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Abstract Residual-type a posteriori error estimates in the maximum norm are given
for singularly perturbed semilinear reaction-diffusion equations posed in polyhedral
domains. Standard finite element approximations are considered. The error constants
are independent of the diameters of mesh elements and the small perturbation parame-
ter. In our analysis, we employ sharp bounds on the Green’s function of the linearized
differential operator. Numerical results are presented that support our theoretical find-
ings.
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1 Introduction

Our goal is to prove residual-type a posteriori error estimates in the maximum norm
for singularly perturbed semilinear reaction-diffusion equations of the form

Lu := −ε2�u + f (x, u) = 0 in �, u = 0 on ∂�. (1.1)
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Here we assume that 0 < ε ≤ 1, that f is continuous on �×R and satisfies f (·, s) ∈
L∞(�) for all s ∈ R, and the one-sided Lipschitz condition f (x, u) − f (x, v) ≥
C f [u − v] whenever u ≥ v. Here C f ≥ 0. Nonhomogeneous Dirichlet boundary
conditions can also be considered with modest modification to our development. We
additionally assume that � is a, possibly non-Lipschitz, polyhedral domain in R

n ,
n = 2, 3. Then there is a solution u ∈ H1

0 (�) ∩ C(�̄) (see Lemma 1 below). We
consider a standard finite element approximation to (1.1). Let Sh ⊂ H1

0 (�) be a
Lagrange finite element space of fixed degree r relative to a shape regular mesh T ,
and let uh ∈ Sh satisfy

ε2(∇uh,∇vh) + ( f (·, uh), vh)h = 0, vh ∈ Sh . (1.2)

Here (·, ·) is an exact L2 inner product over � (which is reasonable to assume when
computing the stiffness matrix above), while (·, ·)h is an approximate inner product
resulting from application of a quadrature rule; we make more precise assumptions
below.

Equations of type (1.1) and its parabolic version ∂t u + Lu = 0 arise in modeling
of thin plates as well as biological, chemical and engineering applications. Note that
the usefulness of our results is not restricted to the steady-state case; in fact, plugging
them (as error estimators for elliptic reconstructions) into the parabolic estimators
[26] yields fully computable a posteriori error estimates in the maximum norm for the
more challenging parabolic case.

Residual-type a posteriori error estimates in the maximum norm for finite element
methods have previously been considered in a number of works. The papers [15,32]
were the earliest such works; both contain L∞ residual estimators for linear ellip-
tic problems on two-dimensional domains. The approach of [32] was extended to
three space dimensions in [10], while [33–35] consider elliptic obstacle problems and
monotone semilinear problems. Finally, [11] contains a posteriori maximum-norm
estimates for an interior penalty discontinuous Galerkin method for the Laplacian as
well as improved estimates for standard continuous Galerkin methods. Our approach
draws most heavily from [11] and [33]. We use the techniques of [11] in order to
admit arbitrary polyhedral domains in our analysis, whereas the results of [33] are
restricted to Lipschitz polyhedral domains. In [33], the authors develop a multilevel
estimator for controlling consistency errors resulting from numerical quadrature, and
we employ much of their framework for the same purpose.

A number of works have also previously considered a posteriori error estimation
and adaptivity for singularly perturbed reaction-diffusion equations, with the error
generallymeasured in the energy (reaction-diffusion) norm. The article [42] appears to
be thefirst to provide residual-based a posteriori estimates for FEMfor scalar stationary
reaction-diffusion problems that are robust with respect to the perturbation parameter.
In [22], results of a similar spirit are announced, and then extended to the Brinkman
problem in [23]. Residual-based estimates for singularly perturbed reaction-diffusion
problems on anisotropic methods have also been studied, for example in [28,29]. Two
essential features of all of these works are that the weighting of the residual terms is of
a different form depending on whether the local mesh parameter hT < ε or hT ≥ ε,
and that no unknown constants in the estimates depend on ε. Convergence of adaptive
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algorithms based on such a posteriori estimates is also considered in [27,40]. Finally, a
number of authors have considered other types of a posteriori error estimates which are
robust with respect to ε, as for example [2], [3] in which constant-free upper bounds
are established by solving local subproblems.

The energy norm for singularly perturbed reaction-diffusion equations of type (1.1)
is too weak, as it involves an excessive power of the small parameter ε and so is
essentially no stronger than the L2(�) norm [31]. The maximum norm, by contrast,
is sufficiently strong to capture sharp layers in the exact solution, so it appears more
suitable for such problems. A posteriori estimates in the maximum norm for equations
of type (1.1) are given in [7,24]; the results are independent of the mesh aspect ratios,
but apply only to tensor-product meshes. The situation with a priori error estimates
in the maximum norm for such equations is much more satisfactory. In [30,37], such
bounds are given for finite element methods on globally quasiuniform meshes, while
for a priori bounds in the maximum norm on locally-anisotropic layer-adapted meshes
(for both finite element and finite difference methods) we refer the reader to [4,5,9,
24,39] and references therein.

Our main contribution is the development of a posteriori error estimates in the
maximum norm that are robust with respect to ε, as in similar a posteriori estimates for
the energy norm described above. In addition, we make an improvement to underlying
techniques for estimating pointwise errors which even for the Laplacian leads to a
sharper exponent in the logarithmic factors commonly present in maximum-norm
estimates. We now outline our results in order to illustrate these improvements. For
simplicity of presentation we for the time being assume exact quadrature, i.e., that
(·, ·)h = (·, ·). Our full results below include error indicators that as in [33] account
for consistency errors arising from inexact quadrature as well as a posteriori lower
bounds. Let ˜C f = C f + ε2. We prove below that

‖u − uh‖∞;� ≤ C max
T∈T

(

min{˜C−1
f , �hh

2
T ε−2} ‖ ε2�uh − f (·, uh) ‖∞;T

+min{ε ˜C−1/2
f , �hhT }‖�∇uh�‖∞;∂T

)

. (1.3)

Here hT = diam(T ), �∇uh� is the standard jump in the normal derivative of uh across
an element interface, and �h = ln(2 + εh−1

˜C−1/2
f ) with h = minT∈T hT . We also

prove ε-robust a posteriori lower bounds (efficiency estimates) below. For the sake of
comparison, note that the a posteriori analysis of [33] applies to (1.1), although robust
analysis of singularly perturbed problems is not a focus of that work. The estimates in
[33] are obtained by employing arguments similar to ours below, but essentially with
C f taken to be 0 and thus ˜C f = ε2. Thus applying these results yields

‖u − uh‖∞;� ≤ C �̃
αn
h max

T∈T

(

h2T ε−2‖ε2�uh − f (·, uh)‖∞;T

+ hT ‖�∇uh�‖∞;∂T
)

. (1.4)

Here �̃h = ln 1/hwithα2 = 2 andα3 = 4/3. In both cases aboveC is independent of ε.
The essential improvement in (1.3) versus (1.4) comes in the weighting of the residual
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terms when ε2 
 C f , i.e., when the problem is uniformly singularly perturbed. In
this case (1.3) is significantly sharper in regions where hT � ε. For fixed ε, the two
estimators are equivalent with the exception of logarithmic factors if max hT ≤ ε.
Numerical results in Sect. 4 below show that the estimator (1.4) is not ε-uniformly
robust in the sense that its effectivity index (estimator divided by error) blows up for a
fixed max hT as ε → 0. These tests also confirm that the elementwise error indicators
naturally derived from (1.4) may not perform well when used to drive marking in an
adaptive FEM.

Our estimator (1.3) essentially reduces to (1.4) when C f � ε, i.e., when the prob-
lem is not singularly perturbed, and we can in fact recover (1.4) (with the exponents
of the log factors improved to 1) by taking C f = 0 since then our one-sided Lipschitz
condition reduces to a monotonicity condition. We thus allow for unified considera-
tion of problems in both singularly perturbed and elliptic regimes and continuously
track the transition between these two regimes. However, obtaining ε-robust estimates
in the singularly perturbed regime requires us to assume more regularity of f than
monotonicity.

Note also the improvement in the logarithmic terms in (1.3) versus (1.4). First, �h in
(1.3) is smaller than �̃h in (1.4) when ε 
 1. (Note that the a priori error bounds in [37]
also involve �h .) In addition, the exponent of �h in (1.3) is 1 for both n = 2 and n = 3,
whereas the exponent of �̃h in (1.4) is greater than 1. The exponent of the logarithmic
factor when n = 3 was already improved to 1 in [11], and we carry out a similar
improvement for the case n = 2 here.We additionally show below that the logarithmic
factor is necessary at least when piecewise linear elements are used by proving that
standard maximum-norm estimators in actuality reliably and efficiently control the
error in a suitable bounded mean oscillation (BMO) norm with no logarithmic factors
present on convex polyhedral domains. This result also may have implications for
understanding convergence of adaptive algorithms for controlling maximum errors,
since it indicates that the standard L∞ AFEM is in fact better designed to control a
different measure of the error.

As in previous works concerning a posteriori error analysis of elliptic problems
in the maximum norm, we employ Green’s functions in order to represent the error
pointwise, and estimates for Green’s functions play a critical role in our proofs. Such
estimates are most readily available for the Laplacian. In [33], the authors obtain (1.4)
by employing a Riesz representation of the residual along with a barrier argument
in order to use estimates for a regularized Green’s function for the Laplacian. We
similarly employ an argument involving the maximum principle in order to reduce
proving (1.3) to obtaining appropriate bounds for a Green’s function for a simplified
differential operator, though as in [11] we employ the actual instead of a regularized
Green’s function. It is however critical that our simplified operator−ε2�+C f retains
the essential singularly perturbed character of (1.1).

Note that the present paper is complemented by a subsequent paper [25], in which
the consideration is restricted to � ⊂ R

2 and linear finite elements, but a posteriori
error bounds of type (1.3) are extended to more challenging anisotropic meshes. The
analysis in [25] partially relies on our results and findings, the Green’s function bounds
being particularly essential.
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The paper is organized as follows. Section 2 contains analytical preliminaries, most
notably bounds for Green’s functions for singularly perturbed problems which allow
us to translate maximum-norm error estimation techniques used for the Laplacian
in [11] to the current situation. Section 3 contains proofs of a posteriori upper and
lower bounds in the maximum norm that are ε-robust and account for consistency
errors arising from numerical quadrature. Several numerical examples are presented
in Sect. 4. Finally, in Appendix A we show that logarithmic factors must be present in
a posteriori upper bounds and further discuss their role in a posteriori error estimates
and adaptivity for controlling maximum errors.

2 Analytical preliminaries

In this section we first sketch a proof of existence and uniqueness for (1.1) and then
prove a number of essential bounds for Green’s functions for singularly perturbed
problems.

2.1 The continuous problem: existence and uniqueness

We are not aware of an existence and uniqueness result for (1.1) under the precise
assumptions that we make, so we sketch a proof.

Lemma 1 Assume that f ∈ C(� × R), f (·, s) ∈ L∞(�) for all s ∈ R, that for all
x ∈ � we have f (x, u) − f (x, v) ≥ 0 whenever u ≥ v, and that � is a polyhedral
domain in R

n, n = 2 or n = 3. Then (1.1) has a unique solution u ∈ H1
0 (�) which

additionally satisfies u ∈ W 2
l (�) ⊆ W 1

q ⊂ C(�̄) for some l > n
2 and q > n.

