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Abstract A novel residual-type a posteriori error analysis technique is developed for
multipoint flux mixed finite element methods for flow in porous media in two or three
space dimensions. The derived a posteriori error estimator for the velocity and pressure
error in L2-norm consists of discretization and quadrature indicators, and is shown
to be reliable and efficient. The main tools of analysis are a locally postprocessed
approximation to the pressure solution of an auxiliary problem and a quadrature error
estimate. Numerical experiments are presented to illustrate the competitive behavior
of the estimator.
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1 Introduction

Let � ⊂ R
d be a bounded polygonal (d = 2) or polyhedral (d = 3) domain with a

Lipschitz continuous boundary ∂�. We consider the following first-order system of
diffusion-type partial differential equations:

⎧
⎪⎪⎨

⎪⎪⎩

u = −K∇ p in �,

∇ · u = f in �,

p = g on�D,

u · n = 0 on �N .

(1.1)

Here�D, �N are partitions of the boundary ∂� corresponding to theDirichlet andNeu-
mann conditions, respectively,with ∂� = �̄D∪�̄N ,�D∩�N = ∅ andmeas(�D) > 0,
n is the outward unit normal vector on ∂�, and K is a symmetric and uniformly positive
definite tensor with

k0ξ
Tξ ≤ ξTK (x)ξ ≤ k1ξ

Tξ, ∀ x ∈ �, ∀ ξ ∈ R
d (1.2)

for 0 < k0 ≤ k1 < ∞. This system has been widely used in physics to model diffusion
processes such as heat or mass transfer and flow in porous media.

In flow in porous media, p denotes the pressure, u is the Darcy velocity, and K
represents the permeability divided by the viscosity.

The main goal of this paper is to derive residual-based a posteriori error estimation
for multipoint flux mixed finite element (MFMFE) methods for the model (1.1). The
MFMFE approach was developed for single phase flow in porous media in [25,34,35].
It is motivated by the multipoint flux approximation (MPFA) approach [1,2,22,27,
28], which is a control volume method developed by the oil industry as a reliable
discretization for single-phase Darcy flow. One main advantage of this method lies in
that, by introducing sub-edge (or sub-face) fluxes, it provides a local explicit flux with
respect to the flow pressure, and allows for local flux elimination around grid vertices
and reduction to a cell-centered pressure scheme. TheMFMFEmethod is based on the
lowest order Brezzi–Douglas–Marini (BDM1) [14] or Brezzi–Douglas–Duran–Fortin
(BDDF1) [13] finite element space. By using special quadrature rules, local velocity
elimination is also attained which leads to a symmetric and positive definite cell-
centered system for the pressure on quadrilateral, simplicial and hexahedral meshes.
In [36], a coupling discretization of MFMFE method and continuous Galerkin finite
element method was applied to the poroelasticity system that describes fluid flow in
deformable porous media.

It is well-known that adaptive algorithms for the numerical solution of partial
differential equations are nowadays standard tools in science and engineering. A pos-
teriori error estimation, as an essential ingredient of adaptivity, provides adaptivemesh
refinement strategy and quantitative estimates of the numerical solution obtained. For
second-order elliptic problems, the theory of a posteriori error estimation has reaches
a degree of maturity for finite element of conforming, nonconforming andmixed types
(see [3–12,16–18,20,26,29,32] and the references therein). To the authors’ knowl-
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edge, no a posteriori estimation for the MFMFE method has been proposed in the
literature so far.

In this paper, we develop a novel technique to derive residual-based a posteriori
error estimation for the MFMFE method for the porous media model in two or three-
dimensional case. Since the MFMFE method employs a special quadrature rule, its
a posteriori error estimator should include a term to control the error of quadrature.
This is different from the standard analytical technique based on the discrete L2-inner
product. Moreover, we can not directly utilize the analytical technique developed by
Carstensen in [17] for nonconforming finite elements to estimate

inf
β∈H1(�)

||∇β − K −1uh ||,

because the BDM1 finite element for the velocity approximation, uh , does not have
the same continuity of mean of trace across the interior sides as the nonconforming
finite elements do.

To overcome this difficulty, we shall construct a locally postprocessed approxima-
tion to the pressure solution to an auxiliary mixed finite element scheme, and use a
derived estimate of quadrature error.

We note that the idea of postprocessing in this contribute follows from the works
[29,33].

The rest of this paper is organized as follows. In Sect. 2,we introduce somenotations
and the continuous problem. Section 3 shows the MFMFEmethod. Section 4 includes
main results. Sections 5, 6 are respectively devoted to the a posteriori error estimation
and the analysis of efficiency. Finally, we illustrate the performance of the obtained
estimation in Sect. 7 by numerical experiments.

2 Notations and continuous problem

Let Th be a shape regular triangulation of � ⊂ R
d in the sense of [19] which satisfies

the angle condition, namely there exists a constant C0 > 0 such that for all T ∈ Th

C−1
0 hd

T ≤ |T | ≤ C0hd
T ,

where hT := diam(T ). Let h be a piecewise constant function with h|T = hT .
We denote by εh the set of element sides (or faces) in Th , by εT the set of sides

(or faces) of element T ∈ Th , by ε0h and εD respectively the sets of the interior
and Dirichlet boundary sides (or faces) of all elements in Th , by ωE the union of all
elements in Th sharing side (or face) E ∈ εh , and by N the set of nodes in Th .

For a domain A ⊂ R
d , let (·, ·)A be the L2 inner product on A, and < ·, · >∂ A the

dual pair between H−1/2(∂ A) and H1/2(∂ A). Let W k
p(A) be the usual Sobolev space

consisting of functions defined on A with all derivatives of order up to k belonging to
L p(A), with norm ||·||k,p,A.When p = 2, W k

2 (A) =: Hk(A) and ||·||k,2,A =: ||·||k,A,
especially || · ||0,A =: || · ||A for k = 0. We omit the subscript A if A = �. For a
tensor-valued function M = (Mi j ), let ||M ||α = maxi, j ||Mi j ||α for any norm || · ||α .
Introduce

123
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H(div; A) := {v ∈ L2(A)d : ∇ · v ∈ L2(A)},

and define the “broken Sobolev space”

H1(∪Th) := {ϕ ∈ L2(�) : ϕ|T ∈ H1(T ), ∀T ∈ Th}.

