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Abstract In this article, we provide a rigorous analysis of the solution to elliptic
diffusion problems on random domains. In particular, based on the decay of the
Karhunen-Loève expansion of the domain perturbation field, we establish decay rates
for the derivatives of the random solution that are independent of the stochastic dimen-
sion. For the implementation of a related approximation scheme, like quasi-Monte
Carlo quadrature, stochastic collocation, etc., we propose parametric finite elements
to compute the solution of the diffusion problem on each individual realization of
the domain generated by the perturbation field. This simplifies the implementation
and yields a non-intrusive approach. Having this machinery at hand, we can easily
transfer it to stochastic interface problems. The theoretical findings are complemented
by numerical examples for both, stochastic interface problems and boundary value
problems on random domains.
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1 Introduction

Many problems in science and engineering lead to boundary value problems for an
unknown function. In general, the numerical simulation is well understood provided
that the input parameters are given exactly.Often, however, the input parameters are not
known exactly. Especially, the treatment of uncertainties in the computational domain
has become of growing interest, see e.g. [5,18,33,36]. In this article, we consider the
elliptic diffusion equation

− div
(
α∇u(ω)

) = f in D(ω), u(ω) = 0 on ∂ D(ω), (1)

as amodel problemwhere the underlying domain D ⊂ R
d or respectively its boundary

∂ D are random. For example, one might think of tolerances in the shape of prod-
ucts fabricated by line production or shapes which stem from inverse problems, like
e.g. tomography. Besides the fictitious domain approach considered in [5], one might
essentially distinguish two approaches: the perturbation method and the domain map-
ping method.

The perturbation method starts with a prescribed perturbation field

V(ω) : ∂ Dref → R
d

at the boundary ∂ Dref of a reference configuration and uses a shape Taylor expansion
with respect to this perturbation field to represent the solution to (1), cf. [14,18].
Whereas, the domain mapping method requires that the perturbation field is also
known in the interior of the domain Dref , i.e.

V(ω) : Dref → R
d .

Then, the problemmay be transformed to the fixed reference domain Dref . This yields
a partial differential equation with correlated random diffusion matrix and right hand
side, cf. [6,26,33,36].

The major drawback of the perturbation method is that it is only feasible for rel-
atively small perturbations. Thus, in order to treat larger perturbations, the domain
mapping method is the method of choice. Nevertheless, it might in practice be much
easier to obtainmeasurements from the outside of aworkpiece to estimate the perturba-
tion fieldV(ω) rather than from its interior. If no information of the vector field inside
the domain is available, it has to be extended appropriately, e.g. by the Laplacian, as
proposed in [26,36].

The perturbation method relies on a description in spatial or Eulerian coordinates.
To that end, a compactum inside the domain is fixed and the domain deformation is
considered relative to this compactum. The compactum has to be chosen in such a
way that it is not intersected by the realizations of the domain’s boundary, cf. [18].
This particularly limits the magnitude of the boundary variation. The domain mapping
method is based on a description inmaterial or Lagrangian coordinates. Here, starting
from the reference configuration Dref , the trajectory of each particular point is tracked.
In the domain mapping method, the notions of Eulerian and Lagrangian coordinates
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Analysis of the domain mapping method... 825

coincide on compacta, where the deformation is zero. Thus, in this sense, the domain
mapping method provides the more general framework. The correspondence between
the perturbation method and the domain mapping method can be expressed in terms
of the local shape derivative δu[V(ω)] and the material derivative u̇[V(ω)] of a given
function u which differ by a transport term, cf. [32]:

u̇[V(ω)] = δu[V(ω)] + 〈∇u,V(ω)〉.

In this article, we focus on the domain mapping method. In [6], it is shown
for a specific class of variation fields that the solution to (1) provides analytic
regularity with respect to the random parameter. We will generalize the result
from [6] to arbitrary domain perturbation fields which are described by their mean
E[V] :Dref → R

d , E[V](x) = [
E[v1](x), . . . , E[vd ](x)

]ᵀ and their (matrix-valued)
covariance function

Cov[V] : Dref × Dref → R
d×d ,

Cov[V](x, x′) =
⎡

⎢
⎣

Cov1,1(x, x′) · · · Cov1,d(x, x′)
...

...

Covd,1(x, x′) · · · Covd,d(x, x′)

⎤

⎥
⎦ .

Note that the covariance function describes the covariance between any pair (x, x′) of
points in Dref and facilitates thus a modeling in terms of Lagrangian coordinates. Tak-
ing the Karhunen-Loève expansion ofV(ω) as the starting point, we show decay rates
for the derivatives of the solution to (1) with respect to the random parameter. Given
that the Karhunen-Loève expansion decays fast enough, our results imply the dimen-
sion independent convergence of the quasi-Monte Carlo method based on the Halton
sequence, cf. [13,16,34].Moreover, our results are convenient for the convergence the-
ory of the anisotropic sparse collocation, cf. [28], and best N -term approximations,
cf. [8]. Although the presented results allow for a broad variety of methods for the
stochastic approximation, we employ the quasi-Monte Carlo method in our numerical
examples for the sake of simplicity.

For the spatial approximation, we propose to use parametric finite elements. Then,
we are able to approximate the mean and the variance of the solution to (1) or a
related quantity of interest by computing each sample on the particular realization
D(ωi ) = V(Dref , ωi ) of the random domain rather than on the reference domain
Dref . This yields a non-intrusive approach to solve the problem at hand. In fact, any
available finite element solver can be employed to compute the particular samples.
Following this approach rather than mapping the diffusion problem always to the
reference domain, we can easily treat also stochastic interface problems, cf. [14].

The rest of this article is organized as follows. In Sect. 2, we introduce some basic
definitions and notation. Section 3 is dedicated to the Karhunen-Loève expansion
of vector fields. Although this is a straightforward adaption of the state of the art
literature [29], we think that it is sensible to explicitly introduce the related spaces,
norms and operators. In Sect. 4, we present the essential contribution of this article: the
regularity of the solution to the model problem defined in Sect. 2 with respect to the
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826 H. Harbrecht et al.

Karhunen-Loève expansion of the perturbation field. Section 5 introduces parametric
finite elements which are the basic ingredient for the numerical realization of our
approach. In Sect. 6, we extend our approach to stochastic interface problems. Finally,
Sect. 7 provides numerical examples to validate and quantify the theoretical findings.

In the following, in order to avoid the repeated use of generic but unspecified
constants, byC � D wemean thatC can be bounded by amultiple of D, independently
of parameters which C and D may depend on. Obviously, C � D is defined as D � C
and we write C � D if C � D and C � D.

2 Problem formulation

Let Dref ⊂ R
d for d ∈ N (of special interest are the cases d = 2, 3) denote a domain

with Lipschitz continuous boundary ∂ Dref and let (�,F , P) be a complete probability
space with σ -field F ⊂ 2� and probability measure P. In order to guarantee that
L2
P
(�) exhibits an orthonormal basis, we further assume that � is a separable set.

Let V : Dref × � → R
d be an invertible vector field of class C2, i.e. V is twice

continuously differentiable with respect to x for almost every ω ∈ �. Moreover, we
impose the uniformity condition

‖V(ω)‖C2(Dref ;Rd ), ‖V−1(ω)‖C2(Dref ;Rd ) ≤ C

for some C ∈ (0,∞) and almost every ω ∈ �.1 Thus, V defines a family of domains

D(ω) := V(Dref , ω).

For the subsequent analysis,we restrict ourselves to the case of thePoisson equation,
i.e. α ≡ 1,

−�u(x, ω) = f (x) in D(ω), u(x, ω) = 0 on 	(ω). (2)

This considerably simplifies the analysis and the extension to non-constant diffusion
coefficients is straightforward, cf. Remark 2. In order to guarantee solvability for
almost every ω ∈ �, we consider the right hand side to be defined on the hold-all
domain

D :=
⋃

ω∈�

D(ω). (3)

From the uniformity condition, we infer for almost every ω ∈ � and every x ∈ D that
the singular-values of the vector field V’s Jacobian J(ω, x) satisfy

0 < σ ≤ min
{
σ
(
J(x, ω)

)} ≤ max
{
σ
(
J(x, ω)

)} ≤ σ < ∞. (4)

In particular, we assume without loss of generality that σ ≤ 1 and σ ≥ 1.