Proof Let�′ be a subdomain of�, and let L̃ := −ε2�+ p̃ for some p̃ ≥ 0 in L∞(�′).
Then, an application of the weak maximum principle for functions in H1(�) [17,
Theorem 8.1] implies that there exists a constant μ0 = μ0(ε, diam�), independent
of p̃, such that ‖v‖∞;�′ ≤ max

{

μ0‖L̃v‖∞;�′ , ‖v‖∞;∂�′
}

for any v ∈ H1(�) ∩
L∞(�). Next, set μ1 := μ0‖ f (·, 0)‖∞;� and define the function f̃ (·, s) to be equal
to f (·, s) for |s| ≤ μ1 and equal to f (·,±μ1) for ±s > μ1. Note that | f̃ | ≤ μ2 =
max{‖ f (·,−μ1)‖∞;�, ‖ f (·, μ1)‖∞;�} and f̃ is monotone in the second argument.
By an application of [6, Lemma 16], there exists a solution ũ ∈ H1

0 (�) of −ε2�ũ +
f̃ (x, ũ) = 0. Furthermore, ũ ∈ H1

0 (�) and | f̃ | ≤ μ2 imply �ũ = ε−2 f̃ (·, ũ) ∈
L2(�), so an application of [11, Lemma 2.1] yields, with some l > n

2 and q > n,
that ũ ∈ W 2

l (�) ⊆ W 1
q (�) ⊂ C(�̄). Finally, let �′ := {|ũ| > μ1} ⊂ �. As ũ is

continuous, �′ is a well-defined subdomain of �. Also, p̃(x) := f̃ (x,ũ)− f̃ (x,0)
ũ ≥ 0 is

in L∞(�′), and by a simple computation −ε2�ũ + p̃ũ = − f̃ (x, 0) = − f (x, 0) in
�′. Thus the above maximum-principle bound yields ‖ũ‖∞;�′ ≤ μ1, so �′ = ∅ and
‖ũ‖∞;� ≤ μ1. Hence f̃ (·, ũ) = f (·, ũ), that is, ũ is a solution to (1.1). ��

Assuming a nonhomogeneous boundary condition u = g on ∂� with some g ∈
W 2

l (�) ⊆ W 1
q ⊂ C(�̄), the above lemma can be generalized as follows. Let−�ĝ = 0

in � and ĝ = g on ∂�. Then [11] gives ĝ ∈ W 2
l (�) ⊆ W 1

q ⊂ C(�̄). Now, û := u− ĝ
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satisfies−ε2�û+ f̂ (x, û) = 0 subject to û = 0 on ∂�, where f̂ (x, s) := f (x, s+ ĝ).
Note that this problem satisfies the hypotheses of the above lemma. In particular, for
each s ∈ R, one has | f̂ (·, s)| ≤ max

{‖ f̂ (·, s − ‖ĝ‖∞)‖∞;�, ‖ f̂ (·, s + ‖ĝ‖∞)‖∞;�
}

so f̂ (·, s) ∈ L∞(�) for each s. An application of the above lemma gives existence
and uniqueness of û and thus also of u.

2.2 Bounds for the Green’s function

As is standard in the literature on maximum-norm error bounds in FEM, we employ
a Green’s function in order to represent the error pointwise. It is possible to obtain
such a representation employing the Green’s function for a standard linearization
about u and uh , but proving the necessary bounds on this Green’s function is at least
significantly more difficult unless we assume that the Lipschitz constant of f in u is
uniformly bounded above by some constant C̄ f . (Note that we have only assumed a
corresponding lower bound on the Lipschitz constant.) In Sect. 3.1 below we show
that we can instead employ the Green’s function for the simplified linear operator
L̄ := −ε2� + C f , so we only analyze the Green’s function for this operator. The
bounds below do however hold for the corresponding Green’s function for a linearized
operator under the assumption C f ≤ fu � C f .

There exists a Green’s function G(x, ξ) : � × � → R such that for any v ∈
H1
0 (�) ∩ Wq

1 (�) with q > n,

v(x) = ε2(∇v,∇G(x, ·)) + C f (v,G(x, ·)). (2.1)

For each x ∈ �, this function G, satisfies

L̄G = −ε2 �ξG + C f G = δ(x − ξ), ξ ∈ �,

G(x; ξ) = 0, ξ ∈ ∂�.
(2.2)

Here δ(·) is the n-dimensional Dirac δ-distribution.
Before stating regularity results for G we define notation. We write a ∼ b when

a � b and a � b, and a � b when a ≤ Cb with a constant C depending on �, r , and
shape regularity properties of T , but not on other essential quantities. In particular,
C does not depend on the diameters of elements in T , ε, or C f . Also, for D ⊆ �,
1 ≤ p ≤ ∞, and k ≥ 0, ‖v‖p ;D = ‖v‖L p(D) and |v|k,p ;D = |v|Wk

p(D), where
| · |Wk

p(D) is the standard Sobolev seminorm with integrability index p and smoothness
index k.

We shall employ the following bounds.

Theorem 1 Let G be from (2.2), and let ˜C f = C f + ε2. Then for any x ∈ �,

˜C f ‖G(x, ·)‖1;� + ε

√

˜C f ‖G(x, ·)‖ n
n−1 ;�

+ ε

√

˜C f |G(x, ·)|1,1;� � 1. (2.3)
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In addition, for the ball B(x, ρ) of radius ρ centered at x ∈ �, let �ρ := ln(2+ ε̃ρ−1),
where ε̃ = ε√

C f +ε2
. Then

‖G(x, ·)‖1,B(x,ρ)∩� � ε−2ρ2 �knρ , k2 = 1 and k3 = 0, (2.4a)

‖G(x, ·)‖ n
n−2 ,�\B(x,ρ) � ε−2�ρ, (2.4b)

|G(x, ·)|1, n
n−1 ;�\B(x,ρ) � ε−2�ρ, (2.4c)

|G(x, ·)|1,1;B(x,ρ)∩� � ε−2ρ, (2.4d)

|G(x, ·)|2,1;�\B(x,ρ) � ε−2�ρ. (2.4e)

Remark 1 Thework [11] contains similarGreen’s function estimates in the case ε = 1,
C f = 0. When n = 2, (2.4e) gives a sharper version of the bound [11, (5.21)] in that
ln2(1/h) in the latter can be improved to ln(1/h). Hence a similar amendment applies
to all error estimators obtained in [11].

Remark 2 Similar Green’s function bounds for the case ε 
 1 and C f ∼ 1, but on
significantly simpler tensor-product domains are given in [7,24]. An inspection of the
proofs in these papers reveals that in this case, all bounds of Theorem 1 are sharp with
respect to ε, ρ and �ρ .

2.3 Proof of Theorem 1

First, we give a version of the bounds from [11] for the Green’s function of the Laplace
operator.

Lemma 2 If ε = 1 and C f = 0, then G of (2.2) satisfies (2.3), (2.4d), and (2.4e).

Proof If ε = 1 and C f = 0, the bound for |G(x, ·)|1,1;� in (2.3) follows immediately
from (2.4d) with ε = 1, ρ = diam(�), while the remaining results in (2.3) are easily
obtained using the pointwise upper bounds on G from [11, (2.6)].

For n = 3, the bounds (2.4d) and (2.4e) with ε = 1 immediately follow from [11,
(5.23 and 5.26)].

For n = 2, the bounds [11, (5.23 and 5.27)] involve an additional logarithmic factor,
but can be improved to (2.4d) and (2.4e) as follows.Note that the first line in [11, (5.23)]
and [11, (5.25)] remains valid if G is replaced in each considered subdomain � j by
G −min� j G. With this observation, the proofs of the bounds [11, (5.23) and (5.27)]
yield their sharper versions (2.4d) and (2.4e) after we prove the following lemma. ��
Lemma 3 Let n = 2, ε = 1, C f = 0, and �ρ = [B(x, ρ)\B(x, 1

2ρ)] ∩ � for any
ρ > 0 and x ∈ �. Then the Green’s function G of (2.2) satisfies

sup
�ρ

G(x, ·) − inf
�ρ

G(x, ·) ≤ C,

where C is independent of ρ and x.
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Proof Fix x ∈ � and let r0 = dist(x, ∂�). Note that it suffices to show that

max
{

0 , 1
2π ln r0|ξ−x |

} ≤ G(x, ξ) ≤ max
{

0 , 1
2π ln r0|ξ−x |

}+ C, ξ ∈ �. (2.5)

Here the lower bound is easily obtained using the maximum principle and the standard
formula�(x, ξ) = 1

2π ln |x−ξ |−1 for the fundamental solution� onR2. For the upper
bound,we assume,without loss of generality, that the nearest point to x on ∂� is O , and
that � ⊂ S, where the domain S is either (i) S = R2\{(ξ1, 0), ξ1 ≥ 0}, or, for a more
complicated polygonal�, (ii) S = {|ξ −x | < diam(�)}\{(ξ1, 0), 0 ≤ ξ1 ≤ CS}with
CS � 1. As � ⊂ S implies G(x, ξ) ≤ GS(x, ξ), where GS is the Green’s function
for the domain S, the upper bound in (2.5) immediately follows from

GS(x, ξ) ≤ max
{

0 , 1
2π ln 5r0|ξ−x |

}

+ C. (2.6)

To complete the proof, we establish (2.6) for cases (i) and then (ii).

(i) The Green’s function for the domain S = R2\{(ξ1, 0), ξ1 ≥ 0} is explicitly given
by [18, p. 143, (16.55)]

GS(x, ξ) := 1
4π ln

(

t2 − 2t cos
( 1
2 [θ + θ0]

)+ 1

t2 − 2t cos
( 1
2 [θ − θ0]

)+ 1

)

, t =
√

r

r0
,

where (r0, θ0) and (r, θ) are respectively the polar coordinates of x and ξ . If
r ≥ 4r0, then t ≥ 2 and one easily gets GS ≤ 1

2π ln | t+1
t−1 | ≤ 1

2π ln 3. This bound
remains valid in {|ξ−x | ≥ 5r0} ⊂ {r ≥ 4r0}. Now, for the domain {|ξ−x | ≤ 5r0},
the maximum principle yields GS ≤ 1

2π ln 5r0|ξ−x | + 1
2π ln 3. This completes the

proof of (2.6) with C = 1
2π ln 3 for case (i).

(ii) Let S = {|ξ−x | ≤ diam(�)}\{(ξ1, 0), 0 ≤ ξ1 ≤ CS}. First, note thatGS(x, ξ) ≤
1
2π ln diam(�)

CS
for |ξ − x | ≥ CS . Next, let G ′

S denote the Green’s function in
case (i). Now an application of the maximum principle to GS −G ′

S in the domain
|ξ − x | ≤ CS yields |GS − G ′

S| ≤ C . So the bound (2.6) in this domain follows
from the corresponding result in case (i). ��

Lemma 4 Let D ⊂ D′ ⊆ �̂ := ε−1� with dist{∂D\∂�̂, ∂D′\∂�̂} � 1 and
diam(D′) � d. Then for any v ∈ L2(�) such that �v ∈ L2(�)

‖v‖2,1 ;D � dn/2(‖�v‖2 ;D′ + ‖v‖2 ;D′
)

, (2.7)

Proof Set α ∈ (1, 4
3 ). Note that |v|2,α ;� ≤ Cα‖�v‖α ;� in the original domain� [11,

Lemma 2.1], where Cα = Cα(�) remains fixed throughout this proof. This implies
that |v|2,α ;�̂ ≤ Cα‖�v‖

α ;�̂ in the stretched domain �̂. Furthermore, we have that
|ωv|2,α ;�̂ ≤ Cα‖�(ωv)‖

α ;�̂, with a cutoff functionω that equals 1 in D and vanishes

in �̂\D′, so

|v|2,α ;D � ‖�v‖α ;D′ + ‖∇v‖α ;D′ + ‖v‖α ;D′ ,
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where we used dist{∂D\∂�̂, ∂D′\∂�̂} � 1. Next, as |D| ≤ |D′| � dn , so | · |2,1 ;D ≤
| · |2,α ;D · |D′|1−1/α , and ‖ · ‖α ;D′ ≤ ‖ · ‖2 ;D′ · |D′|1/α−1/2, so

|v|2,1 ;D � dn/2(‖�v‖2 ;D′ + ‖∇v‖2 ;D′ + ‖v‖2 ;D′
)

.