We denote by [v]|E := (v|T+)|E − (v|T−)|E the jump of v ∈ H1(∪Th) over
an interior side E := T+ ∩ T− with diameter hE := diam(E), shared by the two
neighboring (closed) elements T+, T− ∈ Th . Especially, [v]|E := (v|T )|E if E ∈
εT ∩ �D .

Since we consider two and three-dimensional cases (d = 2, 3) simultaneously, the
Curl of a function ψ ∈ H1(�)k with k = 1 if d = 2 and k = 3 if d = 3 is defined by

Curlψ := (−∂2ψ, ∂1ψ) if d = 2 and Curlψ := ∇ × ψ if d = 3,

where × denotes the usual vector product of two vectors in R
3. Given a unit normal

vector nE = (n1, . . . , nd)T along the side E , we define the tangential component of
a vector v ∈ R

d with respect to nE by

γtE (v) :=
{
v · (−n2, n1) if d = 2,
v × nE if d = 3.

Throughout the paper, ∇h : H1(∪Th) → (L2(�))d denotes the local version of
differential operator ∇ defined by ∇hϕ|T := ∇(ϕ|T ) for all T ∈ Th . We also use
the notation A � B to represent A ≤ C B where C is a generic, positive constant
independent of the mesh size of Th .

Moreover, A ≈ B abbreviates A � B � A.
Denote

V := {v ∈ H(div;�) : v · n = 0 on �N }, W := L2(�),

then the weak formulation of the model (1.1) is as follows: Find u ∈ V, p ∈ W such
that

(K −1u, v) = (p,∇ · v)− < g, v · n >�D , ∀ v ∈ V, (2.1)

(∇ · u, w) = ( f, w), ∀ w ∈ W. (2.2)

It is well-known that this problem admits a unique solution [15].

3 Multipoint flux mixed finite element method

We follow the notations and definitions employed in [25,34] to describe the MFMFE
method.
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Let T̂ be the reference element which is a unit triangle in two-dimensional case or
unit tetrahedron in three-dimensional case, and Pl be the set of polynomials of degree
≤ l. The lowest order BDM1 mixed finite element spaces on T̂ are defined as

V̂(T̂ ) = P1(T̂ )d , Ŵ (T̂ ) = P0(T̂ ).

Since v̂ · n̂ê ∈ P1(ê) for any v̂ ∈ V̂(T̂ ) and any edge (or face) ê of T̂ , the degrees
of freedom for V̂(T̂ ) can be chosen to be the values of v̂ · n̂ê at any two points on
each edge ê of T̂ if T̂ is the unit triangle, or any three points on each face ê of T̂ if
T̂ is the unit tetrahedron [14,15]. In the MFMFE method, these points are chosen to
be the vertices of ê for the requirement of accuracy and certain orthogonality for the
trapezoidal quadrature rules. Such a choice allows for local velocity elimination and
leads to a cell-centered stencil for the pressure [25,34].

The lowest order BDM1 spaces on Th are given by

Vh : = {v ∈ V : v|T = 1
JT

DFT v̂ ◦ F−1
T , v̂ ∈ V̂(T̂ ) ∀ T ∈ Th},

Wh : = {w ∈ W : w|T = ŵ ◦ F−1
T , ŵ ∈ Ŵ (T̂ ) ∀ T ∈ Th},

where F−1
T is the inverse mapping of the bijection FT : T̂ → T , DFT is the Jacobian

matrix with respect to FT on the element T with JT = |det (DFT )|. Note that the
vector transformation v = 1

JT
DFT v̂ ◦ F−1

T is known as the Piola transformation.
For q, v ∈ Vh , it holds

∫

T
K −1q · vdx =

∫

T̂
K̂ −1 1

JT
DFT q̂ · 1

JT
DFT v̂JT dx̂

=
∫

T̂

1

JT
(DFT )T K̂ −1DFT q̂ · v̂dx̂

=
∫

T̂
K−1q̂ · v̂dx̂

with K := JT DF−1
T K̂ (DF−1

T )T. The quadrature formula on an element T is then
defined as [25,34]

(K −1q, v)Q,T := (K−1q̂, v̂)Q̂,T̂ := |T̂ |
s

s∑

i=1

K−1(r̂i )q̂(r̂i ) · v̂(r̂i ), (3.1)

where r̂i (i = 1, 2, . . . , s) are the corresponding vertices of T̂ with s = 3 for the unit
triangle and s = 4 for the unit tetrahedron.

Define the global quadrature formula as

(K −1q, v)Q =
∑

T ∈Th

(K −1q, v)Q,T , (3.2)
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202 S. Du et al.

then the MFMFE method is formulated as follows: Find uh ∈ Vh and ph ∈ Wh such
that

(K −1uh, vh)Q = (ph,∇ · vh)− < g, vh · n >�D , ∀ vh ∈ Vh, (3.3)

(∇ · uh, wh) = ( f, wh), ∀ wh ∈ Wh . (3.4)

The existence and uniqueness of the solution to the scheme (3.3)–(3.4) follow from
[25,34].

As shown in [25,34], the algebraic system that arises from (3.3)–(3.4) is of the
form

(
A BT

−B 0

) (
U
P

)

=
(

G
F

)

, (3.5)

where A = (ai j ), B = (bl j ) with ai j = (K −1v j , vi )Q and bl j = −(∇ · v j , wl), and
{vi }, {wl} are respectively the bases of Vh and Wh . The matrix A is block-diagonal
with symmetric and positive definite blocks, and the local elimination of U leads to a
system for P with a symmetric and positive definite matrix B A−1BT . For the details,
we refer to [25,34].

4 Main results

Let ηh be the discretization indicator defined by

η2h := ||h( f − ∇ · uh)||2 +
∑

T ∈Th

∑

E∈εT

hE J 2
tE

, (4.1)

where

J 2
tE

:=

⎧
⎪⎨

⎪⎩

||[γtE (K −1uh)]||2E if E ∈ ε0h ∩ ∂T,

||γtE (K −1uh) − ∂g/∂s||2E + h2
E || ∂2g

∂s2
||2E if E ∈ ∂T ∩ εD,

0 if E ∈ ∂T ∩ �N ,

(4.2)

and ∂g/∂s and ∂2g/∂s2 denote respectively the first and second order tangential
derivatives of function g ∈ H2(E) along side E . Introduce the quadrature indicator

η2Q :=
∑

T ∈Th

h2
T ||uh ||21,T . (4.3)

We note this indicator is owing to the use of the special quadrature formula (3.1) in
the MFMFE method.

