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Abstract A third-order in time numerical IMEX-type algorithm for the Stokes–Darcy
system for flows in fluid saturated karst aquifers is proposed and analyzed. A novel
third-order Adams–Moulton scheme is used for the discretization of the dissipative
term whereas a third-order explicit Adams–Bashforth scheme is used for the time
discretization of the interface term that couples the Stokes andDarcy components. The
scheme is efficient in the sense that one needs to solve, at each time step, decoupled
Stokes andDarcy problems. Therefore, legacy Stokes andDarcy solvers can be applied
in parallel. The scheme is also unconditionally stable and, with a mild time-step
restriction, long-time accurate in the sense that the error is bounded uniformly in time.
Numerical experiments are used to illustrate the theoretical results. To the authors’
knowledge, the novel algorithm is the first third-order accurate numerical scheme for
the Stokes–Darcy system possessing its favorable efficiency, stability, and accuracy
properties.
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1 Introduction

Certain rocks such as limestone, dolomite and gypsum are susceptible to dissolution
due to reaction with carbon-dioxide and water which leads, over long (geological)
time, to the formation of voids (vugs) and conduits. This type of landscape is referred
to as karst. Due to the existence of vugs and conduits, large amount of water may be
stored in karst regions to form karst aquifers that are of great practical importance and
are susceptible to pollution [27]. For example, about 90 % of the fresh water used in
the State of Florida comes from karst aquifers and contamination is a serious problem
[25].

For many important applications such as contaminant transport in karst aquifers,
one must couple the fluid motion in the porous media with the fluid motion in the
conduit or vugs. For instance, contaminants driven into the porousmedia during a flood
season may be released during a drought season. Moreover, because fluid motion in
the porous media (matrix) is much slower compared to fluid motion in conduits, long-
time accurate numerical schemes are highly desirable if one is interested in capturing
the physically interesting retention and release of contaminants within karst aquifers.

There has been a recent surge in interest in the design and analysis of numerical
algorithms for the Stokes–Darcy and related systems that govern the motion of flu-
ids flows in saturated karst aquifers. See, e.g., [4,7,9–15,17–22,26,28–35,37–40]. In
particular, first order and second order in time accurate and long-time stable schemes
have been proposed and studied in [11,15,29,30,35].

The purpose of this work is to propose and investigate a novel third-order Adams–
Moulton–Bashforth method for the Stokes–Darcy system. The algorithm is a special
case of the implicit-explicit (IMEX) class of schemes [1–3,5]. The coupling term in
the interface conditions is treated explicitly in our algorithm so that only two decou-
pled problems (one Stokes and one Darcy) are solved at each time step. Therefore, the
scheme can be implemented very efficiently and, in particular, legacy codes for each
of the two components can be utilized. Moreover, we show that our scheme is uncon-
ditionally stable and long-time stable in the sense that the solutions remain bounded
uniformly in time. The uniform in time bound of the solutions further leads to uniform
in time error estimates. This is a highly desirable feature because one would want to
have reliable numerical results over the long-time scale of contaminant sequestration
and release. We also provide the results of numerical experiments that illustrate our
analytical results.

This work can be viewed as an improvement of our earlier work [15] in which a
second-order in time Adams–Moulton–Bashforth algorithm was studied. This is the
first third-order algorithm that is unconditionally stable, long-time accurate in the
sense of the existence of a uniform-in-time error bound, and efficient in the sense that
only two decoupled problems (one Stokes, one Darcy) are needed at each time step.

The rest of the paper is organized as follows. In Sect. 2, we introduce the coupled
Stokes–Darcy system, the associated weak formulation, and the third-order in time
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Fig. 1 The physical domain
consisting of a porous media Ωp
and a free-flow conduit Ω f

scheme. The unconditional and long-time stability with respect to the L2 norm are
presented in Sect. 3. Numerical results that illustrate the accuracy, efficiency, and
long-time stability of our algorithms are given in Sect. 4. We close by providing some
concluding remarks in Sect. 5.

2 The Stokes–Darcy system and one type of third order IMEX method

In this section we recall the Stokes–Darcy system modeling flows in saturated karst
aquifers. A third-order in time numerical scheme based on the Adams–Moulton–
Bashforth approach is presented as well.

The Stokes–Darcy system. For simplicity, the following conceptual domain is consid-
ered for a karst aquifer. It contains a porous media (matrix), denoted by Ωp ∈ R

d ,
and a conduit, denoted by Ω f ∈ R

d , where d = 2, 3 denotes the spatial dimension.
Γ denotes the interface between the matrix and the conduit. The remaining pieces of
the boundaries for the matrix and the conduit are denoted ∂Ωp and ∂Ω f , respectively.
We assume ∂Ωp and ∂Ω f are non-empty for simplicity (Fig. 1).