Combine this with ‖∇v‖2 ;D′ ≤ C(‖�v‖2 ;D′′ + ‖v‖2 ;D′′), where the domain D′′ is
related to D′ in the same way as D′ to D (while the constant C is independent of the
domain size). Now the notation change D′′ =: D′ yields the desired assertion. ��

Proof of Theorem 1 We divide the proof into two essentially different cases and their
three generalizations.
Case 1 0 < ε2 ≤ C f = 1. We start with (2.4a). Using the maximum principle,
one can show that 0 ≤ G(x; ξ) ≤ gn(x; ξ), where gn is the Green’s function for the
operator −ε2� + C f in Rn . In particular, from [41] we have

g2 = 1

2πε2
K0

(

√

C f r/ε
)

, g3 = 1

4πε3

e−√
C f r/ε

r/ε
, r = |ξ − x |, (2.8)

Here K0 is the modified Bessel function of the second kind of order zero and satisfies
[1]

K0(s) � ln(2 + s−1), s > 0,

K0(s) � s−1/2e−s, s � 1. (2.9)

(2.4a) follows from the corresponding bounds on ‖gn(x, ·)‖1,B(x,ρ).
Next, (2.4b) and the bounds for ‖G(x, ·)‖1,� and ‖G(x, ·)‖ n

n−1 ;� in (2.3) are
obtained similarly using (2.8) and (2.9).

Note that the bound (2.4c) follows from (2.4a), (2.4d) and (2.4e). To show this, let
a smooth cut-off function ω equal 1 on �\B(x, ρ) and vanish on B(x, 1

2ρ)∩�. Then
the Sobolev embedding W 2

1 (�) ↪→ W 1
n

n−1
(�) implies that

‖∇G‖ n
n−1 ;�\B(x,ρ) � ‖∇(ωG)‖ n

n−1 ;�
� |G|2,1 ;�\B(x, 12ρ) + ρ−1‖∇G‖1 ;B(x,ρ)∩�

+ρ−2‖G‖1 ;B(x,ρ)∩�. (2.10)

Now (2.4c) indeed follows by (2.4a), (2.4d) and (2.4e).
To prove the remaining bounds, introduce an auxiliary Green’s function Ḡ for the

operator −ε2� in the domain B(x ; 2ε) ∩ �. Note that Ḡ is a scaled normalized
Green’s function of the operator −�, for which we have Lemma 2. More precisely,
Ḡ(x, ξ) = ε−nG0(x/ε, ξ/ε), where G0 is the Green’s function of −� in the domain
ε−1[B(x ; 2ε) ∩ �], so Lemma 2 for G0 implies bounds (2.4d) and (2.4e) for Ḡ with
� replaced by B(x ; 2ε) ∩ �.
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716 A. Demlow, N. Kopteva

In view of this observation, to complete the proof, it suffices to show that

ε2|(Ḡ − G)(x; ·)|2,1 ;B(x ;ε)∩� + ε|(Ḡ − G)(x; ·)|1,1 ;B(x ;ε)∩� � 1, (2.11a)

|(Ḡ − G)(x; ·)|1,1 ;B(x ;ρ)∩� � ε−2ρ, ρ ≤ ε,

(2.11b)

ε2|G(x; ·)|2,1 ;�\B(x ;ε) + ε|G(x; ·)|1,1 ;�\B(x ;ε) � 1. (2.11c)

Indeed, the bound for |G(x, ·)|1,1;� in (2.3) follows from (2.11a), (2.11c) and a version
of (2.3) for Ḡ. Note that (2.3) implies (2.4d) for ρ ≥ ε. For ρ ≤ ε, the bound (2.4d)
follows from (2.11b), (2.11c) and a version of (2.4d) for Ḡ. Finally, the bound (2.4e)
follows from (2.11a), (2.11c) and a version of (2.4e) for Ḡ.

Now we establish each of the estimates in (2.11).
For (2.11a), let w(ξ) := Ḡ − G for ξ ∈ B(x ; 2ε) ∩ �. Note that (2.2) implies that

−ε2�ξ w = C f G. Next, using the variable ξ̂ = ξ/ε and the notation v̂(ξ̂ ) := v(ξ)

for any function v, and D̂ := ε−1D for any domain D, one gets −�ŵ = C f Ĝ in

B̂(x ; 2ε) ∩ �̂, so |�ŵ| + |ŵ| � Ĝ + ˆ̄G. Now, an application of (2.7) with d = 1
yields

‖ŵ‖2,1; B̂(x ;ε)∩�̂
� ‖�ŵ‖2; B̂(x ;2ε)∩�̂

+ ‖ŵ‖2 ;B̂(x; 2ε)∩�̂

� ‖Ĝ + ˆ̄G‖2 ;B̂(x; 2ε)∩�̂
.

Rewriting this in terms of the original variable ξ , one gets

ε−n{ε2|w|2,1 ;B(x ;ε)∩� + ε|w|1,1 ;B(x ;ε)∩�

}

� ‖Ĝ + ˆ̄G‖2 ;B̂(x ;2ε)∩�̂
� ε−n,

where we used G + Ḡ ≤ gn and (2.8). The above result immediately implies (2.11a).
To show (2.11b), we partly imitate the argument used to prove (2.11a) with B(x ; ε)

and B(x ; 2ε) replaced by B(x ; ρ) and B(x ; ρ + ε). In particular,

ε−n{ε|w|1 ;B(x ;ρ)∩�

} = ‖∇ŵ‖1 ;B̂(x ;ρ)∩�̂
� (ρ/ε)n/2‖∇ŵ‖2 ;B̂(x ;ρ)∩�̂

,

while −�ŵ = p̂ Ĝ implies

‖∇ŵ‖2 ;B̂(x ;ρ)∩�̂
� ‖Ĝ + ˆ̄G‖2 ;B̂(x ;ρ+ε)∩�̂

� ε−n .

The desired assertion (2.11b) follows as (ρ/ε)n/2 ≤ ρ/ε for ρ ≤ ε and n = 2, 3.
For (2.11c), letρ j := 2 j and divide the domain�\B(x ; ε) into the non-overlapping

subdomains D j := [B(x, ερ j+1)\B(x, ερ j )] ∩ � where j = 0, 1, . . .. Furthermore,
D j ⊂ D′

j := D j−1 ∪ D̄ j ∪ D j+1, so that dist(∂D′
j\∂�, ∂D j\∂�) ≥ ε/2. The

equation from (2.2) implies −�Ĝ + p̂ Ĝ = 0 in each D′
j , so an application of (2.7)
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with d = ρ j−1 ≥ 1
2 yields

‖Ĝ‖2,1 ;D̂ j
� ρ

n/2
j ‖Ĝ‖2 ;D̂′

j
� ρn

j ‖G‖∞;D′
j
.

Using G ≤ gn and (2.8), one gets ρn
j ‖G‖∞;D′

j
� ρ

μn
j ε−ne−cρ j , where by (2.8) and

(2.9) μ2 = 3/2 and μ3 = 2. So, in terms of the original variable ξ ,

ε−n
{

ε2|G(x; ·)|2,1 ;�\B(x ;ε) + ε|G(x; ·)|1,1 ;�\B(x ;ε)
}

� Cε−n
∞
∑

j=1

ρ
μn
j e−cρ j � ε−n .

This immediately implies the final bound (2.11c) in (2.11) when 0 ≤ ε2 ≤ C f = 1.
Case 2 ε2 = 1, C f = 0. We complete the proof of (2.4a), (2.4b), and (2.4c) for the

case C f = 0, ε = 1; the remaining estimates are contained in Lemma 2. (2.4a) and
(2.4b) follow immediately from standard pointwise estimates for Green’s function for
the Laplacian; cf. [11, (2.6)]. (2.4c) follows exactly as in (2.10).
Case 1′ 0 < ε2 ≤ C f . In this case G = 1

C f
G̃, where G̃ is the Green’s function for

− ε2

C f
�+1. Bounds for G̃ were obtained in Case 1, so wemay obtain all of the asserted

bounds forG by rescalingby 1
C f

,making the identificationsC f = 1 and ε = ε√
C f

, and

noting that ˜C f ∼ C f . For example, ˜C f ‖G‖1;� = ˜C f C
−1
f ‖G̃‖1;� ∼ ‖G̃‖1;� � 1.

Case 2′ ε2 = 1, 0 < C f ≤ 1. Let G0 be the Green’s function for −� considered in
Case 2. A maximum principle and positivity of the Green’s function yields 0 ≤ G ≤
G0. The bounds for ‖G‖1;� and ‖G‖ n

n−1 ;� in (2.3) alongwith (2.4a) and (2.4b) follow
immediately. The other bounds are established as in Case 1 with the modification that
whenever Ḡ is defined and employed, the domains B(x ; 2ε)∩� and B(x ; ε)∩� are
replaced by � (so Ḡ = G0), while �\B(x ; ε) is replaced by ∅.
Case 2′′ 0 ≤ C f ≤ ε2.HereG = 1

ε2
G̃, where G̃ is theGreen’s function for−�u+ C f

ε2
.

Bounds for G̃ were obtained inCase 2 andCase 2′ above, sowemay obtain the asserted
bounds for G by rescaling those for G̃ by 1

ε2
and making the identifications ε = 1,

C f = C f

ε2
. ��

3 A posteriori error analysis

In this section we carry out our a posteriori error analysis in several steps. In the final
subsection we summarize and discuss our results.

3.1 Error representation

In [33, Sect. 4.1], the authors employ a barrier argument to show that the Green’s
function for the Laplacian may be used in order to obtain pointwise a posteriori error
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718 A. Demlow, N. Kopteva

bounds for a monotone semilinear problem. We employ a version of their argument
which is in most respects simpler, but which in contrast to [33] retains the singularly
perturbed character of the problem.

For arbitrary u, v ∈ C(�̄), we first define an auxiliary function w by

− ε2�w + C f w = [ f (·, v) − f (·, u)] − C f [v − u] in �, w = 0 on ∂�. (3.1)

The following lemma gives a representation for the difference v − u (where we may
think of v = uh) via the Green’s function of the operator −ε2� + C f .

Lemma 5 Let e = [v − u] + w, with w defined by (3.1) and C f ≥ 0. Then

‖v − u‖∞;� ≤ 2‖e‖∞;�, (3.2a)

e(x) = ε2(∇v,∇G(x, ·)) + ( f (·, v),G(x, ·)), (3.2b)

where G satisfies (2.2).

Proof For any θ > 0, let �′ = {|u − v| > θ}. �′ is a well-defined subdomain of
� as u, v ∈ C(�̄). Then |w| ≤ ‖e‖∞;� + θ in �\�′, including on ∂�′. Next, in
�′, let p(x) := f (·,v)− f (·,u)

v−u ≥ C f and note that p ∈ L∞(�′). The Eq. (3.1) for w

is equivalent in �′ to −ε2�w + pw = (p − C f )e. Let w± := ‖e‖∞;� + θ ± w.
Then a calculation shows that [−ε2� + p] w± ≥ p ‖e‖∞;� ± (p − C f )e ≥ 0 in
�′, and w± ≥ 0 on ∂�′. Now an application of the weak maximum principle (cf.
[17, Theorem 8.1]) yields w± ≥ 0 or |w| ≤ ‖e‖∞;� + θ in �′, and so in �. As this
conclusion is valid for any θ > 0, so |w| ≤ ‖e‖∞;� in �. This immediately implies
(3.2a). For (3.2b), note that the definition of G implies

e(x) = ε2(∇e,∇G(x, ·)) + (C f e,G(x, ·)).