1 It is sufficient to assume that V is a C1-diffeomorphism and satisfies the uniformity in C1(Dref ;Rd ).
Nevertheless, in order to obtain H2-regularity of the model problem, we make this stronger assumption.
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2.1 Reformulation on the reference domain

In the sequel, we consider the spaces H1
0

(
D(ω)

)
and H1

0 (Dref) to be equipped with
the norms ‖ · ‖H1(D(ω)) := ‖∇ · ‖L2(D(ω);Rd ) and ‖ · ‖H1(Dref )

:= ‖∇ · ‖L2(Dref ;Rd ),

respectively. Furthermore, we assume that the related dual spaces H−1(D(ω)
)
and

H−1(Dref) are defined with respect to these norms. The main tool we use in the
convergence analysis for the model problem (2) is the one-to-one correspondence
between the problem which is pulled back to the reference domain Dref and the
problem on the actual realization D(ω). The equivalence between those two problems
is described by the vector field V(x, ω). For an arbitrary function v on D(ω), we
denote the transported function by v̂(x, ω) := (v ◦ V)(x, ω). According to the chain
rule, we have for v ∈ C1

(
D(ω)

)
that

(∇v)
(
V(x, ω)

) = J(x, ω)−ᵀ∇v̂(x, ω). (5)

For given ω ∈ �, the variational formulation for the model problem (2) reads as
follows: Find u(ω) ∈ H1

0

(
D(ω)

)
such that

∫

D(ω)

〈∇u,∇v〉dx =
∫

D(ω)

f vdx for all v ∈ H1
0

(
D(ω)

)
. (6)

Thus, with
A(x, ω) := (

J(x, ω)ᵀJ(x, ω)
)−1det J(x, ω) (7)

and
fref(x, ω) := f̂ (x, ω) det J(x, ω), (8)

we obtain the following variational formulation with respect to the reference domain:
Find û(ω) ∈ H1

0 (Dref) such that

∫

Dref

〈A(ω)∇û(ω),∇v̂(ω)〉dx =
∫

Dref

fref(ω)v̂(ω)dx for all v̂(ω) ∈ H1
0 (Dref).

(9)

Here and afterwards, 〈·, ·〉 denotes the canonical inner product for R
d .

Remark 1 Since V is assumed to be a C2-diffeomorphism, we have for almost every
ω ∈ � that

V−1 ◦ V = Id ⇒ J−1J = I ⇒ det J−1 det J = 1 for all x.

Herein, I ∈ R
d×d denotes the identity matrix. Especially, we infer det J−1, det J �=

0. The continuity of J, J−1 and of the determinant function imply now that either
det J−1, det J > 0 or det J−1, det J < 0 for all x. Therefore, without loss of generality,
we will assume the positiveness of the determinants.

123



828 H. Harbrecht et al.

Notice that Eq. (9) contains for fixed v ∈ H1
0

(
D(ω)

)
the related transported test

function v̂(ω).
The connection between the spaces H1

0 (Dref) and H1
0

(
D(ω)

)
is given by the fol-

lowing

Lemma 1 The spaces H1
0 (Dref) and H1

0

(
D(ω)

)
are isomorphic by the isomorphism

E : H1
0 (Dref) → H1

0

(
D(ω)

)
, v �→ v ◦ V(ω)−1.

The inverse mapping is given by

E−1 : H1
0

(
D(ω)

)→ H1
0 (Dref), v �→ v ◦ V(ω).

Proof The proof of this lemma is a consequence of the chain rule (5) and the ellipticity
Assumption (4). ��

This lemma implies that the space of test functions is not dependent on ω ∈ � at
all: Obviously, we have H1

0

(
D(ω)

) = {
E(v) : v ∈ H1

0 (Dref)
}
. Thus, for an arbitrary

function E(v) ∈ H1
0

(
D(ω)

)
it holds Ê(v) = E(v)◦V = v ◦V−1 ◦V = v ∈ H1

0 (Dref)

independent of ω ∈ �. In particular, the solutions u to (6) and û to (9) satisfy

û(ω) = u ◦ V(ω) and u(ω) = û ◦ V(ω)−1. (10)

3 Karhunen-Loève expansion

In order to make the random vector field V(x, ω) feasible for computations, we con-
sider here its Karhunen-Loève expansion, cf. [25]. This section shall give a brief
overview of the relevant facts concerning the Karhunen-Loève expansion of vector
valued random fields. Especially, we introduce here the related function spaces which
are used in the rest of this article. For further details on the Karhunen-Loève expansion
in general and also on computational aspects, we refer to [10,11,17,29].

Let D ⊂ R
d always denote a domain. Then, we define L2(D;Rd) to be the Hilbert

space which consists of all equivalence classes of square integrable functions v : D →
R

d equipped with the inner product

(u, v)L2(D;Rd ) :=
∫

D
〈u, v〉dx for all u, v ∈ L2(D;Rd).

We assume that the vector field V satisfies

V(x, ω) = [v1(x, ω), . . . , vd(x, ω)]ᵀ ∈ L2
P

(
�; L2(D;Rd)

)
.

Here and in the sequel, given a Banach space B and 1 ≤ p ≤ ∞, the Lebesgue-
Bochner space L p

P
(�; B) consists of all equivalence classes of strongly measurable
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functions v : � → B whose norm

‖v‖L p
P
(�;B) :=

⎧
⎪⎨

⎪⎩

(∫

�

‖v(·, ω)‖p
BdP(ω)

)1/p

, p < ∞
ess sup

ω∈�

‖v(·, ω)‖B , p = ∞

is finite. If B = H is a separable Hilbert space and p = 2, then the Lebesgue-Bochner
space is isomorphic to the tensor product space L2

P
(�)⊗ H equipped with the inner

product

(u, v)L2
P
(�;H) :=

∫

�

(
u(·, ω), v(·, ω)

)
HdP(ω),

cf. [2,24].
The mean of V is given by E[V](x) = [

E[v1](x), . . . , E[vd ](x)
]ᵀ with

E[vi ](x) :=
∫

�

vi (x, ω)dP(ω), i = 1, 2, . . . , d.

From the theory of Bochner integrals, see e.g. [24], it follows that E[vi ](x) ∈ L2(D)

and thusE[V](x) ∈ L2(D;Rd). Furthermore, the (matrix-valued) covariance function
of V is given by Cov[V](x, y) = [Covi, j (x, y)]di, j=1 with

Covi, j (x, y) = E
[(

vi (x, ω)− E[vi ](x)
)(

v j (y, ω)− E[v j ](y)
)]

.

We have Covi, j (x, y) ∈ L2(D × D) which also follows from the properties of the
Bochner integral and the application of the Cauchy-Schwarz inequality. We therefore
conclude Cov[V](x, y) ∈ L2(D×D;Rd×d)where we equip the space R

d×d with the
inner product

A : B :=
d∑

i, j=1
ai, j bi, j for A,B ∈ R

d×d with A = [ai, j ]di, j=1, B = [bi, j ]di, j=1.

This particularly induces the inner product on L2(D × D;Rd×d) given by

(A,B)L2(D×D;Rd×d ) :=
∫

D

∫

D
(A : B)dxdy for A,B ∈ L2(D × D;Rd×d).

Now, we shall introduce the operator

S : L2
P
(�) → L2(D;Rd), (SX)(x) :=

∫

�

(
V(x, ω)− E[V](x))X (ω)dP(ω)

(11)

and its adjoint
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S
 : L2(D;Rd) → L2
P
(�), (S
u)(ω) :=

∫

D

(
V(x, ω)− E[V](x))ᵀu(x)dx. (12)

Then, there holds the following

Lemma 2 The operators S and S
 given by (11) and (12), respectively, are bounded
with Hilbert-Schmidt norms ‖S‖HS = ‖S
‖HS = ‖V − E[V]‖L2

P
(�;L2(D;Rd )). More-

over, the covariance operator

C : L2(D;Rd) → L2(D;Rd), (Cv)(x) :=
∫

D
Cov[V](x, y)v(y)dy = (SS
v)(x)

is a non-negative, symmetric, trace class operator with trace‖V−E[V]‖2
L2
P
(�;L2(D;Rd ))

.

Proof The statement on the norms ofS andS
 follows by the application of Parseval’s
identity, see the last part of the proof. Moreover, we have for all u ∈ L2(D;Rd) that

(SS
u)(x) =
∫

�

(
V(x, ω)− E[V](x))

∫

D

(
V(y, ω)− E[V](y))ᵀu(y)dydP(ω)

=
∫

D

(∫

�

(
V(x, ω)− E[V](x))(V(y, ω)− E[V](y))ᵀdP(ω)

)
u(y)dy

=
∫

D
Cov[V](x, y)u(y)dy = (Cu)(x).

In particular, C is non-negative and symmetric according to

(Cu,u)L2(D;Rd ) = (S
u,S
u)L2
P
(�) = ‖S
u‖2

L2
P
(�)

≥ 0.

Finally, to show that C is of trace class, let {ϕk}k be an arbitrary orthonormal basis in
L2(D;Rd). We thus have

∑

k

(Cϕk,ϕk)L2(D;Rd ) =
∑

k

‖S
ϕk‖2L2
P
(�)

=
∫

�

∑

k

(S
ϕk)
2dP(ω)

=
∫

�

∑

k

(∫

D

(
V(x, ω)− E[V](x))ᵀϕkdx

)2

dP(ω)

=
∫

�

∫

D
〈V(x, ω)− E[V](x),V(x, ω)− E[V](x)〉dxdP(ω)

= ‖V− E[V]‖2
L2
P
(�;L2(D;Rd ))

,

where we employed Parseval’s identity in the second last step. ��
Trace class operators are especially compact, see e.g. [20,30], and exhibit hence a

spectral decomposition.
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Theorem 1 Let C : L2(D;Rd) → L2(D;Rd) be the covariance operator related
to V(x, ω) ∈ L2

P

(
�; L2(D;Rd)

)
. Then, there exists an orthonormal set {ϕk}k and a

sequence λ1≥λ2 ≥ · · · ≥ 0 such thatCϕk = λkϕk for all k = 1, 2, . . . . Furthermore,
it holds

Cu =
∑

k

λk(u,ϕk)L2(D;Rd )ϕk for all u ∈ L2(D;Rd).