The governing coupled Stokes–Darcy system for karst aquifers is given by

⎧
⎪⎨

⎪⎩

S
∂φ

∂t
− ∇ · (K∇φ) = f in Ωp,

∂u f

∂t
− 1

ρ
∇ · T (

u f , p
) = f and ∇ · u f = 0 inΩ f ,

(1)

where the unknowns are the hydraulic head φ in the matrix and the fluid velocity u f

and the pressure p in the conduit [16]. The Darcy velocity up in the matrix can be
recovered by the Darcy equation up = −K∇φ. In (1), f denotes a sink or source in
the matrix, f denotes a body force density in the conduit, ρ the fluid density which
is taken to be 1 for simplicity, T(u f , p) = 2νD(u f ) − pI denotes the stress tensor
in the conduit, and D(u f ) = (∇u f + ∇uT

f )/2 is the rate of deformation tensor.
The physical parameters involved are the water storage coefficient S, the hydraulic
conductivity tensor K, and the kinematic viscosity of the fluid ν. For simplicity, we
assume homogeneous Dirichlet boundary conditions for the hydraulic head φ and the
free flow velocity u f in the conduit except on the interface Γ . On the interface Γ ,
we impose the continuity of normal velocity (for conservation of mass), the balance
of normal component of the normal stress, and the Beavers–Joseph–Saffman–Jones
interface boundary conditions (BJSJ) [6,23,24,36]:
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⎧
⎪⎨

⎪⎩

u f · n f = up · n f = −(K∇φ) · n f

− τ j · (T(u f , p f ) · n f ) = αB J S J τ j · u f , j = 1, . . . , d − 1

− n f · (T(u f , p f ) · n f ) = gφ.

(2)

In (2),n f denotes the outer normal vector toΩ f and {τ j }, j = 1, 2, . . . , d−1, denotes
a set of linearly-independent tangential vectors on the interface Γ . The additional
physical parameters are the gravitational constant g and theBeavers–Joseph–Saffman–

Jones coefficient αB J S J = α̃B J S J
√

dν√
trace(K)

.

Weak formulation of the Stokes–Darcy system.Let (·, ·)D and ‖·‖D denote the standard
L2(D) inner product and norm, respectively, where D can be Ωp, Ω f , or Γ . We omit
D whenever there is no ambiguity. We define the function spaces

H f =
{

v ∈
(

H1(Ω f )
)d | v = 0 on ∂Ω f \Γ

}

,

Hp =
{
ψ ∈ H1(Ωp) | ψ = 0 on ∂Ωp\Γ

}
,

Q = L2(Ω f ), W = H f × Hp.

Let X ′ denote the dual space of X with respect to the duality induced by the L2 inner
product. The X ′, X action is denoted by 〈·, ·〉X ′,X with the subscript omitted if it is
clear from the context.

A weak formulation of the Stokes–Darcy system is then derived by the following
procedure. First, we multiply the three equations in (1) by three test functions v ∈ H f ,
gψ ∈ Hp, and q ∈ Q, receptively, and integrate the results over each corresponding
domain. Then, integration by parts is applied to the terms involving second order deriv-
atives, a process that produces boundary integrals. Finally, we appropriately substitute
the BJSJ interface boundary conditions (2) into the boundary integral terms to arrive
at the weak formulation

〈〈ut , v〉〉 + a(u, v) + b(v, p) + aΓ (u, v) = 〈f, v〉 ∀ v ∈ W,

b(u, q) = 0 ∀ q ∈ Q, (3)

where W = H f × Hp, u = [u, φ]T , v = [v, ψ]T , f = [f, g f ]T , (·)t = ∂(·)/∂t ,

〈〈ut , v〉〉 = 〈ut , v〉Ω f + gS〈φt , ψ〉Ωp , b(v, q) = −(q,∇ · v)Ω f ,

a(u, v) = a f (u, v) + ap(φ,ψ) + aB J S J (u, v),

aΓ (u, v) = g(φ, v · n f )Γ − g(u · n f , ψ)Γ ,

〈f, v〉 = 〈f, v〉Ω f + 〈g f, ψ〉Ωp ,

(4)

with

a f (u, v) = ν(∇u,∇v)Ω f , ap(φ,ψ) = g(K∇φ,∇ψ)Ωp

aB J S J (u, v) = αB J S J (u · τ , v · τ )Γ .

123



An efficient and long-time accurate third-order algorithm… 861

The bilinear form a(·, ·) can be shown to be coercive, i.e.,

a(u,u) ≥ (ν‖∇u‖2 + gKmin‖∇φ‖2 + αB J S J ‖u · τ‖2Γ ) ≥ Ca‖∇u‖2, (5)

where Ca = min(ν, gKmin) > 0 and Kmin denotes the smallest eigenvalue of K.
Details can be found in, e.g., [8,15].

For the sake of exposition, we introduce the two norms

‖u‖a = (
a(u,u)

) 1
2 , ‖v‖S = 〈〈v, v〉〉 1

2 .

It is easy to see that ‖v‖S is equivalent to the L2 norm, i.e.,

Cs‖v‖S ≤ ‖v‖ ≤ CS‖v‖S, (6)

where Cs = min{1,√gS} and CS = max{1,√gS}.
Third-order Adams–Moulton–Bashforth IMEX method (AMB3). To define our novel
third-order scheme that is unconditionally stable and long-time accurate,wefirst define
twoAdams-type difference operators. Thefirst is the novelAdams–Moulton difference
operator defined on a 2Δt mesh

DAMvn+1 = 2

3
vn+1 + 5

12
vn−1 − 1

12
vn−3, (7)

and the other is the Adams–Bashforth difference operator

DABvn+1 = 23

12
vn − 4

3
vn−1 + 5

12
vn−2. (8)

Note that theAdams–Moulton operator (7) is different from the standard one 5
12v

n+1+
2
3v

n − 1
12v

n−1. The novel form of the Adams–Mouton operator that we adopt here is,
due to its dissipativity, crucial to the long-time stability.