Now a calculation using (3.1) and (1.1) yields (3.2b). ��
Assuming the nonhomogeneous boundary condition u = g on ∂�, the above is

easy to generalize as follows. For (3.2b), we need to impose e = 0 on ∂�, but
now w = −[v − u] = −[v − g] on ∂� so the bound (3.2a) will be modified to
‖v − u‖∞;� ≤ 2‖e‖∞;� + ‖v − g‖∞;∂�. In the proof of the above lemma, we use
positive θ ≥ ‖v − g‖∞;∂� (or θ := ‖v − g‖∞;∂� if ‖v − u‖∞;∂� > 0, and θ → 0+
if ‖v − g‖∞;∂� = 0).

We finally give a formula for e(x) that we shall use to derive our bounds. Fix x ∈ �,
for example by choosing x so that |e(x)| is maximized over �, and write G = G(x, ·)
for the Green’s function of (2.2). Equations (3.2b) and (1.2) then yield that for any
Gh ∈ Sh ,

e(x) = ε2(∇uh,∇G) + ( f (·, uh),G)

= ε2(∇uh,∇(G − Gh)) + ( fh,G − Gh)

+ ( fh,Gh) − ( fh,Gh)h, where fh := f (·, uh). (3.3)
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3.2 Derivation of bounds for residual portion of the error

Let Gh denote the Scott-Zhang interpolant of G = G(x, ·) lying in the space of
continuous piecewise linear functions with respect to T . Here x ∈ � remains fixed
and the interpolant is calculatedwith respect to the second argument ofG.We then have
thatGh is the Scott-Zhang interpolant into Sh when r = 1, andGh ∈ Sh in any case.We
briefly recall the definition of Gh . LetN be the set of linear Lagrange nodes (vertices)
in T , and let φz be the standard linear hat function corresponding to z ∈ N . If z ∈ �,
then Fz is taken to be an element T ∈ T for which z ∈ T . Alternatively, if z ∈ ∂�,
then Fz is taken to be a face (n − 1-simplex) of some T ∈ T such that z ∈ F̄z ⊂ ∂�.
ψz ∈ P1(Fz) is taken to be dual to φz on Fz in the sense that

∫

Fz
ψz′φz = 1 if z = z′

and 0 otherwise. Here Pm denotes the polynomials of degree at most m. Letting NI

be the set of interior nodes, we have Gh = ∑

z∈N φz
∫

Fz
Gψz = ∑

z∈NI
φz
∫

Fz
Gψz .

All elements Fz in the final sum are d-simplices. Thus defined, Gh satisfies the local
stability and approximation property

|G − Gh |k,p,T � h j−k
T |G| j,p,ωT for T ∈ T , (3.4)

for any 0 ≤ k ≤ j ≤ 2, 1 ≤ p ≤ ∞ for which the right hand side of (3.4) is defined.
Here ωT is the patch of elements in T touching T .

We will prove the following lemma.

Lemma 6 Let x be an arbitrary point in �. With G = G(x, ·) and Gh the piecewise
linear Scott-Zhang interpolant of G as above,

∣

∣ε2(∇uh,∇(G − Gh)) + ( fh,G − Gh)
∣

∣

� max
T∈T

[

min{˜C−1
f , �h,xh

2
T ε−2} ‖ ε2�uh − f (·, uh) ‖L∞(T )

+min{̃ε , �h,xhT }‖�∇uh�‖∞;∂T
]

. (3.5)

Here we use the standard notation �∇uh� for the jump of the normal derivatives across
an inter-element side. Also, ˜C f = C f + ε2 and ε̃ = ε√

C f +ε2
= ε˜C−1/2

f as above,

and

�h,x := ln
(

2 + ε̃ h−1
T0

)

where T0 � x . (3.6)

Proof Note first that (3.5) for the general case ˜C f > 0 follows easily if we prove (3.5)
for ˜C f = 1 (and thus also ε̃ = ε). Assuming that we have done so, let ˜f = f ˜C−1

f

and similarly for fh . Then −̃ε2�u + ˜f (x, u) = 0, and similarly for uh . The Green’s
function for this problem is ˜G = ˜C f G. In addition, we have ˜C

˜f = ε̃2 +C f ˜C
−1
f = 1,

and so (3.5) holds with the substitutions ε, ε̃ → ε̃, f → ˜f , G → ˜G, and ˜C f → 1.
Rearranging constants immediately yields (3.5) in the general case.

We now prove (3.5) for ˜C f = 1. In this case we may interchangably write ε̃ = ε

and so use only the notation ε below. A standard calculation shows that
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e(x) = 1

2

∑

T∈Th
ε2
∫

∂T
(G − Gh)[[∇uh]] · ν

+
∑

T∈Th

∫

T
( fh − ε2�uh) (G − Gh)

=: I + II.

Now

|II | � max
T∈Th

αT ‖ fh − ε2�huh‖∞,�

∑

T∈Th
α−1
T ‖G − Gh‖1;T ,

αT = min{ε 2, �h,xh
2
T }.

By (3.4),

‖G − Gh‖1;T � min{‖G‖1;ωT , h2T ‖D2G‖1;ωT }.

Since α−1
T ≤ ε −2 + �−1

h,xh
−2
T ,

α−1
T ‖G − Gh‖1;T
� min

{

ε −2‖G‖1;ωT + �−1
h,x‖D2G‖1;ωT , (ε −2 + �−1

h,xh
−2
T )‖G‖1;ωT

}

.

Given T ∈ T we let ω′
T denote the patch of elements touching ωT . Also let x ∈ T0.

Then

|II | � max
T∈T

αT ‖ fh − ε2�uh‖∞,T SII ,

where by employing (2.3), (2.4a), (2.4e), and ˜C f = 1, we find

SII �
∑

T :T /∈ω′
T0

(

ε −2‖G‖1;ωT + �−1
h,x‖D2G‖1;ωT

)+ (ε −2 + �−1
h,x h

−2
T0

)‖G‖1;ωT ′
0

� ε −2‖G‖1;� + �−1
h,x‖D2G‖1;�\B(x;chT0 ) + (ε −2 + �−1

h,x h
−2
T0

)‖G‖1;B(x;ChT0 ) � ε−2.

Thus

|II | � max
T

(

min{1, �h,xh
2
T ε−2} ‖ fh − ε2�uh‖∞,T

)

.

Next consider I :

|I | � ε2 max
T∈T

βT ‖[[∇uh]]‖∞,∂T

∑

T∈T
βT

−1‖G − Gh‖1;∂T , βT = min{ε, �h,xhT }
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A standard trace inequality and (3.4) yield

‖G − Gh‖1;∂T � ‖∇(G − Gh)‖1;T + h−1
T ‖G − Gh‖1;T

� min{‖∇G‖1;ωT , hT ‖D2G‖1;ωT}.

Note that β−1
T ≤ ε −1 + (�h,xhT )−1 and �−1

h,x � 1 so that

β−1
T ‖G − Gh‖1;∂T
� min

{

ε −1‖∇G‖1;ωT + �−1
h,x‖D2G‖1;ωT , (ε −1 + h−1

T )‖∇G‖1;ωT

}

.

Then

|I | � ε2 max
T∈T

βT ‖[[∇uh]]‖∞,∂T SI ,

where by employing (2.3), (2.4d), and (2.4e), we find

SI �
∑

T :T /∈ω′
T0

(

ε −1‖∇G‖1;ωT + �−1
h,x‖D2G‖1;ωT

)+ (ε −1+ h−1
T0

)‖∇G‖1;ω′
T

� ε −1‖∇G‖1;� + �−1
h,x‖D2G‖1;�\B(x;chT0 ) + (ε −1+ h−1

T0
)‖∇G‖1;B(x;ChT0 )

� ε−2. (3.7)

Finally

|I | � max
T

(

min{ε, �h,xhT } ‖[[∇uh]]‖∞,∂T
)

.

Collecting the previous estimates completes the proof of Lemma 6. ��

3.3 Derivation of bounds for the consistency error

Wenext bound the quadrature error terms in (3.3). This portion of our argument closely
follows the proof of Lemma 3.2 of [33] in many details, but we make some essential
changes to account for the singularly perturbed nature of our model problem. Let
ET (g) = ∫

T g dx − (g, 1)h,T be the quadrature error on T . We assume following [33]
that the employed quadrature rule is exact for polynomials of degree q:

ET (ψ) = 0 for ψ ∈ Pq , (3.8a)

and stable in L∞ in the following sense:

|ET (ψ)| � |T | ‖ψ‖∞;T for ψ ∈ C(T̄ ). (3.8b)
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In addition, we assume that our quadrature rule is a linear functional of its argu-
ment. These assumptions are easily seen to be satisfied by for example the Gaussian
quadrature rules widely employed in finite element codes.

Lemma 7 Let I jh be the Lagrange interpolant of degree j , and let μ j and λ be

piecewise constant functions defined by μ j = μ
j
T := ‖ fh − I jh fh‖∞;T and λ =

λT := ˜C−1
f min{1, ε̃−1hT } on each T . Let also T1 ∪ T ′

1 = T and T2 ∪ T ′
2 = T be

arbitrary disjoint partitions of T . Then, under conditions (3.8),

( fh,Gh) − ( fh,Gh)h � μquad

:= ˜C−1
f ‖μq‖∞;T1 + ε−2�h,x ‖μq‖ n

2 ;T ′
1

+ ‖λ μq−1‖∞;T2
+ ε̃−1�h,x‖λ μq−1‖n ;T ′

2
. (3.9)

Additionally, Ti , T ′
i , i = 1, 2, may be chosen so that

μquad � μ
q
� + μ

q−1
�

:= ‖min{h−2
T
˜C−1

f , ε−2�h,x }μq‖ n
2 ;T

+ ‖min{h−1
T
˜C−1

f , hT ε−2�h,x }μq−1‖n ;T . (3.10)

Proof As in the proof of Lemma 6 we may consider first the case ˜C f = 1 and then
obtain the general case by using the identifications ε, ε̃ → ε̃, f, fh → f ˜C−1

f , fh˜C
−1
f ,

G → ˜G, and ˜C f → 1 (so, in particular, μ j → μ j
˜C−1

f and λμq−1 → λμq−1). Thus

let ˜C f = 1 and for notational simplicity ε̃ = ε.
Note that ( fh,Gh)− ( fh,Gh)h = ET ( fh Gh). Let Gh,T = 1

|T |
∫

T Gh dx . Then for
T ∈ T ,

ET ( fh Gh) = ET ( fh Gh,T ) + ET ( fh [Gh − Gh,T ])
= ET ([ fh − I qh fh]Gh,T ) + ET ([ fh − I q−1

h fh] [Gh − Gh,T ]), (3.11)

where we used (3.8a) combined with [I qh fh]Gh,T ∈ Pq and I
q−1
h fh [Gh−Gh,T ] ∈ Pq

(the latter is due to Gh,T being elementwise constant and Gh elementwise linear).
For the first term in (3.11), we apply (3.8b) and the definition of Gh,T to find

|ET ([ fh − I qh fh]Gh,T )| � |T | μq
T |Gh,T | � μ

q
T ‖Gh‖1;T = (μq , |Gh |)T .