Proof For a proof of this theorem, we refer to [2]. ��
We have now all prerequisites at hand to define the Karhunen-Loève expansion of

the vector field V(x, ω) ∈ L2
P

(
�; L2(D;Rd)

)
.

Definition 1 Let V(x, ω) be a vector field in L2
P

(
�; L2(D;Rd)

)
. The expansion

V(x, ω) = E[V](x)+
∑

k

σkϕk(x)Xk(ω) (13)

with σk = √
λk and Xk = S
ϕk/σk , where {(λk,ϕk)}k is the sequence of eigenpairs

of the underlying covariance operator C = SS
, is called Karhunen-Loève expansion
of V(x, ω).

The space L2(D;Rd) served as pivot space for our considerations in the preceding
derivation of the Karhunen-Loève expansion. In order to control the error of truncating
the expansion after M ∈ N terms, i.e.

∥∥
∥∥∥
V(x, ω)−E[V](x)−

M∑

k=1
σkϕk(x)Xk(ω)

∥∥
∥∥∥

L2(�;L2(D;Rd ))

=
( ∞∑

k=M+1
λk

) 1
2

, (14)

one has to study the decay of the singular values σk in the representation (13). The
particular rate of decay is known to depend on the spatial regularity ofV(x, ω). To that
end, we consider the Sobolev space H p(D;Rd) for p > 0. The related inner product
is given by

(u,w)H p(D;Rd ) :=
∑

|α|≤p

∫

D
〈∂αu, ∂αw〉dx

for p ∈ N and

(u,w)H p(D;Rd ) := (u,w)H �p�(D;Rd ) +
∑

|α|=�p�

∫

D

∫

D

‖∂αu(x)− ∂αw(y)‖22
‖x − y‖d+2s

2

dxdy

for p = �p� + s with s ∈ (0, 1). Its dual space with respect to the L2-duality pairing
ist denoted as H̃−p(D;Rd).
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832 H. Harbrecht et al.

For given V(x, ω) ∈ L2
P

(
�; H p(D;Rd)

)
, it obviously holds

Covi, j (x, y) ∈ H p(D)⊗ H p(D) for i, j = 1, . . . , d,

cf. [11]. Therefore, the following theorem is a straightforward modification of [11,
Theorem 3.3] for the vector valued case.

Theorem 2 Let V(x, ω) ∈ L2
P

(
�; H p(D;Rd)

)
. Then, the eigenvalues of the covari-

ance operator C : H̃−p(D;Rd) → H p(D;Rd) decay like λk � (k/d)−2p/d as
k →∞.

We may summarize the results of this section as follows. If the mean E[V](x) and
the covariance function Cov[V](x, y) as well as the distribution ofV(x, ω) are known
or appropriately estimated, cf. [29], we are able to reconstruct the vector fieldV(x, ω)

from its Karhunen-Loève expansion. In the following, in order to make the Karhunen-
Loève expansion feasible for computations, we make some common assumptions.

Assumption 1 (1) The random variables {Xk}k are centered and take values in
[−1, 1], i.e. Xk(ω) ∈ [−1, 1] for all k and almost every ω ∈ �.

(2) The random variables {Xk}k are independent and identically distributed.
(3) The sequence

{γk}k :=
{‖σkϕk‖W 1,∞(D;Rd )

}
k (15)

is at least in 1(N). We denote its 1-norm by cγ :=∑∞
k=1 γk .

Here and hereafter, we shall equip the space W 1,∞(D;Rd) with the equivalent
norm ‖v‖W 1,∞(D;Rd ) = max

{‖v‖L∞(D;Rd ), ‖v′‖L∞(D;Rd×d )

}
, where v′ denotes the

Jacobian of v and ‖v′‖L∞(D;Rd×d ) := ess supx∈D‖v′(x)‖2. Herein, ‖ · ‖2 is the usual
2-norm of matrices, i.e. the largest singular value.

4 Regularity of the solution

In this section, we assume that the vector field V(x, y) is given by a finite rank
Karhunen-Loève expansion, i.e.

V(x, y) = E[V](x)+
M∑

k=1
σkϕk(x)yk,

otherwise it has to be truncated appropriately. Nevertheless, we provide in this section
estimates which are independent of M ∈ N. Thus, we explicitly allow M to become
arbitrarily large.

For the rest of this article, we will refer to the randomness only via the coordinates
y ∈ � := [−1, 1]M , where y = [y1, . . . , yM ]. Notice that due to the independence
of the random variables, the related push-forward measure PX := P ◦ X−1 where
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X(ω) := [X1(ω), . . . X M (ω)] is of product structure. Furthermore, we always think
of the spaces L p(�) for p ∈ [1,∞] to be equipped with the measure PX. Moreover,
we set γ = [γk]Mk=1, cf. (15).

Without loss of generality,wemayassume thatE[V](x) = x is the identitymapping.
Otherwise, we replace Dref by

D̃ref := E[V](Dref) and ϕ̃k :=
√
det(E[V]−1)′ϕk ◦ E[V]−1.

Therefore, we obtain

V(x, y) = x +
M∑

k=1
σkϕk(x)yk and J(x, y) = I+

M∑

k=1
σkϕ

′
k(x)yk . (16)

In the subsequent regularity results, we shall refer to the following Lebesgue-
Bochner spaces. We define the space L∞

(
�; L∞(Dref ;Rd)

)
as the set of all

equivalence classes of strongly measurable functions V : � → L∞(Dref ;Rd) with
finite norm

|||V|||d := ess sup
y∈�

‖V(y)‖L∞(Dref ;Rd ).

Furthermore, the space L∞
(
�; L∞(Dref ;Rd×d)

)
consists of all equivalence classes

of strongly measurable functions M : � → L∞(Dref ;Rd×d) with finite norm

|||M|||d×d := ess sup
y∈�

‖M(y)‖L∞(Dref ;Rd×d ).

We start by providing bounds on the derivatives of
(
J(x, y)ᵀJ(x, y)

)−1.

Lemma 3 Let J : Dref × � → R
d×d be defined as in (16). Then, it holds for the

derivatives of

(
J(x, y)ᵀJ(x, y)

)−1

under the conditions of Assumption 1.3 that

∣∣∣∣∣∣∂α
y (JᵀJ)−1

∣∣∣∣∣∣
d×d

≤ |α|!γ
α

σ 2

(
2(1+ cγ )

σ 2 log 2

)|α|
.

Proof We define B(x, y) := J(x, y)ᵀJ(x, y) and Ã(x, y) := (
B(x, y)

)−1
. Expanding

the expression for B(x, y) yields

B(x, y) = I+
M∑

k=1
σk
(
ϕ′k(x)ᵀ+ ϕ′k(x)

)
yk +

M∑

k,k′=1
σkσk′ϕ

′
k(x)

ᵀϕ′k′(x)yk yk′ .
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Thus, the first order derivatives of B(x, y) are given by

∂yiB(x, y)=σi
(
ϕ′i (x)ᵀ+ϕ′i (x)

)+
M∑

k=1
σiσk

(
ϕ′i (x)ᵀϕ′k(x)+ϕ′k(x)ᵀϕ′i (x)

)
yk (17)

and the second order derivatives according to

∂y j ∂yiB(x, y) = σiσ j
(
ϕ′i (x)ᵀϕ′j (x)+ ϕ′j (x)ᵀϕ′i (x)

)
. (18)

Obviously, all higher order derivatives with respect to y vanish.
The ellipticity Assumption (4) now yields the following bounds:

σ 2 ≤ |||B|||d×d ≤ σ 2 and
1

σ 2 ≤
∣∣∣∣∣∣Ã

∣∣∣∣∣∣
d×d ≤

1

σ 2 ,

respectively. Furthermore, we derive from (17) that

∣∣∣∣∣∣∂yiB
∣∣∣∣∣∣

d×d ≤ 2γi + 2γi

M∑

k=1
γk ≤ 2(1+ cγ )γi

and from (18) that
∣∣∣∣∣∣∂y j ∂yiB

∣∣∣∣∣∣
d×d

≤ 2γiγ j . Thus, we have

∣
∣
∣
∣
∣
∣∂α

y B
∣
∣
∣
∣
∣
∣
d×d

≤
{
2(1+ cγ )γ α, if |α| = 1, 2

0, if |α| > 2.
(19)

Since Ã = v ◦ B is a composite function with v(x) = x−1, we may employ Faà
di Bruno’s formula, cf. [9], which is a generalization of the chain rule, to compute its
derivatives. For n = |α| Faà di Bruno’s formula formally yields2

∂α
y Ã(x, y) =

n∑

r=1
(−1)r r !Ã(x, y)r+1 ∑

P(α,r)

α!
n∏

j=1

(
∂

β j
y B(x, y)

)k j

k j !(β j !)k j
. (20)

Here, the set P(α, r) contains restricted integer partitions of a multiindex α into r
non-vanishing multiindices, i.e.