The third-order Adams–Moulton–Bashforth method is a combination of the third-
order explicit Adams–Bashforth treatment for the coupling term and the novel third-
order Adams–Moulton method for the remaining terms. Specifically, we have, for any
v ∈ W and q ∈ Q,

〈〈
un+1 − un

Δt
, v
〉〉

+ ã
(

DAMun+1, v
)

+ b
(
v, DAM pn+1

)

=
〈
DAMfn+1, v

〉
− ãΓ

(
DABun+1, v

)
,

b
(

DAMun+1, q
)

= 0. (9)

Here the bilinear form ã(u, v) is defined as

ã(u, v) = a(u, v) + ast (u, v),
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where the artificial stabilizing term ast (·, ·) is defined as

ast (u, v) = γ f (u · n f , v · n f )Γ + γp(φ,ψ)Γ (10)

with parameters γ f , γp ≥ 0. It is obvious that

ã(u,u) ≥ a(u,u) ≥ Ca‖∇u‖2, (11)

so that we can define the norm

‖u‖2ã = ã(u,u).

The interface term aΓ (u, v) is modified by ãΓ (u, v) as

ãΓ (u, v) = aΓ (u, v) − ast (u, v).

Notice that the termast added toa(u, v) is also subtracted fromaΓ , soweare not adding
any artificial terms at the continuous in-time level. This treatment leads to a Dupont–
Douglas type regularization at time-discrete level. Numerical evidence suggests that
this regularization leads to additional stability.

Efficiency of the scheme. Note that the only term that couples the Stokes equation
in the conduit with the equation in the matrix is the interface term ãΓ through aΓ .
Because this coupling term is treated explicitly in our scheme (9), the scheme is of
high efficiency because we only need to solve two decoupled subproblems at each
time step, one Stokes and one Darcy:

1. At time t = tn+1, given un,un−1,un−2,un−3;
2. Set v = [v, 0] so that all the terms involving φn+1 vanish and thus we only need

apply a fast Stokes solver to determine un+1;
3. Set v = [0, gψ] so that all the terms involving un+1 vanish and thus we only need

apply a fast Darcy solver for φn+1;
4. Set n = n + 1 and return to step 1.

The computation of step 2 and 3 can be conducted in a parallel fashion and one can
use legacy Stokes and Darcy codes, respectively, for each step, if one so desires.

3 Unconditional and long-time stability

Useful inequalities. We recall a few inequalities to aid readability.

– Trace inequality: if v ∈ W, then

‖v‖Γ ≤ Ctr
√‖v‖‖∇v‖, ‖v‖Γ ≤ Ctr‖∇v‖, ‖v‖Γ ≤ Ctr‖v‖ã . (12)

– Poincaré inequality: if v ∈ W, then

‖v‖ ≤ CP‖∇v‖. (13)
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– Young inequality:

a
1
2 b

1
2 c ≤ a2

64ε3
+ ε(b2 + c2) ∀ a, b, c, ε > 0. (14)

– Triangle inequality: ‖a + b‖ 1
2 ≤ ‖a‖ 1

2 + ‖b‖ 1
2 .

Other variants of Young’s inequality will also be used.

Useful lemmas. Here we introduce a few useful lemmas that are useful in the analysis
of our schemes.

The following estimates follow from the basic inequalities.

Lemma 1 Let aγ (·, ·) and ast (·, ·) be defined as in (4) and (10), respectively. Then,
there exists a constant Cct such that

|̃aΓ (u, v)| ≤ |ast (u, v)| + |aΓ (u, v)| ≤ Cct‖u‖Γ ‖v‖Γ ∀u, v ∈ W.

Lemma 2 For any β1 > 0, v,w ∈ W, we have

|̃aΓ (v,w)| ≤ β1(‖v‖2ã + ‖w‖2ã) + β2‖v‖2S, (15)

where β2 = 1
64β

−3
1 C2

SC4
ct C

8
tr C−1

a .

Proof By Lemma 1, the equivalence between ‖ · ‖S and ‖ · ‖, (6), (11), and the trace
theorem, we have, for any v,w ∈ W,

ãΓ (v,w) ≤ Cct‖v‖Γ ‖w‖Γ ≤ Cct C
2
tr‖v‖

1
2 ‖∇v‖ 1

2 ‖w‖ã

≤ C
1
2
S Cct C

2
tr C

− 1
4

a ‖v‖
1
2
S ‖v‖

1
2
ã ‖w‖ã . (16)

The inequality (15) is then obtained by setting ε = β1C
− 1

2
S C−1

ct C−2
tr C

1
4
a in the Young’s

inequality.

Lemma 3 The interface term ãΓ (DABu,u) can be bounded by

−2Δt ãΓ

(
23

12
un − 4

3
un−1 + 5

12
un−2,un+1

)

≤ 1

12
Δt‖un+1‖2ã + 23

528
Δt‖un‖2ã + 16

528
Δt‖un−1‖2ã + 5

528
Δt‖un−2‖2ã

+23

6
β2Δt‖un‖2S + 8

3
β2Δt‖un−1‖2S + 5

6
β2Δt‖un−2‖2S .
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Proof Set β1 = 1
88 in Lemma 2. Then β2 = 10648C2

SC4
ct C

8
tr C−1

a and

−2Δt ãΓ

(
23

12
un − 4

3
un−1 + 5

12
un−2,un+1

)

≤ 23

6
Δt

(

β2‖un‖2S + 1

88
‖un‖2ã + 1

88
‖∇un+1‖2ã

)

+8

3
Δt

(

β2‖un−1‖2S + 1

88
‖∇un−1|2ã + 1

88
‖∇un+1‖2ã

)

+5

6
Δt

(

β2‖un−2‖2S + 1

88
‖∇un−2‖2ã + 1

88
‖∇un+1‖2ã

)

≤ 1

12
Δt‖un+1‖2ã + 23

528
Δt‖un‖2ã + 16

528
Δt‖un−1‖2ã + 5

528
Δt‖un−2‖2ã

+23

6
β2Δt‖un‖2S + 8

3
β2Δt‖un−1‖2S + 5

6
β2Δt‖un−2‖2S (17)

so that the lemma is proved.