We now state in Theorems 4.1–4.2 a posteriori error estimates for the errors of
velocity and pressure in L2−norm, respectively.
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Theorem 4.1 Let (u, p) ∈ V × W be the weak solution of the continuous problem
(2.1)–(2.2), and (uh, ph) ∈ Vh × Wh be the solution of the MFMFE method (3.3)–
(3.4). Assume K −1 ∈ W 1∞(Th). Then it holds

||K −1/2(u − uh)|| � (η2h + η2Q)1/2. (4.4)

Theorem 4.2 Assume K −1 ∈ W 2∞(Th). Under the assumptions of Theorem 4.1, it
holds

||Qh p − ph || � hmax(ηh + ηQ) + ||h( f − ∇ · uh)||, (4.5)

||p − ph || � hmax(ηh + ηQ) + ||hK −1uh || + ||h( f − ∇ · uh)||. (4.6)

Here hmax := maxT ∈Th hT , and Qh denotes the L2−projection operator onto Wh.

Remark 4.1 We note that the two terms ||h( f −∇ ·uh)|| and
{∑

E∈εD
h3

E || ∂2g
∂s2

||2E
}1/2

in the estimator ηh are of high order with respect to the lowest order scheme, which
are usually omitted in computation. In fact, from (3.4) it follows ∇ · uh = Qh f , and
||h( f − ∇ · uh)|| = ||h( f − Qh f )|| turns out to be an oscillation term of high order.

Remark 4.2 The above estimates (4.4)–(4.6) also apply to the original mixed finite
element discretization where the special quadrature rule (3.1) is not used in the scheme
(3.3)–(3.4). In this case, the estimator ηQ is not involved, and then ηQ = 0 in the
estimates (4.4)–(4.6). In this sense, our work can be regarded as a generalization of
Carstensen’s [16] to the three-dimensional case. We note that our estimator ηh is a bit
different from that in [16] due to no occurrence of the term ||hCurlh(K −1uh)|| (Curlh
denotes the piecewise Curl operator acting on element by element in Th). Here we
also consider more general boundary conditions.

We finally state in Theorem 4.3 the efficiency of the a posteriori error estimators.
Note that the efficiency of a reliable a posteriori error estimator means that its converse
estimate holds up to high order terms and different multiplicative constants. For the
sake of simplicity, we assume that K −1 is a matrix of piecewise polynomial functions.

Theorem 4.3 Under the assumptions of Theorems 4.1–4.2, it holds

ηh + ηQ + h−1
max||hK −1uh || � ||K −1/2(u − uh)|| + ||h−1(p − ph)|| + h.o.t..

where h.o.t. denotes some high-order term depending on given data.

5 A posteriori error analysis

This section is devoted to the proofs of Theorems 4.1–4.2.
Introduce the global quadrature error σ(K −1uh, vh) and the element quadrature

error σT (K −1uh, vh) as follows:
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204 S. Du et al.

σ(K −1uh, vh)|T = σT (K −1uh, vh) := (K −1uh, vh)T

−(K −1uh, vh)Q,T , for all T ∈ Th . (5.1)

Let V0
h := RT0(Th) denote the lowest order RT element space on Th .

We state two estimates on the quadrature error derived in [25,34] as follows. If
K −1 ∈ W 1∞(T ) for all element T ∈ Th , then it holds

|σ(K −1qh, vh)| �
∑

T ∈Th

hT ||qh ||1,T ||vh ||T (5.2)

for all qh ∈ Vh , vh ∈ V0
h . Moreover, if K −1 ∈ W 2∞(T ) for all element T ∈ Th , then

it holds

|σ(K −1qh, vh)| �
∑

T ∈Th

h2
T ||qh ||1,T ||vh ||1,T (5.3)

for all qh, vh ∈ Vh .
Denote respectively by � and �0 the standard projection operators from

H(div;�) ∩ (L�(�))d onto Vh and V 0
h for some � > 2 (cf. [16,34]). It holds the

following estimates:

||h−1(q − �0q)|| � ||q||H1(∪Th) for all q ∈ (H1(∪Th))d ∩ H(div;�), (5.4)

||�0v||1,T � ||v||1,T , ||�v||1,T � ||v||1,T for all v ∈ (H1(T ))d , ∀T ∈ Th .

(5.5)

Note that bound (5.4) can be found in [16], and bounds (5.5) are the direct results of
Lemma 3.1 in [34].

To derive a reliable a posteriori error estimate for the velocity error, we need to
introduce an auxiliary problem as following:

⎧
⎨

⎩

∇ · (K∇ϑ) = ∇ · uh in �,

ϑ = −g on �D,

K∇ϑ · n = 0 on �N .

(5.6)

Since K is a symmetric and uniformly positive definite tensor, by the Lax–Milgram
theorem there exists a unique solution ϑ ∈ H1(�) to this problem, provided that
g ∈ H1/2(�D). As K∇ϑ − uh is divergence-free, a decomposition of two or three-
dimensional vector fields (see Theorem 3.4 and Remark 3.10 in [23]) implies that
there exists a stream function ψ ∈ H1(�)k such that

K∇ϑ − uh = Curl ψ.

Since K∇ϑ · n and uh · n vanish on �N , we easily know Curl ψ · n = 0 on �N .
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Introduce H1
D(�) := {v ∈ H1(�) : v = 0 on �D}, then z := −(p+ϑ) ∈ H1

D(�)

and it holds

u − uh = −K∇ p − K∇ϑ + Curl ψ = K∇z + Curl ψ. (5.7)

This relation leads to

||K −1/2(u − uh)||2 =
∫

�

K −1(u − uh) · (u − uh)

=
∫

�

(∇z + K −1Curl ψ) · (K∇z + Curl ψ)

=
∫

�

K∇z · ∇z+2
∫

�

∇z · Curl ψ+
∫

�

K −1Curl ψ · Curl ψ.

