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Abstract Motivated by an application in Magnetic Particle Imaging, we study bivari-
ate Lagrange interpolation at the node points of Lissajous curves. The resulting theory
is a generalization of the polynomial interpolation theory developed for a node set
known as Padua points. With appropriately defined polynomial spaces, we will show
that the node points of non-degenerate Lissajous curves allow unique interpolation and
can be used for quadrature rules in the bivariate setting. An explicit formula for the
Lagrange polynomials allows to compute the interpolating polynomial with a simple
algorithmic scheme. Compared to the already established schemes of the Padua and
Xu points, the numerical results for the proposed scheme show similar approximation
errors and a similar growth of the Lebesgue constant.
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1 Introduction

A challenging task for multivariate polynomial interpolation is the construction of a
suitable set of node points. Depending on the application, these node points should
provide a series of favorable properties including a unique interpolation in given poly-
nomial spaces, a slowgrowth of theLebesgue constant and simple algorithmic schemes
that compute the interpolating polynomial. The construction of suitable point sets for
multivariate interpolation has a long-standing history. For an overview, we refer to the
survey articles [14,15] and the references therein. Examples of remarkable construc-
tions in the bivariate setting are the point sets introduced by Morrow and Patterson
[23], Xu [25], as well as some generalizations of them [18]. A modification of the
Morrow-Patterson points, introduced as Padua points [7], is particularly interesting
for the purposes of this article.

In some applications, the given data points are lying on subtrajectories of the euclid-
ean space. In this case, aside from the above mentioned favorable properties, it is
mandatory that the node points are part of these trajectories. Lissajous curves are par-
ticularly interesting examples for us, as they are used as a sampling path in a young
medical imaging technology called Magnetic Particle Imaging (MPI) [16].

In MPI, the distribution of superparamagnetic iron oxide nanoparticles is recon-
structedbymeasuring themagnetic response of the particles. Themeasurement process
is based on the combination of various magnetic fields that generate and move a mag-
netic field free point through a region of interest. Although different trajectories are
possible, this movement is typically performed in form of a Lissajous curve [20].
The reconstruction of the particle density from the data on the Lissajous trajectory
is currently done in a very straight forward way, either by solving a system of linear
equations based on a pre-measured system matrix or directly from the measurement
data [17]. By using multivariate polynomial interpolation on the nodes of the sam-
pling path, i.e. the Lissajous curve, it is assumed to obtain a further improvement in
the reconstruction process.

Of the node points mentioned above, the Padua points, as described in [3], are the
ones with the strongest relation to Lissajous curves. They can be characterized as the
node points of a particular degenerate Lissajous figure. Moreover, they satisfy a series
of remarkable properties: they can be described as an affine variety of a polynomial
ideal [5], they form a particular Chebyshev lattice [11] and they allow a unique inter-
polation in the space �n of bivariate polynomials of degree n [3]. Furthermore, a
simple formula for the Lagrange polynomials is available and the Lebesgue constants
are growing slowly as O (

log2 n
)
[3].

The aim of this article is to develop, similar to the Padua points, an interpolation
theory for node points on Lissajous curves. To this end, we extend the generating curve
approach as presented in [3] to particular families of Lissajous curves in [−1, 1]2. In
this article, we will focus on the node points of non-degenerate Lissajous curves,
which are important for the application in MPI [19]. Not all of the above mentioned
properties of the Padua points will be carried over to the node points of Lissajous
figures. However, the resulting theory will have some interesting resemblences, not
only to the theory of the Padua points, but also to the Xu points.
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Bivariate interpolation at Lissajous node points 687

We start our investigation by characterizing the node pointsLSn,p of non-degenerate
Lissajous curves. Based on the node points LSn,p, we will derive suitable quadrature
formulas for integration with product Chebyshev weight functions. Next, we will
provide the main theoretical results on bivariate interpolation based on the points
LSn,p. We will show that the points LSn,p allow unique interpolation in a properly
defined space �L

n,p of bivariate polynomials. Further, we will derive a formula for the
fundamental polynomials of Lagrange interpolation. This explicit formula allows the
computation of the interpolating polynomialwith a simple algorithmic scheme, similar
to the one of the Padua points [8]. We conclude this article with some numerical tests
for the new bivariate interpolating schemes. Compared to the established interpolating
schemes of the Padua and Xu points, the novel interpolation schemes show similar
approximation errors and a similar growth of the Lebesgue constant.

2 The node points of non-degenerate Lissajous curves

In this article, we consider 2π -periodic Lissajous curves of the form

γn,p : R → R
2, γn,p(t) =

(
sin(nt), sin((n + p)t)

)
, (1)

where n and p are positive integers such that n and n + p are relatively prime. Based
on the calculations in [1] (see also [21]), the Lissajous curve γn,p is non-degenerate
if and only if p is odd. In this case, γn,p : [0, 2π) → R

2 is an immersed plane curve
with precisely 2n(n + p) − 2n − p self-intersection points. In the following, we will
always assume that p is odd and sample the Lissajous curve γn,p along the 4n(n + p)
equidistant points

tk := 2πk

4n(n + p)
, k = 1, . . . , 4n(n + p).