Let T0 be any element containing the point x in (3.3), let ω′
T0

be the patch of elements
touching ωT0 , and let ω′′

T0
be the patch of elements surrounding ω′

T0
. For any disjoint

partition T = T1 ∪ T ′
1 of the mesh, we thus have
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∑

T∈T
|ET ([ fh − I qh fh]Gh,T )| � (μq , |Gh |)

� ‖μq‖∞;T1 ‖Gh‖1 ;T1+‖μq‖∞;ω′
T0

∩T ′
1
‖Gh‖1 ;ω′

T0
∩T ′

1

+‖μq‖ n
2 ;T ′

1 \ω′
T0

‖Gh‖ n
n−2 ;T ′

1 \ω′
T0

.

Next, using (3.4) and then (2.3), (2.4a) and (2.4b), we get

‖Gh‖1 ;T1 � ‖G‖1 ;� � 1,

‖Gh‖1 ;ω′
T0

∩T ′
1

� ‖G‖1 ;ω′′
T0

∩� � ε−2 h2T0 �h,x ,

‖Gh‖ n
n−2 ;T ′

1 \ω′
T0

� ‖G‖ n
n−2 ;�\ωT0

� ε−2 �h,x .

Here we also used that ω′′
T0

⊂ B(x, chT0) and ωT0 ⊃ B(x, c′hT0) for some c and c′.
Now we arrive at

∑

T∈T
|ET ([ fh − I qh fh]Gh,T )|

� ‖μq‖∞;T1 + ε−2�h,x
(

h2T0‖μq‖∞;ω′
T0

∩T ′
1

+ ‖μq‖ n
2 ;T ′

1 \ω′
T0

)

.

Note that h2T ‖μq‖∞;T � ‖μq‖ n
2 ;T . This observation is useful for T ∈ ω′

T0
∩ T ′

1 . As
there is a finite number of such T , and for each of them hT ∼ hT0 , one immediately
gets h2T0‖μq‖∞;ω′

T0
∩T ′

1
� ‖μq‖ n

2 ;ω′
T0

∩T ′
1
. So for the first term in (3.11) we finally

have
∑

T∈T
|ET ([ fh − I qh fh]Gh,T )| � ˜C−1

f ‖μq‖∞;T1 + ε−2�h,x ‖μq‖ n
2 ;T ′

1
. (3.12)

The second term in (3.11) is treated similarly. We again apply (3.8b) and then an
inverse inequality to get

|ET ([ fh − I q−1
h fh] [Gh − Gh,T ])| � μ

q−1
T ‖Gh − Gh,T ‖1 ;T = (λ μq−1, zh)T .

Here the auxiliary function zh := λ−1
T |Gh−Gh,T | on each T . For any disjoint partition

T = T2 ∪ T ′
2 of the mesh, we now have

∑

T∈T
|ET

(

[ fh − I q−1
h fh] [Gh − Gh,T ]

)

| � (λμq−1, |zh |)

� ‖λ μq−1‖∞;T2 ‖zh‖1 ;T2 + ‖λ μq−1‖∞;ω′
T0

∩T ′
2

‖zh‖1 ;ω′
T0

∩T ′
2

+‖λμq−1‖n ;T ′
2 \ω′

T0
‖zh‖ n

n−1 ;T ′
2 \ω′

T0
.

Note that λT = min{1, ε−1hT } implies λ−1
T ≤ 1 + εh−1

T . Using this observation
as well as the definition and approximation properties of Gh,T and then (3.4) with
k = j = 0, 1 and p = 1, n

n−1 , one gets
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‖zh‖p
p ;T = λ

−p
T ‖Gh − Gh,T ‖p

p ;T � ‖Gh‖p
p ;T + |εGh |p1,p;T

� ‖G‖p
p ;ωT

+ |ε G|p1,p ;ωT
.

Combining this with (2.3), (2.4a), (2.4c) and (2.4d) yields

‖zh‖1 ;T2 � ‖G‖1 ;� + ε|G|1,1 ;� � 1,

‖zh‖1 ;ω′
T0

∩T ′
2

� ‖G‖1 ;ω′′
T0

∩� + ε|G|1,1 ;ω′′
T0

∩�

� min

{

h2T0
ε2

�h,x + hT0
ε

, 1

}

� ε−1hT0 ,

‖zh‖ n
n−1 ;T ′

2 \ω′
T0

� ‖G‖ n
n−1 ;�\ωT0

+ ε|G|1, n
n−1 ;�\ωT0

� ε−1�h,x .

Here we also again used ω′′
T0

⊂ B(x, chT0) and ωT0 ⊃ B(x, c′hT0). Thus

∑

T∈T
|ET ([ fh − I q−1

h fh] [Gh − Gh,T ])|

� ‖λ μq−1‖∞;T2 + ε−1hT0‖λ μq−1‖∞;ω′
T0

∩T ′
2

+ ε−1�h,x‖λμq−1‖n ;T ′
2 \ω′

T0
.

Note that hT ‖λμq−1‖∞;T � ‖λμq−1‖n ;T . As there is a finite number of such T
that T ∈ ω′

T0
∩ T ′

2 , and for each of them hT ∼ hT0 , so hT0‖λμq−1‖∞;ω′
T0

∩T ′
2

�
‖λμq−1‖n ;ω′

T0
∩T ′

2
. So for the second term in (3.11) we finally get

∑

T∈T
|ET ([ fh − I q−1

h fh] [Gh − Gh,T ])| � ‖λ μq−1‖∞;T2 + ε−1�h,x‖λ μq−1‖n ;T ′
2
.

Combining this with (3.11) and (3.12), one gets the desired assertion (3.9). The bound
(3.10) may be proved by noting that ‖μq‖∞;T � h−2

T ‖μq‖ n
2 ;T , so

‖μq‖∞;T1 �

⎛

⎝

∑

T∈T1
|T |(h−2

T μ
q
T )n/2

⎞

⎠

2/n

= ‖h−2
T μq‖ n

2 ;T1 . (3.13)

Choosing T1 to be those elements for which h−2
T � ε−2�h,x and then performing a

similar calculation for the term ‖λμq−1‖∞;T2 completes the proof of (3.10). ��

3.4 Efficiency of the estimators

We first give some definitions. First, let �h = maxx∈� �h,x , and

η∞(T ) = min
{

˜C−1
f , �hh

2
T ε−2

}

‖ ε2�uh − fh ‖∞;T
+min{̃ε, �hhT }‖�∇uh�‖∞;∂T . (3.14)
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Recalling that fh(x) = f (x, uh), we let fh,T be the L2 projection of fh onto Pr−1(T )

for T ∈ T . In addition, we define the oscillation

osc(T ) = min{˜C−1
f , �hh

2
T ε−2}‖ fh − fh,T ‖∞;T ,

osc(ωT ) = max
T ′⊂ωT

osc(T ′). (3.15)

In addition, we define an ε-scaled Sobolev norm and corresponding negative norm.
Let

‖w‖2,1,̃ε,˜C f ;ω = ˜C f

2
∑

i=0

ε̃ i |w|i,1 ;ω, ω ⊂ �, (3.16a)

‖w‖−2,∞,̃ε,˜C f ;ω = sup
v∈H1

0 (ω)∩W 2
1 (ω),‖v‖2,1,̃ε,˜C f ;ω=1

∫

ω

wv dx, ω ⊂ �, (3.16b)

When ˜C f = 1 we write ‖w‖2,1,ε ;ω instead of ‖w‖2,1,̃ε,1 ;ω, and similarly for
‖w‖−2,∞,ε ;ω.

Lemma 8 There holds for T ∈ T

η∞(T ) � �h‖u − uh‖∞;ωT + osc(ωT )

+min
{

min{˜C−1
f , �hh

2
T ε−2}‖ f − fh‖∞;ωT , �h‖ f − fh‖−2,∞,̃ε,˜C f ;ωT

}

.

(3.17)

Here f = f (·, u). In addition, if q ≥ r − 1 we have
˜C−1

f ‖μq‖∞;T + ‖λμq−1‖∞;T � ε̃ 2h−2
T ‖u − uh‖∞;T + ˜C−1

f ‖ fh − fh,T ‖∞;T

+ min
{

˜C−1
f ‖ f − fh‖∞;T , (1 + ε̃ 2h−2

T )‖ f − fh‖−2,∞,̃ε,˜C f ;T
}

, (3.18a)

ε−2�h‖μq‖ n
2 ;T + ε̃ −1�h‖λμq−1‖n ;T � �h‖u − uh‖∞;T

+ �hh
2
T ε−2‖ fh − fh,T ‖∞;T

+ min
{

h2T ε−2�h‖ f − fh‖∞:T , �h(1 + h2T ε̃ −2)‖ f − fh‖−2,∞,̃ε,˜C f ;T
}

,

(3.18b)

‖min{h−2
T
˜C−1

f , ε−2�h}μq‖ n
2 ;T + ‖min{h−1

T
˜C−1

f , hT ε−2�h,x }μq−1‖n;T
� �h‖u − uh‖∞;T + osc(T )

+min
{

min{˜C−1
f , �hh

2
T ε−2}‖ f − fh‖∞;T , �h‖ f − fh‖−2,∞,̃ε,˜C f ;T

}

.

(3.18c)

Proof As in the proofs of the previous two lemmas we first consider the case ˜C f = 1
and then rescale. When doing so it is helpful to note that ‖ f − fh‖−∞,2,̃ε,˜C f ; T =
‖˜f − ˜fh‖−∞,2,̃ε; T , where as before ˜f = f ˜C−1

f .
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Assuming then that ˜C f = 1, note first the residual identity

ε2
∫

�

∇(u − uh)∇v dx +
∫

�

( f − fh)v dx

=
∫

�

(ε2�uh − fh)v dx + ε2

2

∑

T∈Th

∫

∂T
�∇uh�v ds, v ∈ H1

0 (�). (3.19)

Here with slight abuse of notation we denote by �uh be the elementwise Laplacian
of uh .

We first consider the volume residual min{1, �hh2T ε−2}‖ε2�uh − fh‖∞;T . By
standard arguments, there exists bT ∈ P2n+r+1 such that bT = 0 and ∇bT = 0 on
∂T , ‖bT ‖1 ;T � 1, and

‖ε2�uh − fh,T ‖∞;T �
∫

T
(ε2�uh − fh,T )bT dx

�
∣

∣

∣

∣

∫

T
(ε2�uh − fh)bT dx

∣

∣

∣

∣

+ ‖ fh − fh,T ‖∞;T . (3.20)

Subtracting ε2�u − f = 0 from ε2�uh − fh , applying (3.19), subsequently inte-
grating by parts while recalling ∇bT = 0 on ∂T , and finally employing inverse
inequalities along with ‖bT ‖1 � 1 yields
∫

T
(ε2�uh − fh)bT dx =

∫

T
ε2∇(u − uh)∇bT dx +

∫

T
( f − fh)bT dx

= −
∫

T
ε2(u − uh)�bT dx +

∫

T
( f − fh)bT dx

� ε2h−2
T ‖u − uh‖∞;T + min{‖ f − fh‖∞;T , ‖bT ‖2,1,ε ;T ‖ f − fh‖−2,∞,ε ;T }.