(5.8)

Using integration by parts and noticing Curl ψ · n = 0 on �N and z = 0 on �D , we
have

∫

�

∇z · Curl ψ = −
∫

�

∇ · (Curl ψ)z +
∫

�D∪�N

Curl ψ · nz = 0. (5.9)

Notice that K∇z = (u − uh) − Curl ψ , (u − uh) · n = 0 on �N and z = 0 on �D .
The relation (5.9) and integration by parts yield

∫

�

K∇z · ∇z =
∫

�

(u − uh) · ∇z = −
∫

�

∇ · (u − uh)z. (5.10)

Let Qhz denote the L2−projection of z onto Wh . From (2.2) and (3.4) it follows

(∇ · (u − uh), Qhz) = 0. (5.11)

In view of ∇ · u = f , the above two relations, (5.10) and (5.11), imply

∫

�

K∇z · ∇z = −
∫

�

∇ · (u − uh)(z − Qhz)

=
∑

T ∈Th

∫

T
(− f + ∇ · uh)(z − Qhz)

�
∑

T ∈Th

hT || f − ∇ · uh ||T ||∇z||T
� ||h( f − ∇ · uh)|| ||K 1/2∇z||,

which results in

||K 1/2∇z|| � ||h( f − ∇ · uh)||. (5.12)
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By (5.7) and (5.9) we have

||K −1/2(u − uh)||2 = ||K 1/2∇z||2 + ||K −1/2Curl ψ ||2. (5.13)

Recalling
∫

�

Curl ψ · ∇v = 0 for all v ∈ H1
D(�), in light of (5.7) we have, for any

β ∈ H1(�),

∫

�

K −1Curl ψ · Curl ψ =
∫

�

(K −1(u − uh) − ∇z) · Curl ψ
=

∫

�

K −1(u − uh − K∇v) · Curl ψ

=
∫

�

K −1(u − K∇v − K∇β) · Curl ψ +
∫

�

K −1(K∇β − uh) · Curl ψ
≤ (||K −1(u − K∇v − K∇β)|| + ||∇β − K −1uh ||)||Curl ψ ||,

which implies

||K −1/2Curl ψ || � inf
v∈H1

D(�)

||K −1(u − K∇v − K∇β)||

+ inf
β∈H1(�)

||∇β − K −1uh ||. (5.14)

Finally, from (5.12)–(5.14) it follows

||K −1/2(u − uh)|| �
{

inf
v∈H1

D(�)

||K −1(u − K∇v − K∇β)||

+ inf
β∈H1(�)

||∇β − K −1uh || + ||h( f − ∇ · uh)||
}

. (5.15)

In what follows, we shall follow the routines of [17] to estimate the first and
second terms on the right-hand side of (5.15). To this end, we assume that g ∈
H1(�D)∩C(�D) and g|E ∈ H2(E) for all E ∈ εh ∩�D and denote by gh,D the nodal
εD−piecewise linear interpolation of g on �D which satisfies gh,D(z) = g(z) for all
z ∈ N ∩ �D . Let {ϕz : z ∈ N } be the nodal basis of the lowest order finite element
space associated to Th , i.e., ϕz ∈ C(�̄), ϕz|T ∈ P1(T ) for all T ∈ Th , ϕz(x) = 0
for x ∈ N /{z}, and ϕz(z) = 1. Denote by ωz := int(suppϕz). We then introduce a
subspace of H1(�), S̃, as follows (see [17]):

S̃ :==
⎧
⎨

⎩

∑

z∈N
ϕzvz : ∀ z ∈ N , vz ∈ C(ωz), vz|ωz is a piecewise

polynomial, and vz = −gh,D on �D ∩ ωz.

⎫
⎬

⎭
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Lemma 5.1 For β ∈ S̃, it holds

inf
v∈H1

D(�)

||K −1(u − K∇v − K∇β)|| �

⎧
⎨

⎩

∑

E⊂�D

h3
E ||∂2g/∂s2||2E

⎫
⎬

⎭

1/2

. (5.16)

Proof The definition of S̃ shows β = −gh,D on �D . Noticing K −1u = −∇ p, we
have

inf
v∈H1

D(�)

||K −1(u − K∇v − K∇β)|| = inf
w∈H1(�),w|�D =g−gh,D

||∇w||.

The desired result (5.16) immediately follows from an estimate in the proof of Lemma
3.4 in [17]. ��

On the other hand, it holds

inf
β∈H1(�)

||∇β − K −1uh || ≤ inf
vh∈S̃

||∇vh − K −1uh ||. (5.17)

It is sophisticated to give a computational upper bound for the right-hand side term of
(5.17) with the help of uh and given data. To this end, let K −1 denote the piecewise
mean value of K −1 on Th , i.e. K −1|T = 1

|T |
∫

T K −1(x)dx for all T ∈ Th . Then

K −1 is symmetric and has the following V −ellipticity:

k−1
1 ξTξ ≤ ξTK −1ξ ≤ k−1

0 ξTξ for all x ∈ �, ξ ∈ R
d .

Recall thatV0
h is the lowest order RT element space on Th . and Wh is the piecewise

constant space. Introduce the following auxiliary problem: Find (ũh, p̃h) ∈ V0
h × Wh

such that

(K −1ũh, vh) = ( p̃h,∇ · vh)− < g, vh · n >�D , ∀ vh ∈ V0
h, (5.18)

(∇ · ũh, wh) = ( f, wh), ∀wh ∈ Wh . (5.19)

It is well-known that this problem admits a unique solution (see [15]).

Lemma 5.2 Let (ũh, p̃h) ∈ V0
h × Wh be the solution of the auxiliary problem (5.18)–

(5.19), and (uh, ph) ∈ Vh × Wh be the solution of the MFMFEM scheme (3.3)–(3.4).
Assume K −1 ∈ W 1∞(Th). Then it holds

||K −1
1/2

(ũh − �0uh)|| �

⎧
⎨

⎩

∑

T ∈Th

h2
T ||uh ||21,T

⎫
⎬

⎭

1/2

, (5.20)

where �0 is the standard projection operator from H(div;�) onto V0
h.
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Proof Notice that V0
h ⊂ Vh . From (3.3) we get

(K −1�0uh, vh) = (ph,∇ · vh)− < g, vh · n >�D

+ (K −1�0uh, vh) − (K −1uh, vh)Q, ∀ vh ∈ V0
h . (5.21)

Using the commuting property of �0 and (3.4), we have

(∇ · �0uh, wh) = (Qh∇ · uh, wh) = (∇ · uh, wh) = ( f, wh), ∀wh ∈ Wh .