P(α, r) :=
{(

(k1,β1), . . . , (kn,βn)
) ∈

(
N0 × N

M
0

)n :
n∑

i=1
kiβ i = α,

n∑

i=1
ki = r,

and ∃ 1 ≤ s ≤ n : ki = 0 and β i = 0 for all 1 ≤ i ≤ n − s,

ki > 0 for all n − s + 1 ≤ i ≤ n and 0 ≺ βn−s+1 ≺ · · · ≺ βn

}
.

2 With “formally” we mean that we ignore here the fact that the product of matrices is in general not
Abelian. Nevertheless, a differentiation yields exactly the appearing products in a permuted order. The
formal representation is justified since we only consider the norm of the representation in the sequel.
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Herein, for multiindices β,β ′ ∈ N
M
0 , the relation β ≺ β ′ means either |β| < |β ′|

or, if |β| = |β ′|, it denotes the lexicographical order which means that it holds that
β1 = β ′1, . . . , βk = β ′k and βk+1 < β ′k+1 for some 0 ≤ k < M .

Taking the norm in (20), we derive the estimate

∣∣∣∣∣∣∂α
y Ã

∣∣∣∣∣∣
d×d

≤
n∑

r=1
r !∣∣∣∣∣∣Ã∣∣∣∣∣∣r+1d×d

∑

P(α,r)

α!
n∏

j=1

∣∣∣∣∣∣∂
β j
y B

∣∣∣∣∣∣
k j

d×d

k j !(β j !)k j

≤
n∑

r=1
r !
(

1

σ 2

)r+1 ∑

P(α,r)

α!
n∏

j=1

(
2(1+ cγ )γ β j

)k j

k j !(β j !)k j

= γ α
n∑

r=1
r !
(

1

σ 2

)r+1(
2(1+ cγ )

)r ∑

P(α,r)

α!
n∏

j=1

1

k j !(β j !)k j
.

From [9] we know that

∑

P(α,r)

α!
n∏

j=1

1

k j !(β j !)k j
= Sn,r ,

where Sn,r are the Stirling numbers of the second kind, cf. [1]. Thus, we obtain

∣∣∣∣∣∣∂α
y Ã

∣∣∣∣∣∣
d×d

≤ γ α

σ 2

n∑

r=1
r !
(
2(1+ cγ )

σ 2

)r

Sn,r ≤ γ α

σ 2

(
2(1+ cγ )

σ 2

)|α| n∑

r=1
r !Sn,r .

The term b̃(n) := ∑n
r=0 r !Sn,r coincides with the n-th ordered Bell number. The

ordered Bell numbers satisfy the recurrence relation

b̃(n) =
n−1∑

r=0

(
n
k

)
b̃(r) with b̃(0) = 1, (21)

see [12], and may be estimated as follows,3 cf. [3],

b̃(n) ≤ n!
(log 2)n

. (22)

This finally proves the assertion. ��

3 A more rigorous bound on the ordered Bell numbers is provided by [35]. There, it is shown that

b̃(n) = n!
2(log 2)n+1 +O(

(0.16)nn!).

Nevertheless, for our purposes, the bound from [3] is sufficient.
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The next lemma bounds the derivatives of det J(x, y).

Lemma 4 Let J : � → L∞(Dref ;Rd×d) be defined as in (16). Then, it holds for the
derivatives of det J(x, y) that

∥
∥∂α

y det J(x, y)
∥
∥

L∞(�;L∞(Dref ))
≤ d!(1+ σ)d |α|!γ α. (23)

Proof The proof is by induction on the minors of J(x, y) = [ j (x, y)k,]dk,=1 ∈ R
d×d .

For the (1× 1)-minors, we obviously obtain

∥∥∂α
y det jk,

∥∥
L∞(�;L∞(Dref ))

= ∥∥∂α
y jk,

∥∥
L∞(�;L∞(Dref ))

≤

⎧
⎪⎨

⎪⎩

σ , if |α| = 0

γi , if |α| = αi = 1

0, if |α| > 1.

(24)

For m ≤ d, we set Jk,� := [ jk,]k∈k,∈� ∈ R
m×m , where k = {k1, . . . , km} and

� = [1, . . . , m] with 1 ≤ k1 < · · · < km ≤ d and 1 ≤ 1 < · · · < m ≤ d. Now,
let the assertion (23) hold for some m − 1 < d. Then, Laplace’s rule for determinants
yields

∥∥∂α
y det Jk,�

∥∥
L∞(�;L∞(Dref ))

=
∥∥∥∥∥
∂α
y

m∑

′=1
(−1)k′+′ jkk′ ,′ det J

k′,�′
∥∥∥∥∥

L∞(�;L∞(Dref ))

,

where k′ := k\{kk′ } and �′ := �\{′ }. The triangle inequality and Leibniz rule for
differentiation give us

∥∥
∥∥∂

α
y

m∑

k′=1
(−1)k′+′ jkk′ ,′ det J

k′,�′
∥∥
∥∥

L∞(�;L∞(Dref ))

≤
m∑

k′=1

∥∥∥∂α
y
(

jkk′ ,′ det J
k′,�′)

∥∥∥
L∞(�;L∞(Dref ))

=
m∑

k′=1

∥
∥∥∥
∑

α′≤α

(
α

α′

)
∂α′
y jkk′ ,′ ∂

α−α′
y det Jk

′,�′
∥
∥∥∥

L∞(�;L∞(Dref ))

=
m∑

k′=1

∥∥∥∥

M∑

r=1
αr∂

er
y jkk′ ,′ ∂

α−er
y det Jk

′,�′ + jkk′ ,′ ∂
α
y det Jk

′,�′
∥∥∥∥

L∞(�;L∞(Dref ))

,

since jkk′ ,′ is an affine function with respect to y and all higher order derivatives,
i.e. |α′| > 1, vanish, see (24). A reapplication of the triangle inequality together with
the induction hypothesis and the sub-multiplicativity of the L∞-norm hence provides
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m∑

k′=1

∥∥∥∥
∥

M∑

r=1
αr∂

er
y jkk′ ,′ ∂

α−er
y det Jk

′,�′ + jkk′ ,′ ∂
α
y det Jk

′,�′
∥∥∥∥
∥

L∞(�;L∞(Dref ))

≤
m∑

k′=1

( M∑

r=1
αr
∥∥∂er

y jkk′ ,′
∥∥

L∞(�;L∞(Dref ))

∥∥∂α−er
y det Jk

′,�′∥∥
L∞(�;L∞(Dref ))

+∥∥ jkk′ ,′
∥
∥

L∞(�;L∞(Dref ))

∥
∥∂α

y det Jk
′,�′∥∥

L∞(�;L∞(Dref ))

)

≤
m∑

k′=1

( M∑

r=1
αrγr (m − 1)!(1+ σ)m−1|α − er |!γ α−er

+ σ(m − 1)!(1+ σ)m−1|α|!γ α

)

≤
m∑

k′=1
(m − 1)!(1+ σ)m−1|α|!γ α + σ(m − 1)!(1+ σ)m−1|α|!γ α

= m!(1+ σ)m |α|!γ α,

where we exploited that
M∑

r=1
αr |α − er |! = (|α| − 1)!

M∑

r=1
αr = (|α| − 1)!|α| = |α|!.

��
The application of the Leibniz rule yields now a regularity estimate for the diffusion

matrix A(x, y).

Theorem 3 The derivatives of the diffusion matrixA(x, y) defined in (7) satisfy under
the conditions of Assumption 1.3 that

∣∣∣∣∣∣∂α
y A

∣∣∣∣∣∣
d×d

≤ (|α| + 1)!Cdet

σ 2

(
2(1+ cγ )

σ 2 log 2

)|α|
γ α.

Proof The Leibniz rule for ∂α
y A(x, y) reads as

∂α
y A(x, y) =

∑

α′≤α

(
α

α′
)

∂α′
y
(
J(x, y)ᵀJ(x, y)

)−1
∂α−α′
y det J(x, y).

Inserting the results of Lemmas 3 and 4 yields with Cdet := d!(1+ σ)d that

∣∣∣∣∣∣∂α
y A

∣∣∣∣∣∣
d×d

≤
∑

α′≤α

(
α

α′
)
|α′|!γ

α′

σ 2

(
2(1+ cγ )

σ 2 log 2

)|α′|
Cdet|α − α′|!γ α−α′

≤ Cdet

σ 2

(
2(1+ cγ )

σ 2 log 2

)|α|
γ α

∑

α′≤α

(
α

α′
)
|α′|!|α − α′|!.
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Now, we employ the combinatorial identity

∑

α′≤α
|α′ |= j

(
α

α′
)
=
(|α|

j

)
(25)

and obtain

∑

α′≤α

(
α

α′
)
|α′|!|α − α′|! =

|α|∑

j=0
j !(|α| − j)!

∑

α′≤α
|α′ |= j

(
α

α′
)

=
|α|∑

j=0
j !(|α| − j)!

