
Numer. Math. (2016) 133:655–684
DOI 10.1007/s00211-015-0764-z

Numerische
Mathematik

Levenberg–Marquardt method in Banach spaces
with general convex regularization terms

Qinian Jin1 · Hongqi Yang2

Received: 28 December 2014 / Revised: 9 July 2015 / Published online: 8 September 2015
© Springer-Verlag Berlin Heidelberg 2015

Abstract Wepropose aLevenberg–Marquardtmethodwith general uniformly convex
regularization terms to solve nonlinear inverse problems in Banach spaces, which is
an extension of the scheme proposed by Hanke in (Inverse Probl 13:79–95, 1997) in
Hilbert space setting. Themethod is so designed that it can be used to detect the features
of the sought solutions such as sparsity or piecewise constancy. It can also be used to
deal with the situation that the data is contaminated by noise containing outliers. By
using tools from convex analysis in Banach spaces, we establish the convergence of
the method. Numerical simulations are reported to test the performance of the method.

Mathematics Subject Classification 65J15 · 65J20 · 47H17

1 Introduction

Inverse problems can arise frommany applications in natural sciences.Most of inverse
problems are usually ill-posed in the sense that their solutions do not depend contin-
uously on the data. Thus, the stable reconstruction of solutions of inverse problems
requires regularization techniques [2,8,25].

For solving nonlinear inverse problems in Hilbert spaces, Hanke introduced in [11]
his regularizing Levenberg–Marquardt scheme which is a stable iterative procedure
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with the Lagrangian multipliers in the Levenberg–Marquardt method being updated
by an adaptive strategy. To describe this method more precisely, consider nonlinear
inverse problems that can be formulated as the form

F(x) = y, (1.1)

where F : X → Y is a nonlinear Fréchet differentiable operator between two Hilbert
spaces X and Y whose Fréchet derivative at x is denoted by F ′(x). Assuming that
yδ is the only available noisy data, the regularizing Levenberg–Marquardt scheme in
[11] constructs the next iterate xn+1 from a current iterate xn by first regularizing the
linearized equation

F ′(xn)(x − xn) = yδ − F(xn)

at xn via the Tikhonov regularization

xn(α, yδ) := arg min
x∈X

{
1

2
‖yδ − F(xn) − F ′(xn)(x − xn)‖2 + α

2
‖x − xn‖2

}
(1.2)

using a quadratic penalty term and then define xn+1 := xn(αn, yδ) with αn > 0 being
a parameter satisfying

‖yδ − F(xn) − F ′(xn)(xn(αn, y
δ) − xn)‖ = μ‖yδ − F(xn)‖, (1.3)

where 0 < μ < 1 is a preassigned number. It has been shown in [11] that this
defines a regularizationmethod as long as the iteration is terminated by the discrepancy
principle. The regularizing Levenberg–Marquardt scheme has had far reaching impact
on the development of iterative regularization methods for solving nonlinear inverse
problems and has stimulated considerable subsequent work, see [13,17,18,27,30] and
the references therein.

In order to dealwith the situationswhere the sought solutions are sparse or piecewise
constant andwhere the data are contaminated bygeneral noise, one has to use the sparse
promoting functionals or total variational like functionals as regularization terms and
use general fidelity terms to fit data. This leads to the consideration on regularization
methods in Banach spaces with general regularization terms which has emerged as
a highly active research field in recent years. The monograph [31] collects some of
such research works including the variational regularization of Tikhonov type and
some iterative regularization methods in Banach spaces. One may further refer to
[14,18,20–24,26,28] for more recent works.

The purpose of the present paper is to extend the regularizingLevenberg–Marquardt
scheme of Hanke to solve nonlinear inverse problems in Banach spaces using general
convex regularization terms. Thus, we will consider nonlinear inverse problems mod-
elled by (1.1) with F being a nonlinear operator between two Banach spaces X and Y
whose dual spaces are denoted asX ∗ andY∗ respectively. Let� : X → (−∞,∞] be
a proper, lower semi-continuous, uniformly convex function which is chosen accord-
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Levenberg–Marquardt method in Banach spaces... 657

ing to the a prior information on the feature of the sought solution. Using a current
iterate (xn, ξn) ∈ X ×X ∗ with ξn ∈ ∂�(xn), the subdifferential of � at xn , we define

xn(α, yδ) := arg min
x∈X

{
1

r
‖yδ − F(xn) − F ′(xn)(x − xn)‖r + αDξn�(x, xn)

}
,

(1.4)
where 1 < r < ∞ is a given number and Dξn�(x, xn) denotes the Bregman distance
induced by � at xn in the direction ξn . We then define the next iterate xn+1 by xn+1 =
xn(αn, yδ), where αn > 0 is chosen such that

μ0‖yδ − F(xn)‖ ≤ ‖yδ − F(xn) − F ′(xn)(xn(αn, y
δ) − xn)‖ ≤ μ1‖yδ − F(xn)‖

with preassigned numbers 0 < μ0 ≤ μ1 < 1. This choice of αn is a relaxation of
(1.3) and has more flexibility when the root of the Eq. (1.3) is difficult to determine
exactly. We need to update the subgradient ξn to ξn+1 ∈ ∂�(xn+1) which, according
to the minimization property of xn+1, can be taken as

ξn+1 = ξn + 1

αn
F ′(xn)∗ JYr (yδ − F(xn) − F ′(xn)(xn+1 − xn)),

where F ′(xn)∗ : Y∗ → X ∗ denotes the adjoint of F ′(xn) and JYr : Y → Y∗
denotes the duality mapping on Y with gauge function t → tr−1. We repeat the above
procedure until a discrepancy principle is satisfied. The precise description of the
above extension will be given in Algorithm 1. The main result of this paper shows that
the above extension of the Levenberg–Marquardt scheme is well-defined and exhibits
the regularization property when used to solve ill-posed problems.

The introduction of a general convex function � into the algorithm presents many
challenging issues on its convergence analysis. Unlike (1.2) whose minimizer can be
determined explicitly, the minimizer of (1.4) does not have a closed form. The possible
non-smoothness of � and the non-Hilbertian structure of X and Y prevent us from
using the classical techniques. Instead we have to utilize tools from convex optimiza-
tion and non-smooth analysis, including the subdifferential calculus and the Bregman
distance. The convergence analysis becomes even more subtle when considering the
regularization property. The main obstacle comes from the stability issue; an iterative
sequence constructed using noisy data can split into many possible noise-free iterative
sequences as the noise level tends zero, due to the non-unique determination of αn .
We will conquer this difficulty by borrowing an idea from [10], which is based on
the diagonal sequence argument, to show that all these noise-free sequences actually
converge uniformly in certain sense. On the other hand, unlike the variational regular-
ization of Tikhonov [31] and the non-stationary iterated Tikhonov regularization [22]
whose numerical implementation requires to solve several non-convex minimization
problems, our method involves only convex minimization problems and therefore has
the advantage of being implemented efficiently by convex optimization techniques.

Under a prior choice of {αn}, a Levenberg–Marquardt method was considered in
[1] to solve (1.1) with X = Ł2(�) and Y a Hilbert space using the convex penalty
function �(x) = a‖x‖2

L2 + ∫
�

|Dx |, where ∫
�

|Dx | denotes the total variation of x .
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658 Q. Jin, H. Yang

The analysis in [1], however, is somewhat preliminary since it provides only weak
convergence along subsequences. In contrast, our method chooses {αn} adaptively,
and the whole iterative sequence converges to a solution of (1.1) strongly.

In recent years the iteratively regularizedGauss–Newtonmethod has been extended
to solve nonlinear inverse problems in Banach spaces [21,24,26] in which it defines
{xn} by

xn+1 = arg min
x∈X

{
1

r
‖yδ − F(xn) − F ′(xn)(x − xn)‖r + αnDξ0�(x, x0)

}

It looks similar to (1.4) but in fact they are essentially different. The iteratively reg-
ularized Gauss–Newton method always defines xn in a neighborhood of the initial
guess x0, while the Levenberg–Marquardt method defines xn+1 in a region around xn
for each n ≥ 0. From the optimization point of view, Levenberg–Marquardt method
is more favorable in nature.

The rest of this paper is organized as follows. In Sect. 2 we collect some basic
results from convex analysis in Banach spaces and prove a continuous dependence
result of minimizers of uniformly convex functionals on various parameters. We then
present in Sect. 3 the Levenberg–Marquardt method in Banach spaces with general
convex regularization terms and show that the method is well-defined. The detailed
convergence analysis is given in Sect. 4. Finally in Sect. 5 we report various numerical
results to indicate the performance of the method.

2 Preliminaries

Let X and Y be two Banach spaces whose norms are denoted by ‖ · ‖. We use X ∗
and Y∗ to denote their dual spaces respectively. Given x ∈ X and x∗ ∈ X ∗ we write
〈x∗, x〉 = x∗(x) for the duality pair. We use “→” and “⇀” to denote the strong
convergence and the weak convergence respectively. By L (X ,Y) we denote for the
space of all continuous linear operators from X to Y . For any A ∈ L (X ,Y), we use
A∗ : Y∗ → X ∗ to denote its adjoint, i.e. 〈A∗y∗, x〉 = 〈y∗, Ax〉 for any x ∈ X and
y∗ ∈ Y∗. We use N (A) = {x ∈ X : Ax = 0} to denote the null space of A and
define

N (A)⊥ := {ξ ∈ X ∗ : 〈ξ, x〉 = 0 for all x ∈ N (A)}.