(5.22)

A combination of (5.19) and (5.22) yields

(∇ · (ũh − �0uh), wh) = 0, ∀wh ∈ Wh . (5.23)

Taking vh = ũh − �0uh ∈ V0
h , subtracting (5.21) from (5.18) and using (5.23), we

have

||K −1
1/2

(ũh − �0uh)||2 = (K −1(ũh − �0uh), ũh − �0uh)

= ( p̃h − ph,∇ · (ũh − �0uh)) + (K −1uh, vh)Q − (K −1�0uh, vh)

= (K −1uh, vh)Q − (K −1uh, vh) + (K −1uh, vh) − (K −1�0uh, vh)

= −σ(K −1uh, vh) + ((K −1 − K −1)uh, vh) + (K −1(uh − �0uh), vh). (5.24)

The work left is to estimate the three terms in the last line of (5.24). Notice that the
inequality (5.2) implies

| − σ(K −1uh, ũh − �0uh)| �
∑

T ∈Th

hT ||uh ||1,T ||ũh − �0uh ||T

�

⎧
⎨

⎩

∑

T ∈Th

h2
T ||uh ||21,T

⎫
⎬

⎭

1/2

||K −1
1/2

(ũh − �0uh)||. (5.25)

Due to K −1 ∈ W 1∞(Th), it holds

((K −1 − K −1)uh, ũh − �0uh) � ||huh || ||K −1
1/2

(ũh − �0uh)||. (5.26)

In view of the approximation property (5.4) of �0, we have

(K −1(uh − �0uh), ũh − �0uh) �

⎛

⎝
∑

T ∈Th

h2
T ||uh ||21,T

⎞

⎠

1/2

||K −1
1/2

(ũh − �0uh)||.

(5.27)

Combining (5.24)–(5.27) leads to the desired estimate (5.20). ��
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We now follow the idea of [33] to construct a postprocessed scalar pressure lh which
links ũh and p̃h on each simplicial element in the following way:

−K −1
−1∇lh = ũh in T, for all T ∈ Th, (5.28)

1

|T |
∫

T
lhdx = p̃h |T , for all T ∈ Th . (5.29)

We refer to [33] for the existence of the postprocessed solution lh .
As shown in [33], the new quantity lh has the continuity of the mean values of traces

across interior sides (or faces), and its mean of trace on any boundary side (or face)
equals to that of g. In fact, for an interior side (or face) E shared by T+ and T−, let vE

denote the side (or face) basis function on E with respect to V0
h with the support set

ωE . From (5.18), (5.28)–(5.29) and integration by parts we have

0 = (−∇hlh, vE )T+∪T− − ( p̃h,∇ · vE )T+∪T−+ < g, vE · n >∂ωE ∩�D

=
∫

T+
∇ · vE (lh − p̃h) +

∫

T−
∇ · vE (lh − p̃h) +

∫

E
vE · nE (lh |T+ − lh |T−)

= < 1, lh |T+ − lh |T− >E ,

which implies the continuity of the means of traces of lh across the interior side. For
a boundary side E ⊂ �D , let E ⊂ ∂T . Similarly, from (5.18) and (5.28)–(5.29) we
have

0 = −(∇lh, vE )T − ( p̃h,∇ · vE )T + < g, vE · n >∂T ∩�D

= < 1, g − lh >E .

For K −1 ∈ W 1∞(Th), from the triangle inequality, the postprocessing (5.28), an
interpolation estimate, an inverse inequality, Lemma 5.2 and the Definition (4.3) of
the quadrature indicator ηQ it follows

inf
vh∈S̃

||∇vh − K −1uh || ≤ inf
vh∈S̃

{
||∇vh − K −1ũh || + ||K −1ũh − K −1�0uh ||

+ ||K −1�0uh − K −1uh || + ||K −1uh − K −1uh ||
}

� inf
vh∈S̃

{
||∇h(vh + lh)|| + ||K −1

1/2
(ũh − �0uh)||

+
⎛

⎝
∑

T ∈Th

h2
T ||uh ||21,T

⎞

⎠

1/2

+ ||huh ||

⎫
⎪⎬

⎪⎭

� inf
vh∈S̃

||h−1(vh + lh)|| + ηQ . (5.30)

Following the idea of the proof of Lemma 3.4 in [17], we easily obtain the following
conclusion.
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Lemma 5.3 Let lh be the postprocessed scalar pressure determined by (5.28)–(5.29),
and gh,D be the nodal εD−piecewise linear interpolation of g on �D. For a side (or
face) E ∈ εh, denote

J̃tE :=
{

h1/2
E ||[lh]||E , if E ∈ ε0h,

h1/2
E ||lh − gh,D||E , if E ∈ εD.

Then it holds

inf
vh∈S̃

||h−1(vh + lh)||2 �
∑

E∈ε0h∪εD

h−2
E J̃ 2

tE
. (5.31)

Using Lemma 5.3, we have a further conclusion as follows.

Lemma 5.4 Let JtE and ηQ denote the tangential jump and the quadrature indicator
defined in (4.2) and (4.3), respectively. Under the assumption of Lemma 5.2, it holds

inf
vh∈S̃

||h−1(vh + lh)||2 �
∑

E∈ε0h∪εD

hE J 2
tE

+ η2Q . (5.32)

Proof We only prove the three-dimensional case, since the two-dimensional one is
somewhat simpler and can be derived similarly. In the case E = T+ ∩ T− ∈ ε0h , since∫

E [lh]ds vanishes, a sidewise Poincaré inequality and the postprocessing (5.28) yield
that

||[lh]||E � hE ||(∇lh |T+ − ∇lh |T−) × nE ||E

= hE ||(K −1ũh |T− − K −1ũh |T+) × nE ||E .
(5.33)

Recall that �0 is the projection from H(div;�) onto V0
h , and notice that

K −1ũh |T− − K −1ũh |T+

= (K −1ũh |T− − K −1�0uh |T−) + (K −1�0uh |T+ − K −1ũh |T+)

+ (K −1�0uh |T− − K −1�0uh |T+)

= (K −1ũh |T− − K −1�0uh |T−) + (K −1�0uh |T+ − K −1ũh |T+)

+ (K −1�0uh |T− − K −1�0uh |T−) + (K −1�0uh |T− − K −1uh |T−)

+ (K −1uh |T− − K −1uh |T+) + (K −1uh |T+ − K −1�0uh |T+)

+ (K −1�0uh |T+ − K −1�0uh |T+). (5.34)

Employing the trace theorem, inverse estimate and the local shape regularity of the
mesh, we have

123



Residual-based a posteriori error estimation for multipoint flux... 211

||(K −1ũh |T− − K −1�0uh |T−) × nE ||E + ||(K −1�0uh |T+
−K −1ũh |T+) × nE ||E

� h−1/2
E ||K −1(ũh − �0uh)||ωE .