In this way, we get the following set of Lissajous node points:

LSn,p :=
{
γn,p(tk) : k = 1, . . . , 4n(n + p)

}
. (2)

To characterize the set LSn,p, we divide γn,p(tk) for the even and odd integers k.
For this decomposition, we use the fact that n and n + p are relatively prime. Then,
if n is odd, every odd integer k can be written as k = (2i + 1)n + 2 j (n + p) with
i, j ∈ Z. If k is even, we can write k = 2in + (2 j + 1)(n + p) with i, j ∈ Z. If n is
even, the same holds with the roles of n and n + p switched. In this way, we get the
decomposition LSn,p = LSbn,p ∪ LSwn,p with the sets

LSbn,p :=
{
γn,p

(
(2i + 1)n + 2 j (n + p)

4n(n + p)
2π

)
: i, j ∈ Z

}
, (3)

LSwn,p :=
{
γn,p

(
2in + (2 j + 1)(n + p)

4n(n + p)
2π

)
: i, j ∈ Z

}
. (4)
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Fig. 1 Illustration of non-degenerate Lissajous curves γn,p . The node points LSn,p of γn,p are arranged
on two different grids (black, white) corresponing to the sets LSbn,p and LSwn,p . Lissajous figure γ2,1,
|LS2,1| = 17 (Left). Lissajous figure γ2,3, |LS2,3| = 27 (Right)

Two examples of Lissajous curves γn,p with the corresponding node points LSbn,p

and LSwn,p are illustrated in Fig. 1. To get a compact representation of LSbn,p and LS
w
n,p,

we use the following notation for the Chebyshev-Gauß-Lobatto points:

znk := cos

(
kπ

n

)
, n ∈ N, k ∈ Z. (5)

Then, evaluating the points (3) and (4) explicitly for the Lissajous curve (1), we get
the following characterization:

LSbn,p =
{
(−1)i+ j

(
z2(n+p)
(2i+1)p, z

2n
2 j p

)
: i = 0, . . . , n + p − 1

j = 0, . . . , n

}
, (6)

LSwn,p =
{
(−1)i+ j

(
z2(n+p)
2i p , z2n(2 j+1)p

)
: i = 0, . . . , n + p

j = 0, . . . , n − 1

}
. (7)

Since p is assumed to be odd and relatively prime to n, p is relatively prime to 2n
as well as to 2(n + p). Therefore, by rearranging the points, we can drop the number
p in the lower indices of the Chebyshev-Gauß-Lobatto points in (6) and (7). Due to
the point symmetry of the Lissajous curve γn,p, the term (−1)i+ j which preceeds the
points in (6) and (7) can also be dropped by further rearrangement. This leads to the
following simple characterization of the point sets LSbn,p and LSwn,p:

LSbn,p =
{(

z2(n+p)
2i ′+1 , z2n2 j ′

)
: i ′ = 0, . . . , n + p − 1

j ′ = 0, . . . , n

}
, (8)

LSwn,p =
{(

z2(n+p)
2i ′ , z2n2 j ′+1

)
: i ′ = 0, . . . , n + p

j ′ = 0, . . . , n − 1

}
. (9)
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Bivariate interpolation at Lissajous node points 689

Table 1 Cardinality of the
different LS point sets

Set Number of elements

LSn,p 2n(n + p) + 2n + p

LSbn,p (n + 1)(n + p)

LSwn,p n(n + p + 1)

LSintn,p 2n(n + p) − 2n − p

LSoutn,p 4n + 2p

With this characterization, we can also divide the points LSn,p into the sets LSintn,p

and LSoutn,p denoting the points lying in the interior and on the boundary of the square
[−1, 1]2 respectively. We have

LSintn,p :=
{(

z2(n+p)
2i ′+1 , z2n2 j ′

)
: i ′ = 0, . . . , n + p − 1

j ′ = 1, . . . , n − 1

}

∪
{(

z2(n+p)
2i ′ , z2n2 j ′+1

)
: i ′ = 1, . . . , n + p − 1

j ′ = 0, . . . , n − 1

}
,

LSoutn,p :=
{(

z2(n+p)
2i ′+1 ,±1

)
: i ′ = 0, . . . , n + p − 1

}

∪
{(

± 1, z2n2 j ′+1

)
: j ′ = 0, . . . , n − 1

}
.

From the representation of the points LSn,p in (8) and (9), it is possible to count
the number of points in the different sets. They are listed in Table 1.

From the representation in (3) and (4) and its identification in (6) and (7), we can
deduce that

γn,p

(
(2i + 1)n + 2 j (n + p)

4n(n + p)
2π

)
= γn,p

(
(2i + 1)n − 2 j (n + p)

4n(n + p)
2π

)
,

γn,p

(
2in + (2 j + 1)(n + p)

4n(n + p)
2π

)
= γn,p

(−2in + (2 j + 1)(n + p)

4n(n + p)
2π

)

holds for all i, j ∈ Z. Moreover, in (3) and (4) the boundary points are represented by
j ∈ nZ and i ∈ (n+p)Z, respectively. Thus, for interior points in LSbn,p∩LSintn,p, i.e. all
points in (3) satisfying j �= nZ, there exist at least two different 1 ≤ k, k′ ≤ 4n(n+ p)
in (2) that represent the same point. The same holds for all interior points in the second
set LSwn,p.

Therefore, all points in LSintn,p are self-intersection points of the Lissajous curve
γn,p. Since |LSintn,p| = 2n(n + p) − 2n − p corresponds to the total number of self-
intersection points of a non-degenerate Lissajous curve (see [1]), we can conclude that
LSintn,p is precisely the set of all self-intersection points of the Lissajous curve γn,p.
Finally, since 2|LSintn,p| + |LSoutn,p| = 4n(n + p), we can also conclude that there are
exactly two different 1 ≤ k, k′ ≤ 4n(n + p) that represent the same point in LSintn,p

and that every point in LSoutn,p is described by exactly one 1 ≤ k ≤ 4n(n + p) in (2).
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690 W. Erb et al.

In order to identify the different integers k in (2) that describe the same point
A ∈ LSn,p, we introduce for k, k′ ∈ Z the equivalence relation

k
LSn,p∼ k′ ⇔ γn,p(tk) = γn,p(tk′).