When X is reflexive, there holdsN (A)⊥ = R(A∗), whereR(A∗) denotes the range
space of A∗ and R(A∗) denotes the closure ofR(A∗) in X ∗.

For a convex function � : X → (−∞,∞], we use D(�) := {x ∈ X : �(x) <

+∞} to denote its effective domain. We call � proper ifD(�) 
= ∅. Given x ∈ X we
define

∂�(x) := {ξ ∈ X ∗ : �(x̄) − �(x) − 〈ξ, x̄ − x〉 ≥ 0 for all x̄ ∈ X }.

Any element ξ ∈ ∂�(x) is called a subgradient of � at x . The multi-valued mapping
∂� : X → 2X ∗

is called the subdifferential of �. It could happen that ∂�(x) = ∅ for
some x ∈ D(�). Let
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D(∂�) := {x ∈ D(�) : ∂�(x) 
= ∅}.

For x ∈ D(∂�) and ξ ∈ ∂�(x) we define

Dξ�(x̄, x) := �(x̄) − �(x) − 〈ξ, x̄ − x〉, ∀x̄ ∈ X

which is called the Bregman distance induced by � at x in the direction ξ . Clearly
Dξ�(x̄, x) ≥ 0. By straightforward calculation one can see that

Dξ2�(x, x2) − Dξ1�(x, x1) = −Dξ1�(x2, x1) + 〈ξ2 − ξ1, x2 − x〉 (2.1)

for all x1, x2 ∈ D(∂�), ξ1 ∈ ∂�(x1), ξ2 ∈ ∂�(x2) and x ∈ X .
Bregman distance can be used to obtain information under the Banach space norm

when � has stronger convexity. A proper convex function � : X → (−∞,∞] is
called uniformly convex if there is a strictly increasing function ϕ : [0,∞) → [0,∞)

with ϕ(0) = 0 such that

�(λx̄ + (1 − λ)x) + λ(1 − λ)ϕ(‖x̄ − x‖) ≤ λ�(x̄) + (1 − λ)�(x) (2.2)

for all x̄, x ∈ X and λ ∈ [0, 1]. It is easily seen that if � is uniformly convex in the
sense of (2.2) then

Dξ�(x̄, x) ≥ ϕ(‖x̄ − x‖) (2.3)

for all x̄ ∈ X , x ∈ D(∂�) and ξ ∈ ∂�(x). Moreover, it follows from [32, Proposition
3.5.8] that any proper, weakly lower semi-continuous, uniform convex function � :
X → (−∞,∞] is coercive in the sense that

lim inf‖x‖→∞
�(x)

‖x‖2 > 0. (2.4)

On a Banach space X , we consider for 1 < r < ∞ the convex function x →
‖x‖r/r . Its subdifferential at x is given by

JXr (x) := {ξ ∈ X ∗ : ‖ξ‖ = ‖x‖r−1 and 〈ξ, x〉 = ‖x‖r }

which gives the duality mapping JXr : X → 2X ∗
with gauge function t → tr−1. We

call X uniformly convex if its modulus of convexity

δX (t) := inf{2 − ‖x̄ + x‖ : ‖x̄‖ = ‖x‖ = 1, ‖x̄ − x‖ ≥ t}

satisfies δX (t) > 0 for all 0 < t ≤ 2. We call X uniformly smooth if its modulus of
smoothness

ρX (s) := sup{‖x̄ + x‖ + ‖x̄ − x‖ − 2 : ‖x̄‖ = 1, ‖x‖ ≤ s}

satisfies lims↘0
ρX (s)

s = 0. It iswell known [6] that any uniformly convex or uniformly
smooth Banach space is reflexive. On a uniformly smooth Banach space X , every
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duality mapping JXr with 1 < r < ∞ is single valued and uniformly continuous on
bounded sets. Furthermore, on a uniformly convex Banach space, any sequence {xn}
satisfying xn ⇀ x and ‖xn‖ → ‖x‖ must satisfy xn → x as n → ∞. This property
can be generalized for uniformly convex functions which we state in the following
result.

Lemma 2.1 [22] Let� : X → (−∞,∞] be a proper, weakly lower semi-continuous,
anduniformly convex function. Then�admits theKadec property, i.e. for any sequence
{xn} ⊂ X satisfying xn ⇀ x ∈ X and �(xn) → �(x) < ∞ there holds xn → x as
n → ∞.

Weconclude this sectionbyproviding a continuousdependence result ofminimizers
for uniformly convex cost functionals on various parameters. This result is crucial in
the forthcoming sections.

Lemma 2.2 Let X and Y be Banach spaces with X being reflexive. Let {A(x) :
X → Y}x∈D ⊂ L (X ,Y) be such that x → A(x) is continuous on D ⊂ X . Let
� : X → (−∞,∞] be a proper, weakly lower semi-continuous, uniformly convex
function. Assume that the sequences {α(�)} ⊂ (0,∞), {b(�)} ⊂ Y , {x (�)} ⊂ D and
{ξ (�)} ⊂ X ∗ with ξ (�) ∈ ∂�(x (�)) satisfy

α(�) → ᾱ, b(�) → b̄, x (�) → x̄, ξ (�) → ξ̄ as � → ∞ (2.5)

for some ᾱ > 0, b̄ ∈ Y , x̄ ∈ D and ξ̄ ∈ X ∗ with ξ̄ ∈ ∂�(x̄). For 1 ≤ r < ∞ let

z(�) := argmin
z∈X

{
1

r
‖b(�) − A(x (�))z‖r + α(�)Dξ (�)�(z, x (�))

}
.

Then z(�) → z̄ and �(z(�)) → �(z̄) as � → ∞, where

z̄ := argmin
z∈X

{
1

r
‖b̄ − A(x̄)z‖r + ᾱDξ̄�(z, x̄)

}
.

Proof It is easy to see that z(�) and z̄ are uniquely defined since the corresponding
cost functionals are weakly lower semi-continuous and uniformly convex and hence
coercive, see (2.4). Because ξ (�) ∈ ∂�(x (�)) and ξ̄ ∈ ∂�(x̄), wemay use the condition
(2.5) to obtain

lim inf
�→∞ �(x (�)) ≥ lim inf

�→∞ (�(x̄) + 〈ξ̄ , x (�) − x̄〉) = �(x̄),

lim sup
�→∞

�(x (�)) ≤ lim sup
�→∞

(�(x̄) − 〈ξ (�), x̄ − x (�)〉) = �(x̄).

Therefore
lim

�→∞ �(x (�)) = �(x̄). (2.6)
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To show z(�) → z̄ we will adapt the argument in [9,16]. By the definition of z(�)

we have

1

r
‖b(�) − A(x (�))z(�)‖r + α(�)Dξ (�)�(z(�), x (�)) ≤ 1

r
‖b(�) − A(x (�))x (�)‖r .

By the given conditions, the right hand side is bounded and thus {Dξ (�)�(z(�), x (�))}
is bounded. Consequently, {z(�)} is bounded in X by the uniform convexity of �.
Since X is reflexive, {z(�)} has a subsequence, denoted by the same notation, such
that z(�) ⇀ z∗ as � → ∞ for some z∗ ∈ X . Since x → A(x) is continuous and
A(x̄) ∈ L (X ,Y), we have A(x (�))z(�) ⇀ A(x̄)z∗ as � → ∞. By using (2.6) and the
weak lower semi-continuity of � and the Banach space norm, it follows that

‖b̄ − A(x̄)z∗‖ ≤ lim inf
�→∞ ‖b(�) − A(x (�))z(�)‖, (2.7)

Dξ̄�(z∗, x̄) ≤ lim inf
�→∞ Dξ (�)�(z(�), x (�)). (2.8)

Consequently

1

r
‖b̄ − A(x̄)z∗‖r + ᾱDξ̄�(z∗, x̄)

≤ 1

r
lim inf
�→∞ ‖b(�) − A(x (�))z(�)‖r + lim inf

�→∞ α(�)Dξ (�)�(z(�), x (�))

≤ lim inf
�→∞

(
1

r
‖b(�) − A(x (�))z(�)‖r + α(�)Dξ (�)�(z(�), x (�))

)

≤ lim sup
�→∞

(
1

r
‖b(�) − A(x (�))z(�)‖r + α(�)Dξ (�)�(z(�), x (�))

)

≤ lim sup
�→∞

(
1

r
‖b(�) − A(x (�))z̄‖r + α(�)Dξ (�)�(z̄, x (�))

)

= 1

r
‖b̄ − A(x̄)z̄‖r + ᾱDξ̄�(z̄, x̄),

where, for the last inequality we used the minimality of z(�) and for the last equality
we used (2.5) and (2.6). By using the minimality and uniqueness of z̄, we can conclude
z∗ = z̄ and

lim
�→∞

(
1

r
‖b(�) − A(x (�))z(�)‖r + α(�)Dξ (�)�(z(�), x (�))

)

= 1

r
‖b̄ − A(x̄)z̄‖r + ᾱDξ̄�(z̄, x̄). (2.9)

Next we show that

lim
�→∞ Dξ (�)�(z(�), x (�)) = Dξ̄�(z̄, x̄). (2.10)

123



662 Q. Jin, H. Yang

According to (2.8) and z∗ = z̄, it suffices to show that

γ0 := lim sup
�→∞

Dξ (�)�(z(�), x (�)) ≤ Dξ̄�(z̄, x̄) =: γ1.

Suppose this is not true, i.e. γ0 > γ1. By taking a subsequence if necessary, we may
assume that

γ0 = lim
�→∞ Dξ (�)�(z(�), x (�)).