Lemma 4 The interface term −aΓ (DABu,u) + ast (DABu − DAMu,u) can be
bounded by

−2ΔtaΓ

(
23

12
un − 4

3
un−1 + 5

12
un−2,un+1

)

+2Δtast

(

−2

3
un+1 + 23

12
un − 7

4
un−1 + 5

12
un−2 + 1

12
un−3,un+1

)

≤ 58Δt

360
‖un+1‖2a + 27Δt

360
‖un‖2a + 21Δt

360
‖un−1‖2a + 7Δt

360
‖un−2‖2a

+ Δt

360
‖un−3‖2a + (C2 + 2C3)Δt‖un+1 − un‖2S + 5C3Δt‖un − un−1‖2S

+2C3Δt‖un−1 − un−2‖2S + C3Δt

3
‖un−2 − un−3‖2S, (18)

where C2 = 4920750C2
SC4

ct C
8
tr C−1

a and C3 = 3375C2
SC4

ct C
8
tr C−1

a .

Proof Recall aΓ (u,u) = 0. Therefore, the interface term can be rewritten as

−2ΔtaΓ

(

2un+1 + 23

12
un − 4

3
un−1 + 5

12
un−2,un+1

)

+2Δtast

(

−2

3
un+1 + 23

12
un − 7

4
un−1 + 5

12
un−2 + 1

12
un−3,un+1

)

= 2ΔtaΓ

(
un+1 − un,un+1

)
− 11

6
ΔtaΓ

(
un − un−1,un+1

)

+5

6
ΔtaΓ

(
un−1 − un−2,un+1

)
− 4

3
Δtast

(
un+1 − un,un+1

)
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+5

2
Δtast

(
un − un−1,un+1

)
− Δtast

(
un−1 − un−2,un+1

)

−1

6
Δtast

(
un−2 − un−3,un+1

)
. (19)

Similar as in the proof of Lemma 2, the first term on the right-hand side can be
estimated by

2ΔtaΓ

(
un+1 − un,un+1

)
≤ Δt

180
‖un+1‖2a + C2Δt‖un+1 − un‖2S (20)

and the other terms can be directly estimated by Lemma 2 with β1 = 1
60 . The desired

result (18) then follows easily.

The following variants of the Grownwall–Bellman inequality will simplify the
analysis. They are particularly useful for the stability analysis of multi-step methods.

Lemma 5 Assume that {zn} and {yn} are two non-negative sequences that satisfy

zn+1 + ξ−1yn+1 ≤ zn + Δt
k∑

i=0

ζi zn−i +
k∑

i=0

ξi yn−i + Δt z̄, (21)

where z̄, ξi , and ζi are nonnegative constants and

ξ−1 ≥
k∑

i=0

ξi . (22)

Let

En = zn + Δt

1 + Δt
∑k

i=0 ζi

k∑

i=1

k∑

j=i

ζ j zn−i + 1

1 + Δt
∑k

i=0 ζi

k∑

i=0

k∑

j=i

ξ j yn−i .

(23)

Then

En ≤ e
∑k

i=0 ζi t

(

Ek + z̄
∑k

i=0 ζi

)

(24)

for any nΔt ≤ t .

Proof From the definition of En and the constraint (22), we have

En+1 ≤
(

1 + Δt
k∑

i=0

ζi

)

En + Δt z̄ (25)

so that the bound (24) is easily derived via recursion.

Another variant of Grownwall–Bellman inequality will be useful in the long time
stability analysis.
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Lemma 6 Assume that {zn} and {yn} are two nonnegative sequences that satisfy

zn+1 + ζ−1Δt yn+1 ≤ zn + Δt
k∑

i=0

ζi yn−i + Δt z̄, (26)

where ζi , i = −1, . . . , k, are nonnegative constants and

ζ̄ = 1

k + 1

(

ζ−1 −
k∑

i=0

ζi

)

> 0. (27)

Let

En = zn + Δt
k∑

i=0

⎛

⎝(k − i)ζ̄ +
k∑

j=i

ζ j

⎞

⎠ yn−i . (28)

Then

En+1 + ζ̄Δt
k∑

i=0

yn+1−i ≤ En + Δt z̄. (29)

Moreover, if zn+1 ≤ Cζ yn+1, then

En ≤ (
1 + C̄Δt

)−(n−k)
Ek + z̄

C̄
, (30)

where

C̄ = min

{
ζ̄

2Cζ

,
ζ̄

2(ζ−1 − ζ̄ )Δt

}

. (31)

