mkhD
ν f ⊂ supp f + [−1, 1]s,

wherewithout loss of generality we assume that (supp f + [−1, 1]s)∩Z
s ⊆ K . Define

the vector-valued function

v(x) := (�mkhD
ν f (x + α))α∈K , x ∈ [0, 1]s .

By the same argument as in the proof of Proposition 2 and by the definition of the
operator �h , the first

∑�+1
j=1d j components of v are zero for all x ∈ R

s . Therefore, by
Lemma 3, we get

‖T (1)
ε1

. . . T (k)
εk

v(x)‖ ≤ C1m
−�kηk‖v(x)‖ ≤ C1m

−�kηk 2C2 |K |, x ∈ R
s,

where ‖v(x)‖ ≤ 2C2 |K |, x ∈ R
s , due to max|ν|=� ‖Dν f ‖∞ ≤ C2. Thus,

‖Dν fk(· + h) − Dν fk(·)‖∞ ≤ C3ηk, C3 := C1m
−�k 2C2 |K |.
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The estimates for the two remaining terms in (35) and, thus, the estimate (33) follow
by (31). Next, we derive the lower bound for the Hölder exponent α of φ1. Note that,
by definition of σk , we have the equivalence

lim sup
k→∞

σ
1/k
k ≥ 1 ⇔ � + lim sup

k→∞
logm δk

k
≥ 0.

Thus, if lim supk→∞ σ
1/k
k ≥ 1, then min{− logm ρA,− lim sup logm δk

k } ≤ � and
the estimate (34) holds, since φ1 ∈ C�(Rs) and, thus, α ≥ �. Otherwise, if
lim supk→∞ σ

1/k
k < 1, then there exists θ such that lim supk→∞ σ

1/k
k < θ < 1

and, thus, a constant C0 > 0 such that σk ≤ C0θ
k , k ≥ 1. Therefore, by definition of

ηk and using the estimate (33), we get

‖�h D
νφ1‖∞ ≤ C

(
ηk +

∞∑

n=k+1

ηn

)
= C

⎛

⎝
k∑

j=0

σ j q
k− j + 1

1 − q

∞∑

n=k+1

σn

⎞

⎠

≤ C C0

⎛

⎝
k∑

j=0

θ j qk− j + 1

1 − q

∞∑

n=k+1

θn

⎞

⎠

≤ C C0

⎛

⎝
k∑

j=0

max{θ, q} j max{θ, q}k− j + θk+1

1 − q

∞∑

n=k+1

θn−(k+1)

⎞

⎠

≤ C C0

(
(k + 1)max{θ, q}k + θk+1

(1 − q)(1 − θ)

)
.

Therefore, due to 0 ≤ 1 − q < 1, we get

‖�h D
νφ1‖∞ ≤ C4(k + 1)max{θ, q}k, C4 := max

{
1,

θ

1 − θ

}
C C0

1 − q
.

Moreover, due to ‖h‖∞ ≤ m−k , we have

max{θ, q}k = mk logm max{θ,q} ≤ ‖h‖−logm max{θ,q}
∞

and, from 1
m ‖h‖∞ ≤ m−(k+1), we get (k + 1) ≤ logm

m
‖h‖∞ . Thus,

‖�h D
νφ1‖∞ ≤ C1 logm

(
m

‖h‖∞

)
‖h‖− logm max{θ,q}

∞ .

Note that for any ε ∈ (0, 1), due to the fact that − log(t) is bounded by t−ε for
sufficiently small t , we get, for small ‖h‖∞,

‖�h D
νφ1‖∞ ≤ C1‖h‖− logm max{θ,q}−ε

∞ .
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By (22) and (23), we have q > m�ρA. Thus, since θ > lim supk→∞ σ
1/k
k , we get

α ≥ � − logm max{θ, q} = � − max

{
� + logm ρA, � + lim sup

k→∞
logm δk

k

}

= min

{
− logm ρA,− lim sup

k→∞
logm δk

k

}
.

�

Combining Propositions 2 and 3, we complete the proof of Theorem 2.

3.5 Rapidly vanishing approximate sum rules defects

The following immediate consequence of Theorem 2 states that, if the sequence of
defects {δk, k ≥ 1} of the approximate sum rules decays fast, then the lower bound
on the Hölder exponent α of φ1 only depends on the joint spectral radius ρA of the set
TA|V�

.

Corollary 3 Assume that the symbols of {Sa(k) , k ≥ 1} satisfy approximate sum rules

of order �+1 andρ(TA|V�
) < m−�. If lim supk→∞ δ

1/k
k < ρA, thenα ≥ − logm ρA.

Next, in this subsection we prove Theorem 3 stated in the Introduction. It shows that
the inequality α ≥ − logm ρA in Corollary 3 becomes equality, if the set A of the
limit points of the sequence {a(k), k ≥ 1} consists only of a single element a and
the corresponding refinable limit function of Sa is stable. Note that Theorem 3 is a
generalization of a well-known fact about the exact Hölder regularity of stationary
schemes in the stable case.

In the proof of Theorem 3 we make use of several auxiliary facts on long matrix
products. The first one of them is stated in the following lemma which is a special
case of [59, Proposition 2].