We say that k ∈ Z belongs to the equivalence class [A], A ∈ LSn,p, if γn,p(tk) = A.
Therefore, by the above argumentation, there is exactly one 1 ≤ k ≤ 4n(n + p) in the
equivalence class [A] if A ∈ LSoutn,p and exactly two if A ∈ LSintn,p.

Remark 1 There are some remarkable relations between the LS, Padua and Xu points.
In formal terms, if p = 0 in the characterization (8) and (9) of the LSn,p points, the
points LSn,0 correspond with the even Xu points XU2n as defined in [25]. Moreover,
if p = 1

2 in (8) and (9), we obtain the even Padua points PD2n of the second family
(see [8] and (22), (23) in Sect. 6) with a slight adjustment in the range of the indices.
A further comparison of these three point sets in terms of numerical simulations is
given in the last section of this article. Finally we would like to add that the points
LSn,p, similarly to the Padua points, can be considered as two-dimensional Chebyshev
lattices of rank 1 (see [11]).

3 Quadrature formulas based on the Lissajous node points

In this section, we study quadrature rules for bivariate integration defined by point
evaluations at the points LSn,p. As underlying polynomial spaces in R2, we consider

�n = span{Ti (x)Tj (y) : i + j ≤ n},
where Ti (x) denotes the Chebyshev polynomial Ti (x) = cos(i arccos x) of the first
kind. It is well-known (cf. [12,25]) that {Ti (x)Tj (y) : i + j ≤ n} is an orthogonal
basis of �n with respect to the inner product

〈 f, g〉 := 1

π2

∫ 1

−1

∫ 1

−1
f (x, y)g(x, y)

1√
1 − x2

1
√
1 − y2

dxdy. (10)

The corresponding orthonormal basis is given by {T̂i (x)T̂ j (y) : i + j ≤ n}, where

T̂i (x) =
{
1, if i = 0,√
2Ti (x), if i �= 0.

Using the trajectory γn,p, it is possible to reduce a double integral of the form used in
(10) into a single integral for a large class of bivariate polynomials.

Lemma 1 For all polynomials P ∈ �8n+4p−1 with 〈P, T2(n+p)(x)T2n(y)〉 = 0, the
following formula holds:

1

π2

∫ 1

−1

∫ 1

−1
P(x, y)

1√
1 − x2

1
√
1 − y2

dxdy = 1

2π

∫ 2π

0
P(γn,p(t))dt. (11)
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Bivariate interpolation at Lissajous node points 691

Proof We check (11) for all basis polynomials Ti (x)Tj (y) in the space �8n+4p−1.
For the left hand side of (11) we get the value 1 if (i, j) = (0, 0) and 0 otherwise. For
the right hand side of (11) we get also 1 if (i, j) = (0, 0). For (i, j) �= (0, 0) we get
for P(x, y) = Ti (x)Tj (y) the expression

1

2π

∫ 2π

0
P(γn,p(t))dt = 1

2π

∫ 2π

0
Ti (sin(nt))Tj (sin((n + p)t))dt

= 1

2π

∫ 2π

0
cos

(
int − i

π

2

)
cos

(
j (n + p)t − j

π

2

)
dt.

We now determine for which indices (i, j) this integral is different from 0. This is
only the case if in = j (n + p) and i − j is even. Since the numbers n and n + p
are relatively prime, this can only be the case if i = k(n + p), j = nk and k ∈ 2N
is an even number. We see that the smallest possible value for k is k = 2 and the
second smallest is k = 4. Furthermore, the sum of the respective indices is given by
i + j = (2n + p)k. Therefore, we can conclude that for all indices (i, j) satisfying
i + j = 1, . . . , 4n + 2p − 1 and i + j = 4n + 2p + 1, . . . , 8n + 4p − 1 the right
hand side of (11) vanishes. If i + j = 4n + 2p, the above integral is nonzero only if
i = 2(n + p) and j = 2n. ��

To get a quadrature formula supported on the points LSn,p, we define a suitable
polynomial subspace

�Q
n,p = span{Ti (x)Tj (y) : (i, j) ∈ �Q

n,p}

with the index set �Q
n,p ⊂ N

2
0 given by

�Q
n,p :=

{
(i, j) : i+ j ≤ 4n−1

}
∪
4p−1⋃

m=0

{
(i, j) : i+ j = 4n+m, j <

n(4p−m)

p

}
.

Note that the particular index (i, j) = (2(n + p), 2n) is not included in �
Q
n,p and that

Lemma 1 is applicable for all polynomials P ∈ �
Q
n,p. An example of the index set

�
Q
n,p is shown in Fig. 2. Clearly, the polynomial space�

Q
n,p satisfies�4n−1 ⊂ �

Q
n,p ⊂

�4n+4p−1 and the dimension of �
Q
n,p can be computed as

dim�Q
n,p = |�Q

n,p| = 8n(n + p)+ 4n − 2(p − 1)= 4(|LSn,p| − n − p) − 2(p − 1).

For points A ∈ LSn,p, we define the quadrature weights

wA :=

⎧
⎪⎨

⎪⎩

1

4n(n + p)
, if A ∈ LSoutn,p,

2

4n(n + p)
, if A ∈ LSintn,p.

Then, we get the following quadrature rule based on the node set LSn,p:
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692 W. Erb et al.

Fig. 2 Illustration of the index set �Q
2,1 with black and white bullets. We have |�Q

2,1| = 56 black and white
bullets. The black bullets correspond to indices describing the polynomial space �4n−1. The black cross

is not contained in �
Q
2,1. It corresponds to the special index (i, j) = (6, 4) appearing in Lemma 1

Theorem 1 For all P ∈ �
Q
n,p the quadrature formula

1

π2

∫ 1

−1

∫ 1

−1
P(x, y)

1√
1 − x2

1
√
1 − y2

dxdy =
∑

A∈LSn,p

wAP(A) (12)

is exact.