(|α|
j

)
= |α|!

|α|∑

j=0
1 = (|α| + 1)!.

��
In order to prove regularity results for the right hand side fref in (9), we have to

assume that f is a smooth function.

Lemma 5 Let f ∈ C∞(D) be analytic, i.e. ‖∂α
x f ‖L∞(D;Rd ) ≤ α!ρ−|α|c f for all

α ∈ N
d
0 and some ρ ∈ (0, 1]. Then, the derivatives of f̂ = f ◦ V are bounded by

∥∥∂α
y f̂

∥∥
L∞(�;L∞(Dref ))

≤ |α|!c f

(
d

ρ log 2

)|α|
γ α.

Proof In view of (16), differentiation of V(x, y) yields ∂yiV(x, y) = σiϕi (x). Thus,
all higher order derivatives with respect to an arbitrary direction y j vanish. The norm
of the first order derivatives is bounded by

∣∣∣∣∣∣∂yiV
∣∣∣∣∣∣

d ≤ γi .

The rest of the proof is also based on the application of Faà di Bruno’s formula.
Nevertheless, we have this time to consider the multivariate case. To that end, we
define the set P(α,α′) given by

P(α,α′) :=
{
(
(k1,β1), . . . , (kn,βn)

)∈(Nd
0 × N

M
0 )n :

n∑

i=1
|ki |β i = α,

n∑

i=1
ki = α′,

and ∃ 1 ≤ s ≤ n : |k j | = |βa | = 0 for all 1 ≤ i ≤ n − s,

|ki | �= 0 for all n − s + 1 ≤ i ≤ n and 0 ≺ βn−s+1 ≺ · · · ≺ βn

}

with n = |α|. The application of the multivariate Faà di Bruno formula yields now

∥
∥∂α

y f̂
∥
∥

L∞(�;L∞(Dref ))

≤
∑

1≤|α′|≤n

∥
∥∂α′

x f
∥
∥

L∞(�;L∞(D))

∑

P(α,α′)
α!

n∏

j=1

∥∥(∂
β j
y V

)k j
∥∥

L∞(�;L∞(Dref ))

k j !(β j !)|k j |
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≤
∑

1≤|α′|≤n

α′!ρ−|α′|c f

∑

P(α,α′)
α!

n∏

j=1

(
γ β j

)|k j |

k j !(β j !)|k j |

= c f γ
α

∑

1≤|α′|≤n

α′!ρ−|α′|
∑

P(α,α′)
α!

n∏

j=1

1

k j !(β j !)|k j | .

From [9], we know that

∑

|α′|=r

∑

P(α,α′)
α!

n∏

j=1

1

k j !(β j !)|k j | = dr Sn,r ,

where again Sn,r is the Stirling number of the second kind. Thus, we obtain

∥∥∂α
y f̂

∥∥
L∞(�;L∞(Dref ))

≤ c f γ
α

n∑

r=1

(
d

ρ

)r

r !Sn,r ≤ c f γ
α

(
d

ρ

)|α| n∑

r=0
r !Sn,r .

Analogously to the proof of Lemma 3, we finally arrive at the assertion. ��
Now, in complete analogy to Theorem 3, we have the following regularity result

for the right hand side fref .

Theorem 4 The derivatives of the right hand side fref(x, y) defined in (8) satisfy

∥∥∂α
y fref

∥∥
L∞(�;L∞(Dref ))

≤ (|α| + 1)!c f Cdet

(
d

ρ log 2

)|α|
γ α.

Finally, we establish the dependency between the solution û to (9) and the data fref .

Lemma 6 Let û(y) be the solution to (9) and fref ∈ L∞
(
�; L∞(Dref)

)
. Then, there

holds

‖û(y)‖H1(Dref )
≤ σ 2

σ d
cD‖ fref‖L∞(�;L∞(Dref )) (26)

with a constant cD only dependent on Dref for almost every y ∈ �.

Proof The bilinear form

(A∇ · ,∇ · )L2(Dref ;Rd ) : H1
0 (Dref)× H1

0 (Dref) → R

is coercive and bounded according to (4) and σ d ≤ det J(x, y) ≤ σ d . It holds

σ d

σ 2 ‖û‖2H1(Dref )
≤ (A∇û,∇û)L2(Dref ;Rd )
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and

(A∇û,∇v̂)L2(Dref ;Rd ) ≤
σ d

σ 2 ‖û‖H1(Dref )
‖v̂‖H1(Dref )

for all û, v̂ ∈ H1(Dref) and almost every y ∈ �. The assertion follows now by the
application of the Lax-Milgram Lemma and the observation that

‖ fref‖L∞(�;H−1(Dref ))
≤ √|Dref |cP‖ fref‖L∞(�;L∞(Dref )),

where cP denotes the Poincaré constant of Dref . ��
Combining the constants arising from Theorems 3 and 4 leads to the modified

sequence

{μk}k :=
{
2max

(
d

ρ log 2
,
2(1+ cγ )

σ 2 log 2

)
γk

}

k

such that

∣∣∣∣∣∣∂α
y A

∣∣∣∣∣∣
d×d

≤ C |α|!μα and
∥∥∂α

y fref
∥∥

L∞(�;L∞(Dref ))
≤ C |α|!μα.

Herein, we setC := Cdet max(c f , 1/σ 2). Notice that we introduced also the additional
factor 2 in order to obtain the factor |α|! in the derivatives instead of the factor (|α|+1)!.

Theorem 5 The derivatives of the solution u to (9) satisfy under the conditions of
Assumption 1.3 that

∥
∥∂α

y û(y)
∥
∥

H1(Dref )
≤ |α|!μα

(
4
σ 2

σ d
C max{1, cD}

)|α|+1
,

where cD denotes the constant from the previous theorem.

Proof Differentiating the variational formulation (9) with respect to y leads to

(
∂α
y
(
A(y)∇xû(y)

)
,∇xv̂

)

L2(Dref ;Rd )
= (

∂α
y fref(y), v̂

)
L2(Dref ;R)

.

The isomorphism of the spaces H1
0 (Dref) and H1

0

(
D(y)

)
from Lemma 1 allows us to

consider the test functions v to be independent of y. Furthermore, the application of
the Leibniz rule for the expression ∂α

y
(
A(y)∇xû(y)

)
results in

∂α
y
(
A(y)∇xû(y)

) =
∑

α′≤α

(
α

α′
)

∂α′
y A(y)∂α−α′

y ∇xû(y).

Thus, rearranging the preceding expression and using the linearity of the gradient, we
arrive at
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∫

Dref

A(y)∇x∂
α
y û(y)∇xvdx =

∫

Dref

∂α
y fref(y)vdx

−
∑

α �=α′≤α

(
α

α′
)∫

Dref

∂α−α′
y A(y)∇x∂

α′
y û(y)∇xvdx.

By choosing v = ∂α
y û(y) and by employing the estimates from Theorems 3 and 4, it

follows that

σ d

σ 2

∥∥∂α
y û(y)

∥∥2
H1(Dref )

≤
∫

Dref

∂α
y fref(y)∂α

y û(y)dx

−
∑

α �=α′≤α

(
α

α′
)∫

Dref

∂α−α′
y A(y)∇x∂

α′
y û(y)∇x∂

α
y û(y)dx

≤ cDC |α|!μα
∥∥∂α

y û(y)
∥∥

H1(Dref )

+
∑

α �=α′≤α

(
α

α′
)

C |α − α′|!μα−α′∥∥∂α′
y û(y)

∥∥
H1(Dref )

∥∥∂α
y û(y)

∥∥
H1(Dref )

.

From this, we obtain

∥∥∂α
y û(y)

∥∥
H1(Dref )

≤ C̃

4
|α|!μα+ C̃

4

∑

α �=α′≤α

(
α

α′
)
|α − α′|!μα−α′∥∥∂α′

y û(y)
∥∥

H1(Dref )

by setting

C̃ := 4
σ 2

σ d
C max(1, cD).

The proof is now by induction on |α|. The induction hypothesis is given by

∥∥∂α
y û(y)

∥∥
H1(Dref )

≤ |α|!μαC̃ |α|+1.

For |α| = 0, we conclude just the stability estimate (26), where the right hand side
of the inequality is scaled by the factor 4. Therefore, let the assertion hold for all
|α| ≤ n − 1 for some n ≥ 1. Then, we have

∥
∥∂α

y û(y)
∥
∥

H1(Dref )
≤ C̃

4
|α|!μα + C̃

4

∑

α �=α′≤α

(
α

α′
)
|α − α′|!μα−α′ |α′|!μα′C̃ |α′|+1

≤ C̃

4
|α|!μα + C̃

4
μα

∑

α �=α′≤α

(
α

α′
)
|α − α′|!C̃ |α′|+1

= C̃

4
|α|!μα + C̃

4
μα

n−1∑

j=0

∑

α′≤α
|α′ |= j

(
α

α′
)
|α − α′|!|α′|!C̃ |α′|+1.
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Again, we make use of the combinatorial identity (25) and obtain the estimate

∥
∥∂α

y û(y)
∥
∥

H1(Dref )
≤ C̃

4
|α|!μα + C̃

4
μα

n−1∑

j=0

(|α|
j

)
(|α| − j)! j !C̃ j+1

= C̃

4
|α|!μα + C̃

4
|α|!μαC̃

n−1∑

j=0
C̃ j

≤ C̃

4
|α|!μα + C̃

4
|α|!μαC̃

C̃ |α|

C̃ − 1
.