Then from (2.9) it follows that

lim
�→∞

1

r
‖b(�) − A(x (�))z(�)‖r = 1

r
‖b̄ − A(x̄)z̄‖r + ᾱ(γ1 − γ0) <

1

r
‖b̄ − A(x̄)z̄‖r

which is a contradiction to (2.7). We thus obtain (2.10).
In view of (2.10), (2.5) and z(�) ⇀ z̄ as � → ∞ we have

lim
�→∞(�(z(�)) − �(x (�))) = �(z̄) − �(x̄).

This together with (2.6) implies that lim�→∞ �(z(�)) = �(z̄). Since z(�) ⇀ z̄, we
may use Lemma 2.1 to conclude that z(�) → z̄ as � → ∞. ��

3 The method

We consider the Eq. (1.1) arising from nonlinear inverse problems, where F : D(F) ⊂
X → Y is a nonlinear operator between two Banach spaces X and Y with domain
D(F). We will assume that (1.1) has a solution. In general (1.1) may have many
solutions. In order to find the desired one, some selection criterion should be enforced.
According to a prior information on the sought solution, we choose a proper, weakly
lower semi-continuous, uniformly convex function � : X → (−∞,∞]. By taking
x0 ∈ D(�) ∩ D(F) and ξ0 ∈ ∂�(x0) as the initial guess, we define x† to be the
solution of (1.1) with the property

Dξ0�(x†, x0) = min
x∈D(�)∩D(F)

{Dξ0�(x, x0) : F(x) = y}. (3.1)

We are interested in developing algorithms to find the solution x† of (1.1). We will
work under the following standard conditions.

Assumption 1

(a) X is a reflexive Banach space and Y is a uniformly smooth Banach space;
(b) F is weakly closed on D(F), i.e. for any sequence {xn} ⊂ D(F) satisfying

xn ⇀ x ∈ X and F(xn) ⇀ v ∈ Y there hold x ∈ D(F) and F(x) = v;
(c) There is ρ > 0 such that B2ρ(x0) ⊂ D(F) and (1.1) has a solution in Bρ(x0) ∩

D(�), where Bρ(x0) := {x ∈ X : ‖x − x0‖ ≤ ρ};
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(d) There exists {L(x) : X → Y}x∈B2ρ(x0) ⊂ L (X ,Y) such that x → L(x) is
continuous on B2ρ(x0) and there is 0 ≤ η < 1 such that

‖F(x̄) − F(x) − L(x)(x̄ − x)‖ ≤ η‖F(x̄) − F(x)‖

for all x̄, x ∈ B2ρ(x0).

In Assumption 1, the uniform smoothness of Y in (a) is used to guarantee that
the duality mapping JYr is single-valued and continuous for each 1 < r < ∞. We
do not require F to be Fréchet differentiable; in case F is Fréchet differentiable, we
may take L(x) = F ′(x), where F ′(x) denotes the Fréchet derivative of F at x . The
condition in (d) is the so called tangential cone condition which has been widely used
in the analysis of regularization methods for nonlinear inverse problems and has been
verified for several important applications [11–13,20,22–24,26,30]. How to replace
the tangential cone condition by a weaker condition is a challenging issue. Under
certain smoothness conditions on the solution, a class of Newton methods in Hilbert
spaces has been shown in [19] to be order optimal undermerely the Lipschitz condition
on the Fréchet derivative of F when the methods are terminated by a discrepancy
principle. How to extend such result to the Banach space setting remains an open
problem. In view of (d) in Assumption 1, it is easily seen that

‖F(x̄) − F(x)‖ ≤ 1

1 − η
‖L(x)(x̄ − x)‖, x̄, x ∈ B2ρ(x0)

which shows that x → F(x) is continuous on B2ρ(x0). When X is a reflexive Banach
space, by using the uniform convexity of� and weak closedness of F , it is standard to
show that x† exists. Moreover, [20, Lemma 3.2] gives the following local uniqueness
result.

Lemma 3.1 Let Assumption 1 hold. If x† ∈ Bρ(x0) ∩ D(�), then x† is the unique
solution of (1.1) in B2ρ(x0) ∩ D(�) satisfying (3.1).

In practical applications, instead of y we only have noisy data yδ satisfying

‖yδ − y‖ ≤ δ (3.2)

with a small noise level δ > 0. We will use yδ to construct an approximate solution
to (1.1). To formulate our Levenberg–Marquardt algorithm, assuming xδ

n has been
constructed we consider the linearized equation

L(xδ
n)(x − xδ

n) = yδ − F(xδ
n)

and apply to it the Tikhonov regularization whose regularizing term is the Bregman
distance induced by � at xδ

n . The next iterate x
δ
n+1 is then constructed by chosen the

regularization parameter adaptively. This leads to the following Levenberg–Marquardt
algorithm.
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Algorithm 1 (Levenberg–Marquardt method with noisy data)

1. Take x0 ∈ X and ξ0 ∈ X ∗ such that ξ0 ∈ ∂�(x0). Pick 0 < μ0 ≤ μ1 < 1 and
τ > 1.

2. Let xδ
0 := x0 and ξδ

0 := ξ0. Assume that xδ
n and ξδ

n are well-defined, we then define
xδ
n+1 and ξδ

n+1 as follows:
(a) For each α > 0 we define xn(α, yδ) and ξn(α, yδ) as

xn(α, yδ) = arg min
x∈X

{
1

r
‖yδ − F(xδ

n) − L(xδ
n)(x − xδ

n)‖r + αDξδ
n
�(x, xδ

n)

}
,

ξn(α, yδ) = ξδ
n + 1

α
L(xδ

n)
∗ JYr

(
yδ − F(xδ

n) − L(xδ
n)(xn(α, yδ) − xδ

n)
);

(b) Take αn(yδ) > 0 to be a number α such that

μ0‖yδ−F(xδ
n)‖ ≤ ‖yδ−F(xδ

n)−L(xδ
n)(xn(α, yδ)−xδ

n)‖ ≤ μ1‖yδ−F(xδ
n)‖;

(c) Define xδ
n+1 := xn(αn(yδ), yδ) and ξδ

n+1 := ξn(αn(yδ), yδ).
3. Let nδ be the first integer such that ‖yδ − F(xδ

nδ
)‖ ≤ τδ and use xδ

nδ
as an

approximate solution.

When X and Y are Hilbert spaces, r = 2 and �(x) = ‖x‖2/2, Algorithm 1
reduces to the regularizing Levenberg–Marquardt scheme in [11] and each minimizer
xn(α, yδ) can be written explicitly. In the setting of Algorithm 1 in Banach spaces with
general convex regularization terms, xn(α, yδ) does not have an explicit formula. This
increases the difficulty in convergence analysis. By making use of tools from convex
analysis, in this section we will show that Algorithm 1 is well-defined, and in Sect. 4
we will show that xδ

nδ
indeed converges to a solution of (1.1) as δ → 0.

In Algorithm 1, we need to pick ξ0 ∈ X ∗ and x0 ∈ X such that ξ0 ∈ ∂�(x0). This
can be achieved as follows: pick ξ0 ∈ X ∗ and define

x0 = arg min
x∈X

{�(x) − 〈ξ0, x〉} ,

then ξ0 ∈ ∂�(x0) holds automatically; in applications, we usually have � ≥ 0 and
�(0) = 0, then we can simply take x0 = 0 and ξ0 = 0.

From the definition of xn(α, yδ) in Algorithm 1 we can see that

0 ∈ −L(xδ
n)

∗ JYr
(
yδ − F(xδ

n) − L(xδ
n)(xn(α, yδ) − xδ

n)
) + α

(
∂�(xn(α, yδ)) − ξδ

n

)
.

The definition of ξn(α, yδ) is exactly motivated by this fact so that

ξn(α, yδ) ∈ ∂�(xn(α, yδ)) for all α > 0.

Moreover, by the minimality of xn(α, yδ), we always have

‖yδ − F(xδ
n) − L(xδ

n)(xn(α, yδ) − xδ
n)‖ ≤ ‖yδ − F(xδ

n)‖, ∀α > 0. (3.3)
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In order to prove that Algorithm 1 is well-defined, we need to show that the number
αn(yδ) used to define xδ

n+1 from xδ
n exists, each xδ

n is in D(F), and the iteration
terminates after nδ < ∞ steps. We achieve these via a series of results.

Lemma 3.2 Let X be reflexive and let � : X → (−∞,∞] be proper, weakly lower
semi-continuous and uniformly convex. Then, for each α > 0, xn(α, yδ) is uniquely
determined. Moreover, the mapping α → xn(α, yδ) is continuous over (0,∞), and
the function

α → ‖yδ − F(xδ
n) − L(xδ

n)(xn(α, yδ) − xδ
n)‖ (3.4)

is continuous and monotonically increasing over (0,∞).

Proof All assertions, except the monotonicity of (3.4), follow from Lemma 2.2. The
monotonicity of (3.4) can be proved by a standard argument, see [3, Lemma 9.2.1] or
[7, Lemma 6.1] for instance. ��
Lemma 3.3 Let � : X → (−∞,∞] be a proper, weakly lower semi-continuous
function that is uniformly convex in the sense of (2.2). Let Assumption 1 hold with
0 ≤ η < 1. Let η < μ0 < 1 and τ > (1 + η)/(μ0 − η). Assume that xδ

n and ξδ
n are

well-defined for some 0 ≤ n < nδ with

Dξδ
n
�(x†, xδ

n) ≤ Dξ0�(x†, x0) ≤ ϕ(ρ). (3.5)

Then for any α > 0 such that

‖yδ − F(xδ
n) − L(xδ

n)(xn(α, yδ) − xδ
n)‖ ≥ μ0‖yδ − F(xδ

n)‖ (3.6)

there hold xn(α, yδ) ∈ B2ρ(x0) and

Dξn(α,yδ)�(x̂, xn(α, yδ)) − Dξδ
n
�(x̂, xδ

n) ≤ −c0μr
0

α
‖yδ − F(xδ

n)‖r (3.7)

for any solution x̂ of (1.1) in B2ρ(x0) ∩D(�), where c0 := 1− (1+ η + τη)/(τμ0).