Proof For all trigonometric 2π -periodic polynomials q of degree less than 4n(n+ p),
the following composite trapezoidal quadrature rule is exact:

1

2π

∫ 2π

0
q(t)dt = 1

4n(n + p)

4n(n+p)∑

k=1

q (tk) .

Since �
Q
n,p ⊂ �8n+4p−1 and �

Q
n,p ⊥ T2(n+p)(x)T2n(y), we have by Lemma 1 the

identity

1

π2

∫ 1

−1

∫ 1

−1
P(x, y)

1√
1 − x2

1
√
1 − y2

dxdy = 1

2π

∫ 2π

0
P(γn,p(t))dt.

Thus, if we show that for P ∈ �
Q
n,p the trigonometric polynomial P(γn,p(t)) is of

degree less than 4n(n + p), we immediately get the quadrature formula

1

π2

∫ 1

−1

∫ 1

−1
P(x, y)

1√
1 − x2

1
√
1 − y2

dxdy = 1

4n(n + p)

4n(n+p)∑

k=1

P(γn,p(tk))

=
∑

A∈LSn,p

wAP(A).
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Bivariate interpolation at Lissajous node points 693

To finish the proof we consider the representation of the polynomial P ∈ �
Q
n,p in the

orthogonal basis {Ti (x)Tj (y) : (i, j) ∈ �
Q
n,p} and get

P(γn,p(t)) =
∑

(i, j)∈�
Q
n,p

ai j Ti (sin nt)Tj (sin(n + p)t)

=
∑

(i, j)∈�
Q
n,p

ai j cos
(
int − i π

2

)
cos

(
j (n + p)t − j π

2

)

for some coefficients ai j ∈ R. In order for the trigonometric polynomials in this
formula to have a degree less than 4n(n + p), the indices (i, j) have to satisfy the
condition

(i + j)n + j p < 4n(n + p).

In the case that i + j < 4n, we have (i + j)n + j p ≤ (i + j)n + 4np < 4n(n + p)
and the condition above is satisfied.

In the case that i + j = 4n + m with 0 ≤ m ≤ 4p − 1, we have (i + j)n +
j p = 4n2 + mn + j p < 4n(n + p) and the condition above is satisfied for all j
with j <

n(4p−m)
p . By definition, this condition is exactly satisfied for all indices

(i, j) ∈ �
Q
n,p and therefore for all polynomials P ∈ �

Q
n,p. ��

Remark 2 Lemma 1 and Theorem 1 are generalizations of corresponding results
proven in [3] for the Padua points. An analogous formula also exists for the Xu points
(see [23,25]). Furthermore, the cardinality of the Xu points XU2n is known to be min-
imal for exact integration of bivariate polynomials in �4n−1 with respect to a product
Chebyshev weight function (see [22,25]). Since |LSn,p| > |XU2n| = 2n(n + 1), this
is not the case for the points LSn,p. On the other hand, as illustrated in Fig. 2, the space

�
Q
n,p, forwhich (12) is exact, shows a remarkable asymmetry.As formultivariate inter-

polation, the construction of suitable nodes for cubature rules has a long history. For
an overview and further literature, we refer to the survey article [10] and the book [12].

4 Interpolation on the Lissajous node points

Given the quadrature formulas of the last section, we now investigate bivariate interpo-
lation at the points LSn,p. The corresponding interpolation problem can be formulated
as follows: for given function values fA ∈ R, A ∈ LSn,p, we want to find a unique
bivariate interpolating polynomial Ln,p f such that

Ln,p f (A) = fA for all A ∈ LSn,p. (13)

To set this problem correctly, we have to fix an underlying interpolation space. This
space is linked to �

Q
n,p and defined as

�L
n,p := span{Ti (x)Tj (y) : (i, j) ∈ �L

n,p}
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694 W. Erb et al.

Fig. 3 Illustration of the index sets�L
n,p . The black bullets correspond to indices describing the polynomial

space �2n . Index set Γ
L
2,1 with |Γ L

2,1| = 17 (Left). Index set Γ L
2,3 with |Γ L

2,3| = 27 (Right)

on the index set

�L
n,p :=

{
(i, j) : i + j ≤ 2n

}
∪

2p−1⋃

m=1

{
(i, j) : i + j = 2n + m, j <

n(2p − m)

p

}
.

Examples of sets�L
n,p with different values of p are given in Fig. 3. The reproducing

kernel K L
n,p : R2 × R

2 → R of the polynomial space �L
n,p is given as

K L
n,p(xA, yA; xB, yB) =

∑

(i, j)∈�L
n,p

T̂i (xA)T̂i (xB)T̂ j (yA)T̂ j (yB).

It is straightforward to check that the kernel K L
n,p has the reproducing property

〈P, K L
n,p(x, y; ·)〉 = P(x, y)

for all polynomials P ∈ �L
n,p. We have �2n ⊂ �L

n,p ⊂ �2(n+p)−1. The dimension
of the polynomial space �L

n,p is given as

dim(�L
n,p) = |�L

n,p| = (2n + 1)(2n + 2)

2
+

2p−1∑

m=1

⌈
n(2p − m)

p

⌉

= 2n2 + n(2p + 2) + p = |LSn,p|.

Therefore, the dimension dim(�L
n,p) of the polynomial space �L

n,p corresponds pre-
cisely to the number of points in LSn,p.