Proof Let di = (k − i)ζ̄ + ∑k
j=i ζ j . Then En = zn + Δt

∑k
i=0 di yn−i . It is easily

verified that

d0 + ζ̄ = ζ−1, (32)

di − di+1 − ζ̄ = ζi , for i = 1, · · · , k − 1, (33)

dk = ζk, (34)

so the inequality (26) can be recast as

zn+1 + Δt (d0 + ζ̄ )yn+1 ≤ zn + Δt
k−1∑

i=0

(di − di+1 − ζ̄ )yn−i + Δtdk yn−k + Δt z̄

(35)

or
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zn+1 + Δt
k∑

i=0

di yn+1−i + ζ̄Δt
k∑

i=0

yn+1−i ≤ zn + Δt
k∑

i=0

di yn−i + Δt z̄, (36)

which is exactly the inequality (29). Now, if zn+1 ≤ Cζ yn+1, then

k∑

i=0

yn+1−i ≥ 1

2Cζ

zn+1 + yn+1

2
+

k∑

i=1

yn+1−i

≥ 1

2Cζ

zn+1 + ΔtC̃
k∑

i=0

di yn+1−i , (37)

where C̃ = 1
Δt min{ 1

2d0
,min{d−1

i }k
i=1} = 1

2d0Δt . Note that d0 = kζ̄ + ∑k
j=0 ζ j =

ζ−1 − ζ̄ so that

ζ̄

k∑

i=0

yn+1−i ≥ C̄

(

zn+1 + Δt
k∑

i=0

di yn+1−i

)

= C̄ En+1, (38)

where C̄ is defined in (31). Then, from (29), we have

(1 + C̄Δt)En+1 ≤ En + Δt z̄. (39)

Now by recursion, we have

En ≤ (1 + C̄Δt)−(n−k)Ek + Δt z̄
n−k∑

i=1

(1 + C̄Δt)−i

≤ (1 + C̄Δt)−(n−k)Ek + z̄

C̄
(40)

so that the lemma is proved.

Additional sequences are considered in the following lemma.

Lemma 7 Assume that {zn} and {y�
n}, � = 1, . . . , L, are nonnegative sequences that

satisfy

zn+1 + Δt
L∑

�=1

ζ �−1y�
n+1 ≤ zn + Δt

L∑

�=1

k�∑

i=0

ζ �
i y�

n−i + Δt z̄, (41)

where ζ �
i � = 1, . . . , L and i = −1, . . . , k�, are nonnegative constants with 1 ≤ k� ≤

k, and

ζ̄ � = 1

k� + 1

⎛

⎝ζ �−1 −
k�∑

i=0

ζ �
i

⎞

⎠ > 0. (42)
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Define

En = zn + Δt
L∑

�=1

k�∑

i=0

⎛

⎝(k� − i)ζ̄ � +
k�∑

j=i

ζ �
j

⎞

⎠ y�
n−i . (43)

Then

En+1 + Δt
L∑

�=1

ζ̄ �

k�∑

i=0

y�
n+1−i ≤ En + Δt z̄. (44)

In addition, assume that zn+1 ≤ Cζ y�0
n+1 for some �0. Then

En ≤ (
1 + C̄Δt

)−(n−k)
Ek + z̄

C̄
, (45)

where

C̄ = min

{
ζ̄ �0

2Cζ

,min
�

ζ̄ �

2(ζ �−1 − ζ̄ �)Δt

}

. (46)

The proof is very much the same as that for Lemma 6 and thus is omitted here.

Unconditional stability. Now we can prove that our novel AMB3 scheme is uncondi-
tionally stable over any finite time.

Theorem 1 Let T > 0 be any fixed time. Then, the AMB3 scheme (9) is uncondition-
ally stable in (0, T ].
Proof Set v = 2Δtun+1 in (9). Using of 〈2a, a − b〉 = |a|2 + |a − b|2 − |b|2, we
obtain

‖un+1‖2S − ‖un‖2S + ‖un+1 − un‖2S + 2Δt ã
(

DAMun+1,un+1
)

= 2Δt
〈
DAM fn+1,un+1

〉
− 2Δt ãΓ

(
DABun+1,un+1

)
, (47)

where the pressure term b(un+1, 2
3 pn+1+ 5

12 pn−1− 1
12 pn−3) = 0 because un+1 ∈ H f

and pn+1, pn−1, pn−3 ∈ Q. A crucial observation is that the last term on the left-hand-
side can be bounded below, i.e., according to Young’s inequality, we have

2̃a

(
2

3
un+1 + 5

12
un−1 − 1

12
un−3,un+1

)

≥ 2

(
2

3
‖un+1‖2ã − 5

24

(
‖un−1‖2ã + ‖un+1‖2ã

)
− 1

24

(
‖un−3‖2ã + ‖un+1‖2ã

))

≥ 5

6
‖un+1‖2ã − 5

12
t‖un−1‖2ã − 1

12
t‖un−3‖2ã . (48)
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This implies that the special Adams–Moulton operator that we developed is dissipative
because the coefficient of the positive term is larger than the sum of the coefficients of
the negative terms. This fact will be exploited heavily below to prove the unconditional
stability as well as the long-time stability of the scheme.