Proof For simplicity of exposition, we write

xn(α) := xn(α, yδ), ξn(α) := ξn(α, yδ) and Ln := L(xδ
n).

By using the identity (2.1) and the nonnegativity of the Bregman distance, we obtain

Dξn(α)�(x̂, xn(α)) − Dξδ
n
�(x̂, xδ

n) ≤ 〈ξn(α) − ξδ
n , xn(α) − x̂〉.

By the definition of ξn(α) we then have

Dξn(α)�(x̂, xn(α)) − Dξδ
n
�(x̂, xδ

n)

≤ 1

α
〈JYr (yδ − F(xδ

n) − Ln(xn(α) − xδ
n)), Ln(xn(α) − x̂)〉.
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We can write

Ln(xn(α) − x̂) = [yδ − F(xδ
n) − Ln(x̂ − xδ

n)] − [yδ − F(xδ
n) − Ln(xn(α) − xδ

n)].

Then, by virtue of the property of the duality mapping JYr , we obtain

Dξn(α)�(x̂, xn(α)) − Dξδ
n
�(x̂, xδ

n) ≤ − 1

α
‖yδ − F(xδ

n) − Ln(xn(α) − xδ
n)‖r

+ 1

α
‖yδ − F(xδ

n) − Ln(xn(α) − xδ
n)‖r−1‖yδ − F(xδ

n) − Ln(x̂ − xδ
n)‖.

In view of (3.5) and (2.3), we have ‖xδ
n − x†‖ ≤ ρ and ‖x† − x0‖ ≤ ρ which implies

that xδ
n ∈ B2ρ(x0). Thus we may use (3.2) and Assumption 1(d) to derive that

‖yδ − F(xδ
n) − Ln(x̂ − xδ

n)‖ ≤ (1 + η)δ + η‖yδ − F(xδ
n)‖.

Since n < nδ we have ‖F(xδ
n) − yδ‖ ≥ τδ. Thus

‖yδ − F(xδ
n) − Ln(x̂ − xδ

n)‖ ≤ 1 + η + τη

τ
‖yδ − F(xδ

n)‖. (3.8)

Therefore

Dξn(α)�(x̂, xn(α)) − Dξδ
n
�(x̂, xδ

n) ≤ − 1

α
‖yδ − F(xδ

n) − Ln(xn(α) − xδ
n)‖r

+ 1 + η + τη

τα
‖yδ − F(xδ

n) − Ln(xn(α) − xδ
n)‖r−1‖yδ − F(xδ

n)‖.

In view of the inequality (3.6), we thus obtain

Dξn(α)�(x̂, xn(α)) − Dξδ
n
�(x̂, xδ

n) ≤ −c0
α

‖yδ − F(xδ
n) − Ln(xn(α) − xδ

n)‖r ,

where c0 := 1 − (1 + η + τη)/(τμ0). According to the conditions on μ0 and τ , we
have c0 > 0. Thus, in view of (3.6) again, we obtain (3.7).

Finally, by using (3.7) with x̂ = x† and (3.5) we have

Dξn(α)�(x†, xn(α)) ≤ Dξδ
n
�(x†, xδ

n) ≤ Dξ0�(x†, x0) ≤ ϕ(ρ).

This together with (2.3) and ‖x0 − x†‖ ≤ ρ implies that xn(α) ∈ B2ρ(x0). ��
Proposition 3.4 Let � : X → (−∞,∞] be proper, lower semi-continuous and
uniformly convex in the sense of (2.2). Let Assumption 1 hold with 0 ≤ η < 1/3 and
let η < μ0 ≤ μ1 < 1 − 2η and τ > (1 + η)/(μ0 − η). Assume that

Dξ0�(x†, x0) ≤ ϕ(ρ). (3.9)
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Then xδ
n are well-defined for all 0 ≤ n ≤ nδ and Algorithm 1 terminates after nδ <

∞ iterations with nδ = O(1 + | log δ|). Moreover, for any solution x̂ of (1.1) in
B2ρ(x0) ∩ D(�) there hold

Dξδ
n+1

�(x̂, xδ
n+1) ≤ Dξδ

n
�(x̂, xδ

n) (3.10)

and
1

αn(yδ)
‖yδ − F(xδ

n)‖r ≤ C0(Dξδ
n
�(x̂, xδ

n) − Dξδ
n+1

�(x̂, xδ
n+1)) (3.11)

for all 0 ≤ n < nδ , where C0 = 1/(c0μr
0).

Proof We first show that if

Dξδ
n
�(x†, xδ

n) ≤ Dξ0�(x†, x0) ≤ ϕ(ρ) (3.12)

for some 0 ≤ n < nδ , then there exists αn(yδ) > 0 such that

μ0‖yδ − F(xδ
n)‖ ≤ f (αn(y

δ)) ≤ μ1‖yδ − F(xδ
n)‖, (3.13)

where

f (α) = ‖yδ − F(xδ
n) − L(xδ

n)(xn(α, yδ) − xδ
n)‖

which is continuous and monotonically increasing, see Lemma 3.2. To see this, we
may use the minimality of xn(α, yδ) to obtain

αDξδ
n
�(xn(α, yδ), xδ

n) ≤ 1

r
‖yδ − F(xδ

n)‖r , ∀α > 0.

This implies that limα→∞ Dξδ
n
�(xn(α, yδ), xδ

n) = 0 and hence limα→∞ ‖xn
(α, yδ) − xδ

n‖ = 0 by the uniform convexity of �. Consequently

lim
α→∞ f (α) = ‖yδ − F(xδ

n)‖ > μ1‖yδ − F(xδ
n)‖.

To show the existence of a finite αn(yδ) satisfying (3.13), it suffices to show that

lim
α→0

f (α) < μ0‖yδ − F(xδ
n)‖.

Suppose this is not true, then

f (α) ≥ μ0‖yδ − F(xδ
n)‖, ∀α > 0.

Thus, we may use Lemma 3.3 to obtain

c0μr
0

α
‖yδ − F(xδ

n)‖r ≤ Dξδ
n
�(x†, xδ

n), ∀α > 0.
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Taking α → 0 gives yδ = F(xδ
n) which is absurd since ‖yδ − F(xδ

n)‖ > τδ for
n < nδ .

We next show (3.12) by induction on n. It is trivial for n = 0. Assume that it is true
for n = m with m < nδ . Since xδ

m+1 = xm(αm(yδ), yδ) and ξδ
m+1 = ξm(αm(yδ), yδ),

we may use Lemma 3.3 to conclude that

Dξδ
m+1

�(x†, xδ
m+1) ≤ Dξδ

m
�(x†, xδ

m)

which together with the induction hypothesis shows (3.12) for n = m + 1.
Since (3.12) holds true for all 0 ≤ n < nδ , we may use Lemma 3.3 to obtain (3.10)

and (3.11) immediately.
Finally, the finiteness of nδ can be proved by a standard argument from [11]. For

completeness we include the argument here. By Assumption 1(d) and the definition
of xδ

n+1 we have for all 0 ≤ n < nδ that

‖yδ − F(xδ
n+1)‖ ≤ ‖yδ − F(xδ

n) − L(xδ
n)(x

δ
n+1 − xδ

n)‖
+ ‖F(xδ

n+1) − F(xδ
n) − L(xδ

n)(x
δ
n+1 − xδ

n)‖
≤ μ1‖yδ − F(xδ

n)‖ + η‖F(xδ
n+1) − F(xδ

n)‖
≤ (μ1 + η)‖yδ − F(xδ

n)‖ + η‖yδ − F(xδ
n+1)‖.

This implies that

‖yδ − F(xδ
n+1)‖ ≤ q‖yδ − F(xδ

n)‖ with q = μ1 + η

1 − η
< 1 (3.14)

and hence
‖yδ − F(xδ

n)‖ ≤ qn‖yδ − F(x0)‖, 0 ≤ n < nδ. (3.15)

If nδ = ∞, then we must have ‖yδ − F(xδ
n)‖ > τδ for all n. But the inequality (3.15)

implies ‖yδ − F(xδ
n)‖ → 0 as n → ∞. Therefore nδ < ∞. Now we take n = nδ − 1

in (3.15) and obtain qnδ−1‖yδ − F(x0)‖ > τδ. This implies nδ = O(1 + | log δ|). ��

4 Convergence analysis

In this section we will show that Algorithm 1 is a regularization method for solving
(1.1), that is, we will show that if (xδ

n, ξ
δ
n ) ∈ X × X ∗, 0 ≤ n ≤ nδ , are defined by

Algorithm 1 using noisy data yδ , then xδ
nδ

converges to x† as yδ → y. To this end, it
is necessary to investigate for each fixed n the behavior of xδ

n as yδ → y. This leads
us to consider the counterpart of Algorithm 1 with exact data which is formulated as
Algorithm 2 below. Due to the non-unique determination of αn , this algorithm actually
definesmany distinct iterative sequences.Wewill show that every sequence defined by
Algorithm 2 is convergent. This convergence result however is not enough for showing
the regularization property of Algorithm 1. Indeed, for each fixed n ≥ 1, when taking
yδ → y, the sequence {αn−1(yδ)} used to define xδ

n from xδ
n−1 may split into many
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convergent subsequences and so does {xδ
n, ξ

δ
n } with limits defined by Algorithm 2.