Lemma 4 LetM be a compact set of d × d matrices and y ∈ R
d . If ρ(M) > 1 and

y does not belong to a common invariant subspace of the matrices in M, then the
sequence

{
maxPn∈Mn ‖Pn y‖, n ≥ 1

}
diverges as n → ∞.

Lemma 4 and the definition of the sequence
{
maxPn∈Mn ‖Pn y‖, n ≥ 1

}
yield

Lemma 5 LetM be a compact set of d × d matrices and y ∈ R
d . If ρ(M) > 1 and

y does not belong to a common invariant subspace of the matrices inM, then for any
L ∈ N there exists n ≥ L such that

‖M1 . . . Mny‖ > ‖y‖ and ‖M1 . . . Mny‖ > ‖Mn−i . . . Mny‖ , i = 0, . . . , n − 2,

for M j ∈ M.

Proof Let L ∈ N and CL = max
{‖Pj y‖

∣∣ Pj ∈ M j , j ≤ L
}
. Then the shortest

product Pn ∈ Mn such that ‖Pn y‖ > CL (the set of such products is nonempty by
Lemma 4) possesses the desired property and has its length bigger than m. �
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Next, we adapt Lemma 5 to the non-stationary setting. The proof of the following
result is similar to the proof of Lemma 5 and we omit it.

Lemma 6 Let M and M (k), k ≥ 1, be compact sets of d × d matrices and y ∈ R
d .

Assume that ρ(M) > 1, the sequence {M (k), k ≥ 1} converges toM and y does not
belong to a common invariant subspace of the matrices inM. Then there exists L ∈ N

andC > 0 such that for any L̃ ≥ L there exists n ≥ L̃ such that, for M j ∈ M( j+L−1),

‖M1 . . . Mny‖ > C‖y‖ and ‖M1 . . . Mny‖ > C‖Mn−i . . . Mny‖ ,

i = 0, . . . , n − 2.

We are ready to prove Theorem 3.

Proof of Theorem 3 Due to Corollary 3, we only need to show that α ≤ − logm ρa.
Furthermore, by Lemma 1, it suffices to show that α = αφn ≤ − logm ρa for some
n ≥ 1. We choose an appropriate n in the following way. Firstly, n should be such
that

ρ
(
{Q(k)

ε , ε ∈ E, k ≥ n}
)

< ρa.

(see Sect. 3.1 for the definition of the matrices Q(k)
ε ). Secondly, since by assumption,

there exists β > 0 such that

lim sup
k→∞

δ
1/k
k < β < ρa,

thus, we can choose n such that for any constant C0 > 0 we have δk < C0β
k for

k ≥ n. At the end of the proof we specify the particular constant C0 needed for our
argument. Next, define

v(x) = (
Dνφn(x + α)

)
α∈K , x ∈ [0, 1]s, ν ∈ N

s
0, |ν| = �.

Let k ≥ 1. By definition of φn , for x = ∑k
j=1 ε jm− j , ε j ∈ E , and ‖h‖∞ ≤ m−1, we

have

�m−khv(x) = m�T (n)
ε1

�m−k+1hv

⎛

⎝
k∑

j=2

ε jm
− j

⎞

⎠ = m�kT (n)
ε1

. . . T (n+k−1)
εk

�hv(0).

(36)
By the same argument as in Proposition 2, the first L = ∑�+1

j=1 d j components of

the vector y := �hv(0) are zero. Denote by ỹ := (yL+1, . . . , y|K |)T the non-zero
components of y. W.l.o.g. we can assume that the vector ỹ does not belong to any
common invariant subspace of the matrices in {Tε,a|V�

: ε ∈ E}. Otherwise, due to
the stability of φ we have
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αφ = − logm ρa = − logm ρ{Tε,a|W : ε ∈ E},

where W is the smallest subspace of V� such that it is invariant under all operators
in {Tε,a : ε ∈ E} and such that Tε,a|W , ε ∈ E , do not have any common invariant
subspace. For simplicity, we assume that W = V�, but the same argument we give
below would apply, ifW is a proper subspace of V�. Let r ∈ (β, ρa) be a real number.
The sets

M = {r−1Tε,a|V�
, ε ∈ E} and M(k) = {r−1Q(n+k−1)

ε , ε ∈ E}, k ≥ 1,

and the vector ỹ satisfy the assumptions of Lemma 6. Thus, we can appropriately
modify n chosen above to get

‖Q(n)
ε1

. . . Q(n+k−1)
εk

ỹ‖ > Crk‖ỹ‖ and

‖Q(n)
ε1

. . . Q(n+k−1)
εk

ỹ‖ > Crk−i‖Q(n+k−i)
εk−i+1

. . . Q(n+k−1)
εk

ỹ‖, i = 1, . . . , k − 1. (37)

Denote by H (n+k−i)
j ∈ R

1×|K | the j th row of the matrix T (n+k−i)
ε , ε ∈ E . Define

y0 := y, the we have

T (n+k−1)
εk

y0 =

⎛

⎜⎜⎜⎝

0
...