Soon, we will deduce a formula for the fundamental polynomials of Lagrange
interpolationwith respect to the points inLSn,p and show that the interpolationproblem
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Bivariate interpolation at Lissajous node points 695

(13) has a unique solution. To this end, we investigate an isomorphism between the
polynomial space �L

n,p and the subspace

�
trig,L
2n(n+p) :=

{
q ∈�

trig
2n(n+p): q(tk) = q(tk′) for all k, k′ with k

LSn,p∼ k′
}

(14)

of 2π -periodic trigonometric polynomials

�
trig
2n(n+p) :=

⎧
⎨

⎩
q(t) =

2n(n+p)∑

m=0

am cos(mt) +
2n(n+p)−1∑

m=1

bm sin(mt) : am, bm ∈ R

⎫
⎬

⎭
.

Theorem 2 The operator

Eγ : �L
n,p → �

trig,L
2n(n+p), Eγ P(t) = P(γn,p(t)), t ∈ [0, 2π ],

defines an isometric isomorphism from the space
(
�L

n,p, 〈·, ·〉
)

onto the space

�
trig,L
2n(n+p) equipped with the inner product 〈q1, q2〉 = 1

2π

∫ 2π
0 q1(t)q2(t)dt .

Proof The system
{
T̂i (x)T̂ j (y) : (i, j) ∈ �L

n,p

}
forms an orthonormal basis of the

space �L
n,p. The image

ei j (t) := Eγ

(
T̂i (x)T̂ j (y)

)
(t), (i, j) ∈ �L

n,p,

of this basis under the linear operator Eγ is given by

ei j (t) =

⎧
⎪⎪⎨

⎪⎪⎩

1, if (i, j) = (0, 0),√
2 cos

(
int − i π

2

)
, if j = 0, i < 2(n + p),√

2 cos
(
j (n + p)t − j π

2

)
, if i = 0, j ≤ 2n,

2 cos
(
int − i π

2

)
cos

(
j (n + p)t − j π

2

)
, otherwise.

(15)

For (i, j) ∈ �L
n,p, j �= 2n, the functions ei j (t) are trigonometric polynomials of degree

less than 2n(n + p). The only trigonometric polynomial of exact degree 2n(n + p) is
precisely e0,2n . By the definition of the operator Eγ , the values Eγ P(tk) and Eγ P(tk′),
tk �= tk′ coincide if γn,p(tk) = γn,p(tk′) is a self-intersection point of γn,p. This is
precisely encoded in the constraints given in (14).We can conclude that Eγ maps�L

n,p

into the space �
trig,L
2n(n+p).

For polynomials P1, P2 ∈ �L
n,p, the product polynomial P1P2 is an element of the

space �8n+4p−1 and satisfies 〈P1P2, T2(n+p)(x)T2n(y)〉 = 0. Therefore, by Lemma

1, the set
{
ei j : (i, j) ∈ �L

n,p

}
is an orthonormal system in �

trig,L
2n(n+p), and thus, Eγ is

an isometric embedding from �L
n,p into �

trig,L
2n(n+p).
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Now, if we can show that the dimensions of �L
n,p and �

trig,L
2n(n+p) coincide, the proof

is finished. To this end, we consider in �
trig
2n(n+p) the Dirichlet kernel

D2n(n+p)(t) := 1 + cos(2n(n + p)t) + 2
∑2n(n+p)−1

k=1 cos(kt)

4n(n + p)

= sin(2n(n + p)t) cos t
2

4n(n + p) sin t
2

.

It is well-known that the trigonometric polynomials

Dk
2n(n+p)(t) := D2n(n+p) (t − tk) , k = 1, . . . , 4n(n + p),

are precisely the Lagrange polynomials in the space �
trig
2n(n+p) with respect to the

points tk , k = 1, . . . , 4n(n + p) (see [26, Chapter X, 3]), i.e.

Dk
2n(n+p) (tk′) = δk,k′ , 1 ≤ k, k′ ≤ 4n(n + p).

In general, the polynomials Dk
2n(n+p) do not lie in the subspace �

trig,L
2n(n+p). However,

we can define a basis for �
trig,L
2n(n+p) by using the linear combinations

lA(t) :=
∑

k=1,...,4n(n+p):
k∈[A]

Dk
2n(n+p)(t), A ∈ LSn,p. (16)

Clearly, the polynomials lA are elements of �
trig,L
2n(n+p), and lA(tk) is equal to one if

k ∈ [A] and zero if k /∈ [A]. Thus, the system {lA : A ∈ LSn,p} forms a basis of

�
trig,L
2n(n+p) and dim(�

trig,L
2n(n+p)) = |LSn,p|. This corresponds exactly with the dimension

of the space �L
n,p. ��

Theorem 3 For A = (xA, yA) ∈ LSn,p, the polynomials LA := E−1
γ lA have the

representation

LA(x, y) = wA
(
K L
n,p(x, y; xA, yA) − 1

2
T̂2n(y)T̂2n(yA)

)
(17)

and are the fundamental polynomials of Lagrange interpolation in the space �L
n,p on

the point set LSn,p, i.e.

LA(B) = δA,B, A,B ∈ LSn,p.
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Bivariate interpolation at Lissajous node points 697

The interpolation problem (13) has a unique solution in �L
n,p and the interpolating

polynomial Ln,p f is given by

Ln,p f (x, y) =
∑

A∈LSn,p

fALA(x, y).

Proof From the definition (16) of the trigonometric polynomials lA and the mapping
Eγ it follows immediately that the polynomials LA = E−1

γ lA satisfy LA(B) = δA,B
forB ∈ LSn,p.Moreover, since the trigonometric polynomials {lA : A ∈ LSn,p} form
a basis of the space �

trig,L
2n(n+p), Theorem 2 implies that the polynomials {LA : A ∈

LSn,p} form a basis of Lagrange polynomials for the space �L
n,p.