We also notice that the forcing term on the right-hand-side can be bounded above
according to Young’s inequality:

2
〈
DAM fn+1,un+1

〉
≤ 1

6C2
P

Ca

∥
∥
∥un+1

∥
∥
∥
2 + 6C2

PC−1
a

∥
∥
∥DAM fn+1

∥
∥
∥
2

≤ 1

6

∥
∥
∥un+1

∥
∥
∥
2

ã
+ β3 max

i

∥
∥
∥f i

∥
∥
∥
2
, (49)

where β3 = 10C2
PC−1

a . Combining the above estimates with Lemma 3 and discarding
the term ‖un+1 − un‖2S , we have

‖un+1‖2S + 308

528
Δt‖un+1‖2ã

≤
(

1 + 23

6
β2Δt

)

‖un‖2S + 8

3
β2Δt‖un−1‖2S + 5

6
β2Δt‖un−2‖2S + 23

528
Δt‖un‖2ã

+236

528
Δt‖un−1‖2ã + 5

528
Δt‖un−2‖2ã + 44

528
Δt‖un−3‖2ã + β3Δt max

i

∥
∥
∥f i

∥
∥
∥
2
.

Now, define

En = ‖un‖2S + 7β2Δt

2
(
1 + 22

3 β2Δt
)‖un−1‖2S + 5β2Δt

6
(
1 + 22

3 β2Δt
)‖un−2‖2S

+ 308Δt

528
(
1 + 22

3 β2Δt
)‖un‖2ã + 285Δt

528
(
1 + 22

3 β2Δt
)‖un−1‖2ã

+ 49Δt

528
(
1 + 22

3 β2Δt
)‖un−2‖2ã + 44Δt

528
(
1 + 22

3 β2Δt
)‖un−3‖2ã . (50)

We then have, by Lemma 5

‖un+1‖2S ≤ En ≤ e
22
3 β2T

(

E3 + 3β3

22β2
max

i

∥
∥
∥f i

∥
∥
∥
2
)

, (51)

on any finite time interval [0, T ].
Long-time stability. We next show that our scheme is long-time stable in the sense that
the solutions will remain bounded uniformly in time as long as a time-step restriction
is satisfied. As a direct consequence of this long-time stability, we are able to show
that we are able to derive uniform in time bounds on the error.

Theorem 2 Assume that f ∈ L∞(L2(Ω)). For the AMB3 scheme, there exists Δt0 > 0
such that the solution is uniformly bounded in time if Δt ≤ Δt0. In particular, there
exist 0 < λ1 < 1, 0 < λ2 < ∞, and E3 ≥ 0 such that

‖un+1‖2 ≤ λn−2
1 E3 + λ2.
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Proof After rearranging (47) in a slightly different way, we have

‖un+1‖2S − ‖un‖2S + ‖un+1 − un‖2S + 2Δta
(

DAMun+1,un+1
)

= 2Δt
〈
DAM fn+1,un+1

〉
− 2ΔtaΓ

(
DABun+1,un+1

)

+2Δtast

(
DABun+1 − DAMun+1,un+1

)
. (52)

Similar to the proof of the previous theorem, the bilinear term on the left-hand-side
can be bounded from below by

2a
(

DAMun+1,un+1
)

≥ 5

6
‖un+1‖2a − 5

12
‖un−1‖2a − 1

12
‖un−3‖2a (53)

and the forcing term can be bounded from above by

2
〈
DAM fn+1,un+1

〉
≤ 1

180
‖un+1‖2a + β4 max

i
‖f i‖2, (54)

where β4 = 300C2
PC−1

a . The interface term has been estimated in Lemma 4. Combine
the above inequalities with Lemma 4, we have

‖un+1‖2S + 240

360
Δt‖un+1‖2a + [1 − (C2 + 2C3)Δt]‖un+1 − un‖2S

≤ ‖un‖2S + 27

360
Δt‖un‖2a + 171

360
Δt‖un−1‖2a + 7

360
Δt‖un−2‖2a

+ 31

360
Δt‖un−3‖2a + 5C3Δt‖un − un−1‖2S + 2C3Δt‖un−1 − un−2‖2S

+C3Δt

3
‖un−2 − un−3‖2S + β4Δt max

i
‖f i‖2. (55)

We require that

1 − (C2 + 2C3)Δt >
25C3

3
Δt. (56)

A convenient choice is

Δt0 ≤ 1

C2 + 31
3 C3

(57)

such that 1 − (C2 + 2C3)Δt ≥ 25C3
3 Δt if Δt ≤ Δt0. Let
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En = ‖un‖2S + 239

360
Δt‖un‖2a + 211

360
Δt‖un−1‖2a + 39

360
Δt‖un−2‖2a

+ 31

360
Δt‖un−3‖2a + 24C3Δt

3
‖un − un−1‖2S

+8C3Δt

3
‖un−1 − un−2‖2S + C3Δt

3
‖un−2 − un−3‖2S . (58)

Note that ‖un+1‖2S ≤ Cζ ‖un+1‖2a , where Cζ = C2
PC−2

a C−2
s . By Lemma 7, we arrive

at the conclusion

‖un+1‖2S ≤ En+1 ≤ (1 + C̄Δt)n−2E3 + C̄−1β4 max
i

‖f‖2, (59)

where C̄ = min{ 1
720Cζ

, 1
478 }. The theorem is proven if we set λ1 = (1+ C̄Δt)−1 and

λ2 = C̄−1β4 maxi ‖f‖2.
An immediate consequence of the previous theorem is the following uniform in

time error bound. This is a highly desirable property because the retention and release
of contaminants in karst aquifers usually occur over very long time scales.

Theorem 3 Suppose that the solutions u and p are smooth and bounded uniformly
in time. Let en := u(nΔt) − un denote the error. Then, provided that the time-step
restriction as in the previous theorem is satisfied, we have the estimates

‖en+1‖2 ≤ (1 + C̄Δt)−n+2ε23 + C4(Δt)6,

where C̄ and C4 are appropriate positive constants, and

ε23 = ‖e3‖2S + 239

360
Δt‖e3‖2a + 211

360
Δt‖e2‖2a + 39

360
Δt‖e1‖2a

+24C3Δt

3
‖e3 − e2‖2S + 8C3Δt

3
‖e2 − e1‖2S + C3Δt

3
‖e1‖2S .