This forces us to establish a uniform convergence result for all the possible sequences
defined byAlgorithm 2. The regularization property of Algorithm 1 is then established
by using a stability result which connects Algorithms 1 and 2.

4.1 The method with exact data

We start with the formulation of the counterpart of Algorithm 1 when the exact data
is used.

Algorithm 2 (Levenberg–Marquardt method with exact data)

1. Let 0 < μ0 ≤ μ1 < 1 and (x0, ξ0) ∈ X × X ∗ be the same as in Algorithm 1.
2. Assume that xn and ξn are defined. If F(xn) = y, we define xn+1 = xn and

ξn+1 = ξn; otherwise, we define xn+1 and ξn+1 as follows:
(a) For each α > 0 we define xn(α, y) and ξn(α, y) as

xn(α, y) = arg min
x∈X

{
1

r
‖y − F(xn) − L(xn)(x − xn)‖r + αDξn�(x, xn)

}
,

ξn(α, y) = ξn + 1

α
L(xn)

∗ JYr (y − F(xn) − L(xn)(xn(α, y) − xn));

(b) Take αn > 0 to be a number such that

μ0‖y − F(xn)‖ ≤ ‖y − F(xn) − L(xn)(xn(αn, y) − xn)‖ ≤ μ1‖y − F(xn)‖;

(c) Define xn+1 := xn(αn, y) and ξn+1 := ξn(αn, y).

In the formulation of Algorithm 2, we take αn > 0 to be any number satisfying
(b) when defining xn+1, ξn+1 from xn, ξn . There might have many possible choices
of αn ; different choice of {αn} may lead to different iterative sequence. We will use
�μ0,μ1(x0, ξ0) to denote the set of all possible sequence {(xn, ξn)} in X × X ∗ con-
structed from (x0, ξ0) by Algorithm 2 with αn > 0 chosen to be any number satisfying
(b). By using the same argument in the proof of Proposition 3.4, we can obtain the
following result which shows that each sequence in �μ0,μ1(x0, ξ0) is well-defined and
admits certain monotonicity property.

Lemma 4.1 Let Assumption 1 hold with 0 ≤ η < 1 and let η < μ0 ≤ μ1 < 1. Then
any sequence {(xn, ξn)} ∈ �μ0,μ1(x0, ξ0) is well-defined and for any solution x̂ of
(1.1) in B2ρ(x0) ∩ D(�) there hold

Dξn+1�(x̂, xn+1) ≤ Dξn�(x̂, xn), (4.1)

1

αn
‖y − F(xn)‖r ≤ 1

μ0 − η
(Dξn�(x̂, xn) − Dξn+1�(x̂, xn+1)) (4.2)

for all n ≥ 0.
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In order to derive the convergence of every sequence {(xn, ξn)} in �μ0,μ1(x0, ξ0),
we will use the following result which gives a general convergence criterion.

Proposition 4.2 Consider the Eq. (1.1) for which Assumption 1 holds. Let � : X →
(−∞,∞] be a proper, lower semi-continuous and uniformly convex function. Let
{xn} ⊂ B2ρ(x0) ∩ D(�) and {ξn} ⊂ X ∗ be such that

(i) ξn ∈ ∂�(xn) for all n;
(ii) for any solution x̂ of (1.1) in B2ρ(x0) ∩ D(�) the sequence {Dξn�(x̂, xn)} is

monotonically decreasing;
(iii) limn→∞ ‖F(xn) − y‖ = 0.
(iv) there is a constant C such that for all k > n and any solution x̂ of (1.1) in

B2ρ(x0) ∩ D(�) there holds

|〈ξk − ξn, xk − x̂〉| ≤ C(Dξn�(x̂, xn) − Dξk�(x̂, xk)). (4.3)

Then there exists a solution x∗ of (1.1) in B2ρ(x0) ∩ D(�) such that

lim
n→∞ ‖xn − x∗‖ = 0, lim

n→∞ �(xn) = �(x∗) and lim
n→∞ Dξn�(x∗, xn) = 0.

If, in addition, x† ∈ Bρ(x0) ∩ D(�) and ξn+1 − ξn ∈ R(L(x†)∗) for all n, then
x∗ = x†.

Proof This result follows from [20, Proposition 3.6] and its proof. ��

Now we can prove the main convergence result on Algorithm 2.

Theorem 4.3 Let Assumption 1 hold with 0 ≤ η < 1/3 and let η < μ0 ≤ μ1 < 1 −
2η. Let � : X → (−∞,∞] be proper, lower semi-continuous and uniformly convex
in the sense of (2.2), and let (3.9) be satisfied. Then for any {(xn, ξn)} ∈ �μ0,μ1(x0, ξ0)
there exists a solution x∗ of (1.1) in B2ρ(x0) ∩ D(�) such that

lim
n→∞ ‖xn − x∗‖ = 0, lim

n→∞ �(xn) = �(x∗) and lim
n→∞ Dξn�(x∗, xn) = 0.

If in addition N (L(x†)) ⊂ N (L(x)) for all x ∈ B2ρ(x0) ∩ D(F), then x∗ = x†.

Proof We will use Proposition 4.2. By the definition of ξn in Algorithm 2 we always
have ξn ∈ ∂�(xn) for all n ≥ 0 which shows (i) in Proposition 4.2. Lemma 4.1 shows
(ii) in Proposition 4.2. By the similar argument for deriving (3.14) we can show that

‖y − F(xn+1)‖ ≤ q‖y − F(xn)‖, ∀n ≥ 0 (4.4)

with q = (μ1 +η)/(1−η) < 1. This implies (iii) in Proposition 4.2. In order to show
the convergence result, it remains only to show (iv) in Proposition 4.2.
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To this end, for 0 ≤ l < m < ∞ we may use the definition of ξn and the property
of the duality mapping JYr to obtain

|〈ξm − ξl , xm − x†〉| =
∣∣∣∣∣∣
m−1∑
n=l

〈ξn+1 − ξn, xm − x†〉
∣∣∣∣∣∣

=
∣∣∣∣∣∣
m−1∑
n=l

1

αn
〈JYr (y − F(xn) − L(xn)(xn+1 − xn)), L(xn)(xm − x†)〉

∣∣∣∣∣∣
≤

m−1∑
n=l

1

αn
‖y − F(xn) − L(xn)(xn+1 − xn)‖r−1‖L(xn)(xm − x†)‖.

By the triangle inequality ‖L(xn)(xm−x†)‖ ≤ ‖L(xn)(xn−x†)‖+‖L(xn)(xm−xn)‖
and Assumption 1(d), we have

‖L(xn)(xm − x†)‖ ≤ (1 + η) (‖y − F(xn)‖ + ‖F(xn) − F(xm)‖)
≤ (1 + η) (2‖y − F(xn)‖ + ‖y − F(xm)‖) .

Since the inequality (4.4) implies that {‖y − F(xn)‖} monotonically decreasing, we
have

‖L(xn)(xm − x†)‖ ≤ 3(1 + η)‖y − F(xn)‖, 0 ≤ n ≤ m.

Therefore

|〈ξm − ξl , xm − x†〉|

≤ 3(1 + η)

m−1∑
n=l

1

αn
‖y − F(xn) − L(xn)(xn+1 − xn)‖r−1‖y − F(xn)‖

≤ 3(1 + η)

m−1∑
n=l

1

αn
‖y − F(xn)‖r .

In view of (4.2) in Lemma 4.1, we obtain with C1 := 3(1 + η)/(μ0 − η) that

|〈ξm − ξl , xm − x†〉| ≤ C1(Dξl�(x†, xl) − Dξm�(x†, xm))

which shows (iv) in Proposition 4.2.
To show the last part under the conditionN (L(x†)) ⊂ N (L(x)) for x ∈ B2ρ(x0)∩

D(�), we observe from the definition of ξn that

ξn+1 − ξn ∈ R(L(xn)
∗) ⊂ N (L(xn))

⊥ ⊂ N (L(x†))⊥ = R(L(x†)∗).

Thus, we may use the second part of Proposition 4.2 to conclude the proof. ��
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4.2 A uniform convergence result

In Theorem 4.3 we have shown the convergence of every sequence in �μ0,μ1(x0, ξ0).
In this subsection wewill strengthen this result by showing the following uniform con-
vergence result for all sequences in�μ0,μ1(x0, ξ0)whichwill be crucial in establishing
the regularization property of Algorithm 1.

Proposition 4.4 Assume all the conditions in Theorem 4.3 hold. Assume also that

N (L(x†)) ⊂ N (L(x)), ∀x ∈ B2ρ(x0) ∩ D(�). (4.5)

Then, for any ε > 0, there is an integer n(ε) such that for any sequence {(ξn, xn)} ∈
�μ0,μ1(ξ0, x0) there holds Dξn�(x†, xn) < ε for all n ≥ n(ε).

The proof of Proposition 4.4 is based on some preliminary results. It is easily
seen that, to complete the proof, we only need to consider the case F(x0) 
= y. The
following result shows that in this case we always have F(xn) 
= y for all n ≥ 0
for any sequence {(xn, ξn)} ∈ �μ0,μ1(x0, ξ0). Thus, when defining xn+1 from xn in
Algorithm 2 we always use a finite number αn > 0.