(3.21)

Applying the triangle inequality to find ‖ε2�uh − fh‖∞;T ≤ ‖ε2�uh − fh,T ‖∞;T +
‖ fh − fh,T ‖∞;T , using the above bounds (3.20) and (3.21), and calculating that
min{1, �hh2T ε−2}‖bT ‖2,1,ε ;T � �h finally yields

min{1, �hh2T ε−2}‖ε2�uh − fh‖∞;T � �h‖u − uh‖∞;T + osc(T )

+min
{

min{1, �hh2T ε−2}‖ f − fh‖∞;T , �h‖ f − fh‖−2,∞,ε ;T
}

, (3.22)

which is bounded by the right-hand-side of (3.17), as desired.
Wenowbound the local edge residualmin{ε, �hhẽ}‖�∇uh�‖∞;ẽ,where ẽ = T̃1∩T̃2,

T1, T2 ∈ T , is an interior edge in the mesh (the edge residual disappears on boundary
edges). The standard argumentmust bemodified somewhat in order tomaintain proper
scaling with respect to ε. If he ≤ ε, we set e = ẽ and Ti = T̃i , i = 1, 2. Otherwise
choose x ∈ ewith ‖�∇uh�‖∞;ẽ = �∇uh�(x), and let e ⊂ ẽ be a shape-regular (n−1)-
simplex of diameter ε. In addition, let Ti ⊂ T̃i , i = 1, 2, be shape-regular d-simplices
such that e = T1 ∩ T2. Let α = diam(e) = min{hẽ, ε}.
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By standard arguments, there is an edge bubble function be ∈ P4n+r−4(T1 ∪ T2)
with ‖be‖1 ;e � 1 and ‖be‖1 ;T1∩T2 � α such that

‖�∇uh�‖∞;ẽ = ‖�∇uh�‖∞;e �
∫

e
�∇uh�be ds. (3.23)

Employing (3.19), integrating by parts, and again employing ε2�u − f = 0 yields

1

2

∫

e
�∇uh�be ds = −

∫

T1∪T2
(u − uh)�be dx

+ ε−2
(∫

T1∪T2
( f − fh)be dx −

∫

T1∪T2
(ε2�uh − fh)be dx

)

� ‖u − uh‖∞;T1∪T2‖�be‖1 ;T1∪T2 + ε−2‖be‖1 ;T1∪T2‖ε2�uh − fh‖∞;T1∪T2

+ ε−2 min

{

‖be‖1 ;T1∪T2‖ f − fh‖∞;T ,

2
∑

i=1

‖ f − fh‖−2,∞,ε ;Ti ‖be‖2,1,ε ;Ti

}

� α−1‖u − uh‖∞;T1∪T2 + αε−2‖ε2�uh − fh‖∞;T1∪T2 +

+ε−2 min

{

α‖ f − fh‖∞;T ,

2
∑

i=1

‖ f − fh‖−2,∞,ε ;Ti ‖be‖2,1,ε ;Ti

}

. (3.24)

A short calculation yields min{ε, he�h}‖be‖2,1,ε ;Ti � ε2�h , so

min{ε, hẽ�h}‖�∇uh�‖∞;ẽ � �h‖u − uh‖∞;T̃1∪T̃2
+min{1, �hh2ẽε−2}‖ε2�uh − fh‖∞;T̃1∪T̃2

+min

{

min{1, �hh2ẽε−2}‖ f − fh‖∞;T1∪T2 , �h

2
∑

i=1

‖ f − fh‖−2,∞,ε ;Ti

}

.

(3.25)

Combining (3.25) with (3.22) yields (3.17).
We finally investigate efficiency of the quadrature (consistency) estimators. Note

that for q ≥ r − 1, on any element T we have I qh �uh = I q−1
h �uh = �uh and so

fh − I qh fh = (I d − I qh )( fh − ε2�uh), where I d is the identity operator. Because the

Lagrange interpolant I jh is L∞-stable, we thus have for q ≥ r − 1

‖μq‖∞;T + ‖λμq−1‖∞;T � ‖ fh − ε2�uh‖∞;T . (3.26)

Employing Hölder’s inequality yields

ε−2�h‖ fh − I qh fh‖ n
2 ;T � h2T ε−2�h‖ fh − I qh fh‖∞;T

� h2T ε−2�h‖ fh − ε2�uh‖∞;T . (3.27)
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Similarly,

ε−1�h‖λ( fh − I qh fh)‖n ;T � h2T ε−2�h‖ fh − ε2�uh‖∞;T . (3.28)

Combining (3.20) and (3.21) with (3.26) and then with (3.27) and (3.28) yields (3.18a)
and (3.18a), respectively, after noting that ‖bT ‖2,1,ε ;T � 1 + ε2h−2

T (3.18c) follows
after a similar argument. ��

3.5 Choosing mesh partitions for the consistency estimators

In this subsection we address how to make a practical choice of the mesh partitions
T1∪T2 and T ′

1 ∪T ′
2 appearing in the consistency estimators in Lemma 7. Theweighting

of the quadrature estimators in (3.10) is essentially the same as that in η∞, thus the
efficiency estimate (3.18c). As noted in [33], however, the efficiency bound for the
quadrature estimator cannot be used to obtain a meaningful global lower bound for the
error since the quadrature estimators accumulate over the mesh in a different fashion
than do the residual estimators. On the other hand, we demonstrate the existence of a
computationally convenient partition that is quasi-optimal in the sense that choosing
Ti and T ′

i differently cannot lower the achieved estimate by more than a factor of 2.
Our numerical experiments below confirm that the overall bound for the quadrature
error sometimes is substantially reduced if this choice of Ti , T ′

i is made instead of that
leading to (3.10). Thus there is never a strong practical advantage to employing (3.10)
and sometimes a strong practical disadvantage. We include (3.10) mainly because it
yields a local efficiency estimate that mirrors that for the residual terms.

We next give our partitioning algorithm. For simplicity of presentation we assume
˜C f = 1 in this discussion; obvious modifications can be made to obtain the gen-
eral case. We choose T1, T ′

1 by the following simple algorithm. First index T so
that μ

q
T1

≥ μ
q
T2

≥ · · · ≥ μ
q
TN

, where N = #T . Then take T1 = {Ti } j≤i≤N

and T ′
1 = T \T1, where j is the maximal index so that T1, T ′

1 thus defined sat-

isfy ε−2�h‖μq‖ n
2 ;T ′

1
= ε−2�h(

∑ j−1
i=1 |T | μq

Ti
n/2

)2/n < μ
q
Tj−1

. A simple modification

leads to a similar algorithm for finding T2, T ′
2 . We let

μ
q
T1 = ‖μq‖∞;T1 , μ

q
T ′
1

= ε−2�h‖μq‖ n
2 ;T ′

1
with T1, T ′

1 chosen as above,

μ
q
T = μ

q
T1 + μ

q
T ′
1
, (3.29)

and similarly for μ
q−1
T . This algorithm for partitioning T can be efficiently imple-

mented and did not add significant computational overhead to our computations.
The above choice of T1 and T ′

1 is quasioptimal in the sense that ‖μq‖∞;T1 +
ε−2�h‖μq‖ n

2 ;T ′
1

≤ 2(‖μq‖∞;T̃1 + ε−2�h‖μq‖ n
2 ;T̃ ′

1
) for any other partition T =

T̃1 ∪ T̃ ′
1 . To see this, first note that since μq accumulates over T1 in the maximum

norm, μq
Ti

∈ T1 ⇒ μ
q
Tk

∈ T1 whenever k ≤ i for the optimal choice of T1. Defining
j as above, we have for k < j
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max
j≤i≤N

μ
q
Ti

+ ε−2�h

⎛

⎝

j−1
∑

i=1

|T | μq
Ti
n/2

⎞

⎠

2/n

≤ μ
q
Tj

+ μ
q
Tj−1

≤ 2μq
Tk

≤ 2

⎡

⎣μ
q
Tj−1

+ ε−2�h

(

k−1
∑

i=1

|T | μq
Ti
n/2

)2/n⎤

⎦ . (3.30)

For k > j , we have

max
j≤i≤N

μ
q
Ti

+ ε−2�h

⎛

⎝

j−1
∑

i=1

|T | μ
q
Ti
n/2

⎞

⎠

2/n

≤ ε−2�h

⎡

⎢

⎣

⎛

⎝

j
∑

i=1

|T | μq
Ti
n/2

⎞

⎠

2/n

+
⎛

⎝

j−1
∑

i=1

|T | μ
q
Ti
n/2

⎞

⎠

2/n
⎤

⎥

⎦

≤ 2ε−2�h

(

k−1
∑

i=1

|T | μq
Ti
n/2

)2/n

≤ 2

⎡

⎣ max
k≤i≤N

μ
q
Ti

+ ε−2�h

(

k−1
∑

i=1

|T | μ
q
Ti
n/2

)2/n⎤

⎦ . (3.31)

This proves the desired assertion.

3.6 Summary of results and discussion

We first define the global residual estimator

η∞
T = max

T∈T
η∞(T ). (3.32)

We also summarize our major notation in Table 1 below in order to simplify the task
of reading our results and numerical experiments.

Combining the results of the previous subsections yields the following theorem.

Theorem 2 For arbitrary disjoint decompositions T = T1 ∪ T2 and T = T ′
1 ∪ T ′

2 ,

‖u − uh‖∞;� � η∞
T + μquad. (3.33)

Additionally, Ti , T ′
i , i = 1, 2, may be chosen so that

‖u − uh‖∞;� � η∞
T + μ

q
� + μ

q−1
� (3.34)
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Table 1 Summary of major notation

Symbol Definition Purpose

C̃ f , ε̃ (3.6) Regularizations of C f and ε

�h,x , �h (3.6), (3.14) Logarithmic factors

μ j , μ j
T Lemma 7 Element quadrature indicator

λ Lemma 7 Quadrature indicator weight

μquad (3.9) Global quadrature estimator, arbitrary partition

μ
q
� (3.10) Non-optimal quadrature estimator

η∞(T ) (3.14) Element residual indicator

fh , fh,T (3.15) f (·, uh) and its projection onto Pr−1

osc(T ) (3.15) Data oscillation

μ
q
T1

, μq
T ′
1

(3.29) Consistency estimators over quasi-optimal partition

μ
q
T (3.29) Global consistency estimator over quasi-optimal partition

η∞
T (3.32) Global residual estimator

Alternatively, making a quasi-optimal choice of Ti , T ′
i as in Sect. 3.5 yields

‖u − uh‖∞;� � η∞
T + μ

q
T + μ

q−1
T (3.35)

with no other choice of Ti , T ′
i lowering the magnitude of the quadrature estimator by

a factor of more than two.
For T ∈ T there also holds the efficiency estimate

η∞(T ) � �h‖u − uh‖∞;ωT + osc(T )

+min{min{˜C−1
f , �hh

2
T ε−2}‖ f − fh‖∞;ωT , �h‖ f − fh‖−2,∞,̃ε,˜C f ;ωT

}.
(3.36)

In addition, if q ≥ r − 1 we have

˜C−1
f ‖μq‖∞;T + ‖λμq−1‖∞;T � ε̃ 2h−2

T ‖u − uh‖∞;T + ˜C−1
f ‖ fh − fh,T ‖∞;T

+ min
{

˜C−1
f ‖ f − fh‖∞;T , (1 + ε̃ 2h−2

T )‖ f − fh‖−2,∞,̃ε,˜C f ;T
}

,

(3.37a)

ε−2�h‖μq‖ n
2 ;T + ε̃ −1�h‖λμq−1‖n ;T � �h‖u − uh‖∞;T

+ �hh
2
T ε−2‖ fh − fh,T ‖∞;T

+ min
{

h2T ε−2�h‖ f − fh‖∞:T , �h(1 + h2T ε−2)‖ f − fh‖−2,∞,̃ε,˜C f ;T
}

,

(3.37b)

‖min{h−2
T
˜C−1

f ,ε−2�h}μq‖ n
2 ;T + ‖min{h−1

T
˜C−1

f , hT ε−2�h}μq−1‖n;T
� �h‖u − uh‖∞;T + osc(T )

+ min
{

min{˜C−1
f , �hh

2
T ε−2}‖ f − fh‖∞;T , �h‖ f − fh‖−2,∞,̃ε,˜C f ;T

}

.