0
Q(n+k−1)

εk ỹ

⎞

⎟⎟⎟⎠ +
L∑

j=1

〈H (n+k−1)
j , y0〉e j , (38)

where e j , j = 1, . . . , L , are the standard first L unit vectors of R
|K | and

〈H (n+k−1)
j , y0〉 is the scalar product of the vectors H (n+k−1)

j and y0. Define y1 :=
(
0 . . . 0 Q(n+k−1)

εk ỹ
)T

. Then, applying T (n)
ε1 . . . T (n+k−2)

εk−1 to both sides of (38),weget

T (n)
ε1

. . . T (n+k−2)
εk−1

y1 = T (n)
ε1

. . . T (n+k−1)
εk

y0−
L∑

j=1

〈H (n+k−1)
j , y0〉 T (n)

ε1
. . . T (n+k−2)

εk−1
e j ,

and, thus, by triangle inequality,

‖T (n)
ε1

. . . T (n+k−1)
εk

y0‖ ≥ ‖T (n)
ε1

. . . T (n+k−2)
εk−1

y1‖

−
L∑

j=1

|〈H (n+k−1)
j , y0〉| ‖T (n)

ε1
. . . T (n+k−2)

εk−1
e j‖.

Note that n is such that, for any n + k − i ≥ n, the matrix T (n+k−i)
ε is bounded by the

matrix Rn+k−i , in the sense of Lemma 3. Then, due to the structure of y0, we have
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|〈H (n+k−1)
j , y0〉| = O(m−(�− j+1)(n+k−1)σn+k−1)‖y0‖. By Lemma 3, we also obtain

the estimate ‖T (n)
ε1 . . . T (n+k−2)

εk−1 e j‖ = O(m−( j−1)k), j = 1, . . . , L . And, thus,

L∑

j=1

|〈H (n+k−1)
j , y0〉| ‖T (n)

ε1
. . . T (n+k−2)

εk−1
e j‖

=
L∑

j=1

O(m−(�− j+1)(n+k−1)σn+k−1m
−( j−1)k)‖y0‖

= O(m−�(n+k−1)σn+k−1)‖y0‖.

The definition of σk and the choice of β yieldO(m−�(n+k−1)σn+k−1) = O(δn+k−1) <

C̃C0β
n+k−1, C̃ > 0. Therefore,

‖T (n)
ε1

. . . T (n+k−1)
εk

y0‖ ≥ ‖T (n)
ε1

. . . T (n+k−2)
εk−1

y1‖ − C̃C0β
n+k−1‖y0‖.

Set yi :=
(
0 . . . 0 Q(n+k−i)

εk−i+1 . . . Q(n+k−1)
εk ỹ

)T
, i = 2, . . . , k. Then, analogous suc-

cessive argument for ‖T (n)
ε1 . . . T (n+k−i)

εk−i+1 yi−1‖, i = 2, . . . , k, yields

‖T (n)
ε1

. . . T (n+k−1)
εk

y0‖ ≥ ‖yk‖ − C̃C0

k−1∑

i=0

βn+k−i−1‖yi‖.

From (37) we get ‖yi‖ < r−k+iC−1‖yk‖, i = 0, . . . , k − 1, which implies

‖T (n)
ε1

. . . T (n+k−1)
εk

y0‖ >

(
1 − C̃C0β

n−1

C

k−1∑

i=0

(
β

r

)k−i
)

‖yk‖

>

(
1 − C̃C0β

n−1

C(1 − β
r )

)
‖yk‖.

In the second estimate above we used the fact that β < r . Choose 0 < C0 <
C(1− β

r )

C̃βn−1

and define C1 := 1 − C̃C0β
n−1

C(1− β
r )

> 0. Therefore, by (37), we have ‖yk‖ > Crk‖y0‖
and, thus,

‖T (n)
ε1

. . . T (n+k−1)
εk

y0‖ > C1‖yk‖ > C1C rk‖y0‖, k ≥ 1.

Finally, this estimate and (36) yield ‖�m−khv(x)‖ > C1Crkm�k‖y0‖, k ≥ 1. There-
fore, the Hölder exponents of all Dνφn , ν ∈ N

s
0, |ν| = �, are bounded from above

by −� − logm r and, thus, α = αφn ≤ − logm r . Taking the limit as r goes to ρa, we
obtain the desired estimate α ≤ − logm ρa. �
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If the symbols of the scheme {Sa(k) , k ≥ 1} satisfy sum rules of order � + 1, then we
get the following immediate consequence of Theorem 3.

Corollary 4 Let � ≥ 0. Assume the stationary scheme Sa is C�-convergent with the
stable refinable basic limit function φ whose Hölder exponent αφ is � ≤ αφ < � + 1.
If the symbols of the scheme {Sa(k) , k ≥ 1} satisfy sum rules of order � + 1 and
limk→∞ a(k) = a, then {Sa(k) , k ≥ 1} is C�-convergent and the Hölder exponent of
its limit functions is also αφ .

3.6 Applications and examples

In the this section, see Sect. 3.6.1, we prove the conjecture formulated in [32], which
stipulates the Hölder regularity of the generalized Daubechies wavelets. The proof of
this conjecture is a direct consequence of Theorem 3. We also determine the exact
Hölder regularity of some of such generalized Daubechies wavelets. Moreover, in
Sect. 3.6.2, we illustrate our theoretical convergence and Hölder regularity results
with several deliberately simple examples for which though neither the results of [18]
nor the ones in [34,36] are applicable.