Lemma 4.5 Let all the conditions in Proposition 4.4 hold. For any sequence
{(xn, ξn)} ∈ �μ0,μ1(x0, ξ0), if F(xn) = y for some n ≥ 1, then F(x0) = y.

Proof It suffices to show that if F(xk) = y for some 1 ≤ k ≤ n, then F(xk−1) = y.
By using Assumption 1(d) and F(xk) = y we have L(x†)(xk − x†) = 0. Thus, in
view of (4.5), we have

xk − x† ∈ N (L(x†)) ⊂ N (L(xk−1)).

Consequently L(xk−1)(xk − x†) = 0. If F(xk−1) 
= y, then by the definition of xk
and Assumption 1(d) we have

μ0‖y − F(xk−1)‖ ≤ ‖y − F(xk−1) − L(xk−1)(xk − xk−1)‖
= ‖y − F(xk−1) − L(xk−1)(x

† − xk−1)‖
≤ η‖y − F(xk−1)‖

which is impossible since μ0 > η. The proof is thus complete. ��
The next result shows that, if F(xn) 
= y, then we can give the upper and lower

bounds on the number αn used to define xn+1 from xn .

Lemma 4.6 Let all the conditions in Theorem 4.3 hold. If F(xn) 
= y, then for any α

satisfying

μ0‖y − F(xn)‖ ≤ ‖y − F(xn) − L(xn)(xn(α, y) − xn)‖ ≤ μ1‖y − F(xn)‖ (4.6)
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there holds 0 < αn ≤ α ≤ αn < ∞, where

αn := (μr
0 − ηr )‖y − F(xn)‖r

rϕ(ρ)
and αn := ‖y − F(xn)‖r

rϕ((1 − μ1)‖y − F(xn)‖/‖L(xn)‖) .

Proof By the definition of xn(α, y) and the uniform convexity of �, we have

αϕ(‖xn(α, y) − xn‖) ≤ αDξn�(xn(α, y), xn) ≤ 1

r
‖y − F(xn)‖r .

In view of the second inequality in (4.6) we can obtain

‖L(xn)‖‖xn(α, y) − xn‖ ≥ ‖L(xn)(xn(α, y) − xn)‖ ≥ (1 − μ1)‖y − F(xn)‖.

Consequently

αϕ

(
(1 − μ1)‖y − F(xn)‖

‖L(xn)‖
)

≤ 1

r
‖y − F(xn)‖r (4.7)

which implies that α ≤ αn . On the other hand, by the definition of xn(α, y) we have

1

r
‖y − F(xn) − L(xn)(xn(α, y) − xn)‖r

≤ 1

r
‖y − F(xn) − L(xn)(x

† − xn)‖r + αDξn�(x†, xn).

In view of the first inequality in (4.6), Assumption 1(d), and the inequality
Dξn�(x†, xn) ≤ Dξ0�(x†, x0) ≤ ϕ(ρ) from Lemma 4.1, it follows that

μr
0‖y − F(xn)‖r ≤ ηr‖y − F(xn)‖r + rαϕ(ρ).

This implies that α ≥ αn . ��
Now we are ready to give the proof of Proposition 4.4. We will use an idea from

[10] which is based on the well-known diagonal sequence argument.

Proof of Proposition 4.4 Wemay assume that F(x0) 
= y. Wewill use a contradiction
argument. Assume that the result is not true. Then there is an ε0 > 0 such that for any
� ≥ 1 there exist {(x (�)

n , ξ
(�)
n )} ∈ �μ0,μ1(x0, ξ0) and n� > � such that

D
ξ

(�)
n�

�(x†, x (�)
n�

) ≥ ε0. (4.8)

We will construct, for each n = 0, 1, . . ., a strictly increasing subsequence {�n,k} of
positive integers and (x̄n, ξ̄n) ∈ X × X ∗ such that
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(i) {(x̄n, ξ̄n)} ∈ �μ0,μ1(x0, ξ0);

(ii) for each fixed n there hold x
(�n,k )
n → x̄n and ξ

(�n,k )
n → ξ̄n as k → ∞. Moreover,

for all k there hold

D
ξ

(�n,k )

n
�(x̄n, x

(�n,k )
n ) ≤ ε0/4 and |〈ξ (�n,k )

n − ξ̄n, x̄n − x†〉| ≤ ε0/4.

Assume that the above construction is available,wewill derive a contradiction.Accord-
ing to (i), we may use Theorem 4.3 to conclude that Dξ̄n

�(x†, x̄n) → 0 as n → ∞.
Thus we can pick a large integer n̂ such that

Dξ̄n̂
�(x†, x̄n̂) < ε0/2.

Let �̂ := �n̂,n̂ and consider the sequence {(x (�̂)
n , ξ

(�̂)
n )}. According to (ii), we have

ε0/2 > (Dξ̄n̂
�(x†, x̄n̂) − D

ξ
(�̂)

n̂

�(x†, x (�̂)

n̂ )) + D
ξ

(�̂)

n̂

�(x†, x (�̂)

n̂ )

= −D
ξ

(�̂)

n̂

�(x̄n̂, x
(�̂)

n̂ ) + 〈ξ̄n̂ − ξ
(�̂)

n̂ , x̄n̂ − x†〉 + D
ξ

(�̂)

n̂

�(x†, x (�̂)

n̂ )

≥ −ε0/4 − ε0/4 + D
ξ

(�̂)

n̂

�(x†, x (�̂)

n̂ ).

Since {�n̂,k} is strictly increasing, we have n
�̂

> �̂ = �n̂,n̂ ≥ n̂. Therefore, we may
use Lemma 4.1 to obtain

D
ξ

(�̂)
n
�̂

�(x†, x (�̂)
n

�̂
) ≤ D

ξ
(�̂)

n̂

�(x†, x (�̂)

n̂ ) < ε0

which is a contradiction to (4.8) with � = �̂.
We turn to the construction of {�n,k} and (x̄n, ξ̄n), for each n = 0, 1, . . ., such that

(i) and (ii) hold. For n = 0, we take (x̄0, ξ̄0) = (x0, ξ0) and �0,k = k for all k. Since
ξ

(k)
0 = ξ0 and x (k)

0 = x0, (ii) holds automatically for n = 0.
Next, assume that we have constructed {�n,k} and (x̄n, ξ̄n) for all 0 ≤ n ≤ m. We

will construct {�m+1,k} and (x̄m+1, ξ̄m+1). Since F(x0) 
= y, we have from Lemma
4.5 that F(x̄m) 
= y and F(x (�)

m ) 
= y for all �. Let α
(�)
m > 0 be the number used to

define (x (�)
m+1, ξ

(�)
m+1) from (x (�)

m , ξ
(�)
m ). From Lemma 4.6 and the induction hypothe-

sis x
(�m,k )
m → x̄m we can conclude that there are two positive numbers αm and ᾱm

independent of k such that αm ≤ α
(�m,k )
m ≤ ᾱm for all k. Thus {�m,k} must have a

subsequence, denoted as {�m+1,k}, such that {α(�m+1,k)
m } converges to some number

αm ∈ (0,∞) as k → ∞. We define
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x̄m+1 = arg min
x∈X

{
1

r
‖y − F(x̄m) − L(x̄m)(x − x̄m)‖r + αmDξ̄m

�(x, x̄m)

}
,

ξ̄m+1 = ξ̄m + 1

αm
L(x̄m)∗ JYr (y − F(x̄m) − L(x̄m)(x̄m+1 − x̄m)).

It is clear that x̄m+1 = x̄m(αm, y) and ξ̄m+1 = ξ̄m(αm, y). In view of the induction

hypotheses x
(�m+1,k )
m → x̄m and ξ

(�m+1,k)
m → ξ̄m , the continuity of x → F(x) and

x → L(x), and α
(�m+1,k)
m → αm , we may use Lemma 2.2 and the continuity of the

duality mapping JYr to conclude that

x
(�m+1,k )

m+1 → x̄m+1, �(x
(�m+1,k )

m+1 ) → �(x̄m+1) and ξ
(�m+1,k)

m+1 → ξ̄m+1 (4.9)

as k → ∞. According to the choice of α
(�m+1,k )
m and thus the definition of x

(�m+1,k )

m+1 ,
we have

μ0‖y − F(x
(�m+1,k )
m )‖ ≤ ‖y − F(x

(�m+1,k )
m ) − L(x

(�m+1,k)
m )(x

(�m+1,k )

m+1 − x
(�m+1,k )
m )‖

≤ μ1‖y − F(x
(�m+1,k)
m )‖.

Letting k → ∞ gives

μ0‖y − F(x̄m)‖ ≤ ‖y − F(x̄m) − L(x̄m)(x̄m+1 − x̄m)‖ ≤ μ1‖y − F(x̄m)‖.

Thus x̄m+1 = x̄m(αm, y) satisfies the desired requirement. We therefore complete
the construction of {�m+1,k} and (x̄m+1, ξ̄m+1). We need to show that x̄m+1 and ξ̄m+1
satisfy the estimates in (ii) for n = m + 1. We may use (4.9) to obtain

lim
k→∞〈ξ (�m+1,k)

m+1 − ξ̄m+1, x̄m+1 − x†〉 = 0, lim
k→∞ D

ξ
(�m+1,k )

m+1

�(x̄m+1, x
(�m+1,k )

m+1 ) = 0

Consequently, by taking a subsequence of {�m+1,k} if necessary, which is still denoted
by the same notation, we can guarantee (ii) for n = m + 1. ��

4.3 Regularization property

In this section we will establish the regularization property of Algorithm 1 which is
stated in the following result.