Now, the application of Lemma 9 from the Appendix gives us

C̃

2

C̃ |α|

C̃ − 1
≤ C̃ |α|

Since C̃ > 1, we conclude

∥∥∂α
y û(y)

∥∥
H1(Dref )

≤ C̃ |α|+1

4
|α|!μα + C̃ |α|+1

2
|α|!μα ≤ C̃ |α|+1|α|!μα.

This completes the proof. ��
Taking into account the additional factor provided by the theorem, we end up with

the sequence

{μk}k :=
{
8σ 2

σ d
C max(1, cD)max

(
d

ρ log 2
,
2(1+ cγ )

σ 2 log 2

)
γk

}

k
,

which yields in view of Theorem 5 that

∥
∥∂α

y û(y)
∥
∥

H1(Dref )
≤ C |α|!μα

with a constant C > 0 independent of the dimension M . Moreover, we observe
μk � γk . Therefore, we obtain for γk � k−1−δ the analyticity of û by Lemma 8 from
the Appendix for any δ > 0.

Remark 2 The discussion in this section only refers to the case of the Poisson equation.
Of course, the analysis presented here straightforwardly applies also to the more
general diffusion problem

−div(α(x)∇u(x, y)
) = f (x) for x ∈ D(y).

In this case, one has to impose the restriction that α(x) is an analytic function which is
bounded from above and below away from 0. Then, an estimate analogous to Lemma 5
applies for α̂(x, y). The proof of a related Theorem 3 for α̂(x, y)A(x, y) then involves
an additional application of the Leibniz rule.
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Remark 3 We can obtain similar approximation results for the moments of û, i.e. for
û p with p ∈ N, possibly with worse constants. To that end, one has to bound the
derivatives of û p with respect to y, too. This is also achieved by the application of Faà
di Bruno’s formula. For an idea of the related proofs, we refer to [16] where this topic
is discussed in case of a random diffusion coefficient.

5 Curved domains and parametric finite elements

For the analysis of the regularity in the preceding section, we have exploited that
there exists a one-to-one correspondence between the deterministic problem on the
random domain and the random problem on the reference domain. For the compu-
tations, in contrast to [6,36], we do however not aim at mapping the equation to the
reference domain Dref but rather to solve the equation on each particular realization
D(yi ) = V(Dref , yi ) for a suitable set of samples {yi }N

i=1 ⊂ �. A first step towards
this approach is made by [26], where a random boundary variation is assumed and
a mesh on the realization D(yi ) is generated via the solution of the Laplacian. Here,
under the assumption that the random domain is obtained by a sufficiently smooth
mapping V(yi ), we will employ parametric finite elements to map the mesh on Dref
onto a mesh on D(yi ).

We assume that the domain Dref is given as a collection of simplicial smooth
patches. More precisely, let � denote the reference simplex in R

d . We assume that
the domain Dref is partitioned into K patches

Dref =
K⋃

j=1
τ0, j , τ0, j = κ j (�), j = 1, 2, . . . , K , (27)

where each κ j : � → τ0, j defines a diffeomorphism of � onto τ0, j . Thus, we have
especially that

sup{‖κ ′j (s)x‖2 : s ∈ �, ‖x‖2 = 1}
inf{‖κ ′j (s)x‖2 : s ∈ �, ‖x‖2 = 1} ≤ ρ j for all j = 1, . . . , K , (28)

where κ ′j denotes as before the Jacobian of κ j . Since there are only finitely many

patches, we may set ρ := maxK
j=1 ρ j . The intersection τ0, j ∩ τ0, j ′ , j �= j ′, of any two

patches τ0, j and τ0, j ′ is supposed to be either ∅, or a common lower dimensional face.
A mesh on level  on Dref is now obtained by regular subdivisions of depth  of the

reference simplex into 2d sub-simplices. This generates the 2d elements {τ, j } j . In
order to ensure that the triangulation T := {τ, j } j on the level  forms a regular mesh
on Dref , the parametrizations {κ j } j are assumed to be C0 compatible in the following
sense: there exists a bijective, affine mapping � : � → � such that for all x = κ i (s)
on a common interface of τ0, j and τ0, j ′ it holds that κ j (s) = (κ j ′ ◦ �)(s). In other
words, the diffeomorphisms κ j and κ j ′ coincide at the common interface except for
orientation. An illustration of such a triangulation is found in Fig. 1. Notice that in our
construction the local element mappings � → τ, j satisfy the same bound (28) by
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(0, 0) (1, 0)

(0, 1)

κj

V(x,yi)

Fig. 1 Construction of parametric finite elements

definition. Therefore, especially the uniformity condition for (iso-) parametric finite
elements is fulfilled, cf. [4,22].

Finally, we define the finite element ansatz functions via the parametrizations {κ j } j

in the usual fashion, i.e. by lifting Lagrangian finite elements from � to the domain
Dref by using the mappings κ j . To that end, we define on the -th subdivision �

of the reference domain the standard Lagrangian piecewise polynomial continuous
finite elements � = {ϕ,i : i ∈ I}, where I denotes an appropriate index set. The
corresponding finite element space is then given by

V�, = span{ϕ, j : j ∈ I} = {u ∈ C(�) : u|τ ∈ �n for all τ ∈ �}

with dim V�, � 2d and �n denoting the space of polynomials of degree at most n.
Continuous basis functions whose support overlaps with several patches are obtained
by gluing across patch boundaries, using the C0 inter-patch compatibility. This yields
a (nested) sequence of finite element spaces

Vref, := {v ∈ C(Dref) : v|κ j (�) = ϕ ◦ κ−1j , ϕ ∈ V�,, j = 1, . . . , K } ⊂ H1(Dref)

with dim Vref, � 2d . It is well known that the spaces Vref, satisfy the following
Jackson and Bernstein type estimates for all 0 ≤ s ≤ t < 3/2, t ≤ q ≤ n + 1

inf
v∈Vref,

‖u − v‖Ht (Dref ) � hq−t
 ‖u‖Hq (Dref ), u ∈ Hq(Dref), (29)

and

‖v‖Ht (Dref ) � hs−t
 ‖v‖Hs (Dref ), v ∈ Vref,, (30)

uniformly in , where we set h := 2−. Note that, by construction, h scales like the
mesh size maxk{diamτ,k}, i.e. it holds h � maxk{diamτ,k} uniformly in  ∈ N due
to (28).

We can employ the same argumentation to map the finite elements from the ref-
erence domain Dref to the particular realization D(y) = V(Dref , y) for y ∈ �. The
ellipticity condition (4) on the Jacobian J(x, ω) of the random vector field guarantees
that (28) is satisfied with ρ = σ/σ . Also the Jackson and Bernstein type estimates
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Γ (y)

D−(y)

D+(y)

Fig. 2 Visualization of the domain D and the random interface 	(y)

(29) and (30) are still valid, where the only limitation is imposed by the smoothness
of V(x, y). If for example V(x, y) is of class C2, then we have the restriction q ≤ 2
such that

inf
v∈V(y)

‖u − v‖Ht (D(y)) � hq−t
 ‖u‖Hq (D(y))

for all 0 ≤ t ≤ 3/2, t ≤ q ≤ 2 where V(y) := {ϕ ◦ V(y)−1 : ϕ ∈ Vref,} ⊂
H1

(
D(y)

)
.

The one-to-one correspondence between the solution u(y) ∈ V(y) to (6) and the
solution û(y) ∈ Vref, to (9) is given by the following

Theorem 6 Let u(y) ∈ V(y) be the Galerkin solution to (6) and û(y) ∈ Vref, the
Galerkin solution to (9), respectively. Then, it holds

û(y) = u ◦ V(y) and u(y) = û ◦ V(y)−1.

Proof The proof is a straightforward consequence of the construction of the spaces
V(y) and the equivalence of the problems (6) and (9), see also (10). ��
Remark 4 The H2-regularity of the mapped problem, i.e. on D(y), follows from the
H2-regularity of the problem on the reference domain Dref if the vector fieldV(x, y) is
at least a C2-diffeomorphism. Especially, if V(x, y) = x+V0(x, y) is a perturbation
of the identity as in (16) and V0(x, y) is of class C2, then V(x, y)−1 is also a C2-
diffeomorphism provided that ‖V0(·, y)‖C2(Dref )

< 1/2, cf. [31].

6 Stochastic interface problems

As a special case of a diffusion problem on a random domain, we shall focus on the
stochastic interface problem as already discussed in e.g. [14].