(5.35)

The trace theorem, together with the stable estimate (5.5) on the operator �0, also
indicates

||(K −1�0uh |T− − K −1�0uh |T−) × nE ||E

≤ ||(K −1 − K −1)�0uh |T−||∂T−
� ||(K −1 − K −1)�0uh ||1/2T− ||(K −1 − K −1)�0uh ||1/21,T−
� h1/2

T− ||uh ||1,T− .

(5.36)

Similarly, it holds

||(K −1�0uh |T+ − K −1�0uh |T+) × nE ||E � h1/2
T+ ||uh ||1,T+ , (5.37)

||(K −1�0uh |T− − K −1uh |T−) × nE ||E � h1/2
E ||uh ||1,T− , (5.38)

and

||(K −1uh |T+ − K −1�0uh |T+) × nE ||E � h1/2
E ||uh ||1,T+ , (5.39)

where in the latter two inequalities we have also used the estimate (5.4).
As a result, a combination of (5.33)–(5.39) shows

||[lh]||E � hE {h−1/2
E ||K −1(ũh − �0uh)||ωE

+ h1/2
E ||uh ||1,ωE + ||[γtE (K −1uh)]||E }. (5.40)

On the other hand, in the case E ⊂ ∂T ∩ εD it holds

1

|E |
∫

E
(lh − g)ds = 0

due to
∫

E lhds = ∫

E gds. Using the triangle inequality, sidewise Poincaré inequality
and interpolation estimation, we have

||lh − gh,D||E ≤ ||lh − g||E + ||g − gh,D||E

� hE ||∇lh × nE − ∂g/∂s||E + h2
E ||∂2g/∂s2||E . (5.41)

Similarly it holds

hE ||∇lh × nE − ∂g

∂s
||E � h1/2

E ||K −1(ũh − �0uh)||T + h3/2
E ||uh ||1,T

+ hE ||K −1uh × nE − ∂g/∂s||E . (5.42)
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The above two estimates, (5.41) and (5.42), lead to

||lh − gh,D||E � h1/2
E ||K −1(ũh − �0uh)||T + h3/2

E ||uh ||1,T
+ hE ||K −1uh × nE − ∂g/∂s||E + h2

E ||∂2g/∂s2||E . (5.43)

From the definition of J̃tE in Lemma 5.3, the estimates (5.40) and (5.43) indicate

∑

E∈ε0h∪εD

h−2
E J̃ 2

tE
=

∑

E∈ε0h

h−2
E hE ||[lh]||2E +

∑

E∈εD

h−2
E hE ||lh − gh,D||2E

�
∑

T ∈Th

h2
T ||uh ||21,T + ||K −1(ũh − �0uh)||2 +

∑

E∈ε0h

hE ||[γtE (K −1uh)]||2E

+
∑

E∈εD

(hE ||γtE (K −1uh) − ∂g/∂s||2E + h3
E ||∂2g/∂s2||E ). (5.44)

By noticing that Lemma 5.2 implies

||K −1(ũh − �0uh)||2 � η2Q,

the estimate (5.44), together with the definitions of JtE and ηQ , (4.2) and (4.3), yields

∑

E∈ε0h∪εD

h−2
E J̃ 2

tE
�

∑

E∈ε0h∪εD

hE J 2
tE

+ η2Q . (5.45)

The desired result (5.32) follows from Lemma 5.3 and (5.45). ��
The proof of Theorem 4.1 Collecting (5.17), (5.30) and (5.32), we get

inf
β∈H1(�)

||∇β − K −1uh || �

⎧
⎪⎨

⎪⎩

∑

E∈ε0h∪εD

hE J 2
tE

⎫
⎪⎬

⎪⎭

1/2

+ ηQ, (5.46)

which, together with the estimates (5.15)–(5.16), yields

||K −1/2(u − uh)|| � ||h( f − ∇ · uh)|| +
⎧
⎨

⎩

∑

E∈εD

h3
E ||∂2g/∂s2||2E

⎫
⎬

⎭

1/2

+

⎧
⎪⎨

⎪⎩

∑

E∈ε0h∪εD

hE J 2
tE

⎫
⎪⎬

⎪⎭

1/2

+ ηQ

� ||h( f − ∇ · uh)|| +

⎧
⎪⎨

⎪⎩

∑

E∈ε0h∪εD

hE J 2
tE

⎫
⎪⎬

⎪⎭

1/2

+ ηQ . (5.47)
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The desired result (4.4) then follows from (5.47) and the definition (4.1) of ηh .
The proof of Theorem 4.2 Recall that Qh is the L2−projection operator onto Wh .
Construct the following auxiliary problem: Find φ ∈ H1(�) such that

{∇ · (K∇φ) = Qh p − ph in �,

φ = 0 on ∂�.
(5.48)

By the assumptions of K and Lax–Milgram theorem, the operator

∇ · (K∇·) : H1
0 (�) → H−1(�)

is invertible and it holds the following regularity estimate:

||φ||1 � ||Qh p − ph ||. (5.49)

Moreover, if � is convex, K ∈ C1,0(�) implies that

∇ · (K∇·) : H1
0 (�) ∩ H2(�) → L2(�)

is invertible ([24]) and the regularity estimate

||φ||H2(
⋃Th) � ||Qh p − ph || (5.50)

holds. We emphasize that here we only need a regularity estimate on ||φ||H2(T ) for
each T ∈ Th and then assume a weakened constraint on K such that (5.50) holds. In
[16] Carstensen gave an example where K is piecewise constant and φ satisfies (5.50)
but is not H2-regular.