Theorem 4.7 Let � : X → (−∞,∞] be a proper, lower semi-continuous function
that is uniformly convex in the sense of (2.2), and let Assumption 1 hold with 0 ≤ η <

1/3. Let η < μ0 ≤ μ1 < 1− 2η and τ > (1+ η)/(μ0 − η), and let (3.9) be satisfied.
Assume further that

N (L(x†)) ⊂ N (L(x)), ∀x ∈ B2ρ(x0) ∩ D(�).
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Then for xδ
nδ

∈ X and ξδ
nδ

∈ X ∗ defined by Algorithm 1 there hold

lim
δ→0

‖xδ
nδ

− x†‖ = 0, lim
δ→0

�(xδ
nδ

) = �(x†) and lim
δ→0

Dξδ
nδ

�(x†, xδ
nδ

) = 0.

In order to prove Theorem 4.7, we will need to establish certain stability result to
connect Algorithms 1 and 2 so that Proposition 4.4 can be used. The following stability
result is sufficient for our purpose.

Lemma 4.8 Let F(x0) 
= y and let all the conditions in Theorem 4.7 hold. Let {yδl }
be a sequence of noisy data satisfying ‖yδl − y‖ ≤ δl with δl → 0 as l → ∞.
Let xδl

n and ξ
δl
n , 0 ≤ n ≤ nδl , be defined by Algorithm 1. Then for any finite n ≤

lim inf l→∞ nδl , by taking a subsequence of {yδl } if necessary, there is a sequence
{(xm, ξm)} ∈ �μ0,μ1(x0, ξ0) such that

xδl
m → xm, ξ δl

m → ξm and �(xδl
m ) → �(xm) as l → ∞

for all 0 ≤ m ≤ n.

Proof Since F(x0) 
= y, we must have lim inf l→∞ nδl ≥ 1. We will use an induction
argument on n.

When n = 0, nothing needs to prove since xδl
0 = x0 and ξ

δl
0 = ξ0. Assume

next that, for some 0 ≤ n < lim infl→∞ nδl , the result is true for some sequence
{(xm, ξm)} ∈ �μ0,μ1(x0, ξ0) with 0 ≤ m ≤ n. In order to show the result is also true
for n + 1, we will obtain a sequence from �μ0,μ1(x0, ξ0) by retaining the first n + 1
terms in {(xm, ξm)} and modifying the remaining terms. It suffices to redefine xn+1
and ξn+1 since then we can apply Algorithm 2 to produce the remaining terms.

Since F(x0) 
= y, we have from Lemma 4.5 that F(xn) 
= y. Let αn(yδl ) be the
number used to define xδl

n+1 and ξ
δl
n+1. Since the induction hypothesis xδl

n → xn and

the fact yδl → y imply ‖F(xδl
n ) − yδl‖ → ‖F(xn) − y‖ > 0 as l → ∞, we may use

the similar argument in the proof of Lemma 4.6 to conclude that

αn ≤ αn(y
δl ) ≤ ᾱn

for two numbers 0 < αn ≤ ᾱn < ∞ independent of l. Therefore, by taking a
subsequence of {yδl } if necessary, we may assume that

αn(y
δl ) → αn as l → ∞

for some number αn ∈ (0,∞). We define

xn+1 = arg min
x∈X

{
1

r
‖y − F(xn) − L(xn)(x − xn)‖r + αnDξn�(x, xn)

}
,

ξn+1 = ξn + 1

αn
L(xn)

∗ JYr (y − F(xn) − L(xn)(xn+1 − xn)).
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In view of the induction hypotheses and the continuity of x → F(x) and x → L(x),
we may use Lemma 2.2 and the continuity of JYr to conclude that

xδl
n+1 → xn+1, �(xδl

n+1) → �(xn+1) and ξ
δl
n+1 → ξn+1 as l → ∞.

Moreover, since

μ0‖yδl − F(xδl
n )‖ ≤ ‖yδl − F(xδl

n ) − L(xδl
n )(xδl

n+1 − xδl
n )‖ ≤ μ1‖yδl − F(xδl

n )‖,

by taking l → ∞ we can conclude that

μ0‖y − F(xn)‖ ≤ ‖y − F(xn) − L(xn)(xn+1 − xn)‖ ≤ μ1‖y − F(xn)‖.

Therefore xn+1 = xn(αn, y) and ξn+1 = ξn(αn, y) are the desired elements to be
defined. The proof is thus complete. ��

The next result will be used to prove limδ→0 �(xδ
nδ

) = �(x†) in Theorem 4.7.

Lemma 4.9 Let all the conditions in Theorem 4.7 hold and let {(xδ
n, ξ

δ
n )}0≤n≤nδ be

defined by Algorithm 1. Then for all 0 ≤ l ≤ nδ there holds

|〈ξδ
nδ

− ξδ
l , x† − xδ

nδ
〉| ≤ C2Dξδ

l
�(x†, xδ

l ),

where C2 = (1 + η)(3τ + 1)/(τc0μr
0).

Proof By the definition of ξδ
n , the property of JYr and (3.3), we can obtain

|〈ξδ
nδ

− ξδ
l , x† − xδ

nδ
〉| ≤

nδ−1∑
n=l

|〈ξδ
n+1 − ξδ

n , x† − xδ
nδ

〉|

≤
nδ−1∑
n=l

1

αn(yδ)
‖yδ − F(xδ

n) − L(xδ
n)(x

δ
n+1 − xδ

n)‖r−1‖L(xδ
n)(x

† − xδ
nδ

)‖

≤
nδ−1∑
n=l

1

αn(yδ)
‖yδ − F(xδ

n)‖r−1‖L(xδ
n)(x

† − xδ
nδ

)‖.

By Assumption 1(d) and (3.14) we can derive that

‖L(xδ
n)(x

† − xδ
nδ

)‖ ≤ (1 + η)(δ + 3‖yδ − F(xδ
n)‖), 0 ≤ n < nδ.

Since ‖yδ − F(xδ
n)‖ > τδ for 0 ≤ n < nδ , we therefore have

‖L(xδ
n)(x

† − xδ
nδ

)‖ ≤ (1 + η)(3τ + 1)

τ
‖yδ − F(xδ

n)‖, 0 ≤ n < nδ.
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Consequently

|〈ξδ
nδ

− ξδ
l , x† − xδ

nδ
〉| ≤ (1 + η)(3τ + 1)

τ

nδ−1∑
n=l

1

αn(yδ)
‖yδ − F(xδ

n)‖r .

This together with (3.11) in Proposition 3.4 implies the desired estimate. ��
We are now ready to prove Theorem 4.7, the main result of this paper.

Proof of Theorem 4.7. We may assume that F(x0) 
= y. We first claim that

lim
δ→0

nδ = ∞. (4.10)

Suppose that this is not true. Then there exists {yδl } satisfying ‖yδl − y‖ ≤ δl with
δl → 0 such that nδl → n̂ as l → ∞ for some finite integer n̂. Thus nδl = n̂ for large
l. By the definition of nδl we have

‖F(xδl
n̂ ) − yδl‖ ≤ τδl . (4.11)

In view of Lemma 4.8, by taking a subsequence of {yδl } if necessary, we can find
{(xn, ξn)} ∈ �μ0,μ1(x0, ξ0) such that xδl

n̂ → xn̂ as l → ∞. Letting l → ∞ in (4.11)
gives F(xn̂) = y. Consequently, by Lemma 4.5, we must have F(x0) = y which is a
contradiction.

We next show the convergence result. We first prove that

lim
δ→0

Dξδ
nδ

�(x†, xδ
nδ

) = 0 (4.12)

by a contradiction argument. Suppose that (4.12) is not true. Then there exist a number
ε > 0 and a sequence {yδl } satisfying ‖yδl − y‖ ≤ δl with δl → 0 as l → ∞ such that

D
ξ

δl
nl

�(x†, xδl
nl ) ≥ ε for all l, (4.13)

where nl := nδl . According to Proposition 4.4, there is an integer n(ε) such that

Dξn(ε)
�(x†, xn(ε)) < ε, ∀{(xn, ξn)} ∈ �μ0,μ1(x0, ξ0). (4.14)

For this n(ε), by using Lemma 4.8 and by taking a subsequence of {yδl } if necessary,
we can find {(xn, ξn)} ∈ �μ0,μ1(x0, ξ0) such that

xδl
n → xn, ξ δl

n → ξn and �(xδl
n ) → �(xn) as l → ∞ (4.15)

for 0 ≤ n ≤ n(ε). Since (4.10) implies that nl > n(ε) for large l, by using Proposition
3.4 we have

D
ξ

δl
nl

�(x†, xδl
nl ) ≤ D

ξ
δl
n(ε)

�(x†, xδl
n(ε)) = �(x†) − �(xδl

n(ε)) − 〈ξδl
n(ε), x

† − xδl
n(ε)〉.
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In view of (4.15) and (4.14), we therefore obtain

lim sup
l→∞

D
ξ

δl
nl

�(x†, xδl
nl ) ≤ �(x†) − lim

l→∞ �(xδl
n(ε)) − lim

l→∞〈ξδl
n(ε), x

† − xδl
n(ε)〉

= �(x†) − �(xn(ε)) − 〈ξn(ε), x
† − xn(ε)〉

= Dξn(ε)
�(x†, xn(ε)) < ε.

This is a contradiction to (4.13). We thus obtain (4.12). By virtue of the uniform
convexity of �, we then have limδ→0 ‖xδ

nδ
− x†‖ = 0.