6.1 Problem formulation

Let the hold-all D ⊂ R
d , cf. (3), be a simply-connected and convex domain with

Lipschitz continuous boundary ∂D. Inscribed into D, we have a randomly varying
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inclusion D−(y) � D for y ∈ � with a C2-smooth boundary 	(y) := ∂ D−(y). The
complement of D−(y) will be denoted by D+(y) := D\D−(y). A visualization of
this setup is found in Fig. 2. For given y ∈ �, we can state the stochastic elliptic
interface problem as follows:

−div(α(x, y)∇u(x, y)
) = f (x) in D\	(y), (31)

[[u(x, y)]] = 0 on 	(y), (32)
[[

α(x, y)
∂u

∂n
(x, y)

]]
= 0 on 	(y), (33)

u(x, y) = 0 on ∂D. (34)

Here, n denotes the outward normal vector on 	(y). Furthermore, the diffusion coef-
ficient is given by

α(x, y) := χD+(y)(x)α
+(x)+ χD−(y)(x)α

−(x) for x ∈ D,

where χD−(y) is the characteristic function of D−(y) and α+, α− are smooth deter-
ministic functions with

0 < α ≤ α−(x), α+(x) ≤ α < ∞ for almost every x ∈ D.

By [[u(x, y)]] := u+(x, y) − u−(x, y), we denote the jump of the solution u across
	(y), where u−(x, y) := u|D−(y) and u+(x, y) := u|D+(y), respectively. Analogously,
we define the jump of the co-normal derivative across 	(y) via

[[
α(x, y)

∂u

∂n
(x, y)

]]
:= α+(x)

∂u

∂n
(x, y)− α−(x)

∂u

∂n
(x, y).

Remark 5 This formulation of the stochastic interface problem also covers the case
of elliptic equations on random domains. For example, for α+(x) ≡ 0 and α−(x) ≡
1 (perfect insulation), we have the Poisson equation on D−(y) with homogeneous
Neumann data on 	(y) while, for α+(x) ≡ ∞ and α−(x) ≡ 1 (perfect conduction),
we have the Poisson equation on D−(y) with homogeneous Dirichlet data on 	(y).

6.2 Modeling the stochastic interface

Instead of solving the stochastic interface problem by the perturbation method by
means of shape sensitivity analysis as in [14,18], we propose here to apply the domain
mapping approach. To that end, let 	ref ⊂ D denote a reference interface of class C2

and co-dimension 1 which separates the interior domain D−
ref and the outer domain

D+
ref . We assume that 	(y) is prescribed by the application of a vector field V : D ×

� → D, i.e. 	(y) = V(	ref , y), which is a uniform C2-diffeomorphism in the sense
of Sect. 2. Furthermore, let the Jacobian of V satisfy the ellipticity condition (4).

As an example, we can consider here an extension of the vector field in [14], which
only prescribes the perturbation at the boundary: If	ref is of classC3, then its outward
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normal n is of class C2. Thus, given a random field κ : 	ref ×� → R which satisfies
|κ(x, y)| ≤ κ < 1 almost surely, we can define V(x, y) := x + κ(x, y)n(x) for
x ∈ 	ref . A suitable extension of this vector field to the whole domain D is given by
V(x, y) := x+ κ(Px, y)n(Px)B(‖x− Px‖2), where Px is the orthogonal projection
of x onto 	ref and B : [0,∞) → [0, 1] is a smooth blending function with B(0) = 1
and B(t) = 0 for all t ≥ c for some constant c ∈ (0,∞). Notice that, if 	ref is of
class C3, the orthogonal projection P onto 	ref and thus V(x, y) is at least of class
C2, cf. [19].

6.3 Reformulation for the reference interface

For y ∈ �, the variational formulation of the interface problem (31)–(34) is given as
follows: Find u ∈ H1

0 (D) such that

∫

D−(y)∪D+(y)
α〈∇u,∇v〉dx =

∫

D
f vdx for all v ∈ H1

0 (D).

As in Sect. 2, we can reformulate this variational formulation relative to the reference
interface. As we have for the transported coefficient

α̂(x, y) = χV(D+
ref ,y)

(
V(x, y)

)
α̂+(x, y)+ χV(D−

ref ,y)

(
V(x, y)

)
α̂−(x, y)

= χD+
ref

(x)α̂+(x, y)+ χD−
ref

(x)α̂−(x, y),

we obtain the following variational formulation with the definition (7) of the diffusion
matrix A(x, y): Find û(y) ∈ H1

0 (D) such that

∫

D−
ref∪D+

ref

α̂(y)〈A(y)∇û(y),∇v〉dx =
∫

D
f̂ (y)v det J(y)dx (35)

for all v ∈ H1
0 (D). Since α̂(x, y) is a smooth function with respect to y, the regularity

results from Sect. 4 remain valid here.

6.4 Finite element approximation for the stochastic interface problem

The application of parametric finite elements yields especially an interface-resolved
triangulation for the discretization of the stochastic interface problem (31)–(34). By
“interface-resolved” we mean that the vertices of elements around the interface lie
exactly on the interface, cf. [7,23]. Thus, the approximation error for a particular
realization of the solution u(y) to the stochastic interface problem (31)–(34) can be
quantified by the following theorem adopted from [23, Theorem 4.1].

Theorem 7 For y ∈ �, let {T}>0 be a family of interface resolved triangulations for
V(D, y) and {V(y)}>0 the associated finite element spaces. Let u(y) be the finite
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element solution corresponding to the realization u(y) of the solution to the elliptic
problem (31)–(34). Then, for s = 0, 1, there holds that

‖u(y)− u(y)‖Hs (D) � h2−s
 ‖u(y)‖H2(D−(y))∪H2(D+(y)) , (36)

where H2
(
D−(y)

) ∪ H2
(
D+(y)

)
is the broken Sobolev space equipped by the norm

‖ · ‖H2(D−(y))∪H2(D+(y)) :=
√
‖ · ‖2

H2(D−(y)) + ‖ · ‖2H2(D+(y)).

In view of Theorem 6, the statement of the previous theorem is also valid for the
realization of the solutionwhich is pulled back to the domainD relative to the reference
interface 	ref .

7 Numerical examples

In this section, we consider two examples for boundary value problems on random
domains. On the one hand, we consider a stochastic interface problem, and on the
other hand, we consider the Laplace equation on a random domain. In both examples,
we employ the pivoted Cholesky decomposition, cf. [15,17], in order to approximate
the Karhunen-Loève expansion of V. The spatial discretization is performed by using
piecewise linear parametric finite elements on the mapped domain V(Dref , yi ) for
each sample yi . It would of course be also possible to perform the computations on
the reference domain. In this case, the diffusion matrix A has to be computed from
Karhunen-Loève expansion of V for each particular sample.

For the stochastic approximation, we employ a quasi-Monte Carlo quadrature based
on N Halton points {ξ i }N

i=1 mapped to the hypercube [−1, 1]M , i.e.

E[û](x) ≈ (Qû)(x) := 1

N

N∑

i=1
û(x, 2ξ i − 1).

In accordancewith [16],we have the following convergence result for this quasi-Monte
Carlo quadrature, which is valid for the variance of û as well.

Lemma 7 The quasi-Monte Carlo quadrature with Halton points converges for the
mean of the solution û to (9) independent of the stochastic dimension M if γk � k−3−ε.
More precisely, for all δ > 0, there exists a constant such that the quasi-Monte Carlo
quadrature based on N Halton points satisfies

‖E[û] − Qû‖H1(Dref )
≤ C(δ)N δ−1,

where C(δ) →∞ as δ → 0.
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Proof From [16,21], we know that the error of the quasi-Monte Carlo quadrature can
be estimated by the weighted Koksma-Hlawka inequality, cf. [27],

∥
∥(E− Q)û

∥
∥

H1
0 (D)

≤
(

sup
‖α‖∞=1

w
− 1

2
α 2|α| sup

y∈[−1,1]M
∥
∥∂α

y û(y)
∥
∥

H1
0 (D)

)

×
( ∑

‖α‖∞=1
w

1
2
αD
(�α)

)
. (37)

Herein, we denote by D
(�α) the star-discrepancy of the set of Halton-points on
[0, 1]M which are projected onto the dimensions where αk = 1. Additionally, the
factor 2|α| appears due to the transport of û to the unit cube [0, 1]M . It is shown in
[34] that the second factor in (37) is bounded by

⎧
⎨

⎩

∑

‖α‖∞=1
w

1
2
αD
(�α)

⎫
⎬

⎭
≤ C(δ)N−1+δ

with a constantC(δ)which is independent of M if the weightswα are product weights,
i.e. wα =∏M

k=1 w
αk
k , and satisfy

∞∑

k=1
w

1
2
k k log k < ∞. (38)

In order to bound the first product in (37), we employ the estimate

∥∥∂α
y û(y)

∥∥
H1(Dref )

≤ C |α|!c|α|γ α ≤ C
M∏

k=1
kcγk

from Theorem 5 and choose the weights accordingly as w
1/2
k = 2ckγk . Then, the

condition (38) can be rewritten as

∞∑

k=1
2cγkk2 log k < ∞.

which is satisfied if γk � k−3−ε. ��
All computations have been carried out on a computing server consisting of four

nodes4 with up to 64 threads.