It remains to prove (17). To this end, we compute the decomposition of the
polynomials lA in the basis ei j given in (15) and use the inverse of the opera-
tor Eγ to obtain (17). The proof will be given only for A ∈ LSbn,p having the
representation

A = (xA, yA) = γn,p

(
(2r + 1)n + 2s(n + p)

4n(n + p)
2π

)
= (−1)r+s

(
z2(n+p)
(2r+1)p, z

2n
2sp

)
.

We first suppose that A ∈ LSbn,p is an interior point such that the two points k, k′ ∈
[A] ∩ [1, 4n(n + p)], k �= k′ that represent the same A are given as

k = (2r + 1)n + 2s(n + p) mod 4n(n + p),

k′ = (2r + 1)n − 2s(n + p) mod 4n(n + p).

Using simple trigonometric transformations, the basis function lA can be written
as

lA(t) = Dk
2n(n+p)(t) + Dk′

2n(n+p)(t)

= 2

4n(n + p)

⎛

⎝1 + cos((2r + 1)nπ) cos(2n(n+ p)t)

+ 2
2n(n+p)−1∑

m=1

cos
( 2smπ

2n

)(
cos

(
(2r+1)mπ
2(n+p)

)
cos(mt) + sin

(
(2r+1)mπ
2(n+p)

)
sin(mt)

)
⎞

⎠.

Now, using the explicit expression (15) of the basis polynomials ei j and comparing
the coefficients in the decomposition of lA, we get the following formula for the inner
product

〈
lA, ei j

〉 = 1
2π

∫ 2π
0 lA(t)ei j (t)dt , (i, j) ∈ �L

n,p:
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698 W. Erb et al.

〈
lA, ei j

〉 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
4n(n+p) , if (i, j) = (0, 0),

√
2

4n(n+p) , if i = 0, j = 2n,

2
√
2(−1)(r+s) j

4n(n+p) cos
(
j 2spπ2n

)
, if i = 0, j < 2n,

2
√
2(−1)(r+s)i

4n(n+p) cos
(
i (2r+1)pπ

2(n+p)

)
, if i �= 0, j = 0,

4(−1)(r+s)(i+ j)

4n(n+p) cos
(
i (2r+1)pπ

2(n+p)

)
cos

(
j 2spπ2n

)
, otherwise,

= 2

4n(n+ p)

{
1
2 T̂2n(yA), if i = 0, j = 2n,

T̂i (xA)T̂ j (yA), if (i, j) ∈ �L
n,p\(0, 2n).

Therefore, lA(t) can be decomposed as

lA(t) = T̂2n(yA)

4n(n + p)
e0,2n(t) +

∑

(i, j)∈�L
n,p

j �=2n

2T̂i (xA)T̂ j (yA)

4n(n + p)
ei j (t).

Now, using the inverse mapping E−1
γ together with the definition of the reproducing

kernel K L
n,p, we can conclude:

LA(x, y) = E−1
γ lA(x, y) = wA

(
K L
n,p(x, y; xA, yA) − 1

2
T̂2n(y)T̂2n(yA)

)
.

If A ∈ LSbn,p is a point on the boundary of the square [−1, 1]2, the number k can be
represented as k = (2r + 1)n and the basis function lA is given as

lA(t) = Dk
2n(n+p)(t) = 1

4n(n + p)

⎛

⎝1 + cos((2r + 1)nπ) cos(2n(n + p)t)

+ 2
2n(n+p)−1∑

m=1

cos

(
2r + 1

2(n + p)
mπ

)
cos(mt) + sin

(
2r + 1

2(n + p)
mπ

)
sin(mt)

⎞

⎠ .

Now, similar calculations to the above yield (17) with the half sized weight function
wA = 1

4n(n+p) . Finally, for all points A ∈ LSwn,p, (17) can be obtained by analogous
calculations using the representation (4) instead of (3). ��

Remark 3 (17) has a remarkable resemblence to the Lagrange polynomials of the
Padua points. For the Padua points, the analog statement of Theorem 3 can be proved
very elegantly by using ideal theory (cf. [5]). This approach was, however, not suc-
cessful for the more general Lissajous nodes. Here, we had to use the isomorphism
Eγ and Theorem 2 instead.
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Bivariate interpolation at Lissajous node points 699

5 A simple and efficient scheme for the computation of the interpolation
polynomial

In view of Theorem 3, the solution to the interpolation problem (13) in �L
n,p is given

as

Ln,p f (x, y) =
∑

A∈LSn,p

wA fA
(
K L
n,p(x, y; xA, yA) − 1

2
T̂2n(y)T̂2n(yA)

)
.

The representation of the polynomialLn,p f (x, y) in the orthonormal Chebyshev basis
{T̂i (x)T̂ j (y) : (i, j) ∈ �L

n,p} can now be written as

Ln,p f (x, y) =
∑

(i, j)∈�L
n,p

ci j T̂i (x)T̂ j (y)

with the coefficients ci j = 〈Ln,p f, T̂i (x)T̂ j (y)〉 given by

ci j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑

A∈LSn,p

wA fA T̂i (xA)T̂ j (yA), if (i, j) ∈ �L
n,p\(0, 2n),

1

2

∑

A∈LSn,p

wA fA T̂2n(yA), if (i, j) = (0, 2n).
(18)

Using the characterization of the points LSn,p as the disjoint union of the sets (8)
and (9), we can reformulate (18) in a more compact matrix notation. To this end, we
introduce the coefficient matrix Cn,p = (ci j ) ∈ R

(2n+2p+1)×(2n+1) by

ci j =
{ 〈Ln,p f, T̂i (x)T̂ j (y)〉, if (i, j) ∈ �L

n,p,

0, otherwise,

where i = 0, . . . , 2n + 2p and j = 0, . . . , 2n. The data values fA and the weights
wA are collected in the extended data matrix G f = (gi j ) ∈ R

(2n+2p+1)×(2n+1) given
by

gi j :=
{

fAwA, if A = (z2n+2p
i , z2nj ) ∈ LSn,p,

0 if (z2n+2p
i , z2nj ) /∈ LSn,p.