It remains only to show that limδ→0 �(xδ
nδ

) = �(x†). In view of (4.12), it suffices
to show that

lim
δ→0

〈ξδ
nδ

, x† − xδ
nδ

〉 = 0. (4.16)

We again use a contradiction argument by assuming that there is a number ε > 0 and
a sequence {yδl } satisfying ‖yδl − y‖ ≤ δl with δl → 0 as l → ∞ such that

|〈ξδl
nl , x

† − xδl
nl 〉| ≥ C2ε for all l, (4.17)

where C2 is the constant defined in Lemma 4.9. For this ε, we may use Proposition
4.4 and Lemma 4.8 to find an integer n(ε) such that (4.14) and (4.15) hold. In view of
Lemma 4.9, we have

|〈ξδl
nl , x

† − xδl
nl 〉| ≤ |〈ξδl

nl − ξ
δl
n(ε), x

† − xδl
nl 〉| + |〈ξδl

n(ε), x
† − xδl

nl 〉|
≤ C2D

ξ
δl
n(ε)

�(x†, xδl
n(ε)) + |〈ξδl

n(ε), x
† − xδl

nl 〉|.

By taking l → ∞, using xδl
nl → x†, (4.15) and (4.14), we can obtain

lim sup
l→∞

|〈ξδl
nl , x

† − xδl
nl 〉| ≤ C2 lim

l→∞ D
ξ

δl
n(ε)

�(x†, xδl
n(ε))=C2Dξn(ε)

�(x†, xn(ε))<C2ε

which contradicts (4.17). We therefore obtain (4.16) and complete the proof of Theo-
rem 4.7. ��

5 Numerical results

We consider the identification of the parameter c in the boundary value problem

{−�u + cu = f in �,

u = g on ∂�
(5.1)

from the measurements of the state variable u in �, where � ⊂ R
d , d ≤ 2, is a

bounded domain with Lipschitz boundary ∂�, f ∈ H−1(�) and g ∈ H1/2(∂�). This
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is a benchmark example of nonlinear inverse problems. It is well known that (5.1) has
a unique solution u = u(c) ∈ H1(�) for each c in the domain

D := {c ∈ L2(�) : ‖c − ĉ‖L2(�) ≤ γ0 for some ĉ ≥ 0, a.e.}

with some γ0 > 0. By the Sobolev embedding H1(�) ↪→ Lr (�), it makes sense to
define the parameter-to-solution map F : D ⊂ L2(�) → Lr (�) with F(c) = u(c)
for any 1 < r < ∞. We consider the problem of identifying c ∈ L2(�) from an
Lr (�)-measurement of u. This is amount to solving F(c) = u. It is known that F is
Fréchet differentiable; the Fréchet derivative and its Banach space adjoint are given
respectively by

F ′(c)h = −A(c)−1(hu(c)), h ∈ L2(�),

F ′(c)∗w = −u(c)A(c)−1w, w ∈ Lr∗
(�),

(5.2)

where r∗ is the number conjugate to r , i.e. 1/r∗ + 1/r = 1, and A(c) : H2(�) ∩
H1
0 (�) → L2(�) is defined by A(c)u = −�u + cu. Recall that in the space Lr (�)

with 1 < r < ∞ the duality mapping Jr : Lr (�) → Lr∗
(�) is given by

Jr (ϕ) := |ϕ|r−1sign(ϕ), ϕ ∈ Lr (�).

For this parameter identification problem, the tangential cone condition has been ver-
ified for r ≥ 2 in [12,26]; the verification for 1 < r < 2, however, is not yet available.

In the following we will report some numerical results for this inverse problem to
indicate the performance of Algorithm 1with various choices of the convex function�

and the Banach spaces X and Y . The main computational cost stems from solving the
convex minimization problems involved in the algorithm which requires numerical
solutions of differential equations related to calculating the Fréchet derivatives and
their adjoint. We use BFGS—one of the most popular quasi-Newton methods—for
Example 5.1 and a restarted nonlinear CG method for Examples 5.2 and 5.3 below,
see [29]. Some fast algorithms have been discovered for solving convex optimization
problems in recent years, including the fast proximal gradient method [4] and the
primal dual hybrid gradient methods [5,33]. These methods are powerful to deal with
problems for which fast solvers such as fft are applicable. In case fast algorithms
are not applicable as in our computation, they might not have much advantage over
other type methods.

Example 5.1 Consider the one-dimensional problem on the interval � = (0, 1) with
the source term f (t) = 100e−10(t−0.5)2 and the boundary data u(0) = 1 and u(1) = 2.
We will identify the sought solution

c†(t) = 5t2(1 − t) + sin2(2π t)

using noisy data that contains a few data points, called outliers, which are highly incon-
sistent with other data points. The appearance of outliers may arise from procedural
measurement errors.
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Fig. 1 Numerical results for Example 5.1: a, d data with noise; b, e reconstruction results by Algorithm 1
with X = Y = L2[0, 1] and �(c) = 1

2 ‖c‖22; c, f reconstruction result by Algorithm 1 with X = L2[0, 1],
Y = L1.1[0, 1] and �(c) = 1

2 ‖c‖22

In Fig. 1 we present the numerical results by Algorithm 1 with τ = 1.1, μ0 = 0.90
and μ1 = 0.96 using the initial guess c0 = 0 and ξ0 = 0. In order to carry out
the computation, the differential equations involved are solved by a finite difference
method by dividing� = (0, 1) into 400 subintervals of equal length. Theminimization
problems involved in the algorithm are solved by performing 50 iterations of the BFGS
method. Figure 1a and d show the plots of the noisy data; the one in (a) contains
only Gaussian noise, while the one in (d) contains not only Gaussian noise but also
10% outliers. Figure 1b and e present the reconstruction results by the regularizing
Levenberg–Marquardt scheme of Hanke, i.e. Algorithm 1 with X = Y = L2[0, 1]
and �(c) = 1

2‖c‖2L2 ; it shows that the method is highly susceptible to the existence
of outliers. In Fig. 1c and f we present the reconstruction results by Algorithm 1 with
X = L2[0, 1], Y = Lr [0, 1] with r = 1.1 and �(c) = 1

2‖c‖2L2 . It can be seen that
the method is robust enough to prevent being affected by outliers. Using the Lr misfit
data terms, with r ≥ 1 close to 1, to exclude the outliers has been investigated for
several other regularization methods, see [14,15,18,23].
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Fig. 2 Reconstruction results for Example 5.2: a exact solution; b Algorithm 1 with �(c) = 1
2 ‖c‖22; c

Algorithm 1 with �(c) = 1
2 ‖c‖22 + |c|T V,ε and ε = 10−4

Example 5.2 We next consider the two dimensional problem on � = [0, 1] × [0, 1]
with the source term

f (x, y) = 200e−10(x−0.5)2−10(y−0.5)2

and the boundary data g ≡ 1 on ∂�. The sought solution is a piecewise constant func-
tion as shown in Fig. 2a. We reconstruct the sought solution using Algorithm 1 with
X = Y = L2(�) and different choices of �. In order to carry out the computation,
we divide � into 100 × 100 small squares of equal size. All partial differential equa-
tions involved are solved approximately by a finite difference method. When using
Algorithm 1, we use τ = 1.01, μ0 = 0.90, μ1 = 0.96 and take ξ0 = c0 = 0 as an
initial guess. The minimization problem to determine cδ

n for each n ≥ 1 is solved by
a restart CG method after 1000 iterations.

In Fig. 2 we report the numerical results using measurement data that is corrupted
by Gaussian noise with noise level δ = 0.001. Figure 2b presents the reconstruction
result using �(c) = 1

2‖c‖2L2 . Due to the over-smoothing effect, the reconstruction
result turns out to contain unsatisfactory artifacts. Figure 2c reports the reconstruction
result using �(c) = λ‖c‖2

L2 + |c|T V,ε with λ = 1/2, where ε = 10−4 and |c|T V,ε =∫
�

√|∇c|2 + ε which can be considered as a smoothed approximation of the total
variation functional

∫
�

|∇c|. Clearly the result in (c) significantly improves the one in
(b) by efficiently removing the undesired artifacts.

Example 5.3 We use the same setup in Example 5.2 but now the sought solution is
sparse. The domain � is divided into 120×120 small squares of equal size in order to
solve the associated partial differential equations. In Fig. 3we report the reconstruction
results of Algorithm 1 using measurement data contaminated by Gaussian noise with
noise level δ = 0.001. We use τ = 1.001, μ0 = 0.90, μ1 = 0.96 and take c0 =
ξ0 = 0 as an initial guess. The minimization problems involved in the algorithm are
solved again by a restart CG after 300 iterations. The true solution is plot in Fig. 3a.
Figure 3b presents the numerical result of Algorithm 1 using �(c) = 1

2‖c‖2L2 . Figure

3c reports the numerical result of Algorithm 1 using �(c) = λ‖c‖2
L2 + ∫

�

√|c|2 + ε

with λ = 0.01 and ε = 10−4 which can be regarded as a smoothed approximation of
the L1 norm. A comparison on the results in (b) and (c) clearly shows that the sparsity
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Fig. 3 Reconstruction results for Example 5.3: a exact solution; b Algorithm 1 with �(c) = 1
2 ‖c‖2

L2
; c

Algorithm 1 with �(c) = λ‖c‖2
L2

+ ∫
�

√
|c|2 + ε, where λ = 0.01 and ε = 10−4

of the sought solution is significantly reconstructed in (c). Therefore, a proper use
of a convex function close to the L1 norm can improve the reconstruction of sparse
functions dramatically.
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