Notice that the error equation of the MFMFE method (3.3)–(3.4) can be written as

(K −1(u − uh), vh) = (Qh p − ph,∇ · vh) − σ(K −1uh, vh), ∀vh ∈ Vh . (5.51)

Recalling � is the standard projection operator from H(div;�) ∩ (L�(�))d onto
Vh , and taking vh = �(K∇φ) in (5.51), from (5.48) and the commuting property
∇ · (�K∇φ) = Qh∇ · (K∇φ), we have

||Qh p − ph ||2 = (Qh p − ph,∇ · (�K∇φ))

= (K −1(u − uh),�(K∇φ)) + σ(K −1uh,�K∇φ).
(5.52)

Since (∇·(u−uh), wh) = 0,∀wh ∈ Wh , by integration by parts, the approximation
property of � and the estimates (5.49)–(5.50), we have

(K −1(u − uh),�(K∇φ))

= (K −1(u − uh),�(K∇φ) − K∇φ) + (u − uh,∇φ)

= (K −1(u − uh),�(K∇φ) − K∇φ) − (∇ · (u − uh), φ)

= (K −1(u − uh),�(K∇φ) − K∇φ) − (∇ · (u − uh), φ − Qhφ)

�
(
||hK −1/2(u − uh)|| + ||h∇ · (u − uh)||

)
||Qh p − ph ||. (5.53)
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On the other hand, a combination of (5.3), (5.5) and (5.50) yields

|σ(K −1uh,�K∇φ)| �
∑

T ∈Th

h2
T ||uh ||1,T ||�(K∇φ)||1,T

� (
∑

T ∈Th

h4
T ||uh ||21,T )1/2||Qh p − ph ||. (5.54)

Noticing ∇ · (u − uh) = f − Qh f , from (5.52) to (5.54) and the estimate (4.4) of
Theorem 4.1 we obtain the assertion (4.5), i.e.

||Qh p − ph || � hmax(ηh + ηQ) + ||h( f − ∇ · uh)||.

A triangle inequality, the relation u = −K∇ p and the approximation property of Qh

further imply

||p − ph || ≤ ||p − Qh p|| + ||Qh p − ph || � ||h∇ p|| + ||Qh p − ph ||
≤ ||hK −1(u − uh)|| + ||hK −1uh || + ||Qh p − ph ||.

This inequality, together with the estimate (4.5), leads to the conclusion (4.6).

Remark 5.1 Note that the technique developed in this contribution for simplicial
elements may not be extended trivially to other types of elements such as quadri-
lateral (hexahedral) elements, since the analysis depends on a locally postprocessed
approximation which fails on the quadrilateral (hexahedral) elements. On the other
hand, the MPFA methods are also widely used on quadrilateral/hexahedral and even
polygon/polyhedral elements (cf. [1,2,22,27,28]), so it will be significant to develop
similar techniques of a posteriori error analysis for such kinds of meshes.

6 Analysis for the efficiency

This section is devoted to the proof of Theorem 4.3. For the sake of simplicity, we
assume that K −1 is a matrix of piecewise polynomial functions. Since the two terms

||h( f −∇·uh)|| and {
∑

E∈εD
h3

E ||∂
2g

∂s2
||2E }1/2 in ηh are of high order, they are directly

incorporated in h.o.t. as a high order term. Using standard analytical techniques, we
easily obtain Lemma 6.1.

Lemma 6.1 Let ηh denote the discretization indicator given by (4.1). Then it holds

ηh � ||K −1/2(u − uh)|| + h.o.t. (6.1)

Lemma 6.2 Let ηQ denote the quadrature indicator given by (4.3). Then it holds

ηQ � ||K −1/2(u − uh)|| + ||h−1(p − ph)||. (6.2)
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Proof An inverse inequality and the assumption (1.2) yield

||uh ||1,T � h−1
T ||uh ||T � h−1

T ||K −1uh ||T . (6.3)

For all T ∈ Th , let ψT denote the bubble function on T with ψT |∂T = 0 and 0 ≤
ψT ≤ 1. Then the two norms, ||ψ1/2

T · ||T and || · ||T , are equivalent for polynomials.
Since ∇ ph |T = 0 due to ph ∈ Wh , it then holds

||K −1uh ||2T = ||K −1uh + ∇ ph ||2T
� ||ψ1/2

T (K −1uh + ∇ ph)||2T
=

(
ψT K −1uh, K −1uh + ∇ ph

)

T

=
(
ψT K −1uh, K −1(uh − u)

)

T
+

(
ψT K −1uh,∇(ph − p)

)

T

=
(
ψT K −1uh, K −1(uh − u)

)

T
−

(
∇ · (ψT K −1uh), ph − p

)

T

� ||K −1uh ||T
(
||K −1/2(u − uh)||T + h−1

T ||p − ph ||T
)

, (6.4)

where in the fourth and last lines we have used the relation u = −K∇ p and an inverse
inequality, respectively. This inequality, together with (6.3), shows

hT ||uh ||1,T � ||K −1/2(u − uh)||T + h−1
T ||(p − ph)||T ,

from which the desired estimate (6.2) follows.

The proof of Theorem 4.3 From (6.4) we obtain

||hK −1uh || � ||hK −1/2(u − uh)|| + ||p − ph ||, (6.5)

which, together with Lemmas 6.1–6.2, leads to the desired efficiency estimate of
Theorem 4.3.

7 Numerical experiments

In this section, we use two model problems to test the performance of the developed a
posteriori error estimator for the MFMFE method. We consider two types of meshes:
uniformly refined meshes and adaptively refined meshes. The latter type of meshes is
generated by a standard adaptive algorithm based on the a posteriori error estimation.
In the first example, the permeability K equals to identity matrix and � is an L-shape
domain. In the second example, K is inhomogeneous and anisotropic. We are thus
able to study how meshes adapt to various effect from lack of regularity of solutions
to non-convexity of domains.
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Fig. 1 A mesh with 347 triangles, iteration 6 (left) and a mesh with 578 triangles, iteration 8 (right) in
case r = 0.4
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Fig. 2 A mesh with 1607 triangles, iteration 11 (left) and a mesh with 2618 triangles, iteration 12 (right)
in case r = 0.4

Example 7.1

We consider the problem (1.1) in an L-shape domain � = {(−1, 1) × (0, 1)} ∪
{(−1, 0) × (−1, 0)} with Dirichlet boundary conditions and K = I (identity matrix).
The exact solution is given by

p(ρ, θ) = ρr sin(rθ),

where ρ, θ are the polar coordinates, r is a parameter. We consider two cases for r :
r = 0.4 and r = 0.1. Some simple calculations show f = 0.