Note that, in this section, we use the techniques from [41] that allow for exact
computation of the joint spectral radius of the corresponding matrix sets. The method
in [41] determines the so-called spectrum maximizing product of such sets, which
yields the exact value of the joint spectral radius.

Definition 13 Let M be a compact collection of square matrices. The product P :=
M1 . . . Mm , Mj ∈ M, is spectrum maximizing, if ρ(M) = ρ(P)1/m , where ρ(P) is
the spectral radius of P .

3.6.1 Exact Hölder regularity of generalized Daubechies wavelets

The non-stationary Daubechies wavelets are defined and studied in [32] and are
obtained from Daubechies wavelets in [25] by suitable perturbation of the roots of
the stationary symbols. Let n ≥ 2. To an arbitrary set �n := {λ0, . . . , λn−1} of real
numbersλ j , j = 0, . . . , n−1, the authors in [32] associate the generalizedDaubechies
wavelet function ψ�n . The corresponding refinable function

φ�n := lim
k→∞ Sa(k) Sa(k−1) . . . Sa(1)δ

is the limit function of a non-stationary subdivision scheme {Sa(k) , k ≥ 1} repro-
ducing exponential polynomials, i.e., solutions of the ODE of order n with constant
coefficients and with spectrum �n . The interested reader can find more details on the
construction and properties of these wavelets ψ�n , n ≥ 2, in [32].
Next we would like to mention the following two properties of these masks {a(k),
k ≥ 1}:
(i) the sequence of masks {a(k), k ≥ 1} converges to the maskmn of the classical nth

Daubechies refinable function ϕn := limk→∞ Skmn
δ ;
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(ii) the corresponding symbols {a(k)∗ (z), k ≥ 1} satisfy approximate sum rules of
order n with δk = O(2−nk), k ≥ 1.

In [32] the authors estimated the Hölder exponent of the generalized Daubechies
wavelets and conjectured that it equals to the Hölder exponent of the usual (stationary)
Daubechies wavelets (Conjecture 1 stated in Sect. 1.2). The following result proves
this conjecture.

Theorem 5 Let n ≥ 2. For every set �n = {λ0, . . . , λn−1}, the Hölder regularity of
the generalized Daubechies type wavelet ψ�n is equal to the Hölder regularity of the
classical Daubechies wavelet ψn derived from ϕn.

Proof We invoke Theorem 3. Since a compactly supported wavelet function has the
same regularity as the corresponding refinable function, we need to show that the
functions φ�n and ϕn have the same regularity. The non-stationary subdivision scheme
{Sa(k) , k ≥ 1} generating φ�n satisfies the assumptions of Theorem 2 with � = n − 1
andA = {mn}. Indeed, the masks of the scheme {Sa(k) , k ≥ 1} are constructed in [32]
in such a way that they converge to the mask mn . The Daubechies refinable function
ϕn is stable and, hence, its Hölder exponent is αϕn = − log2 ρA. It is well-known that

αϕn < n, therefore ρA > 2−n . Thus, by (i i) we have lim supk→∞ δ
1/k
k ≤ 2−n < ρA.

Therefore, all assumptions of Theorem 3 are satisfied and the Hölder exponent α of
φ�n satisfies α = αϕn = − log2 ρA. �


In [32] the Hölder exponent α is estimated by the rate of decay of the Fourier
transform φ̂�n of φ�n . It is well-known that for any continuous, compactly supported
function f , its Hölder exponent α f satisfies

η( f ) − 1 ≤ α f ≤ η( f ), η( f ) = sup
{
β ≥ 0 : | f̂ (ω)| ≤ C(1 + |ω|)−β , ω ∈ R

}
,

and this gap of length 1 is, in general, unavoidable [68]. In [32, Theorem 29] the
authors show that η(φ�n ) ≥ η(ϕn), which, thus, implies the following lower bound
for the Hölder exponent α of φ�n α ≥ η(ϕn) − 1. Using lower bounds for the values
η(ϕn) known from the literature, one can estimate the regularity of the generalized
Daubechies wavelets. Table in (39) compares those rough bounds given in [25] (com-
puted by the method of invariant cycles) with the exact values of α = − log2 ρA,
which we compute using the techniques in [41].

n η(ϕn) − 1 α = − log2 ρA
2 0.339 0.5500
3 0.636 1.0878
4 0.913 1.6179
5 1.177 1.9690
6 1.432 2.1891
7 1.682 2.4604
8 1.927 2.7608
9 2.168 3.0736
10 2.406 3.3614

(39)
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3.6.2 Further examples

In this subsectionwe apply our convergent and regularity results to several deliberately
simple non-stationary subdivision schemes whose analysis was impossible so far.
These examples are constructed only for illustration purposes.