(3.37c)
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In order to provide context for Theorem 2, we first comment on the relationship
between the residual and the error. The residual Rh is given by

〈Rh, v〉 = ε2
∫

�

∇(u − uh)∇v dx +
∫

�

[ f (x, u) − f (x, uh)]v dx . (3.38)

Lemma 5 may be rephrased as ‖u − uh‖∞;� � |〈Rh,G〉|, whereas Lemma 6 and
Lemma 7 together provide a computable bound for 〈Rh,G〉 in terms of residual and
quadrature estimators. Typically in residual-type a posteriori error estimation the error
is bounded by a dual Sobolev norm of the residual, such as for example ‖Rh‖H−1(�)

in the case of energy norm bounds. However, such a simple relationship is not pos-
sible in the case of maximum norm error estimates. In [33], the maximum error in a
finite element approximation to −�u + f (x, u) = 0 is related to ‖Rh‖−2,∞,1,1 ;�
by using a regularized Green’s function that lies in W 2

1 (�). However, an addi-
tional “regularization penalty” term arises, and the method used to bound it requires
that ∂� be Lipschitz. We circumvent this issue by directly employing the Green’s
function as in [11], but we thereby complicate the relationship between the error
and Rh .

Note next that following the discussion in [33], the term ‖ f − fh‖−2,∞,̃ε,˜C f ;� may
properly be regarded as part of the error notion bounded by our estimates. Integrating
by parts in (3.38) easily yields

‖ f − fh‖−2,∞,̃ε,˜C f ;� ≤ ‖u − uh‖∞;� + ‖Rh‖−2,∞,̃ε,˜C f ;�. (3.39)

Both terms in (3.39) are bounded by the right hand side of (3.33); the arguments needed
to prove it are modest simplifications of those used to prove (3.33). Heuristically, one
can regard (2.3) and (2.4e) as stating that the Green’s function G almost satisfies
‖G‖2,1,̃ε,˜C f ;� � 1. Thus the terms of ‖ f − fh‖−2,∞,̃ε,˜C f ;� which appear in the
above efficiency estimates are in fact bounded by the estimators at hand, and their
appearance is quite natural.

In contrast to [33], we observe that we may include factors of ‖ f − fh‖∞ (with
proper weights) in our efficiency estimates instead of factors of ‖ f − fh‖−2,∞,̃ε,˜C f

,
as in (3.36). These terms may be simply folded into the term ‖u − uh‖∞ if fu exists
and is uniformly bounded, as when we for example consider the linear model problem
f (x, u) = u− f (x). Note aswell that ‖ f − fh‖∞ ismultiplied bymin{˜C−1

f , ε−2h2T �h}
in (3.36) and is thus asymptotically negligible. Thus bounding f − fh in L∞ is
not always feasible, but when possible doing so gives the term a more concrete
form.

4 Numerical experiments

4.1 Experimental setup

Our numerical experiments were run using a MATLAB-based code built on top of
the iFEM library [8]. All tests were run using linear Lagrange elements on two-
dimensional domains and a standard adaptive FEM iteration. Nonlinear problems
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were solved using a damped Newton iteration. Recalling the definitions in Table 1,
our overall error estimator is η = η∞

T +μ
q
T1 +μ

q
T ′
1
+μ

q−1
T2 +μ

q−1
T ′
2
. Here η is a sum of

five different estimators some of which accumulate differently over themesh and so an
integrated marking strategy based on a single elementwise indicator is not possible.
For each of the five estimators, we marked for refinement in each AFEM iteration
with a maximum strategy using the corresponding indicators if the given estimator
counted for at least 10 % of the overall estimator η. We used a similar strategy, but
with three components instead of five, when employing the estimators and indicators
from [33] for comparison purposes. Also, we used a standard Gaussian quadrature
rule of degree q = 3 in all of our experiments below. The rule has barycentric
quadrature points (1/3, 1/3, 1/3), (0.6, 0.2, 0.2), (0.2, 0.6, 0.2), and (0.2, 0.2, 0.6)
withweights−27/48, 25/48, 25/48, and 25/48 and clearly satisfies the assumptions of
Sect. 3.3.

4.2 Experiment 1: advantages of ε-robust estimators

To demonstrate the advantages of using an ε-robust error estimator we first take � to
be the unit square and define

u1(x, y) =
[

cos(πx/2) − e−x/ε − e−1/ε

1 − e−ε

] [

1 − y − e−y/ε − e−1/ε

1 − e−1/ε

]

. (4.1)

u1 has prototypical boundary layers along the portions of � abutting the x− and y−
axes. Let also u2(x, y) = 0.01 sin(100πx) sin(100πy) and u = u1 + u2, and solve
−ε2�u + u − g = 0 with g defined in the obvious fashion. Also, we take ε2 = 10−6.
In Fig. 1 we display the decrease in errors and estimators obtained by marking with
the non-robust estimators (1.4) derived from [33] and then with the ε-robust estimator
derived from (3.33). The corresponding quadrature estimators are included in both
cases but do not play a prominent role in driving marking and refinement.

In Fig. 1 we observe that the non-robust estimator overestimates the actual error
by a factor of about 104 at the beginning of the computation; this overestimation is
ε-dependent and becomes more pronounced as ε → 0. In addition, the error decrease
in the adaptive computation employing the non-robust estimators also is significantly
slower than that observed when using robust estimators. This is because the estimators
in (1.4) initially direct too much refinement towards regions of � removed from the
boundary layers; little refinement is needed in these regions until the error reaches
the scale of the oscillations, which is about 10−2. In other computations we generally
observed that the ability of the robust and non-robust estimators to efficiently direct
adaptive refinement was not nearly as dissimilar as here. The widespread fine-scale
oscillations in this example helped to highlight the tendency of the non-robust estima-
tors to overestimate local residual contributions of elements T for which hT � ε. Poor
efficiency indices for the non-robust indicators were however consistently observed
across a range of examples in the pre-asymptotic range.
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Fig. 1 Comparison of decrease
in maximum errors and
estimators when marking using
our estimators (with subscript
“DK”) and with those derived
from [33] (with subscript
“NSSV”)
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Fig. 2 Comparison of decrease inmaximum errors with ε2 = 10−6 andC f varied (left); effectivity indices

with ε = 10−6 and C f varied (right)

4.3 Experiment 2: the effects of C f

In order to illustrate the robustness of our estimates with respect to C f we solve the
simple linear problem −ε2�u + C f u = g while varying ε and C f . First we take
ε2 = 10−6 and let C f = 1, 10−2, 10−4, 10−6. We let u = u1 + u3, where u1 is given
in (4.1) but with ε = 10−6/C f , and u3(x, y) = 2 sin(4πx) sin(4πy). In Figure 2 we
plot the observed error ‖u−uh‖∞;� versus degrees of freedom for the given values of
C f . We also plot the efficiency indices given by η/‖u − uh‖∞;�. Both the efficiency
indices and the ability of the generated algorithm to direct adaptive refinement are
essentially stable as C f is varied.
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Fig. 3 Adaptively computed solutions with ε2 = 1 and 4536 degrees of freedom (left), and ε2 = 10−4

with 4236 degrees of freedom (right)
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Fig. 4 Graph showing decrease of quadrature and residual components of the error with f discontinuous
and ε2 = 10−4 (left); comparison of different quadrature estimators for the same problem (right)

4.4 Experiment 3: effects of the quadrature indicators

In order to illustrate the effects of the quadrature estimators we consider the test
problem−ε2�u+u = f on the unit square� = (0, 1)× (0, 1), where f (x, y) = 2x
if x2+ y2 < 1/4 and f (x, y) = 1 otherwise. f is thus discontinuous across x2+ y2 =
1/4, except at (x, y) = (1/2, 0). The solution u is unknown but exhibits sharp interior
layers across x2 + y2 = 1/4 and at the boundary for ε 
 1, as is confirmed in the
computed solutions for ε2 = 1 and ε2 = 10−4 displayed in Fig. 3.

Some elements in any triangular mesh are cut by the curve x2 + y2 = 1/4 across
which f is discontinuous. Thus ‖μq‖∞;T is bounded away from 0 uniformly, since
f cannot be approximated to arbitrary accuracy in L∞ by continuous functions. On
the other hand, f is affine and thus the quadrature error and indicators 0 on any
element not touching this curve. In Fig. 4 we depict the decrease in various esti-
mators when ε2 = 10−4. In the left graph we depict the decrease in the residual
estimator η∞

T and both quadrature estimators μ
q
T and μ

q−1
T . Here the quadrature esti-
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Fig. 6 Poisson-Boltzmann example: graph showing decrease of error and residual and quadrature estima-
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mator μ
q
T dominates the overall error estimate and drives refinement. While initially

overlapping with μ
q
T , μ

q−1
T begins asymptotic decrease much sooner than does μ

q
T

due to the presence of the factor λ in its definition in Lemma 7. In the right graph
we illustrate the composition of μ

q
T . Here μ

q
� = ‖min{h−2

T , ε−2�h}μq‖ n
2 ;T as in

(3.10). We observe that initially μ
q
T = ‖μq‖∞;�, that is, T1 = T in the definition

of μ
q
T . Our partitioning algorithm eventually begins adding elements to T ′

1 , and ini-
tially we observe that ‖μq‖∞;� < μ

q
T ≤ 2‖μq‖∞;�. Between roughly 105 and 106

DOF the partitioned quadrature estimator μ
q
T is smaller than either μ

q
� or ‖μq‖∞;�,

and then asymptotically μ
q
T = μ

q
� , that is, T ′

1 = T . The corresponding graphs for
the case ε2 = 1 are displayed in Fig. 5. There we observe that μ

q
T and μ

q
� are
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Fig. 7 Poisson-Boltzmann example: adaptively computed solution (left); adaptively generated mesh with
13,787 degrees of freedom (right)

essentially the same size, and much smaller than ‖μq‖∞;�, over the whole range of
DOF in the calculation. Combining data from these two cases, we conclude that our
partitioned quadrature estimator conveniently and robustly estimates the consistency
error.

4.5 Experiment 4: nonlinearity of Poisson-Boltzmann type

Singularly perturbed problems of Poisson-Boltzmann type have been studied in the lit-
erature; cf. [16]. As a simple prototype, we considered the problem−ε2�u+sinh u =
f (x, y) with ε2 = 10−6. We first took � to be the unit square and u = u1 + u3 as
in Experiment 2 above. Our AFEM performs well on this example, as shown in the
left graph in Fig. 6. We then took � to be a protypical L-shaped domain so that one
can expect a singularity to develop at the reentrant corner, and f (x, y) = 1 + x3.
Estimator decrease is shown in the right graph in Fig. 6, and the computed solution
and adaptively generated mesh are shown in Fig. 7.

Appendix A: Sharpness of log factors

In this section we prove that there are cases in which the logarithmic factor in the
a posteriori upper bound (1.3) is necessary. Using an idea of Durán [14], we first
prove a priori upper bounds and a posteriori upper and lower bounds for u − uh
in a modified BMO norm in the case that � is a convex polygonal domain. These
estimates are essentially the same as our L∞ bounds, but with no logarithmic factors
present. The proof is completed by employing the counterexample of Haverkamp [20]
showing that a similar logarithmic factor is necessary in L∞ a priori upper bounds for
piecewise linear finite elementmethods. Note that our counterexample is only valid for
piecewise linear elements. Logarithmic factors are not present in standard a priori L∞
bounds for elements of degree two or higher on quasi-uniform grids, and it remains
unclear whether there are cases for which they are necessary in the corresponding L∞
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a posteriori bounds. In addition, both the result of Durán [14] and ours below only
consider Poisson’s problem and not the broader class of problems described in (1.1).