Proof Because u, p are smooth and bounded, and since the scheme 9 is third-order in
time, we have that the solution satisfies the scheme in the form of

〈〈
u((n + 1)Δt) − u(nΔt)

Δt
, v
〉〉

+ ã
(
DAMu((n + 1)Δt), v

)

+b (v, DAM p((n + 1)Δt)) =
〈
DAMfn+1, v

〉
− ãΓ

(
DABu((n + 1)Δt), v

)

+
(

Rn+1, v
)

, b (DAMu((n + 1)Δt), q) = 0,

where the remainder term Rn is uniformly bounded by

‖Rn‖ ≤ C(Δt)3 ∀n = 1, 2, . . . .
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This implies that the error en satisfies

〈〈
en+1 − en

Δt
, v
〉〉

+ ã
(

DAMen+1, v
)

+ b
(
v, DAMen+1

p

)

= −ãΓ

(
DABen+1, v

)
+
(

Rn+1, v
)

,

b
(

DAMen+1, q
)

= 0,

where en
p = p(nΔt) − pn . Repeating the same argument as in the previous theorem

leads to the desired estimate. Therefore, we have a third-order uniform in time error
bound provided that the time-step restriction is satisfied and that the scheme is initiated
properly so that ε3 is of third-order. This ends the proof of uniform in time third-order
error bound.

Remark 4 If a conforming finite element is used, the scheme is still long-time stable
under the constraintΔt ≤ Δt0 whereΔt0 is independent of the finite elementmesh size
h. Moreover, based on the stability analysis, we can prove that the AMB3 scheme is
third-order temporal accurate. Following the analysis in [15], if the Taylor–Hood (P2–
P1) finite element pair is used for the discretization of the Stokes systemand continuous
piecewise quadratic (P2) finite elements are used for discretization of theDarcy system,
the error of the fully discretized scheme will be ‖un(t) − un

h‖ = O(Δt3 + h3), which
is illustrated by the numerical results in next section.

4 Numerical results

We report here on the results of several numerical experiments. The numerical results
illustrate the third-order accuracy, unconditional stability, and the long-time stability
and uniform in time error bounds.

Suppose that the error behaves like O(hθ1 + Δtθ2). Then, if we set Δt = hθ , the
rate of convergence would be of the order of rh,θ = min(θ1, θθ2) with respect to h.
The rate of convergence can be numerically estimated by calculating

rh,θ ≈ log2
‖u2h,θ − uexact‖l2

‖uh,θ − uexact‖l2
. (60)

Here, we use the discrete l2 norm of nodal values to measure errors.
We setΩ f = (0, 1)×(1, 2),Ωp = (0, 1)×(0, 1), and the interfaceΓ = (0, 1)×{1}

which separates Ω f and Ωp. Uniform triangular meshes are created by first dividing
the rectangular domainsΩp andΩ f into identical small squares and then dividing each
square into two triangles. With respect to such grids, the Taylor–Hood (P2–P1) finite
element pair is used to discretize the Stokes system so that the conduit fluid velocity uh

is approximated by continuous piecewise quadratic functions and the conduit pressure
p is approximated by continuous piecewise linear functions. Continuous piecewise
quadratic functions are used to approximate the hydraulic head φh .
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4.1 Convergence rates

We choose the manufactured solution of the Stokes–Darcy system (1) given by

u f (x, t) =
(

− 1

π
ey sin πx cos 2π t, (ey − e) cosπx cos 2π t

)

,

p f (x, t) = 2ey cosπx cos 2π t,

φ(x, t) = (ey − ey) cosπx cos 2π t.

Table 1 Relative error and
order of accuracy with respect to
the spatial grid size h for
Example 4.1 at t = 1
and with Δt = h and
rterminal = r1/512,1
defined by (60)

h eφ eu ep

1/16 1.40e−3 6.49e−4 1.35e−2

1/32 2.05e−4 9.44e−5 1.97e−3

1/64 2.70e−5 1.24e−5 3.36e−4

1/128 3.45e−6 1.58e−6 6.55e−5

1/256 4.36e−7 1.99e−7 1.41e−5

1/512 5.45e−8 2.49e−8 3.26e−6

rterminal 3.00 3.00 2.11
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Fig. 2 Relative error for the hydraulic head in the matrix φ (top-left), conduit velocity u (top-right), and
conduit pressure p (bottom) for 0 ≤ t ≤ 100 for h = 1/64
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The right-hand side data in the partial differential equations, initial conditions, and
boundary conditions are then chosen correspondingly. Here, we set Δt = h, K = I,
ν = g = S = γ f = γp = 1, T = 1, and αB J S J = 1.