Example 2 We start with a non-stationary subdivision scheme with a general dilation
matrix M and masks which are level dependent convex combination of two mul-
tivariate masks a,b ∈ �0(Z

s). We assume that a defines a (stationary) convergent
subdivision scheme and that b satisfies sum rules of order 1. Convex combinations of
such subdivision masks were also investigated in [9,17]. In particular, we define the
non-stationary subdivision scheme {Sa(k) , k ≥ 1} by

a(k) :=
(
1 − 1

k

)
a + 1

k
b, k ≥ 1. (40)

This non-stationary scheme does not satisfy the condition in (2) for � = 0, since
|a(k)(α) − a(α)| = |b(α) − a(α)| 1k ,

∑

k∈N
max
ε∈E

{
∑

α∈Zs

|a(k)(ε + Mα) − a(ε + Mα)|
}

≮ ∞

Nevertheless, {Sa(k) , k ≥ 1} satisfies the assumptions of Theorem 4, since, by con-
struction, all symbols satisfy approximate sum rules of order 1 and limk→∞ a(k) = a.
Therefore, we are able to conclude that the scheme is at least C0-convergent. More-
over, in the caseM = mI , the assumptions that Sa isC�-convergent and that b satisfies
sum rules of order �+1, imply, by Theorem 2, that the Hölder regularity of the scheme
in (40) is at least as high as for Sa. Indeed, for s = 2 and M = 2I , let a be the mask of
the butterfly scheme ([38] with ω = 1/16) and b be the mask of the Courant element,
the box spline B111. Then, using the method in [41], we compute ρ(Ta|V1) = 1/4 and,
thus, the scheme {Sa(k) , k ≥ 1} is C1-convergent and its Hölder exponent is α = 2.

In the next example we construct non-stationary schemes with sets of limit points A
of cardinality 2.

Example 3 Let I ⊂ N be some infinite set, such that N\I is also infinite. We consider
the non-stationary scheme with the masks

a(k) :=
{
a, k ∈ I,

c, k ∈ N\I,
k ≥ 1. (41)

We assume that the masks a, c ∈ �0(Z
s) define stationary convergent subdivision

schemes with the same dilation matrix M . Moreover, we assume that ρ
(
TA|V0

)
< 1,

A = {a, c}. Here the notion of asymptotic equivalence is not applicable, but Theorem
4 allows us to establish C0-convergence of the scheme in (41). If M = mI and a, c
are such that ρ

(
TA|V�

)
< m−�, Theorem 2 also yields a lower bound for the Hölder

regularity of {Sa(k) , k ≥ 1}.
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For example, for s = 1 and M = 2, let

a∗(z) := 1

8
(1 + z)4 and c∗(z) := 1

16
(−1 + 9z2 + 16z3 + 9z4 − z6), z ∈ C\0,

be the symbols of the cubic B-spline and the 4-point scheme ([31] with ω = 1/16),
respectively. Using the method in [41] we obtain ρ(TA|V1) = 0.35385 . . .. This
tells us that the corresponding scheme {Sa(k) , k ≥ 1} has the Hölder exponent
α ≥ 1.49876 . . .. For the computation of ρ(TA|V1), we used the set TA|V1 = {T1 :=
T0,c|V1, T2 := T1,c|V1 , T3 := T0,a|V1 , T4 := T1,a|V1} with

T1 =

⎛

⎜⎜⎜⎜⎝

1
8

1
8 0 0

− 1
16

3
8 − 1

16 0

0 1
8

1
8 0

0 − 1
16

3
8 − 1

16

⎞

⎟⎟⎟⎟⎠
, T2 =

⎛

⎜⎜⎜⎜⎝

− 1
16

3
8 − 1

16 0

0 1
8

1
8 0

0 − 1
16

3
8 − 1

16

0 0 1
8

1
8

⎞

⎟⎟⎟⎟⎠
,

T3 =

⎛

⎜⎜⎜⎝

1
8 0 0 0
1
8

1
4

1
8 0

0 0 1
8

1
4

0 0 0 0

⎞

⎟⎟⎟⎠ , T4 =

⎛

⎜⎜⎜⎝

1
4

1
8 0 0

0 1
8

1
4

1
8

0 0 0 1
8

0 0 0 0

⎞

⎟⎟⎟⎠ .

The spectrum maximizing product we obtain is T1(T1T3)13. If, instead of the mask
a above, we take the mask of the quadratic B-spline, then we obtain ρ(TA|V1) =
0.35045 . . ., which tells us that the corresponding scheme {Sa(k) , k ≥ 1} has Hölder
exponent α ≥ 1.51271 . . .. For the computation of ρ(TA|V1) we used the set TA|V1 =
{T1, T2, T5, T6} with

T5 := T0,a|V1 =

⎛

⎜⎜⎝

1
4 0 0 0
0 1

4
1
4 0

0 0 0 1
4

0 0 0 0

⎞

⎟⎟⎠ , T6 := T1,a|V1 =

⎛

⎜⎜⎝

1
4

1
4 0 0

0 0 1
4

1
4

0 0 0 0
0 0 0 0

⎞

⎟⎟⎠ .

The spectrum maximizing product is T1(T1T5)2. Note that ρ(TA|V1) can be bigger
than either ρ(Ta|V1) or ρ(Tc|V1). It is also of interest that ρ(TA|V1) decreases, if
we replace the mask of the cubic B-spline by the mask of the less regular scheme
corresponding to the quadratic B-spline.
The next example studies a univariate ternary (M = 3) non-stationary scheme.