It is well known that this model possesses singularity at the origin and holds p ∈
H1+r−ε(�) for any ε > 0. The singularity of the solution in the case r = 0.4 is weaker
than in the case r = 0.1. The original mesh consists of 6 right-angled triangles.

In the adaptive algorithm we first solve the MFMFE scheme (3.3)–(3.4), then mark
elements in terms of Dörfler marking with the marking parameter θ̃ = 0.5, and finally
use the “longest edge” refinement to recover an admissible mesh. In particular, the
uniform refinement means that all elements should be marked.
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Fig. 3 A mesh with 245 triangles, iteration 10 (left) and a mesh with 3265 triangles, iteration 24 (right) in
case r = 0.1
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Fig. 4 The postprocessing approximation to the pressure on the adaptively refined mesh in case r = 0.4
(left) and in case r = 0.1 (right)

From Figs. 1, 2 with the parameter r = 0.4 and Fig. 3 with the parameter r =
0.1, we see that using the adaptive algorithm the refinement concentrates around the
origin. This means that the predicted error estimator captures well the singularity of
the solution, and that the stronger the solution possesses singularity, the better the a
posteriori error estimator can identify.

Figure 4 reports a continuous piecewise-linear postprocessing approximation to
the pressure on the adaptively refined mesh in the case r = 0.4 (left) and in the case
r = 0.1 (right) with 24 iterations. Since the approximation to the pressure of the
MFMFEmethod is piecewise constant, the value of the postprocessing approximation
to the pressure on each node is taken as the algorithmic mean of the values of the
pressure finite element solution on all the elements sharing the vertex.

Figure 5 reports the estimated and actual errors of the numerical solutions on uni-
formly and adaptively refined meshes. It can be seen that the error of the velocity in
L2 norm uniformly reduces with a fixed factor on two successive meshes, and that
the error on the adaptively refined meshes decreases more rapidly than the one on the
uniformly refined meshes. This means that one can substantially reduce the number
of unknowns necessary to obtain the prescribed accuracy by using a posteriori error
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Fig. 5 The estimated and actual errors against the number of elements in uniformly/adaptively refined
meshes in case r = 0.4 (left) and in case r = 0.1 (right) with the marking parameter θ̃ = 0.5
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Fig. 6 The quadrature error ηQ and discretization error ηh against the number of elements in adaptively

refined meshes in case r = 0.4 with the marking parameter θ̃ = 0.5 (left) and in case r = 0.1 with the
marking parameter θ̃ = 0.8 (right)

estimators and adaptively meshes. We note that the exact error is approximated with
a 7-point quadrature formula in each triangle.

Figure 6 shows the quadrature error ηQ and discretization error ηh in adaptively
refined meshes in case r = 0.4 with the marking parameter θ = 0.5 (left) and in
case r = 0.1 with the marking parameter θ = 0.8 (right). It can be seen that the
error indicator ηh produced by the discretization is very close to the error indicator
ηQ produced by the quadrature rule as the mesh is refined. This also shows that the
quadrature indicator ηQ is very efficient. We note that this efficiency is not sufficiently
demonstrated by Theorem 4.3 due to the appearance of the pressure error term, while
this error term usually has the second order accuracy on uniform meshes.

Example 7.2

We consider the problem (1.1) in a square domain � = (−1, 1) × (−1, 1) with
Dirichlet boundary conditions, where � is divided into four subdomains �i (i =
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Fig. 7 A mesh with 740 triangles, iteration 6 (left) and a mesh with 1350 triangles, iteration 7 (right)

1, 2, 3, 4) corresponding to the axis quadrants (in the counterclockwise direction),
and the permeability K is piecewise constant with K = si I in �i . We assume the
exact solution of this model has the form

p(ρ, θ)|�i = ρr (ai sin(rθ) + bi cos(rθ)).

Here ρ, θ are the polar coordinates in�, ai and bi are constants depending on�i , and
r is a parameter. This solution is not continuous across the interfaces, and only the
normal component of its velocity u = −K∇ p is continuous, and it exhibits a strong
singularity at the origin. We consider a set of coefficients in the following table:

s1 = s3 = 5, s2 = s4 = 1
r = 0.53544095
a1 = 0.44721360, b1 = 1.00000000
a2 = −0.74535599, b2 = 2.33333333
a3 = −0.94411759, b3 = 0.55555555
a4 = −2.40170264, b4 = −0.48148148

The origin mesh consists of 8 right-angled triangles. We perform the adaptive
algorithm described in Example 7 with the marking parameter θ̃ = 0.5. Figures 7, 8
report the adaptive meshes generated by 6–8 iterations, and the continuous piecewise-
linear postprocessing approximation to the pressure on the adaptively refined mesh.
We again see that the refinement concentrates around the origin. This indicates that
the predicted error estimator captures well the singularity of the solution.

Figure 9 reports the estimated and actual errors of the numerical solutions on uni-
formly and adaptively refined meshes (left), and the quadrature indicator ηQ and
discretization indicator ηh in adaptively refined meshes (right).

We can see that the error of the velocity uniformly reduces with a fixed factor
on two successive meshes, that the error on the adaptively refined meshes decreases
more rapidly than the one on the uniformly refined meshes, and that the a posteriori
error estimators developed in this paper are efficient with respect to inhomogeneities
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Fig. 8 A mesh with 2328 triangles, iteration 8 (left) and the postprocessing approximation to the pressure
on the adaptively refined mesh
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Fig. 9 The estimated and actual errors against the number of elements in uniformly/adaptively refined
meshes (left) and the quadrature error ηQ and discretization error ηh against the number of elements in
adaptively refined meshes (right)

and anisotropy of the permeability. This means that one can substantially reduce the
number of unknowns necessary to obtain the prescribed accuracy by using a posteriori
error estimators and adaptively refined meshes. We also see that the error indicator ηh

and ηQ differs at most a constant factor, which shows the quadrature error estimator
ηQ is efficient.

8 Conclusions

In this contribution we have developed a reliable and efficient a posteriori error esti-
mator of residual-type for the multi-point flux mixed finite element methods for flow
in porous media in two or three space dimensions. The main tools of our analysis
are a locally postprocessed technique and a quadrature error estimation. Numerical
experiments are conformable to our theoretical results.
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