A.1: Adapted Hardy and BMO spaces

We begin by describing operator-adapted BMO and Hardy spaces, following [13]. Let
−� denote the Dirichlet Laplacian on �, i.e., the Laplacian with domain restricted to
functions which vanish on ∂�. Let

‖v‖bmo�(�) = sup
B(x,r):x∈�,0<r<1

[

1

|B ∩ �|
∫

B∩�

|(I − (I − r2�)−1)v(x)|2 dx
]1/2

+ sup
B(x,r):x∈�,r≥1

[

1

|B ∩ �|
∫

B∩�

|v(x)|2 dx
]1/2

. (5.1)

The space bmo�(�) then consists of functions v ∈ L2(�) forwhich‖v‖bmo�(�) < ∞.
Note that the resolvent (I −r2�)−1 replaces the usual average over B in the definition
of BMO. We also define an operator-adapted atomic Hardy space h1� which is dual to
bmo�. A bounded, measurable function a supported in � is a local atom if there is
a ball B centered in � with radius r < 2diam(�) such that ‖a‖2;Rn ≤ |B ∩ �|−1/2

and either r > 1, or r ≤ 1 and there exists b in the domain of the Dirichlet Laplacian
such that a = −�b, supp(b) ∪ supp(−�b) ⊂ B ∩ �, and

‖(−r2�)kb‖2;Rn ≤ r2|B ∩ �|−1/2, k = 0, 1. (5.2)

An atomic representation of w is a series w = ∑

j λ j a j , where {λ j }∞j=0 ∈ �1, each
a j is a local atom, and the series converges in L2(�). We then define the norm

‖w‖h1�(�) = inf

⎧

⎨

⎩

∞
∑

j=0

|λ j | : w =
∞
∑

j=0

λ j a j is an atomic representation of w

⎫

⎬

⎭

.

(5.3)

The Hardy space h1�(�) is the completion in (bmo�(�))∗ of the set of functions
having an atomic representation with respect to the metric induced by the above norm.
In addition, bmo� is the dual space ofh1� in the sense that ifw = ∑∞

j=0 λ j a j ∈ h1�(�),
then

w �→ v(w) := lim
k→∞

k
∑

j=0

λ j

∫

�

a jv dx (5.4)

is a well-defined and continuous linear functional for each v ∈ bmo�(�)whose norm
is equivalent to ‖v‖bmo�(�). In addition, each continuous linear functional on h1�(�)

has this form (cf. Theorem 3.11 of [13]).
We finally list an essential regularity result; cf. Theorem 4.1 of [13].
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Lemma 9 Let� be a bounded, simply connected, semiconvex domain inRn , and let G
be theDirichletGreen’s function for−�. LetG� be the correspondingGreen operator
given by G(v)(x) = ∫

�
G(x, y)v(y) dy. Then the operators ∂G

∂xi ∂x j
are bounded from

h1�(�) to L1(�). In other terms, given u ∈ H1
0 (�) with −�u ∈ h1�(�), we have

u ∈ W 2
1 (�) with

|u|2,1;� � ‖�u‖h1�(�). (5.5)

We remark that the above regularity result does not in general hold on nonconvex
Lipschitz (or evenC1) domains; cf. Theorem 1.2.b of [21]. It is not clear whether (5.5)
holds on nonconvex polyhedral domains, but a different approach to the analysis than
that taken in [13] would be in any case needed to establish this. Such a result would
allow us to extend a posteriori estimates in bmo� that we obtain below for convex
polyhedral domains to general polyhedral domains, whichwould be desirable since the
corresponding L∞ estimates also hold on general polyhedral domains. However, for
our immediate purpose of providing a counterexample it suffices to consider convex
domains.

A.2: A priori and a posteriori estimates in bmo�

In [14], Durán proved that given a smooth convex domain� ⊂ R
2 and piecewise linear

finite element solution uh on a quasi-uniform mesh of diameter h, ‖u− uh‖BMO(�) �
h2|u|W 2∞(�). Here BMO(�) is the classical BMO space; cf. [14] for a definition. We
prove the same on convex polyhedral domains in arbitrary space dimension, but with
BMO replaced by its operator-adapted counterpart. For notational simplicity we also
consider only piecewise linear finite element spaces below, but our a priori and a
posteriori bounds easily generalize to arbitrary polynomial degree.

Lemma 10 Assume that � ⊂ R
n is convex and polyhedral, and u ∈ W 2∞(�). Let

also uh be the piecewise linear finite element approximation to u with respect to a
quasi-uniform simplicial mesh of diameter h. Then

‖u − uh‖bmo�(�) � h2|u|2,∞;�. (5.6)

Proof Let
∑k

j=0 λ j a j = z ∈ h1�(�) with k arbitrary but finite. Such functions are

dense in h1�, so to prove our claim it suffices by the duality of bmo� and h1� to show
that

∫

�
(u−uh)z dx � h2|u|2,∞;�‖z‖h1�(�). Let−�v = z with v = 0 on ∂�. Letting

Ihv be a Scott-Zhang interpolant of v, we have

(u − uh, z) = (u − uh,−�v) = (∇(u − uh),∇(v − Ihv))

� h‖u − uh‖W 1∞(�)|v|2,1;� � h‖u − uh‖1,∞;�‖z‖h1�(�). (5.7)

The proof is completed by recalling the W 1∞ error estimate ‖u − uh‖1,∞;� �
h|u|2,∞;�; cf. [12,19,36]. ��
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We next prove a posteriori upper and lower bounds for ‖u − uh‖bmo�(�). Note that
the a posteriori lower bound for the error is critical in establishing that the logarithmic
factor in (1.3) is necessary.

Lemma 11 Assume that � ⊂ R
n is convex and polyhedral. Let also uh be the piece-

wise linear finite element approximation to u with respect to a shape-regular simplicial
mesh, where u ∈ H1

0 (�) with −�u = f ∈ L∞(�). Then

‖u − uh‖bmo�(�) + max
T∈Th

h2T ‖ f − fT ‖∞; T

� max
T∈Th

[h2T ‖ f + �uh‖∞; T + hT ‖�∇uh�‖∞; ∂T ]. (5.8)

Here fT = 1
|T |
∫

T f dx.

Proof The upper bound for ‖u − uh‖bmo�(�) follows by first noting that h2T ‖ f −
fT ‖∞; T ≤ h2T ‖ f + �uh‖∞; T and then employing a duality argument precisely as
in the preceding lemma; one must only substitute standard residual error estimation
techniques for the a priori error analysis techniques above. In order to prove the lower
bound we employ a discrete δ-function; cf. (A.5) of [38]. Given x0 ∈ T ∈ Th , let δx0
be a smooth, fixed function compactly supported in T such that (vh, δx0) = vh(x0)

for all vh ∈ Sh . δx0 may be constructed to satisfy ‖δx0‖m,p; T � h
−m−n(1− 1

p )

T with
constant independent of x0. A short computation shows that −ch2T�δx0 is an atom
satisfying (5.2) with the required value of c and the constant in r � hT independent
of essential quantities. Thus

h2T ‖ f + �uh‖∞; T ≤ h2T ‖ f − fT ‖∞; T + h2T ( fT + �uh, δx0)

� h2T ‖ f − fT ‖∞; T − h2T (�(u − uh), δx0)

= h2T ‖ f − fT ‖∞; T − h2T (u − uh,�δx0)

� h2T ‖ f − fT ‖∞; T + ‖u − uh‖bmo�(�). (5.9)

To bound hT ‖�∇uh�‖∞; e on a face e of the triangulation, let e = T1∩T2 with T1, T2 ∈
Th . Modest modification of the arguments in (A.5) of [38] yields that for x0 ∈ e and
fixed polynomial degree r − 1, there is a function˜δx0 compactly supported in T1 ∪ T2
such that vh(x0) = ∫

e
˜δx0vh ds for vh ∈ Pr−1, and in addition, ‖˜δx0‖m,p; T1∪T2 �

h
−m+1+n(1− 1

p )

T . Similar to above, −chT�˜δx0 is an atom with r � hT . Thus

hT ‖�∇uh�‖∞; e =
∫

e
�∇uh�˜δx0 ds

= hT

∫

T1∪T2
∇(u − uh)∇˜δx0 dx − hT

∫

T1∪T2
(�uh + f )˜δx0 dx

�
∫

T1∪T2
(u − uh)(−hT�˜δx0) dx + hT ‖�uh + f ‖∞; T1∪T2‖˜δx0‖1; T1∪T2

� ‖u − uh‖bmo�(�) + h2T ‖ f + �uh‖∞; T1∪T2 . (5.10)
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Combining (5.9) and (5.10) completes the proof. ��

A.3: Necessity of logarithmic factors

In this section we show that logarithmic factors are necessary in maximum-norm a
posteriori upper bounds at least in the case of piecewise linear function spaces in two
space dimensions. In [20], Haverkamp showed that given a convex polygonal domain
� and quasi-uniform mesh of size h, there exists u (which depends on h) such that
‖u−uh‖∞;� � h2 log h−1|u|2,∞;�. Given such a u, employing this result, (1.3), and
the preceding two lemmas yields

h2 log h−1|u|2,∞;� � ‖u − uh‖∞;�

� log h−1 max
T∈Th

[h2‖ f + �uh‖∞; T + h‖�∇uh�‖∞; ∂T ]
� log h−1[‖u − uh‖bmo�(�) + max

T∈Th
h2‖ f − fT ‖∞; T ]

� h2 log h−1|u|2,∞;�. (5.11)

We have thus proved the following lemma.

Lemma 12 The bound

‖u − uh‖∞;� � log h−1 max
T∈Th

[h2T ‖ f + �uh‖∞; T + hT ‖�∇uh�‖∞; ∂T ] (5.12)

does not in general hold if the term log h−1 is omitted.

We now also remark on two further important consequences of Lemma 11. First,
the standard a priori and a posteriori upper bounds for L∞ are

‖u − uh‖∞;�

� log h−1 max
T∈Th

[h2T ‖ f + �uh‖∞; T + hT ‖�∇uh�‖∞; ∂T ]

� log h−1
(

‖u − uh‖∞;� + max
T∈Th

h2T ‖ f − fT ‖∞; T
)

. (5.13)

Lemma 12 establishes that the logarithmic factor in the first inequality above is nec-
essary. Our estimates also show that the logarithmic factor in the second inequality
(efficiency estimate) sometimes is not sharp, since ‖u−uh‖∞;� in the third line above
may be replaced by ‖u−uh‖bmo�(�) and the latter may grow strictly (logarithmically)
slower than the former.

Secondly, an interesting question that has yet to be successfully approached in the
literature is proof of convergence of adaptive FEM for controlling maximum errors.
Among other difficulties, the presence of the logarithmic factor in the a posteriori
bounds for the maximum error makes adaptation of standard AFEM convergence and
optimality proofs much more challenging. Because logarithmic factors are global,
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they play no role in AFEM marking schemes, so the natural AFEM for controlling
‖u−uh‖∞;� is precisely the same as that for controlling ‖u−uh‖bmo�(�). Lemma 11
indicates that at least for convex domains the BMO norm of the error is more directly
controlled by the standard L∞ AFEM since the bounds involve no logarithmic factors.
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