Example 4 We consider the alternating sequence of symbols

a(k)∗ (z) :=
{
c(k)∗ (z) := z−6K (k)

1 (z2 + z + 1)2(z + 1)c̃(k)∗ (z), k even,

d(k)∗ (z) := z−6K (k)
2 (z2 + z + 1)2(z + 1)d̃(k)∗ (z), k odd,

k ≥ 1,

(42)
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where K (k)
1 and K (k)

2 are suitable normalization constants and the factors c̃(k)∗ (z) and

d̃(k)∗ (z) are defined by

c̃(k)∗ (z) :=
(
z4 + (4(w(k))2 − 2)z3 + (16(w(k))4 − 16(w(k))2 + 3)z2

+ (4(w(k))2 − 2)z + 1
)
·

(
(16(w(k))4 + 16(w(k))3 + 3)z2 + (−64(w(k))6 − 64(w(k))5 + 32(w(k))4

+ 32(w(k))3 − 12(w(k))2 − 12w(k) − 6)z + 16(w(k))4 + 16(w(k))3 + 3
)
,

and

d̃(k)∗ (z) :=
(
z2 + z + 1

)(
w(k)z4 + 2w(k)z3 + (4(w(k))2 − 1)z2 + 2w(k)z + 1

)
,

with w(k) := 1
2

(
e3

−(k+1)λ/2 + e−3−(k+1)λ/2
)
and λ ∈ R

+ ∪ iR+.

The corresponding non-stationary subdivision scheme {Sc(k) , k ≥ 1} was considered
in [10,21]. In [21], the authors investigate the convergence of the sequence of symbols
{c(k)∗ (z), k ≥ 1} to the symbol

c∗(z) = −z−6 1

1296
(z2 + z + 1)4(z + 1)(35z2 − 94z + 35)

of the ternary dual stationary 4-point Dubuc-Deslaurier scheme, which is known to be
at leastC2-convergent. The sequence of the symbols of the non-stationary subdivision
scheme {Sd(k) , k ≥ 1} converges to the symbol

d∗(z) = −z−6 1

162
(z2 + z + 1)5(z + 1),

see [10]. The stationary scheme Sd is known to be at least C2-convergent. We would
like to remark that {Sc(k) , k ≥ 1} and {Sd(k) , k ≥ 1} are both schemes generat-
ing/reproducing certain spaces of exponential polynomials, see [20].

Using Theorem 2 with A = {c,d} and the method in [41], we determine a lower
bound for theHölder regularity of the scheme {Sa(k) , k ≥ 1}. Sincewe get ρ(TA|V2) =
0.04958 . . ., the corresponding Hölder exponent satisfies α ≥ 2.73437 . . .. For the
computation of ρ(TA|V2) we use the set TA = {T1, T2, T3, T4, T5, T6} with Tj :=
1296 Tj−1,c|V2 , j = 1, 2, 3,

T1 =
⎛

⎝
35 0 0

−83 −83 −24
0 35 −24

⎞

⎠ , T2 =
⎛

⎝
−24 35 0
−24 −83 −83

0 0 35

⎞

⎠ ,

T3 =
⎛

⎝
−83 −24 35
35 −24 −83
0 0 0

⎞

⎠ ,
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and with Tj := Tj−4,d|V2 , j = 4, 5, 6,

T4 = 1

162

⎛

⎝
1 0 0
5 5 3
0 1 3

⎞

⎠ , T5 = 1

162

⎛

⎝
3 1 0
3 5 5
0 0 0

⎞

⎠ , T6 = 1

162

⎛

⎝
5 3 1
1 3 5
0 0 0

⎞

⎠ .

The spectrum maximizing product is T1T3, which implies that the Hölder exponent
α coincides with the Hölder exponent of the scheme Sc.
In the next two examples, we construct and analyze the regularity of a univariate and a
multivariate non-stationary subdivision schemes obtained by suitable perturbations of
themasks of the known stationary subdivision schemes. These non-stationary schemes
are not asymptotically equivalent to any stationary scheme and, thus, the results of
[34] are not applicable. Note though that these schemes satisfy approximate sum rules
of order 2 and the other assumptions of Theorem 2.

Example 5 For s = 1 and M = 2, we consider the sequence of masks {a(k), k ≥ 1}
with

a(k) :=
{(

1

4
− 1

k

)
,

(
3

4
− 1

k
+ 2−2k

)
,

(
3

4
+ 1

k

)
,

(
1

4
+ 1

k
+ 2−2k

)}
, k ≥ 1.

(43)
Obviously, limk→∞ a(k) = a, where a = { 1

4 ,
3
4 ,

3
4 ,

1
4

}
is the mask of the Chaikin

subdivision scheme [6]. It is easy to check that the symbols of this non-stationary
scheme satisfy

a(k)∗ (1) − 2 = 2−2k+1, a(k)∗ (−1) = −2−2k+1 and Da(k)∗ (−1) = 2−2k+2, k ≥ 1,

i.e. μk = δk = 2−2k+1 and, thus, the symbols satisfy approximate sum rules of
order 2. To be able to apply Theorem 2, we need to rescale the masks a(k) so that
μk = 0, k ≥ 1. It is easily done by multiplying each of the masks a(k) by the factor
2/(2 + μk). After this modification the sequence {δk, k ≥ 1} is still summable,
since

∑
k∈N

2δk
2+μk

<
∑

k∈N δk < ∞. Hence, by Theorem 2 and the known fact that

ρ(Ta|V1) = 1
4 , the non-stationary scheme with masks in (43) is C1-convergent with

α = 2.