Table 1 shows that the numerical convergence rate is approximately third order for
φ and u, and of a bit over second order for p. This is all consistent with the third-
order temporal scheme and the Taylor–Hood (P2–P1) finite element pair for the Stokes
equations and the P2 element for the Darcy equation.
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Fig. 3 Long-time behavior of the functionals Eφ + Eu (left) and E p (right) for ν = 1 and K = I

0 20 40 60 80 100
10

−10

10
0

10
10

10
20

10
30

10
40

 t

 E
φ+

E
u

Δ t=1/10

0 20 40 60 80 100
10

−2

10
−1

10
0

 t

 E
φ+

E
u

Δ t=1/15

0 20 40 60 80 100
10

−10

10
0

10
10

10
20

10
30

10
40

 t

 E
p

Δ t=1/10

0 20 40 60 80 100
10

−8

10
−6

10
−4

10
−2

10
0

 t

 E
p

Δ t=1/15

Fig. 4 Long-time behavior of the functionals Eφ + Eu (top row) and E p (bottom row) for ν = 0.0001
and K = I
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4.2 Long-time error

To illustrate the long-time behavior of our schemes,we use the followingmanufactured
solution that is a slight modification of one used in [9]:

u f (x, t) =
(

[x2y2 + e−y], [−2

3
xy3 + [2 − π sin(πx)]]

)

[2 + cos(2π t)]
p f (x, t) = −[2 − π sin(πx)] cos(2πy)[2 + cos(2π t)]
φ(x, t) = [2 − π sin(πx)][−y + cos(π(1 − y))][2 + cos(2π t)].

The right-hand side data in the partial differential equations, initial conditions, and
boundary conditions are then chosen correspondingly. Here, we set K = I, ν = g =
S = 1, T = 1, and αB J S J = 1. In this long time numerical experiment, we set the
terminal time T = 100 and h = 1/64. Figure 2 displays the relative error as a function
of t for two different values of Δt . We see that the long-time error remains bounded,
and indeed, seems to not grow.
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Fig. 5 Long-time behavior of the functionals Eφ + Eu (top row) and E p (bottom row) for ν = 1 and
K = 0.01I
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4.3 Long-time stability analysis

We use the same domain and the same initial conditions as in the Sect. 4.2, i.e., we
have

u f (x, 0) =
(

− 1

π
ey sin πx, (ey − e) cosπx

)

,

p f (x, 0) = 2ey cosπx,

φ(x, 0) = (ey − ey) cosπx,

but now the forcing terms are set to zero and homogeneous Dirichlet boundary con-
ditions are imposed on the hydraulic head φ and conduit flow velocity u. To study the
long-time stability of the scheme, we define the functionals Eφ = ‖φ‖2

l2
, Eu = ‖u‖2

l2
,

and E p = ‖p‖2
l2
. The the final time is set to T = 100.

For Fig. 3, we set h = 1/128, Δt = 1/10, K = I, ν = g = S = 1, and
γ f = γp = 0. The energy does decay as time evolves, which suggests that the long-
time stability time-step size constraint in the analysis is satisfiedwith the above choices
for the parameters.
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Fig. 6 Long-time behavior of the functionals Eφ+Eu (top row) and E p (bottom row) for ν = 1,K = 0.01I,
and γ f = γp = g/2
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For Fig. 4, we set h = 1/128, K = I, ν = 0.0001, g = S = 1, and γ f = γp = 0.
The figure shows that for this choice of ν, the time-step constraint is between 1/15
and 1/10 which is more restrictive compared to that for Fig. 3 for which ν = 1. Thus,
we note that the theoretical time step size constraint (57) decreases as ν becomes
smaller so that the long-time numerical results of Figs. 3 and 4 are consistent with our
long-time stability analysis.

For Fig. 5, we set h = 1/128, K = 0.01I, ν = g = S = 1, and γ f = γp = 0. The
figure shows that for this choice ofK, the time-step constraint is between 1/50 and 1/45
which is more restrictive compared to that for Fig. 3 for which K = I. Thus, again,
the long-time numerical results of Figs. 3 and 5 are consistent with the theoretical
time-step size constraint (57), i.e., the time-step constraint becomes smaller as the
minimum eigenvalue of K becomes smaller.

ForFig. 6,we seth = 1/128,K = 0.01I ,ν = g = S = 1, andγ f = γp = g/2.The
figure shows that for this choice of γ f and γp, the time-step constraint is between 1/45
and 1/40 which is less restrictive compared to that for Fig. 5 for which γ f = γp = 0.
Thus the results show that the stabilizing term does provide better long-time stability.

5 Concluding remarks

Weproposed and investigated a long-time, third-order accurate, and efficient numerical
method for coupled Stokes–Darcy systems. The algorithm is a combination of a novel
third-order Adams–Moulton method and a Adams–Bashforth method. Our algorithm
is a special case of the class of implicit-explicit (IMEX) schemes. The interfacial term
that requires communications between the porous media and conduit, i.e., between
the Stokes and Darcy components of the model, is treated explicitly in our scheme so
that, at each time step, only two decoupled problems (one Stokes and one Darcy) are
solved. Therefore, our scheme can be implemented very efficiently and, in particular,
legacy codes can be used for each component.

We have shown that our scheme is unconditionally stable and, with a mild time-step
restriction, long-time stable in the sense that solutions remain bounded uniformly in
time.The uniformbound in timeof the solution leads to uniform in time error estimates.
This is a highly desirable feature because the physically interesting phenomena of
contaminant sequestration and release usually occur over a very long time scale and
one would like to have faithful numerical results over such time scales. The estimates
are illustrated by numerical examples. All these features suggest that the method has
strong potential in real applications.

Methods having even higher-order temporal accuracy and the desired unconditional
and long-time stability can be derived via suitable combination of a higher-order
Adams–Moulton method for the dissipative term and a standard Adams–Bashforth
method for the interface term. Details will be reported on elsewhere.
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