Further, for a general finite set X = {x0, . . . , xm} ⊂ [−1, 1] of points, we define the
matrices

Tn(X ) :=
⎛

⎜
⎝

T̂0(x0) · · · T̂0(xm)
...

. . .
...

T̂n(x0) · · · T̂n(xm)

⎞

⎟
⎠ ∈ R

(n+1)×(m+1),
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and the sets Zn = {zn0, zn1, . . . , znn} of Chebyshev-Gauß-Lobatto points. Finally, we
define the mask Mn,p = (mi j ) ∈ R

(2n+2p+1)×(2n+1) by

mi j :=
⎧
⎨

⎩

1, if (i, j) ∈ �L
n,p\(0, 2n),

1/2, if (i, j) = (0, 2n),

0, if (i, j) /∈ �L
n,p.

Then, the coefficient matrix Cn,p of the interpolating polynomial can be computed as

Cn,p =
(
T2n+2p(Z2n+2p)G f T2n(Z2n)

T
)

� Mn,p, (19)

where � denotes pointwise multiplication of the matrix entries. For an arbitrary point
A = (xA, yA) ⊂ R

2, the evaluationLn,p f (A) of the interpolation polynomial is then
given by

Ln,p f (A) = T2n+2p(xA)TCn,pT2n(yA). (20)

Due to the special structure of the matrices T2n+2p(Z2n+2p) and T2n(Z2n), the
matrix-matrix evaluations in (19) can be computed efficiently using fast Fourier meth-
ods. For this purpose, we reformulate (19) for the single entries ci j of the matrixCn,p.
Since the entries of the matrices T2n+2p(Z2n+2p) and T2n(Z2n) are Chebyshev poly-
nomials evaluated at Chebyshev-Gauß-Lobatto points, we obtain the double cosine
series

ci j = mi jαi j

2n∑

l=0

⎛

⎝
2n+2p∑

k=0

gkl cos
ikπ

2n + 2p

⎞

⎠ cos
jlπ

2n
(21)

for the coefficients ci j with the normalization factors αi j := √
2 − δ0,i

√
2 − δ0, j of

the Chebyshev polynomials. Therefore, the computation of the coefficients ci j can be
performed by a composition of one-dimensional cosine transforms along the columns
and the rows of the matrices G f and T2n+2p(Z2n+2p)G f , respectively. Since

2n+2p∑

k=0

gkl cos
ikπ

2n + 2p
= Re

⎛

⎝
2n+2p∑

k=0

gkl e
−ı 2π ik

4n+4p

⎞

⎠ , l = 0, . . . , 2n,

the single discrete cosine transforms can be executed efficiently by using a fast
Fourier algorithm for the vectors (g0,l , . . . , g2n+2p,l , 0, . . . , 0)T ∈ R

4n+4p. The
same scheme can be applied also for the discrete cosine transform of the rows
of the matrix T2n+2p(Z2n+2p)G f . The corresponding implementation of formula
(21) in Matlab/Octave code is given in Listing 1. The complexity of the algorithm
is determined by the complexity of the fast Fourier transforms and is of order
O (n(n + p) ln(n(n + p))).
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Bivariate interpolation at Lissajous node points 701

Listing 1 Matlab/Octave code for a fast computation of the coefficientsCn,p of the interpolating polynomial
Ln,p f from the data matrix G f

1 function C = LScfsfft(n,p,G)
2 % Input n,p: parameters of Lissajous curve
3 % G: (2n+2p+1)x(2n+1) data matrix
4 % Output C: (2n+2p+1)x(2n+1) coefficient matrix
5

6 % Fast cosine transform of each column of G
7 Gh = real(fft(G,4*n+4*p));
8 Gh = Gh (1:2*n+2*p+1,:);
9

10 % Fast cosine transform of each row of Gh
11 Ghh = real(fft(Gh ',4*n))';
12 Ghh = Ghh (: ,1:2*n+1);
13

14 % Chebyshev normalization factors
15 [M1 ,M2] = meshgrid (0:2*n ,0:2*n+2*p);
16 Alpha = sqrt ((2-(M1 <1)).*(2 -(M2 <1)));
17

18 % Mask for coefficients
19 Mask = double(M1*(n+p)+M2*n<2*n*(n+p));
20 Mask (1,2*n+1) = 1/2;
21

22 % Final coefficient matrix
23 C = Ghh.* Alpha.*Mask;

Remark 4 The matrix formulations in (19) and (20) are almost identical to the for-
mulation of the interpolating scheme of the Padua points given in [6,8]. Also, the
fast algorithm for the computation of the coefficients Cn,p presented in Listing 1 is
a modification of a respective algorithm developed for the Padua points in [6]. These
structural similarities are due to the particular representation (17) of the Lagrange
polynomials. The main difference between the two schemes lies in the form of the
mask Mn,p. The mask Mn,p for the points LSn,p has an asymmetric structure deter-
mined by the index set �L

n,p, whereas it is an upper left triangular matrix for the Padua
points. Two examples of the structure of the index set �L

n,p are given in Fig. 3.

6 Numerical simulations

Based on the results derived in the last sections, we perform numerical simulations on
the behaviour of the Lissajous points LSn,p in comparison to some already established
point sets. Unless explicitlymentioned,we assume p = 1 for all numerical simulations
of the Lissajous points. For the comparison point sets, our focus is on the Xu points
(XU) [25] and the Padua points (PD) [7]. Based on the Chebyshev-Gauß-Lobatto
points given by (5), and in correspondance to (8) and (9), the odd Xu points XU2n+1
are defined as the union of the sets

XUb
2n+1 =

{
(z2n+1

2i , z2n+1
2 j ) : 0 ≤ i ≤ n, 0 ≤ j ≤ n

}
,

XUw
2n+1 =

{
(z2n+1

2i+1 , z2n+1
2 j+1) : 0 ≤ i ≤ n, 0 ≤ j ≤ n

}
,
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702 W. Erb et al.