4 Each node consists of two quad-core Intel(R) Xeon(R) X5550 CPUs with a clock rate of 2.67GHz
(hyperthreading enabled) and 48GB of main memory.
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7.1 The stochastic interface problem

We consider the stochastic interface problem from [14] where the hold-all is given as
D = [−1, 1]2 and the reference interface is given as 	ref = {x ∈ D : ‖x‖2 = 0.7}.
Thus, the outward normal is n(x) = [cos(θ), sin(θ)]ᵀ where x = r [cos(θ), sin(θ)]ᵀ
is the representation of x in polar coordinates. The random field under consideration
reads

κ(θ, ω) = 1

80

5∑

k=0
cos(kθ)X2k(ω)+ sin(kθ)X2k+1(ω). (39)

Here, X0, . . . , X11 are independent, uniformly distributed random variables with vari-
ance 1, i.e. their range is [−√3,

√
3]. The diffusion coefficient is given as α−(x) ≡ 2

in the interior part of the domain and as α+(x) ≡ 1 in the remaining part of the domain.
The right hand side is chosen as f (x) ≡ 1.

In this example, only the perturbation at the random interface is known. Thus,
the solution of the associated diffusion problem depends on the particular extension
of the vector field and it is reasonable to consider a quantity of interest (QoI) that
does not depend on this extension. Specifically, the QoI is given by the solution on
a non-varying part of the domain, namely on {‖x‖2 ≤ 0.4}. We therefore extend the
random field (39) onto D as described in Sect. 6.2 by using the quadratic B-spline
B(x) = 4

3 B2(5‖x − Px‖2) as blending function. Hence, the random perturbation is
localized in the annulus {0.4 < ‖x‖2 < 1} and we end up with the covariance

Cov[V](x, y) = B(x)B(y)Covκ(θx, θy)

[
cos(θx) cos(θy) cos(θx) sin(θy)
sin(θx) cos(θy) sin(θx) sin(θy)

]

with

Covκ(θx, θy) = 1

6400

5∑

k=0
cos(kθx) cos(kθy)+ sin(kθx) sin(kθy).

Furthermore, we set E[V](x) := x. A visualization of the reference interface with
a particular displacement field V(x, yi ) − x and the resulting perturbed interface is
found in Fig. 4.

A visualization of the QoI’s mean and variance computed by N = 106 quasi-Monte
Carlo samples and 1048576 finite elements (level 8) is shown in Fig. 3. This approx-
imation serves as a reference in order to examine the convergence behavior of the
quasi-Monte Carlo method. According to Lemma 7, we expect a rate of convergence
of N δ−1 for any δ > 0. In our experiments, we thus apply N = 2/(1−δ) Halton points
on the finite element level  = 1, . . . , 7 for the choices δ = 0.5, 0.4, 0.3, 0.2.Although
all choices of δ > 0 would asymptotically result in an almost linear rate of conver-
gence, the constant in the error estimate is still dependent on the particular choice.

Figure 5 depicts the error of the QoI’s mean measured in the H1-norm on the right
hand side and the error of the QoI’s variance measured in the W 1,1-norm on the left
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Fig. 3 Mean (left) and variance (right) of the QoI of the stochastic interface problem

Fig. 4 Realization of the displacement V(x, yi )− x (left) and the related mapped interface (right)
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Fig. 5 Error in the mean measured in H1 (left) and in the variance measured in W 1,1 (right)

hand side each versus the related cost, which is given by the number N of samples
times the degrees of freedom in the finite element approximation on level . As can
be seen, the error of the QoI’s mean provides similar errors for all choices of δ. This
suggests that the finite element error limits the overall approximation error. The choice
δ = 0.2 is already sufficient here and results in the lowest cost. For the QoI’s variance,
we observe successively smaller errors for increasing δ. At least the error for the QoI’s
mean seems to be dominated by the finite element discretization. Therefore, we found
it instructive to present also the respective errors measured in the L2-norm. They are
plotted in Fig. 6. Here, the smallest error is obtained for δ = 0.5. Nevertheless, the best
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Fig. 6 Error in the mean (left) and in the variance (right) measured in L2

error versus cost rate is provided by δ = 0.2. The situation changes for the variance.
Here, the error gets again successively smaller for increasing values of δ. Resulting in
the lowest error for δ = 0.5.

As a comparison and in order to validate the reference, we have also computed the
approximate mean and variance on each level by the Monte Carlo method. Here, in
order to maintain the linear approximation rate of the finite element method in the
energy norm, we approximate the root mean square error by five realizations each of
which being computed with N = 22 samples.

7.2 The Poisson equation on a random domain

For our second example, we consider an infinite dimensional random field described
by its mean E[V](x) = x and its covariance function

Cov[V](x, y) = 1

100

[
5 exp(−4‖x − y‖22) exp(−0.1‖2x − y‖22)
exp(−0.1‖x − 2y‖22) 5 exp(−‖x − y‖22)

]
.

Furthermore,we consider the randomvariables in theKarhunen-Loève expansion to be
uniformly distributed. The unit disc Dref = {x ∈ R

2 : ‖x‖2 < 1} serves as reference
domain and the load is set to f (x) ≡ 1. Figure 8 shows the reference domain with
a particular displacement field and the resulting perturbed domain. In this example,
the covariance between any two points in Dref is actually known and can thus be
incorporated into our model. Especially, there is no point inside the reference domain
that is kept fixed by the random vector field. Therefore, we consider here the entire
solution û as QoI and approximate its mean and its variance.

In Fig. 7, a visualization of the mean and the variance computed by N = 106 quasi-
Monte Carlo samples 1048576 finite elements (level 9) are found. Here, the Karhunen-
Loève expansion has been truncated after M = 303 terms which yields a truncation
error, cf. (14), smaller than 10−6. For the convergence study, however, we have coupled
the truncation error of theKarhunen-Loève expansion to the spatial discretization error
of order 2− on the finite element level . It is observed that the truncation rank M
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Fig. 7 Mean (left) and variance (right) of the solution û to the Laplace equation on the randomly varying
disc

Fig. 8 Realization of the displacement V(x, yi )− x (left) and the related mapped domain (right)
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Fig. 9 Error in the mean measured in H1 (left) and in the variance measured in W 1,1 (right)

grows linearly in the level , namely it holds M = 10, 23, 37, 49, 64, 79, 91, 108 for
 = 1, 2, 3, 4, 5, 6, 7, 8.

The number of samples of the quadrature methods under consideration has been
chosen in dependence on the finite element level  as in the previous example. Figure 9
shows the error of the solution’s mean and variance measured in the H1-norm and the
W 1,1-norm, respectively, each versus the cost. Except for δ = 0.2, we observe for the
quasi-Monte Carlo quadrature as well as for the Monte Carlo quadrature comparable

123



854 H. Harbrecht et al.
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Fig. 10 Error in the mean (left) and in the variance (right) measured in L2

errors for the approximation of the mean. In view of the cost, δ = 0.2, 0.3 perform
best here. In case of the variance, we obtain again successively smaller errors for
increasing values of δ. Again, we have also provided the respective errors with respect
to the L2-norm. The related plots are found in Fig. 10. Here, for the mean and the
variance, δ = 0.5 provides asymptotically the lowest error.

8 Conclusion

In this article, we have provided regularity results for the domain mapping method for
elliptic boundary value problems on random domains. Based on the decay of the ran-
dom vector field’s Karhunen-Loève expansion, we have derived related decay rates for
the solution’s derivatives. In particular, the presented framework is directly applicable
to stochastic interface problems. The regularity results provide dimension indepen-
dent convergence of the quasi-Monte Carlo quadrature and allow also for the use of
(anisotropic) quadrature methods to approximate quantities of interest that involve an
integration of the solution with respect to the random parameter. The numerical exam-
ples corroborate the theoretical results and demonstrate the flexibility of the approach.

Appendix

Lemma 8 Let γ = {γk}k ∈ 1(N) with finite support I ⊂ N and γk ≥ 0. Moreover,
assume that cγ :=∑

k∈I γk < 1. Then, it holds

∑

α

|α|!
α! γ α = 1

1− cγ

and therefore there exists a constant with |α|!/α!γ α ≤ c for all α ∈ N
M
0 , where we

set M := |I| and 00 = 1.
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Proof It holds

∑

α

|α|!
α! γ α =

∞∑

i=0

∑

|α|=i

i !
α!γ

α =
∞∑

i=0

(
M∑

k=1
γk

)i

=
∞∑

i=0
ci
γ =

1

1− cγ

by the multinomial theorem and the limit of the geometric series. ��
Lemma 9 Let c, m ∈ R with m ≥ 2 and c ≥ m/(m − 1). It holds for n ∈ N that

c

m

cn − 1

c − 1
≤ cn .

Proof It holds

c

m

cn − 1

c − 1
≤ cn

⇐⇒ cn+1 − c ≤ m(cn+1 − cn)

⇐⇒ mcn ≤ (m − 1)cn+1 + c

⇐⇒ m

m − 1
≤ c + 1

(m−1)cn−1 .

Omitting the second summand together with the condition c ≥ m/(m − 1) yields the
assertion. ��
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