Example 6 For s = 2 and M = 2I , we consider the sequence of masks {a(k), k ≥ 1}
with for k ≥ 1

a(k) = 1

16

⎛

⎜⎜⎜⎜⎜⎜⎝

0 2−2k 1 + 1
k 2 − 1

k 1 − 1
k

− 1
k 2 − 1

k + 2−2k 6 + 1
k + 2−2k 6 + 1

k + 2−2k 2 + 2−2k

1 − 1
k 6 + 1

k 10 + 2
k 6 + 1

k 1 − 1
k

2 + 2−k 6 + 1
k + 2−2k 6 + 1

k + 2−2k 2 − 1
k + 2−k − 1

k

1 − 1
k 2 − 1

k 1 + 1
k 2−2k 0

⎞

⎟⎟⎟⎟⎟⎟⎠
(44)

Obviously, limk→∞ a(k) = a, where a is the mask of the Loop subdivision scheme
[52]. Note that the symbols of this non-stationary scheme satisfy approximate sum
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rules of order 2, since, we have μk = 5 · 2−(2k+4) and δk = 6 · 2−(2k+4), k ≥ 1.
It is well-known that ρ(Ta|V1) = 1

4 . Thus, after an appropriate normalization of the
masks, by Theorem 2, we get that the non-stationary scheme is C1-convergent with
the Hölder exponent α = 2.

4 Further properties

In this subsection, we prove Theorem 1 stated in Sect. 1.2. Its proof is based on the next
Proposition 4 that studies the infinite products of certain trigonometric polynomials.
The statement of Proposition 4 involves the following concepts.

Definition 14 A pair of complex numbers {z,−z} is called a pair of symmetric roots
of the algebraic polynomial q, if q(z) = q(−z) = 0.

Let {qk, k ≥ 1} be a sequence of algebraic polynomials of degree N and define the
function

f (x) :=
∞∏

k=1

pk(2
−k x), pk(x) := qk(e

−2π i x ), x ∈ R. (45)

By [16], if a sequence of trigonometric polynomials {pk, k ≥ 1} is bounded, then
this infinite product converges uniformly on each compact subset of R, and hence, f
is analytic. Possible rates of decay of such functions as x → ∞ was studied in [60].

Proposition 4 Assume that the sequence of trigonometric polynomials {pk, k ≥ 1}
with pk(0) = 1, k ≥ 1, converges to a trigonometric polynomial p that has no
symmetric roots on R. If the function f in (45) satisfies f (x) = o(x−�) for � ≥ 0 and
x → +∞, then δk = o(2−�k) as k → ∞, where

δk = max
j=0,...,�

2− jk |D j pk(1/2)|
j ! , k ≥ 1.

Proof By assumption f (x) = o(x−�) for points of the form x = 2k−1d + t , where d
is a fixed natural number, t is an arbitrary number from [0, σ ], σ > 0, and k → ∞.
Next, we choose these parameters d ∈ N and σ > 0 in a special way.

Firstly, we define σ . Since {pk, k ≥ 1} converges to p, the sequence {pk, k ≥ 1}
is bounded. Moreover, pk(0) = 1, k ≥ 1, implies that f (0) = 1. This implies that
there are σ ∈ (0, 1) and C0 > 0 such that for every r ≥ 0 and R ∈ N ∪ {∞} we have

∣∣∣∣∣∣

R∏

j=1

p j+r
(
2− j t

)
∣∣∣∣∣∣

≥ C0, t ∈ [0, σ ]. (46)

Next we choose the number d. To this end we consider the binary tree defined as
follows: the number 1/2 is at the root, the numbers 1/4 and 3/4 are its children, and
so on. Every vertex α has two children α/2 and (α + 1)/2. For convenience we shall
identify a vertex and the corresponding number. Thus, all vertices of the tree are dyadic
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points from the interval (0, 1). Indeed, the nth level of the tree (i.e., the set of vertices
with the distance to the root equal to n) consists of points 2−n−1 j , where j is an odd
number from 1 to 2n+1 − 1.

The trigonometric polynomial p is 1-periodic and, thus, has at most N zeros in
[0, 1), and hence, on the tree. Therefore, there is a number q such that all roots of p
on the tree are contained on levels j ≤ q. Since the polynomial p has no symmetric
roots, at least one of the two children of any vertex of the tree is not a root of p.
Whence, there is a path of length q along the tree starting at the root (all paths are
without backtracking) that does not contain any root of p. Let 2−q−1d be the final
vertex of that path, d is an odd number, 1 ≤ d ≤ 2q+1 − 1. Denote as usual by {x} the
fractional part of x . Then the sequence {2−1d}, . . . , {2−q−1d} does not contain roots
of p. The sequence {2−q−2d}, {2−q−3d}, . . . does not contain them either, because
there are no roots of p on levels bigger than q. Let n be the smallest natural number
such that 2−q−n−1d < σ/2. We have p(2−1d) . . . p(2−q−n−1d) �= 0. Since pk → p
as k → ∞, and all pk are equi-continuous on R, it follows that there is a constant
C1 > 0 such that