Fig. 4 Visualizations of the Lissajous (LS), Xu (XU) and Padua (PD) point sets. Point sets for n = 2 (Left).
Point sets for n = 5 (Right)

with the cardinality |XU2n+1| = 2(n + 1)2. In turn, the even Padua points PD2n (2nd
family) are defined as the union of the sets

PDb
2n =

{
(z2n+1

2i+1 , z2n2 j ) : 0 ≤ i ≤ n, 0 ≤ j ≤ n
}

, (22)

PDw
2n =

{
(z2n+1

2i , z2n2 j+1) : 0 ≤ i ≤ n, 0 ≤ j ≤ n − 1
}

. (23)

The cardinality can be calculated as |PD2n| = (n + 1)(2n + 1). The distributions of
the Lissajous, Xu and Padua points are shown for small degrees of n in Fig. 4. The
point sets are introduced in such a way that an equally chosen n results in a similar
cardinality.

The stability of the mapping f → Ln,p f is evaluated by means of the growth of
the Lebesgue constant. Here, we calculate the values of the Lebesgue constant

	LS
n,p = max

B∈[−1,1]2
∑

A∈LSn,p

|LA(B)|

of the Lissajous points up to a degree of n = 60. We compare them with the least-
squares fitting of the Lebesgue constant for the Padua and the Xu points. As shown in
[7], it holds for the Padua points that	PD

2n = ( 2
π
log(2n + 1) + 1.1)2 and as presented

for the Xu points in [2] that 	XU
2n+1 = ( 2

π
log(2n + 2))2. Figure 5a indicates that the

asymptotic growth of 	LS
n,1 corresponds to the order O (

log2 n
)
of the Lebesgue con-

stant	PD
2n . In Fig. 5b it is shown, how a variation of the parameter p of the points LSn,p

changes the growth of the Lebesgue constant. Here, we consider p = {1, 3, 5, 7} and
excluded each entry for n and p not being relatively prime. In total, these numerical
evaluations foster the conjecture that the Lebesgue constant of the points LSn,p is of the
same orderO (

log2 n
)
as the Lebesgue constant of the Padua and Xu points (see [4]).

For a further evaluation of the points LSn,p, we perform numerical interpolations
with the Xu, Padua and Lissajous points on the Franke-Renka-Brown test set [13,24].
In order to simulate the Xu points as well as the Padua points, the numerical algorithms
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Bivariate interpolation at Lissajous node points 703

Fig. 5 Lebesgue constants up to a degree of n = 60 for the points LSn,p in comparison to the least-squares
fitting of the Lebesgue constant of the Xu and Padua points. LSn,1, XU2n+1 and PD2n point sets (Left).
Point sets LSn,p for p ∈ {1, 3, 5, 7} (Right)

Table 2 Interpolation errors for the points LSn,1

n # F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

5 71 6E-2 4E-2 1E-3 6E-5 1E-2 3E-5 8E-1 2E-1 2E+1 4E-1

10 241 7E-3 7E-3 1E-6 1E-10 2E-5 1E-8 1E-5 4E-3 4E-1 9E-2

20 881 1E-6 2E-4 4E-12 5E-15 1E-13 1E-14 5E-14 1E-7 5E-6 4E-2

30 1921 3E-11 7E-6 3E-14 1E-14 4E-15 3E-14 2E-13 1E-13 9E-12 3E-2

Table 3 Interpolation errors for the points XU2n+1

n # F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

5 72 8E-2 3E-2 1E-3 6E-5 1E-2 3E-4 6E-1 3E-1 3E+1 6E-1

10 242 5E-3 6E-3 2E-6 1E-10 2E-5 1E-8 1E-5 5E-3 4E-1 1E-1

20 882 1E-6 2E-4 5E-12 3E-15 1E-13 5E-15 3E-14 1E-7 5E-6 4E-2

30 1922 3E-11 7E-6 1E-14 5E-15 3E-15 9E-15 4E-14 5E-14 9E-12 2E-2

Table 4 Interpolation errors for the Padua points PD2n

n # F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

5 66 6E-1 4E-2 1E-3 6E-5 1E-2 3E-5 9E-1 2E-1 4E+1 5E-1

10 231 6E-3 7E-3 3E-6 1E-10 2E-5 1E-8 2E-5 6E-3 7E-1 1E-1

20 861 2E-6 2E-4 7E-12 3E-15 1E-13 4E-15 2E-14 1E-7 7E-6 4E-2

30 1891 2E-11 7E-6 2E-14 6E-15 4E-15 2E-14 5E-14 6E-14 1E-11 2E-2

presented in [6,9] are used. The maximum interpolation errors are computed on a
uniform grid of 100×100 points defined in a region
 = [0, 1]×[0, 1]. As mentioned
above, the degree n is defined to result in a similar total number of points, i.e. a similar
cardinality. For our simulations we take n ∈ {5, 10, 20, 30}. The results are shown in
Tables 2, 3 and 4. It can be seen that the maximum interpolation error of all three point
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704 W. Erb et al.

sets shows a similar behaviour in terms of degree n, with respect to the chosen test
function. In terms of the point sets LSn,p, we evaluated the behaviour of p in addition
to the aforementioned comparisons. We can state that the influence of varying p, with
respect to the maximum interpolation error and the nodes used for the evaluation, is
almost negligible.
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