∣∣∣∣∣∣

q+n∏

j=1

pk+ j
(
2− j−1d + 2−k− j x

)
∣∣∣∣∣∣

≥ C1, x ∈ [0, σ ], (47)

for sufficiently large k. Now we are ready to estimate the value f (2k−1d + t). We
have

∣∣∣ f
(
2k−1d + t

) ∣∣∣ =
∣∣∣∣∣∣

k−1∏

j=1

p j
(
2k−1− j d + 2− j t

)
∣∣∣∣∣∣
×

∣∣∣pk
(
2−1d + 2−k t

) ∣∣∣

×
∣∣∣∣∣∣

q+n∏

j=1

pk+ j
(
2− j−1d + 2−k− j t

)
∣∣∣∣∣∣

×
∣∣∣∣∣∣

∞∏

j=1

pk+q+n+ j
(
2− j (2−q−n−1d + 2−k−q−nt)

)
∣∣∣∣∣∣
.

To estimate the first factor in this product, we note that 2k−1− j d ∈ Z, when-
ever j ≤ k − 1, and hence p j

(
2k−1− j d + 2− j t

) = p j (2− j t). Thus, the first factor is∣∣ ∏k−1
j=1 p j (2− j t)

∣∣, which is, by (46), bigger than or equal to C0, for every t ∈ [0, σ ].
The third factor

∣∣ ∏q+n
j=1 pk+ j (2− j−1d + 2−k− j t)

∣∣, by (47), is at least C1. Finally,
the last factor is bigger than or equal to C0. To see this it suffices to use (46) for R =
∞, r = k + q + n, x = 2−q−nd + 2−k−q−nt and note that x < σ by the choice of n.
Thus,

| f (2k−1d + t)| ≥ C2
0C1

∣∣pk
(
2−1d + 2−k t

)∣∣.
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On the other hand, by assumption, f (2k−1d + t) = o(2−�k) as k → ∞, consequently
pk(2−1d + 2−k t) = o(2−�k). The number d is odd, hence, by periodicity, pk(2−1d +
2−k t) = pk(1/2 + 2−k t). Thus, we arrive at the following asymptotic relation: for
every t ∈ [0, σ ] we have

pk
(
1/2 + 2−k t

) = o
(
2−�k) as k → ∞ . (48)

This already implies that D j pk(1/2) = o(2( j−�)k) as k → ∞, for every j = 0, . . . , �.
Indeed, consider the Tailor expansion of the function h(t) = pk

(
1/2 + 2−k t

)
at the

point 0 with the remainder in Lagrange form:

h(t) =
�∑

j=0

D jh(0)

j ! t j + D�+1h(θ)

(� + 1)! t �+1, t ∈ [0, σ ],

where θ = θ(t) ∈ [0, t]. Substituting D jh(0) = 2− jk D j pk(1/2), we get

pk(1/2 + 2−k t) =
�∑

j=0

D j pk(1/2)

j ! 2− jk t j

+ D�+1 pk(1/2 + 2−kθ)

(� + 1)! 2−(�+1)k t �+1, t ∈ [0, σ ].

First, we estimate the remainder. Since the sequence of trigonometric polynomials
{pk, k ≥ 1} is bounded, the norms ‖D�+1 pk‖C[0,σ ] do not exceed some constant C2.
Therefore,

∣∣∣∣
D�+1 pk(1/2 + 2−kθ)

(� + 1)! 2−(�+1)k t �+1
∣∣∣∣

≤ C2

(� + 1)!2
−(�+1)k σ �+1 = o(2−�k) as k → ∞.

Combining this with (48), we get
∥∥∥∥∥∥

�∑

j=0

D j pk(1/2)

j ! 2− jk t j

∥∥∥∥∥∥
C([0,σ ])

= o(2−�k) as k → ∞. (49)

Since, in a finite-dimensional space, all norms are equivalent, the norm of an algebraic
polynomial of degree � in the space C([0, σ ]) is equivalent to its largest coefficient.
Whence, (49) implies that

max
j=0,...,�

2− jk |D j pk(1/2)|
j ! = o(2−�k), k → ∞. (50)

�

We are finally ready to prove the main result of this section, Theorem 1.
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Proof of Theorem 1 Let pk(ω) := a(k)∗ (e−2π iω), ω ∈ R, be the symbol of the
kth mask in the trigonometric form. If the non-stationary scheme converges to a
continuous compactly supported refinable function φ, then its Fourier transform
φ̂(ω) = ∫

R
φ(x)e−2π i xωdx is given by

φ̂(ω) =
∞∏

k=1

pk(2
−kω), ω ∈ R. (51)

If φ ∈ C�(R), then φ̂(ω) = o(ω−�) as ω → ∞. Since the refinable function of the
limit mask a is stable, it follows that its symbol a∗(z) has no symmetric roots on the
unit circle. The claim follows by Proposition 4. Indeed, by definition of pk , we get by
(50)

max
j=0,...,�

2− jk |D ja(k)∗ (−1)| = o(2−�k) as k → ∞,

which completes the proof. �
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